History log of /openbmc/linux/drivers/cpufreq/intel_pstate.c (Results 201 – 225 of 397)
Revision Date Author Comments
# 7a3ba767 25-Nov-2016 Arnd Bergmann <arnd@arndb.de>

cpufreq: intel_pstate: fix intel_pstate_exit_perf_limits() prototype

The addition of the generic governor support marked the
intel_pstate_exit_perf_limits as inline(), which fixed a warning,
but it

cpufreq: intel_pstate: fix intel_pstate_exit_perf_limits() prototype

The addition of the generic governor support marked the
intel_pstate_exit_perf_limits as inline(), which fixed a warning,
but it introduced another warning:

drivers/cpufreq/intel_pstate.c: In function ‘intel_pstate_exit_perf_limits’:
drivers/cpufreq/intel_pstate.c:483:1: error: no return statement in function returning non-void [-Werror=return-type]

This changes it back to a 'void' return type, and changes the
corresponding intel_pstate_init_acpi_perf_limits() function to
be inline as well for consistency.

Fixes: 001c76f05b01 (cpufreq: intel_pstate: Generic governors support)
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 8442885f 24-Nov-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: Set EPP/EPB to 0 in performance mode

When user has selected performance policy, then set the EPP (Energy
Performance Preference) or EPB (Energy Performance Bias) to maximum
pe

cpufreq: intel_pstate: Set EPP/EPB to 0 in performance mode

When user has selected performance policy, then set the EPP (Energy
Performance Preference) or EPB (Energy Performance Bias) to maximum
performance mode.

Also when user switch back to powersave, then restore EPP/EPB to last
EPP/EPB value before entering performance mode. If user has not changed
EPP/EPB manually then it will be power on default value.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 17669006 22-Nov-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq/intel_pstate: Use CPPC to get max performance

Use the acpi cppc_lib interface to get CPPC performance limits and update
the per cpu priority for the ITMT scheduler. If the highest performanc

cpufreq/intel_pstate: Use CPPC to get max performance

Use the acpi cppc_lib interface to get CPPC performance limits and update
the per cpu priority for the ITMT scheduler. If the highest performance of
CPUs differs the ITMT feature is enabled.

Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/0998b98943bcdec7d1ddd4ff27358da555ea8e92.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>

show more ...


# d5dd33d9 21-Nov-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: increase precision of performance limits

Even with round up of limits->min_perf and limits->max_perf, in some
cases resultant performance is 100 MHz less than the desired.

Fo

cpufreq: intel_pstate: increase precision of performance limits

Even with round up of limits->min_perf and limits->max_perf, in some
cases resultant performance is 100 MHz less than the desired.

For example when the maximum frequency is 3.50 GHz, setting
scaling_min_frequency to 2.3 GHz always results in 2.2 GHz minimum.

Currently the fixed floating point operation uses 8 bit precision for
calculating limits->min_perf and limits->max_perf. For some operations
in this driver the 14 bit precision is used. Using the 14 bit precision
also for calculating limits->min_perf and limits->max_perf, addresses
this issue.

Introduced fp_ext_toint() equivalent to fp_toint() and int_ext_tofp()
equivalent to int_tofp() with 14 bit precision.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 46992d6b 21-Nov-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: round up min_perf limits

In some use cases, user wants to enforce a minimum performance limit on
CPUs. But because of simple division the resultant performance is 100 MHz
less

cpufreq: intel_pstate: round up min_perf limits

In some use cases, user wants to enforce a minimum performance limit on
CPUs. But because of simple division the resultant performance is 100 MHz
less than the desired in some cases.

For example when the maximum frequency is 3.50 GHz, setting
scaling_min_frequency to 1.6 GHz always results in 1.5 GHz minimum. With
simple round up, the frequency can be set to 1.6 GHz to minimum in this
case. This round up is already done to max_policy_pct and max_perf, so do
the same for min_policy_pct and min_perf.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 001c76f0 17-Nov-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Generic governors support

There may be reasons to use generic cpufreq governors (eg. schedutil)
on Intel platforms instead of the intel_pstate driver's internal
governor. How

cpufreq: intel_pstate: Generic governors support

There may be reasons to use generic cpufreq governors (eg. schedutil)
on Intel platforms instead of the intel_pstate driver's internal
governor. However, that currently can only be done by disabling
intel_pstate altogether and using the acpi-cpufreq driver instead
of it, which is subject to limitations.

First of all, acpi-cpufreq only works on systems where the _PSS
object is present in the ACPI tables for all logical CPUs. Second,
on those systems acpi-cpufreq will only use frequencies listed by
_PSS which may be suboptimal. In particular, by convention, the
whole turbo range is represented in _PSS as a single P-state and
the frequency assigned to it is greater by 1 MHz than the greatest
non-turbo frequency listed by _PSS. That may confuse governors to
use turbo frequencies less frequently which may lead to suboptimal
performance.

For this reason, make it possible to use the intel_pstate driver
with generic cpufreq governors as a "normal" cpufreq driver. That
mode is enforced by adding intel_pstate=passive to the kernel
command line and cannot be disabled at run time. In that mode,
intel_pstate provides a cpufreq driver interface including
the ->target() and ->fast_switch() callbacks and is listed in
scaling_driver as "intel_cpufreq".

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Doug Smythies <dsmythies@telus.net>

show more ...


# d0ea59e1 17-Nov-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Request P-states control from SMM if needed

Currently, intel_pstate is unable to control P-states on my
IvyBridge-based Acer Aspire S5, because they are controlled by SMM
on t

cpufreq: intel_pstate: Request P-states control from SMM if needed

Currently, intel_pstate is unable to control P-states on my
IvyBridge-based Acer Aspire S5, because they are controlled by SMM
on that machine by default and it is necessary to request OS control
of P-states from it via the SMI Command register exposed in the ACPI
FADT. intel_pstate doesn't do that now, but acpi-cpufreq and other
cpufreq drivers for x86 platforms do.

Address this problem by making intel_pstate use the ACPI-defined
mechanism as well. However, intel_pstate is not modular and it
doesn't need the module refcount tricks played by
acpi_processor_notify_smm(), so export the core of this function
to it as acpi_processor_pstate_control() and make it call that.
[The changes in processor_perflib.c related to this should not
make any functional difference for the acpi_processor_notify_smm()
users].

To be safe, only call acpi_processor_notify_smm() from intel_pstate
if ACPI _PPC support is enabled in it.

Suggested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

show more ...


# 7f7a516e 14-Nov-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: Use CPU load based algorithm for PM_MOBILE

Use get_target_pstate_use_cpu_load() to calculate target P-State for
devices, with the preferred power management profile in ACPI FA

cpufreq: intel_pstate: Use CPU load based algorithm for PM_MOBILE

Use get_target_pstate_use_cpu_load() to calculate target P-State for
devices, with the preferred power management profile in ACPI FADT
set to PM_MOBILE.

This may help in resolving some thermal issues caused by low sustained
cpu bound workloads. The current algorithm tend to over provision in this
case as it doesn't look at the CPU busyness.

Also included the fix from Arnd Bergmann <arnd@arndb.de> to solve compile
issue, when CONFIG_ACPI is not defined.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# a410c03d 28-Oct-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: protect limits variable

The limits variable gets modified from intel_pstate sysfs and also gets
modified from cpufreq sysfs. So protect with a mutex to keep data
integrity, wh

cpufreq: intel_pstate: protect limits variable

The limits variable gets modified from intel_pstate sysfs and also gets
modified from cpufreq sysfs. So protect with a mutex to keep data
integrity, when they are getting modified from multiple threads.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 5879f877 25-Oct-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: Reduce impact due to rounding error

When policy->max and policy->min are same, in some cases they don't
result in the same frequency cap. The max_policy_pct is rounded up but

cpufreq: intel_pstate: Reduce impact due to rounding error

When policy->max and policy->min are same, in some cases they don't
result in the same frequency cap. The max_policy_pct is rounded up but
not min_perf_pct. So even when they are same, results in different
percentage or maximum and minimum.
Since minimum is a conservative value for power, a lower value without
rounding is better in most of the cases, unless user wants
policy->max = policy->min.
This change uses use the same policy percentage when policy->max and
policy->min are same.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# eae48f04 25-Oct-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: Per CPU P-State limits

Intel P-State offers two interface to set performance limits:
- Intel P-State sysfs
/sys/devices/system/cpu/intel_pstate/max_perf_pct
/sys/devices/sys

cpufreq: intel_pstate: Per CPU P-State limits

Intel P-State offers two interface to set performance limits:
- Intel P-State sysfs
/sys/devices/system/cpu/intel_pstate/max_perf_pct
/sys/devices/system/cpu/intel_pstate/min_perf_pct
- cpufreq
/sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq
/sys/devices/system/cpu/cpu*/cpufreq/scaling_min_freq

In the current implementation both of the above methods, change limits
to every CPU in the system. Moreover the limits placed using cpufreq
policy interface also presented in the Intel P-State sysfs via modified
max_perf_pct and min_per_pct during sysfs reads. This allows to check
percent of reduced/increased performance, irrespective of method used to
limit.

There are some new generations of processors, where it is possible to
have limits placed on individual CPU cores. Using cpufreq interface it
is possible to set limits on each CPU. But the current processing will
use last limits placed on all CPUs. So the per core limit feature of
CPUs can't be used.

This change brings in capability to set P-States limits for each CPU,
with some limitations. In this case what should be the read of
max_perf_pct and min_perf_pct? It can be most restrictive limits placed
on any CPU or max possible performance on any given CPU on which no
limits are placed. In either case someone will have issue.

So the consensus is, we can't have both sysfs controls present when user
wants to use limit per core limits.
- By default per-core-control feature is not enabled. So no one will
notice any difference.
- The way to enable is by kernel command line
intel_pstate=per_cpu_perf_limits
- When the per-core-controls are enabled there is no display of for both
read and write on
/sys/devices/system/cpu/intel_pstate/max_perf_pct
/sys/devices/system/cpu/intel_pstate/min_perf_pct
- User can change limits using
/sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq
/sys/devices/system/cpu/cpu*/cpufreq/scaling_min_freq
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
- User can still observe turbo percent and number of P-States from
/sys/devices/system/cpu/intel_pstate/turbo_pct
/sys/devices/system/cpu/intel_pstate/num_pstates
- User can read write system wide turbo status
/sys/devices/system/cpu/no_turbo

While changing this BUG_ON is changed to WARN_ON, as they are not fatal
errors for the system.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 2f1d407a 24-Oct-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Always set max P-state in performance mode

The only times at which intel_pstate checks the policy set for
a given CPU is the initialization of that CPU and updates of its
poli

cpufreq: intel_pstate: Always set max P-state in performance mode

The only times at which intel_pstate checks the policy set for
a given CPU is the initialization of that CPU and updates of its
policy settings from cpufreq when intel_pstate_set_policy() is
invoked.

That is insufficient, however, because intel_pstate uses the same
P-state selection function for all CPUs regardless of the policy
setting for each of them and the P-state limits are shared between
them. Thus if the policy is set to "performance" for a particular
CPU, it may not behave as expected if the cpufreq settings are
changed subsequently for another CPU.

That can be easily demonstrated by writing "performance" to
scaling_governor for all CPUs and then switching it to "powersave"
for one of them in which case all of the CPUs will behave as though
their scaling_governor were all "powersave" (even though the policy
still appears to be "performance" for the remaining CPUs).

Fix this problem by modifying intel_pstate_adjust_busy_pstate() to
always set the P-state to the maximum allowed by the current limits
for all CPUs whose policy is set to "performance".

Note that it still is recommended to always change the policy setting
in the same way for all CPUs even with this fix applied to avoid
confusion.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# a6c6ead1 18-Oct-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Set P-state upfront in performance mode

After commit a4675fbc4a7a (cpufreq: intel_pstate: Replace timers with
utilization update callbacks) the cpufreq governor callbacks may

cpufreq: intel_pstate: Set P-state upfront in performance mode

After commit a4675fbc4a7a (cpufreq: intel_pstate: Replace timers with
utilization update callbacks) the cpufreq governor callbacks may not
be invoked on NOHZ_FULL CPUs and, in particular, switching to the
"performance" policy via sysfs may not have any effect on them. That
is a problem, because it usually is desirable to squeeze the last
bit of performance out of those CPUs, so work around it by setting
the maximum P-state (within the limits) in intel_pstate_set_policy()
upfront when the policy is CPUFREQ_POLICY_PERFORMANCE.

Fixes: a4675fbc4a7a (cpufreq: intel_pstate: Replace timers with utilization update callbacks)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

show more ...


# 185d8245 21-Oct-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: Remove PID debugfs when not used

When target state is calculated using get_target_pstate_use_cpu_load(),
PID controller is not used, hence it has no effect on performance.
So

cpufreq: intel_pstate: Remove PID debugfs when not used

When target state is calculated using get_target_pstate_use_cpu_load(),
PID controller is not used, hence it has no effect on performance.
So don't present debugfs entries to tune PID controller.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 1d29815e 18-Oct-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Drop boost_iowait flag

The "IOwait boosting" mechanism is only used by the
get_target_pstate_use_cpu_load() governor function and the
boost_iowait flag in pid_params is always

cpufreq: intel_pstate: Drop boost_iowait flag

The "IOwait boosting" mechanism is only used by the
get_target_pstate_use_cpu_load() governor function and the
boost_iowait flag in pid_params is always set when that function
is in use (and it is never set otherwise). This means that the
boost_iowait flag is in fact redundant and may be dropped.

For this reason, replace the boost_iowait flag check in
intel_pstate_update_util() with an equivalent check against
pstate_funcs.get_target_pstate and drop that flag.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

show more ...


# 3954517e 11-Oct-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Fix struct pstate_adjust_policy kerneldoc

It looks like the name of struct pstate_adjust_policy was updated
without updating its kerneldoc comment accordingly, so fix that
mis

cpufreq: intel_pstate: Fix struct pstate_adjust_policy kerneldoc

It looks like the name of struct pstate_adjust_policy was updated
without updating its kerneldoc comment accordingly, so fix that
mistake.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 0843e83c 06-Oct-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Proportional algorithm for Atom

The PID algorithm used by the intel_pstate driver tends to drive
performance to the minimum for workloads with utilization below the
setpoint,

cpufreq: intel_pstate: Proportional algorithm for Atom

The PID algorithm used by the intel_pstate driver tends to drive
performance to the minimum for workloads with utilization below the
setpoint, which is undesirable, so replace it with a modified
"proportional" algorithm on Atom.

The new algorithm will set the new P-state to be 1.25 times the
available maximum times the (frequency-invariant) utilization during
the previous sampling period except when the target P-state computed
this way is lower than the average P-state during the previous
sampling period. In the latter case, it will increase the target by
50% of the difference between it and the average P-state to prevent
performance from dropping down too fast in some cases.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

show more ...


# f00593a4 29-Sep-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Clarify comment in get_target_pstate_use_performance()

Make the comment explaining the meaning of the perf_scaled variable
in get_target_pstate_use_performance() more straight

cpufreq: intel_pstate: Clarify comment in get_target_pstate_use_performance()

Make the comment explaining the meaning of the perf_scaled variable
in get_target_pstate_use_performance() more straightforward.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# f9f4872d 08-Oct-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: Fix unsafe HWP MSR access

This is a requirement that MSR MSR_PM_ENABLE must be set to 0x01 before
reading MSR_HWP_CAPABILITIES on a given CPU. If cpufreq init() is
scheduled o

cpufreq: intel_pstate: Fix unsafe HWP MSR access

This is a requirement that MSR MSR_PM_ENABLE must be set to 0x01 before
reading MSR_HWP_CAPABILITIES on a given CPU. If cpufreq init() is
scheduled on a CPU which is not same as policy->cpu or migrates to a
different CPU before calling msr read for MSR_HWP_CAPABILITIES, it
is possible that MSR_PM_ENABLE was not to set to 0x01 on that CPU.
This will cause GP fault. So like other places in this path
rdmsrl_on_cpu should be used instead of rdmsrl.

Moreover the scope of MSR_HWP_CAPABILITIES is on per thread basis, so it
should be read from the same CPU, for which MSR MSR_HWP_REQUEST is
getting set.

dmesg dump or warning:

[ 22.014488] WARNING: CPU: 139 PID: 1 at arch/x86/mm/extable.c:50 ex_handler_rdmsr_unsafe+0x68/0x70
[ 22.014492] unchecked MSR access error: RDMSR from 0x771
[ 22.014493] Modules linked in:
[ 22.014507] CPU: 139 PID: 1 Comm: swapper/0 Not tainted 4.7.5+ #1
...
...
[ 22.014516] Call Trace:
[ 22.014542] [<ffffffff813d7dd1>] dump_stack+0x63/0x82
[ 22.014558] [<ffffffff8107bc8b>] __warn+0xcb/0xf0
[ 22.014561] [<ffffffff8107bcff>] warn_slowpath_fmt+0x4f/0x60
[ 22.014563] [<ffffffff810676f8>] ex_handler_rdmsr_unsafe+0x68/0x70
[ 22.014564] [<ffffffff810677d9>] fixup_exception+0x39/0x50
[ 22.014604] [<ffffffff8102e400>] do_general_protection+0x80/0x150
[ 22.014610] [<ffffffff817f9ec8>] general_protection+0x28/0x30
[ 22.014635] [<ffffffff81687940>] ? get_target_pstate_use_performance+0xb0/0xb0
[ 22.014642] [<ffffffff810600c7>] ? native_read_msr+0x7/0x40
[ 22.014657] [<ffffffff81688123>] intel_pstate_hwp_set+0x23/0x130
[ 22.014660] [<ffffffff81688406>] intel_pstate_set_policy+0x1b6/0x340
[ 22.014662] [<ffffffff816829bb>] cpufreq_set_policy+0xeb/0x2c0
[ 22.014664] [<ffffffff81682f39>] cpufreq_init_policy+0x79/0xe0
[ 22.014666] [<ffffffff81682cb0>] ? cpufreq_update_policy+0x120/0x120
[ 22.014669] [<ffffffff816833a6>] cpufreq_online+0x406/0x820
[ 22.014671] [<ffffffff8168381f>] cpufreq_add_dev+0x5f/0x90
[ 22.014717] [<ffffffff81530ac8>] subsys_interface_register+0xb8/0x100
[ 22.014719] [<ffffffff816821bc>] cpufreq_register_driver+0x14c/0x210
[ 22.014749] [<ffffffff81fe1d90>] intel_pstate_init+0x39d/0x4d5
[ 22.014751] [<ffffffff81fe13f2>] ? cpufreq_gov_dbs_init+0x12/0x12

Cc: 4.3+ <stable@vger.kernel.org> # 4.3+
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 3ba7bcaa 13-Sep-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: Add io_boost trace

Add io_boost percent to current pstate_sample tracepoint.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J.

cpufreq: intel_pstate: Add io_boost trace

Add io_boost percent to current pstate_sample tracepoint.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 09c448d3 13-Sep-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Use IOWAIT flag in Atom algorithm

Modify the P-state selection algorithm for Atom processors to use
the new SCHED_CPUFREQ_IOWAIT flag instead of the questionable
get_cpu_iowai

cpufreq: intel_pstate: Use IOWAIT flag in Atom algorithm

Modify the P-state selection algorithm for Atom processors to use
the new SCHED_CPUFREQ_IOWAIT flag instead of the questionable
get_cpu_iowait_time_us() function.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 42ce8921 11-Sep-2016 Julia Lawall <Julia.Lawall@lip6.fr>

intel_pstate: constify local structures

For structure types defined in the same file or local header files, find
top-level static structure declarations that have the following
properties:
1. Never

intel_pstate: constify local structures

For structure types defined in the same file or local header files, find
top-level static structure declarations that have the following
properties:
1. Never reassigned.
2. Address never taken
3. Not passed to a top-level macro call
4. No pointer or array-typed field passed to a function or stored in a
variable.
Declare structures having all of these properties as const.

Done using Coccinelle.
Based on a suggestion by Joe Perches <joe@perches.com>.

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# 58919e83 16-Aug-2016 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq / sched: Pass flags to cpufreq_update_util()

It is useful to know the reason why cpufreq_update_util() has just
been called and that can be passed as flags to cpufreq_update_util()
and to th

cpufreq / sched: Pass flags to cpufreq_update_util()

It is useful to know the reason why cpufreq_update_util() has just
been called and that can be passed as flags to cpufreq_update_util()
and to the ->func() callback in struct update_util_data. However,
doing that in addition to passing the util and max arguments they
already take would be clumsy, so avoid it.

Instead, use the observation that the schedutil governor is part
of the scheduler proper, so it can access scheduler data directly.
This allows the util and max arguments of cpufreq_update_util()
and the ->func() callback in struct update_util_data to be replaced
with a flags one, but schedutil has to be modified to follow.

Thus make the schedutil governor obtain the CFS utilization
information from the scheduler and use the "RT" and "DL" flags
instead of the special utilization value of ULONG_MAX to track
updates from the RT and DL sched classes. Make it non-modular
too to avoid having to export scheduler variables to modules at
large.

Next, update all of the other users of cpufreq_update_util()
and the ->func() callback in struct update_util_data accordingly.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>

show more ...


# 65c1262f 23-Jul-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: Add more out-of-band IDs

Add Skylake-X and Broadwell-X IDs for out-of-band (OBB) control of
P-States.

For these processors, if MSR_MISC_PWR_MGMT BIT(8) == 1, then the
Intel P

cpufreq: intel_pstate: Add more out-of-band IDs

Add Skylake-X and Broadwell-X IDs for out-of-band (OBB) control of
P-States.

For these processors, if MSR_MISC_PWR_MGMT BIT(8) == 1, then the
Intel P-State driver should exit as OS can't control P-States.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw : Subject/changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


# da7de91c 19-Jul-2016 Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT

The MSR MSR_HWP_INTERRUPT is valid only when CPUID.06H:EAX[8] = 1, so
check for feature before accessing this MSR.

Signed-off-by: Srinivas P

cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT

The MSR MSR_HWP_INTERRUPT is valid only when CPUID.06H:EAX[8] = 1, so
check for feature before accessing this MSR.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>

show more ...


12345678910>>...16