1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define ATOM_RATIOS		0x66a
41 #define ATOM_VIDS		0x66b
42 #define ATOM_TURBO_RATIOS	0x66c
43 #define ATOM_TURBO_VIDS		0x66d
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 /**
88  * struct sample -	Store performance sample
89  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90  *			performance during last sample period
91  * @busy_scaled:	Scaled busy value which is used to calculate next
92  *			P state. This can be different than core_avg_perf
93  *			to account for cpu idle period
94  * @aperf:		Difference of actual performance frequency clock count
95  *			read from APERF MSR between last and current sample
96  * @mperf:		Difference of maximum performance frequency clock count
97  *			read from MPERF MSR between last and current sample
98  * @tsc:		Difference of time stamp counter between last and
99  *			current sample
100  * @time:		Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106 	int32_t core_avg_perf;
107 	int32_t busy_scaled;
108 	u64 aperf;
109 	u64 mperf;
110 	u64 tsc;
111 	u64 time;
112 };
113 
114 /**
115  * struct pstate_data - Store P state data
116  * @current_pstate:	Current requested P state
117  * @min_pstate:		Min P state possible for this platform
118  * @max_pstate:		Max P state possible for this platform
119  * @max_pstate_physical:This is physical Max P state for a processor
120  *			This can be higher than the max_pstate which can
121  *			be limited by platform thermal design power limits
122  * @scaling:		Scaling factor to  convert frequency to cpufreq
123  *			frequency units
124  * @turbo_pstate:	Max Turbo P state possible for this platform
125  *
126  * Stores the per cpu model P state limits and current P state.
127  */
128 struct pstate_data {
129 	int	current_pstate;
130 	int	min_pstate;
131 	int	max_pstate;
132 	int	max_pstate_physical;
133 	int	scaling;
134 	int	turbo_pstate;
135 };
136 
137 /**
138  * struct vid_data -	Stores voltage information data
139  * @min:		VID data for this platform corresponding to
140  *			the lowest P state
141  * @max:		VID data corresponding to the highest P State.
142  * @turbo:		VID data for turbo P state
143  * @ratio:		Ratio of (vid max - vid min) /
144  *			(max P state - Min P State)
145  *
146  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147  * This data is used in Atom platforms, where in addition to target P state,
148  * the voltage data needs to be specified to select next P State.
149  */
150 struct vid_data {
151 	int min;
152 	int max;
153 	int turbo;
154 	int32_t ratio;
155 };
156 
157 /**
158  * struct _pid -	Stores PID data
159  * @setpoint:		Target set point for busyness or performance
160  * @integral:		Storage for accumulated error values
161  * @p_gain:		PID proportional gain
162  * @i_gain:		PID integral gain
163  * @d_gain:		PID derivative gain
164  * @deadband:		PID deadband
165  * @last_err:		Last error storage for integral part of PID calculation
166  *
167  * Stores PID coefficients and last error for PID controller.
168  */
169 struct _pid {
170 	int setpoint;
171 	int32_t integral;
172 	int32_t p_gain;
173 	int32_t i_gain;
174 	int32_t d_gain;
175 	int deadband;
176 	int32_t last_err;
177 };
178 
179 /**
180  * struct cpudata -	Per CPU instance data storage
181  * @cpu:		CPU number for this instance data
182  * @update_util:	CPUFreq utility callback information
183  * @update_util_set:	CPUFreq utility callback is set
184  * @iowait_boost:	iowait-related boost fraction
185  * @last_update:	Time of the last update.
186  * @pstate:		Stores P state limits for this CPU
187  * @vid:		Stores VID limits for this CPU
188  * @pid:		Stores PID parameters for this CPU
189  * @last_sample_time:	Last Sample time
190  * @prev_aperf:		Last APERF value read from APERF MSR
191  * @prev_mperf:		Last MPERF value read from MPERF MSR
192  * @prev_tsc:		Last timestamp counter (TSC) value
193  * @prev_cummulative_iowait: IO Wait time difference from last and
194  *			current sample
195  * @sample:		Storage for storing last Sample data
196  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
197  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
198  *
199  * This structure stores per CPU instance data for all CPUs.
200  */
201 struct cpudata {
202 	int cpu;
203 
204 	struct update_util_data update_util;
205 	bool   update_util_set;
206 
207 	struct pstate_data pstate;
208 	struct vid_data vid;
209 	struct _pid pid;
210 
211 	u64	last_update;
212 	u64	last_sample_time;
213 	u64	prev_aperf;
214 	u64	prev_mperf;
215 	u64	prev_tsc;
216 	u64	prev_cummulative_iowait;
217 	struct sample sample;
218 #ifdef CONFIG_ACPI
219 	struct acpi_processor_performance acpi_perf_data;
220 	bool valid_pss_table;
221 #endif
222 	unsigned int iowait_boost;
223 };
224 
225 static struct cpudata **all_cpu_data;
226 
227 /**
228  * struct pstate_adjust_policy - Stores static PID configuration data
229  * @sample_rate_ms:	PID calculation sample rate in ms
230  * @sample_rate_ns:	Sample rate calculation in ns
231  * @deadband:		PID deadband
232  * @setpoint:		PID Setpoint
233  * @p_gain_pct:		PID proportional gain
234  * @i_gain_pct:		PID integral gain
235  * @d_gain_pct:		PID derivative gain
236  *
237  * Stores per CPU model static PID configuration data.
238  */
239 struct pstate_adjust_policy {
240 	int sample_rate_ms;
241 	s64 sample_rate_ns;
242 	int deadband;
243 	int setpoint;
244 	int p_gain_pct;
245 	int d_gain_pct;
246 	int i_gain_pct;
247 };
248 
249 /**
250  * struct pstate_funcs - Per CPU model specific callbacks
251  * @get_max:		Callback to get maximum non turbo effective P state
252  * @get_max_physical:	Callback to get maximum non turbo physical P state
253  * @get_min:		Callback to get minimum P state
254  * @get_turbo:		Callback to get turbo P state
255  * @get_scaling:	Callback to get frequency scaling factor
256  * @get_val:		Callback to convert P state to actual MSR write value
257  * @get_vid:		Callback to get VID data for Atom platforms
258  * @get_target_pstate:	Callback to a function to calculate next P state to use
259  *
260  * Core and Atom CPU models have different way to get P State limits. This
261  * structure is used to store those callbacks.
262  */
263 struct pstate_funcs {
264 	int (*get_max)(void);
265 	int (*get_max_physical)(void);
266 	int (*get_min)(void);
267 	int (*get_turbo)(void);
268 	int (*get_scaling)(void);
269 	u64 (*get_val)(struct cpudata*, int pstate);
270 	void (*get_vid)(struct cpudata *);
271 	int32_t (*get_target_pstate)(struct cpudata *);
272 };
273 
274 /**
275  * struct cpu_defaults- Per CPU model default config data
276  * @pid_policy:	PID config data
277  * @funcs:		Callback function data
278  */
279 struct cpu_defaults {
280 	struct pstate_adjust_policy pid_policy;
281 	struct pstate_funcs funcs;
282 };
283 
284 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
285 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
286 
287 static struct pstate_adjust_policy pid_params __read_mostly;
288 static struct pstate_funcs pstate_funcs __read_mostly;
289 static int hwp_active __read_mostly;
290 
291 #ifdef CONFIG_ACPI
292 static bool acpi_ppc;
293 #endif
294 
295 /**
296  * struct perf_limits - Store user and policy limits
297  * @no_turbo:		User requested turbo state from intel_pstate sysfs
298  * @turbo_disabled:	Platform turbo status either from msr
299  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
300  *			matches the maximum turbo pstate
301  * @max_perf_pct:	Effective maximum performance limit in percentage, this
302  *			is minimum of either limits enforced by cpufreq policy
303  *			or limits from user set limits via intel_pstate sysfs
304  * @min_perf_pct:	Effective minimum performance limit in percentage, this
305  *			is maximum of either limits enforced by cpufreq policy
306  *			or limits from user set limits via intel_pstate sysfs
307  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
308  *			This value is used to limit max pstate
309  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
310  *			This value is used to limit min pstate
311  * @max_policy_pct:	The maximum performance in percentage enforced by
312  *			cpufreq setpolicy interface
313  * @max_sysfs_pct:	The maximum performance in percentage enforced by
314  *			intel pstate sysfs interface
315  * @min_policy_pct:	The minimum performance in percentage enforced by
316  *			cpufreq setpolicy interface
317  * @min_sysfs_pct:	The minimum performance in percentage enforced by
318  *			intel pstate sysfs interface
319  *
320  * Storage for user and policy defined limits.
321  */
322 struct perf_limits {
323 	int no_turbo;
324 	int turbo_disabled;
325 	int max_perf_pct;
326 	int min_perf_pct;
327 	int32_t max_perf;
328 	int32_t min_perf;
329 	int max_policy_pct;
330 	int max_sysfs_pct;
331 	int min_policy_pct;
332 	int min_sysfs_pct;
333 };
334 
335 static struct perf_limits performance_limits = {
336 	.no_turbo = 0,
337 	.turbo_disabled = 0,
338 	.max_perf_pct = 100,
339 	.max_perf = int_tofp(1),
340 	.min_perf_pct = 100,
341 	.min_perf = int_tofp(1),
342 	.max_policy_pct = 100,
343 	.max_sysfs_pct = 100,
344 	.min_policy_pct = 0,
345 	.min_sysfs_pct = 0,
346 };
347 
348 static struct perf_limits powersave_limits = {
349 	.no_turbo = 0,
350 	.turbo_disabled = 0,
351 	.max_perf_pct = 100,
352 	.max_perf = int_tofp(1),
353 	.min_perf_pct = 0,
354 	.min_perf = 0,
355 	.max_policy_pct = 100,
356 	.max_sysfs_pct = 100,
357 	.min_policy_pct = 0,
358 	.min_sysfs_pct = 0,
359 };
360 
361 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
362 static struct perf_limits *limits = &performance_limits;
363 #else
364 static struct perf_limits *limits = &powersave_limits;
365 #endif
366 
367 #ifdef CONFIG_ACPI
368 
369 static bool intel_pstate_get_ppc_enable_status(void)
370 {
371 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
372 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
373 		return true;
374 
375 	return acpi_ppc;
376 }
377 
378 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
379 {
380 	struct cpudata *cpu;
381 	int ret;
382 	int i;
383 
384 	if (hwp_active)
385 		return;
386 
387 	if (!intel_pstate_get_ppc_enable_status())
388 		return;
389 
390 	cpu = all_cpu_data[policy->cpu];
391 
392 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
393 						  policy->cpu);
394 	if (ret)
395 		return;
396 
397 	/*
398 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
399 	 * guarantee that the states returned by it map to the states in our
400 	 * list directly.
401 	 */
402 	if (cpu->acpi_perf_data.control_register.space_id !=
403 						ACPI_ADR_SPACE_FIXED_HARDWARE)
404 		goto err;
405 
406 	/*
407 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
408 	 * usual without taking _PSS into account
409 	 */
410 	if (cpu->acpi_perf_data.state_count < 2)
411 		goto err;
412 
413 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
414 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
415 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
416 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
417 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
418 			 (u32) cpu->acpi_perf_data.states[i].power,
419 			 (u32) cpu->acpi_perf_data.states[i].control);
420 	}
421 
422 	/*
423 	 * The _PSS table doesn't contain whole turbo frequency range.
424 	 * This just contains +1 MHZ above the max non turbo frequency,
425 	 * with control value corresponding to max turbo ratio. But
426 	 * when cpufreq set policy is called, it will call with this
427 	 * max frequency, which will cause a reduced performance as
428 	 * this driver uses real max turbo frequency as the max
429 	 * frequency. So correct this frequency in _PSS table to
430 	 * correct max turbo frequency based on the turbo state.
431 	 * Also need to convert to MHz as _PSS freq is in MHz.
432 	 */
433 	if (!limits->turbo_disabled)
434 		cpu->acpi_perf_data.states[0].core_frequency =
435 					policy->cpuinfo.max_freq / 1000;
436 	cpu->valid_pss_table = true;
437 	pr_debug("_PPC limits will be enforced\n");
438 
439 	return;
440 
441  err:
442 	cpu->valid_pss_table = false;
443 	acpi_processor_unregister_performance(policy->cpu);
444 }
445 
446 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
447 {
448 	struct cpudata *cpu;
449 
450 	cpu = all_cpu_data[policy->cpu];
451 	if (!cpu->valid_pss_table)
452 		return;
453 
454 	acpi_processor_unregister_performance(policy->cpu);
455 }
456 
457 #else
458 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
459 {
460 }
461 
462 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
463 {
464 }
465 #endif
466 
467 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
468 			     int deadband, int integral) {
469 	pid->setpoint = int_tofp(setpoint);
470 	pid->deadband  = int_tofp(deadband);
471 	pid->integral  = int_tofp(integral);
472 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
473 }
474 
475 static inline void pid_p_gain_set(struct _pid *pid, int percent)
476 {
477 	pid->p_gain = div_fp(percent, 100);
478 }
479 
480 static inline void pid_i_gain_set(struct _pid *pid, int percent)
481 {
482 	pid->i_gain = div_fp(percent, 100);
483 }
484 
485 static inline void pid_d_gain_set(struct _pid *pid, int percent)
486 {
487 	pid->d_gain = div_fp(percent, 100);
488 }
489 
490 static signed int pid_calc(struct _pid *pid, int32_t busy)
491 {
492 	signed int result;
493 	int32_t pterm, dterm, fp_error;
494 	int32_t integral_limit;
495 
496 	fp_error = pid->setpoint - busy;
497 
498 	if (abs(fp_error) <= pid->deadband)
499 		return 0;
500 
501 	pterm = mul_fp(pid->p_gain, fp_error);
502 
503 	pid->integral += fp_error;
504 
505 	/*
506 	 * We limit the integral here so that it will never
507 	 * get higher than 30.  This prevents it from becoming
508 	 * too large an input over long periods of time and allows
509 	 * it to get factored out sooner.
510 	 *
511 	 * The value of 30 was chosen through experimentation.
512 	 */
513 	integral_limit = int_tofp(30);
514 	if (pid->integral > integral_limit)
515 		pid->integral = integral_limit;
516 	if (pid->integral < -integral_limit)
517 		pid->integral = -integral_limit;
518 
519 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
520 	pid->last_err = fp_error;
521 
522 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
523 	result = result + (1 << (FRAC_BITS-1));
524 	return (signed int)fp_toint(result);
525 }
526 
527 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
528 {
529 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
530 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
531 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
532 
533 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
534 }
535 
536 static inline void intel_pstate_reset_all_pid(void)
537 {
538 	unsigned int cpu;
539 
540 	for_each_online_cpu(cpu) {
541 		if (all_cpu_data[cpu])
542 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
543 	}
544 }
545 
546 static inline void update_turbo_state(void)
547 {
548 	u64 misc_en;
549 	struct cpudata *cpu;
550 
551 	cpu = all_cpu_data[0];
552 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
553 	limits->turbo_disabled =
554 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
555 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
556 }
557 
558 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
559 {
560 	int min, hw_min, max, hw_max, cpu, range, adj_range;
561 	u64 value, cap;
562 
563 	for_each_cpu(cpu, cpumask) {
564 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
565 		hw_min = HWP_LOWEST_PERF(cap);
566 		hw_max = HWP_HIGHEST_PERF(cap);
567 		range = hw_max - hw_min;
568 
569 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
570 		adj_range = limits->min_perf_pct * range / 100;
571 		min = hw_min + adj_range;
572 		value &= ~HWP_MIN_PERF(~0L);
573 		value |= HWP_MIN_PERF(min);
574 
575 		adj_range = limits->max_perf_pct * range / 100;
576 		max = hw_min + adj_range;
577 		if (limits->no_turbo) {
578 			hw_max = HWP_GUARANTEED_PERF(cap);
579 			if (hw_max < max)
580 				max = hw_max;
581 		}
582 
583 		value &= ~HWP_MAX_PERF(~0L);
584 		value |= HWP_MAX_PERF(max);
585 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
586 	}
587 }
588 
589 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
590 {
591 	if (hwp_active)
592 		intel_pstate_hwp_set(policy->cpus);
593 
594 	return 0;
595 }
596 
597 static void intel_pstate_hwp_set_online_cpus(void)
598 {
599 	get_online_cpus();
600 	intel_pstate_hwp_set(cpu_online_mask);
601 	put_online_cpus();
602 }
603 
604 /************************** debugfs begin ************************/
605 static int pid_param_set(void *data, u64 val)
606 {
607 	*(u32 *)data = val;
608 	intel_pstate_reset_all_pid();
609 	return 0;
610 }
611 
612 static int pid_param_get(void *data, u64 *val)
613 {
614 	*val = *(u32 *)data;
615 	return 0;
616 }
617 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
618 
619 struct pid_param {
620 	char *name;
621 	void *value;
622 };
623 
624 static struct pid_param pid_files[] = {
625 	{"sample_rate_ms", &pid_params.sample_rate_ms},
626 	{"d_gain_pct", &pid_params.d_gain_pct},
627 	{"i_gain_pct", &pid_params.i_gain_pct},
628 	{"deadband", &pid_params.deadband},
629 	{"setpoint", &pid_params.setpoint},
630 	{"p_gain_pct", &pid_params.p_gain_pct},
631 	{NULL, NULL}
632 };
633 
634 static void __init intel_pstate_debug_expose_params(void)
635 {
636 	struct dentry *debugfs_parent;
637 	int i = 0;
638 
639 	if (hwp_active)
640 		return;
641 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
642 	if (IS_ERR_OR_NULL(debugfs_parent))
643 		return;
644 	while (pid_files[i].name) {
645 		debugfs_create_file(pid_files[i].name, 0660,
646 				    debugfs_parent, pid_files[i].value,
647 				    &fops_pid_param);
648 		i++;
649 	}
650 }
651 
652 /************************** debugfs end ************************/
653 
654 /************************** sysfs begin ************************/
655 #define show_one(file_name, object)					\
656 	static ssize_t show_##file_name					\
657 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
658 	{								\
659 		return sprintf(buf, "%u\n", limits->object);		\
660 	}
661 
662 static ssize_t show_turbo_pct(struct kobject *kobj,
663 				struct attribute *attr, char *buf)
664 {
665 	struct cpudata *cpu;
666 	int total, no_turbo, turbo_pct;
667 	uint32_t turbo_fp;
668 
669 	cpu = all_cpu_data[0];
670 
671 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
672 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
673 	turbo_fp = div_fp(no_turbo, total);
674 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
675 	return sprintf(buf, "%u\n", turbo_pct);
676 }
677 
678 static ssize_t show_num_pstates(struct kobject *kobj,
679 				struct attribute *attr, char *buf)
680 {
681 	struct cpudata *cpu;
682 	int total;
683 
684 	cpu = all_cpu_data[0];
685 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
686 	return sprintf(buf, "%u\n", total);
687 }
688 
689 static ssize_t show_no_turbo(struct kobject *kobj,
690 			     struct attribute *attr, char *buf)
691 {
692 	ssize_t ret;
693 
694 	update_turbo_state();
695 	if (limits->turbo_disabled)
696 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
697 	else
698 		ret = sprintf(buf, "%u\n", limits->no_turbo);
699 
700 	return ret;
701 }
702 
703 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
704 			      const char *buf, size_t count)
705 {
706 	unsigned int input;
707 	int ret;
708 
709 	ret = sscanf(buf, "%u", &input);
710 	if (ret != 1)
711 		return -EINVAL;
712 
713 	update_turbo_state();
714 	if (limits->turbo_disabled) {
715 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
716 		return -EPERM;
717 	}
718 
719 	limits->no_turbo = clamp_t(int, input, 0, 1);
720 
721 	if (hwp_active)
722 		intel_pstate_hwp_set_online_cpus();
723 
724 	return count;
725 }
726 
727 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
728 				  const char *buf, size_t count)
729 {
730 	unsigned int input;
731 	int ret;
732 
733 	ret = sscanf(buf, "%u", &input);
734 	if (ret != 1)
735 		return -EINVAL;
736 
737 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
738 	limits->max_perf_pct = min(limits->max_policy_pct,
739 				   limits->max_sysfs_pct);
740 	limits->max_perf_pct = max(limits->min_policy_pct,
741 				   limits->max_perf_pct);
742 	limits->max_perf_pct = max(limits->min_perf_pct,
743 				   limits->max_perf_pct);
744 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
745 
746 	if (hwp_active)
747 		intel_pstate_hwp_set_online_cpus();
748 	return count;
749 }
750 
751 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
752 				  const char *buf, size_t count)
753 {
754 	unsigned int input;
755 	int ret;
756 
757 	ret = sscanf(buf, "%u", &input);
758 	if (ret != 1)
759 		return -EINVAL;
760 
761 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
762 	limits->min_perf_pct = max(limits->min_policy_pct,
763 				   limits->min_sysfs_pct);
764 	limits->min_perf_pct = min(limits->max_policy_pct,
765 				   limits->min_perf_pct);
766 	limits->min_perf_pct = min(limits->max_perf_pct,
767 				   limits->min_perf_pct);
768 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
769 
770 	if (hwp_active)
771 		intel_pstate_hwp_set_online_cpus();
772 	return count;
773 }
774 
775 show_one(max_perf_pct, max_perf_pct);
776 show_one(min_perf_pct, min_perf_pct);
777 
778 define_one_global_rw(no_turbo);
779 define_one_global_rw(max_perf_pct);
780 define_one_global_rw(min_perf_pct);
781 define_one_global_ro(turbo_pct);
782 define_one_global_ro(num_pstates);
783 
784 static struct attribute *intel_pstate_attributes[] = {
785 	&no_turbo.attr,
786 	&max_perf_pct.attr,
787 	&min_perf_pct.attr,
788 	&turbo_pct.attr,
789 	&num_pstates.attr,
790 	NULL
791 };
792 
793 static struct attribute_group intel_pstate_attr_group = {
794 	.attrs = intel_pstate_attributes,
795 };
796 
797 static void __init intel_pstate_sysfs_expose_params(void)
798 {
799 	struct kobject *intel_pstate_kobject;
800 	int rc;
801 
802 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
803 						&cpu_subsys.dev_root->kobj);
804 	BUG_ON(!intel_pstate_kobject);
805 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
806 	BUG_ON(rc);
807 }
808 /************************** sysfs end ************************/
809 
810 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
811 {
812 	/* First disable HWP notification interrupt as we don't process them */
813 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
814 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
815 
816 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
817 }
818 
819 static int atom_get_min_pstate(void)
820 {
821 	u64 value;
822 
823 	rdmsrl(ATOM_RATIOS, value);
824 	return (value >> 8) & 0x7F;
825 }
826 
827 static int atom_get_max_pstate(void)
828 {
829 	u64 value;
830 
831 	rdmsrl(ATOM_RATIOS, value);
832 	return (value >> 16) & 0x7F;
833 }
834 
835 static int atom_get_turbo_pstate(void)
836 {
837 	u64 value;
838 
839 	rdmsrl(ATOM_TURBO_RATIOS, value);
840 	return value & 0x7F;
841 }
842 
843 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
844 {
845 	u64 val;
846 	int32_t vid_fp;
847 	u32 vid;
848 
849 	val = (u64)pstate << 8;
850 	if (limits->no_turbo && !limits->turbo_disabled)
851 		val |= (u64)1 << 32;
852 
853 	vid_fp = cpudata->vid.min + mul_fp(
854 		int_tofp(pstate - cpudata->pstate.min_pstate),
855 		cpudata->vid.ratio);
856 
857 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
858 	vid = ceiling_fp(vid_fp);
859 
860 	if (pstate > cpudata->pstate.max_pstate)
861 		vid = cpudata->vid.turbo;
862 
863 	return val | vid;
864 }
865 
866 static int silvermont_get_scaling(void)
867 {
868 	u64 value;
869 	int i;
870 	/* Defined in Table 35-6 from SDM (Sept 2015) */
871 	static int silvermont_freq_table[] = {
872 		83300, 100000, 133300, 116700, 80000};
873 
874 	rdmsrl(MSR_FSB_FREQ, value);
875 	i = value & 0x7;
876 	WARN_ON(i > 4);
877 
878 	return silvermont_freq_table[i];
879 }
880 
881 static int airmont_get_scaling(void)
882 {
883 	u64 value;
884 	int i;
885 	/* Defined in Table 35-10 from SDM (Sept 2015) */
886 	static int airmont_freq_table[] = {
887 		83300, 100000, 133300, 116700, 80000,
888 		93300, 90000, 88900, 87500};
889 
890 	rdmsrl(MSR_FSB_FREQ, value);
891 	i = value & 0xF;
892 	WARN_ON(i > 8);
893 
894 	return airmont_freq_table[i];
895 }
896 
897 static void atom_get_vid(struct cpudata *cpudata)
898 {
899 	u64 value;
900 
901 	rdmsrl(ATOM_VIDS, value);
902 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
903 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
904 	cpudata->vid.ratio = div_fp(
905 		cpudata->vid.max - cpudata->vid.min,
906 		int_tofp(cpudata->pstate.max_pstate -
907 			cpudata->pstate.min_pstate));
908 
909 	rdmsrl(ATOM_TURBO_VIDS, value);
910 	cpudata->vid.turbo = value & 0x7f;
911 }
912 
913 static int core_get_min_pstate(void)
914 {
915 	u64 value;
916 
917 	rdmsrl(MSR_PLATFORM_INFO, value);
918 	return (value >> 40) & 0xFF;
919 }
920 
921 static int core_get_max_pstate_physical(void)
922 {
923 	u64 value;
924 
925 	rdmsrl(MSR_PLATFORM_INFO, value);
926 	return (value >> 8) & 0xFF;
927 }
928 
929 static int core_get_max_pstate(void)
930 {
931 	u64 tar;
932 	u64 plat_info;
933 	int max_pstate;
934 	int err;
935 
936 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
937 	max_pstate = (plat_info >> 8) & 0xFF;
938 
939 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
940 	if (!err) {
941 		/* Do some sanity checking for safety */
942 		if (plat_info & 0x600000000) {
943 			u64 tdp_ctrl;
944 			u64 tdp_ratio;
945 			int tdp_msr;
946 
947 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
948 			if (err)
949 				goto skip_tar;
950 
951 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
952 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
953 			if (err)
954 				goto skip_tar;
955 
956 			/* For level 1 and 2, bits[23:16] contain the ratio */
957 			if (tdp_ctrl)
958 				tdp_ratio >>= 16;
959 
960 			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
961 			if (tdp_ratio - 1 == tar) {
962 				max_pstate = tar;
963 				pr_debug("max_pstate=TAC %x\n", max_pstate);
964 			} else {
965 				goto skip_tar;
966 			}
967 		}
968 	}
969 
970 skip_tar:
971 	return max_pstate;
972 }
973 
974 static int core_get_turbo_pstate(void)
975 {
976 	u64 value;
977 	int nont, ret;
978 
979 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
980 	nont = core_get_max_pstate();
981 	ret = (value) & 255;
982 	if (ret <= nont)
983 		ret = nont;
984 	return ret;
985 }
986 
987 static inline int core_get_scaling(void)
988 {
989 	return 100000;
990 }
991 
992 static u64 core_get_val(struct cpudata *cpudata, int pstate)
993 {
994 	u64 val;
995 
996 	val = (u64)pstate << 8;
997 	if (limits->no_turbo && !limits->turbo_disabled)
998 		val |= (u64)1 << 32;
999 
1000 	return val;
1001 }
1002 
1003 static int knl_get_turbo_pstate(void)
1004 {
1005 	u64 value;
1006 	int nont, ret;
1007 
1008 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1009 	nont = core_get_max_pstate();
1010 	ret = (((value) >> 8) & 0xFF);
1011 	if (ret <= nont)
1012 		ret = nont;
1013 	return ret;
1014 }
1015 
1016 static struct cpu_defaults core_params = {
1017 	.pid_policy = {
1018 		.sample_rate_ms = 10,
1019 		.deadband = 0,
1020 		.setpoint = 97,
1021 		.p_gain_pct = 20,
1022 		.d_gain_pct = 0,
1023 		.i_gain_pct = 0,
1024 	},
1025 	.funcs = {
1026 		.get_max = core_get_max_pstate,
1027 		.get_max_physical = core_get_max_pstate_physical,
1028 		.get_min = core_get_min_pstate,
1029 		.get_turbo = core_get_turbo_pstate,
1030 		.get_scaling = core_get_scaling,
1031 		.get_val = core_get_val,
1032 		.get_target_pstate = get_target_pstate_use_performance,
1033 	},
1034 };
1035 
1036 static const struct cpu_defaults silvermont_params = {
1037 	.pid_policy = {
1038 		.sample_rate_ms = 10,
1039 		.deadband = 0,
1040 		.setpoint = 60,
1041 		.p_gain_pct = 14,
1042 		.d_gain_pct = 0,
1043 		.i_gain_pct = 4,
1044 	},
1045 	.funcs = {
1046 		.get_max = atom_get_max_pstate,
1047 		.get_max_physical = atom_get_max_pstate,
1048 		.get_min = atom_get_min_pstate,
1049 		.get_turbo = atom_get_turbo_pstate,
1050 		.get_val = atom_get_val,
1051 		.get_scaling = silvermont_get_scaling,
1052 		.get_vid = atom_get_vid,
1053 		.get_target_pstate = get_target_pstate_use_cpu_load,
1054 	},
1055 };
1056 
1057 static const struct cpu_defaults airmont_params = {
1058 	.pid_policy = {
1059 		.sample_rate_ms = 10,
1060 		.deadband = 0,
1061 		.setpoint = 60,
1062 		.p_gain_pct = 14,
1063 		.d_gain_pct = 0,
1064 		.i_gain_pct = 4,
1065 	},
1066 	.funcs = {
1067 		.get_max = atom_get_max_pstate,
1068 		.get_max_physical = atom_get_max_pstate,
1069 		.get_min = atom_get_min_pstate,
1070 		.get_turbo = atom_get_turbo_pstate,
1071 		.get_val = atom_get_val,
1072 		.get_scaling = airmont_get_scaling,
1073 		.get_vid = atom_get_vid,
1074 		.get_target_pstate = get_target_pstate_use_cpu_load,
1075 	},
1076 };
1077 
1078 static const struct cpu_defaults knl_params = {
1079 	.pid_policy = {
1080 		.sample_rate_ms = 10,
1081 		.deadband = 0,
1082 		.setpoint = 97,
1083 		.p_gain_pct = 20,
1084 		.d_gain_pct = 0,
1085 		.i_gain_pct = 0,
1086 	},
1087 	.funcs = {
1088 		.get_max = core_get_max_pstate,
1089 		.get_max_physical = core_get_max_pstate_physical,
1090 		.get_min = core_get_min_pstate,
1091 		.get_turbo = knl_get_turbo_pstate,
1092 		.get_scaling = core_get_scaling,
1093 		.get_val = core_get_val,
1094 		.get_target_pstate = get_target_pstate_use_performance,
1095 	},
1096 };
1097 
1098 static const struct cpu_defaults bxt_params = {
1099 	.pid_policy = {
1100 		.sample_rate_ms = 10,
1101 		.deadband = 0,
1102 		.setpoint = 60,
1103 		.p_gain_pct = 14,
1104 		.d_gain_pct = 0,
1105 		.i_gain_pct = 4,
1106 	},
1107 	.funcs = {
1108 		.get_max = core_get_max_pstate,
1109 		.get_max_physical = core_get_max_pstate_physical,
1110 		.get_min = core_get_min_pstate,
1111 		.get_turbo = core_get_turbo_pstate,
1112 		.get_scaling = core_get_scaling,
1113 		.get_val = core_get_val,
1114 		.get_target_pstate = get_target_pstate_use_cpu_load,
1115 	},
1116 };
1117 
1118 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1119 {
1120 	int max_perf = cpu->pstate.turbo_pstate;
1121 	int max_perf_adj;
1122 	int min_perf;
1123 
1124 	if (limits->no_turbo || limits->turbo_disabled)
1125 		max_perf = cpu->pstate.max_pstate;
1126 
1127 	/*
1128 	 * performance can be limited by user through sysfs, by cpufreq
1129 	 * policy, or by cpu specific default values determined through
1130 	 * experimentation.
1131 	 */
1132 	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1133 	*max = clamp_t(int, max_perf_adj,
1134 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1135 
1136 	min_perf = fp_toint(max_perf * limits->min_perf);
1137 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1138 }
1139 
1140 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1141 {
1142 	int pstate = cpu->pstate.min_pstate;
1143 
1144 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1145 	cpu->pstate.current_pstate = pstate;
1146 	/*
1147 	 * Generally, there is no guarantee that this code will always run on
1148 	 * the CPU being updated, so force the register update to run on the
1149 	 * right CPU.
1150 	 */
1151 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1152 		      pstate_funcs.get_val(cpu, pstate));
1153 }
1154 
1155 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1156 {
1157 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1158 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1159 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1160 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1161 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1162 
1163 	if (pstate_funcs.get_vid)
1164 		pstate_funcs.get_vid(cpu);
1165 
1166 	intel_pstate_set_min_pstate(cpu);
1167 }
1168 
1169 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1170 {
1171 	struct sample *sample = &cpu->sample;
1172 
1173 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1174 }
1175 
1176 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1177 {
1178 	u64 aperf, mperf;
1179 	unsigned long flags;
1180 	u64 tsc;
1181 
1182 	local_irq_save(flags);
1183 	rdmsrl(MSR_IA32_APERF, aperf);
1184 	rdmsrl(MSR_IA32_MPERF, mperf);
1185 	tsc = rdtsc();
1186 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1187 		local_irq_restore(flags);
1188 		return false;
1189 	}
1190 	local_irq_restore(flags);
1191 
1192 	cpu->last_sample_time = cpu->sample.time;
1193 	cpu->sample.time = time;
1194 	cpu->sample.aperf = aperf;
1195 	cpu->sample.mperf = mperf;
1196 	cpu->sample.tsc =  tsc;
1197 	cpu->sample.aperf -= cpu->prev_aperf;
1198 	cpu->sample.mperf -= cpu->prev_mperf;
1199 	cpu->sample.tsc -= cpu->prev_tsc;
1200 
1201 	cpu->prev_aperf = aperf;
1202 	cpu->prev_mperf = mperf;
1203 	cpu->prev_tsc = tsc;
1204 	/*
1205 	 * First time this function is invoked in a given cycle, all of the
1206 	 * previous sample data fields are equal to zero or stale and they must
1207 	 * be populated with meaningful numbers for things to work, so assume
1208 	 * that sample.time will always be reset before setting the utilization
1209 	 * update hook and make the caller skip the sample then.
1210 	 */
1211 	return !!cpu->last_sample_time;
1212 }
1213 
1214 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1215 {
1216 	return mul_ext_fp(cpu->sample.core_avg_perf,
1217 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1218 }
1219 
1220 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1221 {
1222 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1223 			  cpu->sample.core_avg_perf);
1224 }
1225 
1226 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1227 {
1228 	struct sample *sample = &cpu->sample;
1229 	int32_t busy_frac, boost;
1230 	int target, avg_pstate;
1231 
1232 	busy_frac = div_fp(sample->mperf, sample->tsc);
1233 
1234 	boost = cpu->iowait_boost;
1235 	cpu->iowait_boost >>= 1;
1236 
1237 	if (busy_frac < boost)
1238 		busy_frac = boost;
1239 
1240 	sample->busy_scaled = busy_frac * 100;
1241 
1242 	target = limits->no_turbo || limits->turbo_disabled ?
1243 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1244 	target += target >> 2;
1245 	target = mul_fp(target, busy_frac);
1246 	if (target < cpu->pstate.min_pstate)
1247 		target = cpu->pstate.min_pstate;
1248 
1249 	/*
1250 	 * If the average P-state during the previous cycle was higher than the
1251 	 * current target, add 50% of the difference to the target to reduce
1252 	 * possible performance oscillations and offset possible performance
1253 	 * loss related to moving the workload from one CPU to another within
1254 	 * a package/module.
1255 	 */
1256 	avg_pstate = get_avg_pstate(cpu);
1257 	if (avg_pstate > target)
1258 		target += (avg_pstate - target) >> 1;
1259 
1260 	return target;
1261 }
1262 
1263 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1264 {
1265 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1266 	u64 duration_ns;
1267 
1268 	/*
1269 	 * perf_scaled is the ratio of the average P-state during the last
1270 	 * sampling period to the P-state requested last time (in percent).
1271 	 *
1272 	 * That measures the system's response to the previous P-state
1273 	 * selection.
1274 	 */
1275 	max_pstate = cpu->pstate.max_pstate_physical;
1276 	current_pstate = cpu->pstate.current_pstate;
1277 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1278 			       div_fp(100 * max_pstate, current_pstate));
1279 
1280 	/*
1281 	 * Since our utilization update callback will not run unless we are
1282 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1283 	 * than our sample interval.  If it is, then we were idle for a long
1284 	 * enough period of time to adjust our performance metric.
1285 	 */
1286 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1287 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1288 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1289 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1290 	} else {
1291 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1292 		if (sample_ratio < int_tofp(1))
1293 			perf_scaled = 0;
1294 	}
1295 
1296 	cpu->sample.busy_scaled = perf_scaled;
1297 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1298 }
1299 
1300 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1301 {
1302 	int max_perf, min_perf;
1303 
1304 	update_turbo_state();
1305 
1306 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1307 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1308 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1309 	if (pstate == cpu->pstate.current_pstate)
1310 		return;
1311 
1312 	cpu->pstate.current_pstate = pstate;
1313 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1314 }
1315 
1316 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1317 {
1318 	int from, target_pstate;
1319 	struct sample *sample;
1320 
1321 	from = cpu->pstate.current_pstate;
1322 
1323 	target_pstate = pstate_funcs.get_target_pstate(cpu);
1324 
1325 	intel_pstate_update_pstate(cpu, target_pstate);
1326 
1327 	sample = &cpu->sample;
1328 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1329 		fp_toint(sample->busy_scaled),
1330 		from,
1331 		cpu->pstate.current_pstate,
1332 		sample->mperf,
1333 		sample->aperf,
1334 		sample->tsc,
1335 		get_avg_frequency(cpu),
1336 		fp_toint(cpu->iowait_boost * 100));
1337 }
1338 
1339 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1340 				     unsigned int flags)
1341 {
1342 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1343 	u64 delta_ns;
1344 
1345 	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1346 		if (flags & SCHED_CPUFREQ_IOWAIT) {
1347 			cpu->iowait_boost = int_tofp(1);
1348 		} else if (cpu->iowait_boost) {
1349 			/* Clear iowait_boost if the CPU may have been idle. */
1350 			delta_ns = time - cpu->last_update;
1351 			if (delta_ns > TICK_NSEC)
1352 				cpu->iowait_boost = 0;
1353 		}
1354 		cpu->last_update = time;
1355 	}
1356 
1357 	delta_ns = time - cpu->sample.time;
1358 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1359 		bool sample_taken = intel_pstate_sample(cpu, time);
1360 
1361 		if (sample_taken) {
1362 			intel_pstate_calc_avg_perf(cpu);
1363 			if (!hwp_active)
1364 				intel_pstate_adjust_busy_pstate(cpu);
1365 		}
1366 	}
1367 }
1368 
1369 #define ICPU(model, policy) \
1370 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1371 			(unsigned long)&policy }
1372 
1373 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1374 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1375 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1376 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1377 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1378 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1379 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1380 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1381 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1382 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1383 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1384 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1385 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1386 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1387 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1388 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1389 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1390 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1391 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1392 	{}
1393 };
1394 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1395 
1396 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1397 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1398 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1399 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1400 	{}
1401 };
1402 
1403 static int intel_pstate_init_cpu(unsigned int cpunum)
1404 {
1405 	struct cpudata *cpu;
1406 
1407 	if (!all_cpu_data[cpunum])
1408 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1409 					       GFP_KERNEL);
1410 	if (!all_cpu_data[cpunum])
1411 		return -ENOMEM;
1412 
1413 	cpu = all_cpu_data[cpunum];
1414 
1415 	cpu->cpu = cpunum;
1416 
1417 	if (hwp_active) {
1418 		intel_pstate_hwp_enable(cpu);
1419 		pid_params.sample_rate_ms = 50;
1420 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1421 	}
1422 
1423 	intel_pstate_get_cpu_pstates(cpu);
1424 
1425 	intel_pstate_busy_pid_reset(cpu);
1426 
1427 	pr_debug("controlling: cpu %d\n", cpunum);
1428 
1429 	return 0;
1430 }
1431 
1432 static unsigned int intel_pstate_get(unsigned int cpu_num)
1433 {
1434 	struct cpudata *cpu = all_cpu_data[cpu_num];
1435 
1436 	return cpu ? get_avg_frequency(cpu) : 0;
1437 }
1438 
1439 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1440 {
1441 	struct cpudata *cpu = all_cpu_data[cpu_num];
1442 
1443 	if (cpu->update_util_set)
1444 		return;
1445 
1446 	/* Prevent intel_pstate_update_util() from using stale data. */
1447 	cpu->sample.time = 0;
1448 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1449 				     intel_pstate_update_util);
1450 	cpu->update_util_set = true;
1451 }
1452 
1453 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1454 {
1455 	struct cpudata *cpu_data = all_cpu_data[cpu];
1456 
1457 	if (!cpu_data->update_util_set)
1458 		return;
1459 
1460 	cpufreq_remove_update_util_hook(cpu);
1461 	cpu_data->update_util_set = false;
1462 	synchronize_sched();
1463 }
1464 
1465 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1466 {
1467 	limits->no_turbo = 0;
1468 	limits->turbo_disabled = 0;
1469 	limits->max_perf_pct = 100;
1470 	limits->max_perf = int_tofp(1);
1471 	limits->min_perf_pct = 100;
1472 	limits->min_perf = int_tofp(1);
1473 	limits->max_policy_pct = 100;
1474 	limits->max_sysfs_pct = 100;
1475 	limits->min_policy_pct = 0;
1476 	limits->min_sysfs_pct = 0;
1477 }
1478 
1479 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1480 {
1481 	struct cpudata *cpu;
1482 
1483 	if (!policy->cpuinfo.max_freq)
1484 		return -ENODEV;
1485 
1486 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1487 		 policy->cpuinfo.max_freq, policy->max);
1488 
1489 	cpu = all_cpu_data[0];
1490 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1491 	    policy->max < policy->cpuinfo.max_freq &&
1492 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1493 		pr_debug("policy->max > max non turbo frequency\n");
1494 		policy->max = policy->cpuinfo.max_freq;
1495 	}
1496 
1497 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1498 		limits = &performance_limits;
1499 		if (policy->max >= policy->cpuinfo.max_freq) {
1500 			pr_debug("set performance\n");
1501 			intel_pstate_set_performance_limits(limits);
1502 			goto out;
1503 		}
1504 	} else {
1505 		pr_debug("set powersave\n");
1506 		limits = &powersave_limits;
1507 	}
1508 
1509 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1510 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1511 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1512 					      policy->cpuinfo.max_freq);
1513 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1514 
1515 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1516 	limits->min_perf_pct = max(limits->min_policy_pct,
1517 				   limits->min_sysfs_pct);
1518 	limits->min_perf_pct = min(limits->max_policy_pct,
1519 				   limits->min_perf_pct);
1520 	limits->max_perf_pct = min(limits->max_policy_pct,
1521 				   limits->max_sysfs_pct);
1522 	limits->max_perf_pct = max(limits->min_policy_pct,
1523 				   limits->max_perf_pct);
1524 
1525 	/* Make sure min_perf_pct <= max_perf_pct */
1526 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1527 
1528 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
1529 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1530 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1531 
1532  out:
1533 	intel_pstate_set_update_util_hook(policy->cpu);
1534 
1535 	intel_pstate_hwp_set_policy(policy);
1536 
1537 	return 0;
1538 }
1539 
1540 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1541 {
1542 	cpufreq_verify_within_cpu_limits(policy);
1543 
1544 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1545 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1546 		return -EINVAL;
1547 
1548 	return 0;
1549 }
1550 
1551 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1552 {
1553 	int cpu_num = policy->cpu;
1554 	struct cpudata *cpu = all_cpu_data[cpu_num];
1555 
1556 	pr_debug("CPU %d exiting\n", cpu_num);
1557 
1558 	intel_pstate_clear_update_util_hook(cpu_num);
1559 
1560 	if (hwp_active)
1561 		return;
1562 
1563 	intel_pstate_set_min_pstate(cpu);
1564 }
1565 
1566 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1567 {
1568 	struct cpudata *cpu;
1569 	int rc;
1570 
1571 	rc = intel_pstate_init_cpu(policy->cpu);
1572 	if (rc)
1573 		return rc;
1574 
1575 	cpu = all_cpu_data[policy->cpu];
1576 
1577 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1578 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1579 	else
1580 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1581 
1582 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1583 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1584 
1585 	/* cpuinfo and default policy values */
1586 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1587 	update_turbo_state();
1588 	policy->cpuinfo.max_freq = limits->turbo_disabled ?
1589 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1590 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1591 
1592 	intel_pstate_init_acpi_perf_limits(policy);
1593 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1594 	cpumask_set_cpu(policy->cpu, policy->cpus);
1595 
1596 	return 0;
1597 }
1598 
1599 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1600 {
1601 	intel_pstate_exit_perf_limits(policy);
1602 
1603 	return 0;
1604 }
1605 
1606 static struct cpufreq_driver intel_pstate_driver = {
1607 	.flags		= CPUFREQ_CONST_LOOPS,
1608 	.verify		= intel_pstate_verify_policy,
1609 	.setpolicy	= intel_pstate_set_policy,
1610 	.resume		= intel_pstate_hwp_set_policy,
1611 	.get		= intel_pstate_get,
1612 	.init		= intel_pstate_cpu_init,
1613 	.exit		= intel_pstate_cpu_exit,
1614 	.stop_cpu	= intel_pstate_stop_cpu,
1615 	.name		= "intel_pstate",
1616 };
1617 
1618 static int no_load __initdata;
1619 static int no_hwp __initdata;
1620 static int hwp_only __initdata;
1621 static unsigned int force_load __initdata;
1622 
1623 static int __init intel_pstate_msrs_not_valid(void)
1624 {
1625 	if (!pstate_funcs.get_max() ||
1626 	    !pstate_funcs.get_min() ||
1627 	    !pstate_funcs.get_turbo())
1628 		return -ENODEV;
1629 
1630 	return 0;
1631 }
1632 
1633 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1634 {
1635 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1636 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1637 	pid_params.p_gain_pct = policy->p_gain_pct;
1638 	pid_params.i_gain_pct = policy->i_gain_pct;
1639 	pid_params.d_gain_pct = policy->d_gain_pct;
1640 	pid_params.deadband = policy->deadband;
1641 	pid_params.setpoint = policy->setpoint;
1642 }
1643 
1644 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1645 {
1646 	pstate_funcs.get_max   = funcs->get_max;
1647 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1648 	pstate_funcs.get_min   = funcs->get_min;
1649 	pstate_funcs.get_turbo = funcs->get_turbo;
1650 	pstate_funcs.get_scaling = funcs->get_scaling;
1651 	pstate_funcs.get_val   = funcs->get_val;
1652 	pstate_funcs.get_vid   = funcs->get_vid;
1653 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1654 
1655 }
1656 
1657 #ifdef CONFIG_ACPI
1658 
1659 static bool __init intel_pstate_no_acpi_pss(void)
1660 {
1661 	int i;
1662 
1663 	for_each_possible_cpu(i) {
1664 		acpi_status status;
1665 		union acpi_object *pss;
1666 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1667 		struct acpi_processor *pr = per_cpu(processors, i);
1668 
1669 		if (!pr)
1670 			continue;
1671 
1672 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1673 		if (ACPI_FAILURE(status))
1674 			continue;
1675 
1676 		pss = buffer.pointer;
1677 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1678 			kfree(pss);
1679 			return false;
1680 		}
1681 
1682 		kfree(pss);
1683 	}
1684 
1685 	return true;
1686 }
1687 
1688 static bool __init intel_pstate_has_acpi_ppc(void)
1689 {
1690 	int i;
1691 
1692 	for_each_possible_cpu(i) {
1693 		struct acpi_processor *pr = per_cpu(processors, i);
1694 
1695 		if (!pr)
1696 			continue;
1697 		if (acpi_has_method(pr->handle, "_PPC"))
1698 			return true;
1699 	}
1700 	return false;
1701 }
1702 
1703 enum {
1704 	PSS,
1705 	PPC,
1706 };
1707 
1708 struct hw_vendor_info {
1709 	u16  valid;
1710 	char oem_id[ACPI_OEM_ID_SIZE];
1711 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1712 	int  oem_pwr_table;
1713 };
1714 
1715 /* Hardware vendor-specific info that has its own power management modes */
1716 static struct hw_vendor_info vendor_info[] __initdata = {
1717 	{1, "HP    ", "ProLiant", PSS},
1718 	{1, "ORACLE", "X4-2    ", PPC},
1719 	{1, "ORACLE", "X4-2L   ", PPC},
1720 	{1, "ORACLE", "X4-2B   ", PPC},
1721 	{1, "ORACLE", "X3-2    ", PPC},
1722 	{1, "ORACLE", "X3-2L   ", PPC},
1723 	{1, "ORACLE", "X3-2B   ", PPC},
1724 	{1, "ORACLE", "X4470M2 ", PPC},
1725 	{1, "ORACLE", "X4270M3 ", PPC},
1726 	{1, "ORACLE", "X4270M2 ", PPC},
1727 	{1, "ORACLE", "X4170M2 ", PPC},
1728 	{1, "ORACLE", "X4170 M3", PPC},
1729 	{1, "ORACLE", "X4275 M3", PPC},
1730 	{1, "ORACLE", "X6-2    ", PPC},
1731 	{1, "ORACLE", "Sudbury ", PPC},
1732 	{0, "", ""},
1733 };
1734 
1735 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1736 {
1737 	struct acpi_table_header hdr;
1738 	struct hw_vendor_info *v_info;
1739 	const struct x86_cpu_id *id;
1740 	u64 misc_pwr;
1741 
1742 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1743 	if (id) {
1744 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1745 		if ( misc_pwr & (1 << 8))
1746 			return true;
1747 	}
1748 
1749 	if (acpi_disabled ||
1750 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1751 		return false;
1752 
1753 	for (v_info = vendor_info; v_info->valid; v_info++) {
1754 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1755 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1756 						ACPI_OEM_TABLE_ID_SIZE))
1757 			switch (v_info->oem_pwr_table) {
1758 			case PSS:
1759 				return intel_pstate_no_acpi_pss();
1760 			case PPC:
1761 				return intel_pstate_has_acpi_ppc() &&
1762 					(!force_load);
1763 			}
1764 	}
1765 
1766 	return false;
1767 }
1768 #else /* CONFIG_ACPI not enabled */
1769 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1770 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1771 #endif /* CONFIG_ACPI */
1772 
1773 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1774 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1775 	{}
1776 };
1777 
1778 static int __init intel_pstate_init(void)
1779 {
1780 	int cpu, rc = 0;
1781 	const struct x86_cpu_id *id;
1782 	struct cpu_defaults *cpu_def;
1783 
1784 	if (no_load)
1785 		return -ENODEV;
1786 
1787 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1788 		copy_cpu_funcs(&core_params.funcs);
1789 		hwp_active++;
1790 		goto hwp_cpu_matched;
1791 	}
1792 
1793 	id = x86_match_cpu(intel_pstate_cpu_ids);
1794 	if (!id)
1795 		return -ENODEV;
1796 
1797 	cpu_def = (struct cpu_defaults *)id->driver_data;
1798 
1799 	copy_pid_params(&cpu_def->pid_policy);
1800 	copy_cpu_funcs(&cpu_def->funcs);
1801 
1802 	if (intel_pstate_msrs_not_valid())
1803 		return -ENODEV;
1804 
1805 hwp_cpu_matched:
1806 	/*
1807 	 * The Intel pstate driver will be ignored if the platform
1808 	 * firmware has its own power management modes.
1809 	 */
1810 	if (intel_pstate_platform_pwr_mgmt_exists())
1811 		return -ENODEV;
1812 
1813 	pr_info("Intel P-state driver initializing\n");
1814 
1815 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1816 	if (!all_cpu_data)
1817 		return -ENOMEM;
1818 
1819 	if (!hwp_active && hwp_only)
1820 		goto out;
1821 
1822 	rc = cpufreq_register_driver(&intel_pstate_driver);
1823 	if (rc)
1824 		goto out;
1825 
1826 	intel_pstate_debug_expose_params();
1827 	intel_pstate_sysfs_expose_params();
1828 
1829 	if (hwp_active)
1830 		pr_info("HWP enabled\n");
1831 
1832 	return rc;
1833 out:
1834 	get_online_cpus();
1835 	for_each_online_cpu(cpu) {
1836 		if (all_cpu_data[cpu]) {
1837 			intel_pstate_clear_update_util_hook(cpu);
1838 			kfree(all_cpu_data[cpu]);
1839 		}
1840 	}
1841 
1842 	put_online_cpus();
1843 	vfree(all_cpu_data);
1844 	return -ENODEV;
1845 }
1846 device_initcall(intel_pstate_init);
1847 
1848 static int __init intel_pstate_setup(char *str)
1849 {
1850 	if (!str)
1851 		return -EINVAL;
1852 
1853 	if (!strcmp(str, "disable"))
1854 		no_load = 1;
1855 	if (!strcmp(str, "no_hwp")) {
1856 		pr_info("HWP disabled\n");
1857 		no_hwp = 1;
1858 	}
1859 	if (!strcmp(str, "force"))
1860 		force_load = 1;
1861 	if (!strcmp(str, "hwp_only"))
1862 		hwp_only = 1;
1863 
1864 #ifdef CONFIG_ACPI
1865 	if (!strcmp(str, "support_acpi_ppc"))
1866 		acpi_ppc = true;
1867 #endif
1868 
1869 	return 0;
1870 }
1871 early_param("intel_pstate", intel_pstate_setup);
1872 
1873 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1874 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1875 MODULE_LICENSE("GPL");
1876