1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define ATOM_RATIOS		0x66a
41 #define ATOM_VIDS		0x66b
42 #define ATOM_TURBO_RATIOS	0x66c
43 #define ATOM_TURBO_VIDS		0x66d
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 /**
88  * struct sample -	Store performance sample
89  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90  *			performance during last sample period
91  * @busy_scaled:	Scaled busy value which is used to calculate next
92  *			P state. This can be different than core_avg_perf
93  *			to account for cpu idle period
94  * @aperf:		Difference of actual performance frequency clock count
95  *			read from APERF MSR between last and current sample
96  * @mperf:		Difference of maximum performance frequency clock count
97  *			read from MPERF MSR between last and current sample
98  * @tsc:		Difference of time stamp counter between last and
99  *			current sample
100  * @time:		Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106 	int32_t core_avg_perf;
107 	int32_t busy_scaled;
108 	u64 aperf;
109 	u64 mperf;
110 	u64 tsc;
111 	u64 time;
112 };
113 
114 /**
115  * struct pstate_data - Store P state data
116  * @current_pstate:	Current requested P state
117  * @min_pstate:		Min P state possible for this platform
118  * @max_pstate:		Max P state possible for this platform
119  * @max_pstate_physical:This is physical Max P state for a processor
120  *			This can be higher than the max_pstate which can
121  *			be limited by platform thermal design power limits
122  * @scaling:		Scaling factor to  convert frequency to cpufreq
123  *			frequency units
124  * @turbo_pstate:	Max Turbo P state possible for this platform
125  *
126  * Stores the per cpu model P state limits and current P state.
127  */
128 struct pstate_data {
129 	int	current_pstate;
130 	int	min_pstate;
131 	int	max_pstate;
132 	int	max_pstate_physical;
133 	int	scaling;
134 	int	turbo_pstate;
135 };
136 
137 /**
138  * struct vid_data -	Stores voltage information data
139  * @min:		VID data for this platform corresponding to
140  *			the lowest P state
141  * @max:		VID data corresponding to the highest P State.
142  * @turbo:		VID data for turbo P state
143  * @ratio:		Ratio of (vid max - vid min) /
144  *			(max P state - Min P State)
145  *
146  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147  * This data is used in Atom platforms, where in addition to target P state,
148  * the voltage data needs to be specified to select next P State.
149  */
150 struct vid_data {
151 	int min;
152 	int max;
153 	int turbo;
154 	int32_t ratio;
155 };
156 
157 /**
158  * struct _pid -	Stores PID data
159  * @setpoint:		Target set point for busyness or performance
160  * @integral:		Storage for accumulated error values
161  * @p_gain:		PID proportional gain
162  * @i_gain:		PID integral gain
163  * @d_gain:		PID derivative gain
164  * @deadband:		PID deadband
165  * @last_err:		Last error storage for integral part of PID calculation
166  *
167  * Stores PID coefficients and last error for PID controller.
168  */
169 struct _pid {
170 	int setpoint;
171 	int32_t integral;
172 	int32_t p_gain;
173 	int32_t i_gain;
174 	int32_t d_gain;
175 	int deadband;
176 	int32_t last_err;
177 };
178 
179 /**
180  * struct cpudata -	Per CPU instance data storage
181  * @cpu:		CPU number for this instance data
182  * @update_util:	CPUFreq utility callback information
183  * @update_util_set:	CPUFreq utility callback is set
184  * @iowait_boost:	iowait-related boost fraction
185  * @last_update:	Time of the last update.
186  * @pstate:		Stores P state limits for this CPU
187  * @vid:		Stores VID limits for this CPU
188  * @pid:		Stores PID parameters for this CPU
189  * @last_sample_time:	Last Sample time
190  * @prev_aperf:		Last APERF value read from APERF MSR
191  * @prev_mperf:		Last MPERF value read from MPERF MSR
192  * @prev_tsc:		Last timestamp counter (TSC) value
193  * @prev_cummulative_iowait: IO Wait time difference from last and
194  *			current sample
195  * @sample:		Storage for storing last Sample data
196  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
197  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
198  *
199  * This structure stores per CPU instance data for all CPUs.
200  */
201 struct cpudata {
202 	int cpu;
203 
204 	struct update_util_data update_util;
205 	bool   update_util_set;
206 
207 	struct pstate_data pstate;
208 	struct vid_data vid;
209 	struct _pid pid;
210 
211 	u64	last_update;
212 	u64	last_sample_time;
213 	u64	prev_aperf;
214 	u64	prev_mperf;
215 	u64	prev_tsc;
216 	u64	prev_cummulative_iowait;
217 	struct sample sample;
218 #ifdef CONFIG_ACPI
219 	struct acpi_processor_performance acpi_perf_data;
220 	bool valid_pss_table;
221 #endif
222 	unsigned int iowait_boost;
223 };
224 
225 static struct cpudata **all_cpu_data;
226 
227 /**
228  * struct pid_adjust_policy - Stores static PID configuration data
229  * @sample_rate_ms:	PID calculation sample rate in ms
230  * @sample_rate_ns:	Sample rate calculation in ns
231  * @deadband:		PID deadband
232  * @setpoint:		PID Setpoint
233  * @p_gain_pct:		PID proportional gain
234  * @i_gain_pct:		PID integral gain
235  * @d_gain_pct:		PID derivative gain
236  * @boost_iowait:	Whether or not to use iowait boosting.
237  *
238  * Stores per CPU model static PID configuration data.
239  */
240 struct pstate_adjust_policy {
241 	int sample_rate_ms;
242 	s64 sample_rate_ns;
243 	int deadband;
244 	int setpoint;
245 	int p_gain_pct;
246 	int d_gain_pct;
247 	int i_gain_pct;
248 	bool boost_iowait;
249 };
250 
251 /**
252  * struct pstate_funcs - Per CPU model specific callbacks
253  * @get_max:		Callback to get maximum non turbo effective P state
254  * @get_max_physical:	Callback to get maximum non turbo physical P state
255  * @get_min:		Callback to get minimum P state
256  * @get_turbo:		Callback to get turbo P state
257  * @get_scaling:	Callback to get frequency scaling factor
258  * @get_val:		Callback to convert P state to actual MSR write value
259  * @get_vid:		Callback to get VID data for Atom platforms
260  * @get_target_pstate:	Callback to a function to calculate next P state to use
261  *
262  * Core and Atom CPU models have different way to get P State limits. This
263  * structure is used to store those callbacks.
264  */
265 struct pstate_funcs {
266 	int (*get_max)(void);
267 	int (*get_max_physical)(void);
268 	int (*get_min)(void);
269 	int (*get_turbo)(void);
270 	int (*get_scaling)(void);
271 	u64 (*get_val)(struct cpudata*, int pstate);
272 	void (*get_vid)(struct cpudata *);
273 	int32_t (*get_target_pstate)(struct cpudata *);
274 };
275 
276 /**
277  * struct cpu_defaults- Per CPU model default config data
278  * @pid_policy:	PID config data
279  * @funcs:		Callback function data
280  */
281 struct cpu_defaults {
282 	struct pstate_adjust_policy pid_policy;
283 	struct pstate_funcs funcs;
284 };
285 
286 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
287 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
288 
289 static struct pstate_adjust_policy pid_params __read_mostly;
290 static struct pstate_funcs pstate_funcs __read_mostly;
291 static int hwp_active __read_mostly;
292 
293 #ifdef CONFIG_ACPI
294 static bool acpi_ppc;
295 #endif
296 
297 /**
298  * struct perf_limits - Store user and policy limits
299  * @no_turbo:		User requested turbo state from intel_pstate sysfs
300  * @turbo_disabled:	Platform turbo status either from msr
301  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
302  *			matches the maximum turbo pstate
303  * @max_perf_pct:	Effective maximum performance limit in percentage, this
304  *			is minimum of either limits enforced by cpufreq policy
305  *			or limits from user set limits via intel_pstate sysfs
306  * @min_perf_pct:	Effective minimum performance limit in percentage, this
307  *			is maximum of either limits enforced by cpufreq policy
308  *			or limits from user set limits via intel_pstate sysfs
309  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
310  *			This value is used to limit max pstate
311  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
312  *			This value is used to limit min pstate
313  * @max_policy_pct:	The maximum performance in percentage enforced by
314  *			cpufreq setpolicy interface
315  * @max_sysfs_pct:	The maximum performance in percentage enforced by
316  *			intel pstate sysfs interface
317  * @min_policy_pct:	The minimum performance in percentage enforced by
318  *			cpufreq setpolicy interface
319  * @min_sysfs_pct:	The minimum performance in percentage enforced by
320  *			intel pstate sysfs interface
321  *
322  * Storage for user and policy defined limits.
323  */
324 struct perf_limits {
325 	int no_turbo;
326 	int turbo_disabled;
327 	int max_perf_pct;
328 	int min_perf_pct;
329 	int32_t max_perf;
330 	int32_t min_perf;
331 	int max_policy_pct;
332 	int max_sysfs_pct;
333 	int min_policy_pct;
334 	int min_sysfs_pct;
335 };
336 
337 static struct perf_limits performance_limits = {
338 	.no_turbo = 0,
339 	.turbo_disabled = 0,
340 	.max_perf_pct = 100,
341 	.max_perf = int_tofp(1),
342 	.min_perf_pct = 100,
343 	.min_perf = int_tofp(1),
344 	.max_policy_pct = 100,
345 	.max_sysfs_pct = 100,
346 	.min_policy_pct = 0,
347 	.min_sysfs_pct = 0,
348 };
349 
350 static struct perf_limits powersave_limits = {
351 	.no_turbo = 0,
352 	.turbo_disabled = 0,
353 	.max_perf_pct = 100,
354 	.max_perf = int_tofp(1),
355 	.min_perf_pct = 0,
356 	.min_perf = 0,
357 	.max_policy_pct = 100,
358 	.max_sysfs_pct = 100,
359 	.min_policy_pct = 0,
360 	.min_sysfs_pct = 0,
361 };
362 
363 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
364 static struct perf_limits *limits = &performance_limits;
365 #else
366 static struct perf_limits *limits = &powersave_limits;
367 #endif
368 
369 #ifdef CONFIG_ACPI
370 
371 static bool intel_pstate_get_ppc_enable_status(void)
372 {
373 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
374 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
375 		return true;
376 
377 	return acpi_ppc;
378 }
379 
380 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
381 {
382 	struct cpudata *cpu;
383 	int ret;
384 	int i;
385 
386 	if (hwp_active)
387 		return;
388 
389 	if (!intel_pstate_get_ppc_enable_status())
390 		return;
391 
392 	cpu = all_cpu_data[policy->cpu];
393 
394 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
395 						  policy->cpu);
396 	if (ret)
397 		return;
398 
399 	/*
400 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
401 	 * guarantee that the states returned by it map to the states in our
402 	 * list directly.
403 	 */
404 	if (cpu->acpi_perf_data.control_register.space_id !=
405 						ACPI_ADR_SPACE_FIXED_HARDWARE)
406 		goto err;
407 
408 	/*
409 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
410 	 * usual without taking _PSS into account
411 	 */
412 	if (cpu->acpi_perf_data.state_count < 2)
413 		goto err;
414 
415 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
416 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
417 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
418 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
419 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
420 			 (u32) cpu->acpi_perf_data.states[i].power,
421 			 (u32) cpu->acpi_perf_data.states[i].control);
422 	}
423 
424 	/*
425 	 * The _PSS table doesn't contain whole turbo frequency range.
426 	 * This just contains +1 MHZ above the max non turbo frequency,
427 	 * with control value corresponding to max turbo ratio. But
428 	 * when cpufreq set policy is called, it will call with this
429 	 * max frequency, which will cause a reduced performance as
430 	 * this driver uses real max turbo frequency as the max
431 	 * frequency. So correct this frequency in _PSS table to
432 	 * correct max turbo frequency based on the turbo state.
433 	 * Also need to convert to MHz as _PSS freq is in MHz.
434 	 */
435 	if (!limits->turbo_disabled)
436 		cpu->acpi_perf_data.states[0].core_frequency =
437 					policy->cpuinfo.max_freq / 1000;
438 	cpu->valid_pss_table = true;
439 	pr_debug("_PPC limits will be enforced\n");
440 
441 	return;
442 
443  err:
444 	cpu->valid_pss_table = false;
445 	acpi_processor_unregister_performance(policy->cpu);
446 }
447 
448 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
449 {
450 	struct cpudata *cpu;
451 
452 	cpu = all_cpu_data[policy->cpu];
453 	if (!cpu->valid_pss_table)
454 		return;
455 
456 	acpi_processor_unregister_performance(policy->cpu);
457 }
458 
459 #else
460 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
461 {
462 }
463 
464 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
465 {
466 }
467 #endif
468 
469 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
470 			     int deadband, int integral) {
471 	pid->setpoint = int_tofp(setpoint);
472 	pid->deadband  = int_tofp(deadband);
473 	pid->integral  = int_tofp(integral);
474 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
475 }
476 
477 static inline void pid_p_gain_set(struct _pid *pid, int percent)
478 {
479 	pid->p_gain = div_fp(percent, 100);
480 }
481 
482 static inline void pid_i_gain_set(struct _pid *pid, int percent)
483 {
484 	pid->i_gain = div_fp(percent, 100);
485 }
486 
487 static inline void pid_d_gain_set(struct _pid *pid, int percent)
488 {
489 	pid->d_gain = div_fp(percent, 100);
490 }
491 
492 static signed int pid_calc(struct _pid *pid, int32_t busy)
493 {
494 	signed int result;
495 	int32_t pterm, dterm, fp_error;
496 	int32_t integral_limit;
497 
498 	fp_error = pid->setpoint - busy;
499 
500 	if (abs(fp_error) <= pid->deadband)
501 		return 0;
502 
503 	pterm = mul_fp(pid->p_gain, fp_error);
504 
505 	pid->integral += fp_error;
506 
507 	/*
508 	 * We limit the integral here so that it will never
509 	 * get higher than 30.  This prevents it from becoming
510 	 * too large an input over long periods of time and allows
511 	 * it to get factored out sooner.
512 	 *
513 	 * The value of 30 was chosen through experimentation.
514 	 */
515 	integral_limit = int_tofp(30);
516 	if (pid->integral > integral_limit)
517 		pid->integral = integral_limit;
518 	if (pid->integral < -integral_limit)
519 		pid->integral = -integral_limit;
520 
521 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
522 	pid->last_err = fp_error;
523 
524 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
525 	result = result + (1 << (FRAC_BITS-1));
526 	return (signed int)fp_toint(result);
527 }
528 
529 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
530 {
531 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
532 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
533 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
534 
535 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
536 }
537 
538 static inline void intel_pstate_reset_all_pid(void)
539 {
540 	unsigned int cpu;
541 
542 	for_each_online_cpu(cpu) {
543 		if (all_cpu_data[cpu])
544 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
545 	}
546 }
547 
548 static inline void update_turbo_state(void)
549 {
550 	u64 misc_en;
551 	struct cpudata *cpu;
552 
553 	cpu = all_cpu_data[0];
554 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
555 	limits->turbo_disabled =
556 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
557 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
558 }
559 
560 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
561 {
562 	int min, hw_min, max, hw_max, cpu, range, adj_range;
563 	u64 value, cap;
564 
565 	rdmsrl(MSR_HWP_CAPABILITIES, cap);
566 	hw_min = HWP_LOWEST_PERF(cap);
567 	hw_max = HWP_HIGHEST_PERF(cap);
568 	range = hw_max - hw_min;
569 
570 	for_each_cpu(cpu, cpumask) {
571 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
572 		adj_range = limits->min_perf_pct * range / 100;
573 		min = hw_min + adj_range;
574 		value &= ~HWP_MIN_PERF(~0L);
575 		value |= HWP_MIN_PERF(min);
576 
577 		adj_range = limits->max_perf_pct * range / 100;
578 		max = hw_min + adj_range;
579 		if (limits->no_turbo) {
580 			hw_max = HWP_GUARANTEED_PERF(cap);
581 			if (hw_max < max)
582 				max = hw_max;
583 		}
584 
585 		value &= ~HWP_MAX_PERF(~0L);
586 		value |= HWP_MAX_PERF(max);
587 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
588 	}
589 }
590 
591 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
592 {
593 	if (hwp_active)
594 		intel_pstate_hwp_set(policy->cpus);
595 
596 	return 0;
597 }
598 
599 static void intel_pstate_hwp_set_online_cpus(void)
600 {
601 	get_online_cpus();
602 	intel_pstate_hwp_set(cpu_online_mask);
603 	put_online_cpus();
604 }
605 
606 /************************** debugfs begin ************************/
607 static int pid_param_set(void *data, u64 val)
608 {
609 	*(u32 *)data = val;
610 	intel_pstate_reset_all_pid();
611 	return 0;
612 }
613 
614 static int pid_param_get(void *data, u64 *val)
615 {
616 	*val = *(u32 *)data;
617 	return 0;
618 }
619 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
620 
621 struct pid_param {
622 	char *name;
623 	void *value;
624 };
625 
626 static struct pid_param pid_files[] = {
627 	{"sample_rate_ms", &pid_params.sample_rate_ms},
628 	{"d_gain_pct", &pid_params.d_gain_pct},
629 	{"i_gain_pct", &pid_params.i_gain_pct},
630 	{"deadband", &pid_params.deadband},
631 	{"setpoint", &pid_params.setpoint},
632 	{"p_gain_pct", &pid_params.p_gain_pct},
633 	{NULL, NULL}
634 };
635 
636 static void __init intel_pstate_debug_expose_params(void)
637 {
638 	struct dentry *debugfs_parent;
639 	int i = 0;
640 
641 	if (hwp_active)
642 		return;
643 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
644 	if (IS_ERR_OR_NULL(debugfs_parent))
645 		return;
646 	while (pid_files[i].name) {
647 		debugfs_create_file(pid_files[i].name, 0660,
648 				    debugfs_parent, pid_files[i].value,
649 				    &fops_pid_param);
650 		i++;
651 	}
652 }
653 
654 /************************** debugfs end ************************/
655 
656 /************************** sysfs begin ************************/
657 #define show_one(file_name, object)					\
658 	static ssize_t show_##file_name					\
659 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
660 	{								\
661 		return sprintf(buf, "%u\n", limits->object);		\
662 	}
663 
664 static ssize_t show_turbo_pct(struct kobject *kobj,
665 				struct attribute *attr, char *buf)
666 {
667 	struct cpudata *cpu;
668 	int total, no_turbo, turbo_pct;
669 	uint32_t turbo_fp;
670 
671 	cpu = all_cpu_data[0];
672 
673 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
674 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
675 	turbo_fp = div_fp(no_turbo, total);
676 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
677 	return sprintf(buf, "%u\n", turbo_pct);
678 }
679 
680 static ssize_t show_num_pstates(struct kobject *kobj,
681 				struct attribute *attr, char *buf)
682 {
683 	struct cpudata *cpu;
684 	int total;
685 
686 	cpu = all_cpu_data[0];
687 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
688 	return sprintf(buf, "%u\n", total);
689 }
690 
691 static ssize_t show_no_turbo(struct kobject *kobj,
692 			     struct attribute *attr, char *buf)
693 {
694 	ssize_t ret;
695 
696 	update_turbo_state();
697 	if (limits->turbo_disabled)
698 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
699 	else
700 		ret = sprintf(buf, "%u\n", limits->no_turbo);
701 
702 	return ret;
703 }
704 
705 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
706 			      const char *buf, size_t count)
707 {
708 	unsigned int input;
709 	int ret;
710 
711 	ret = sscanf(buf, "%u", &input);
712 	if (ret != 1)
713 		return -EINVAL;
714 
715 	update_turbo_state();
716 	if (limits->turbo_disabled) {
717 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
718 		return -EPERM;
719 	}
720 
721 	limits->no_turbo = clamp_t(int, input, 0, 1);
722 
723 	if (hwp_active)
724 		intel_pstate_hwp_set_online_cpus();
725 
726 	return count;
727 }
728 
729 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
730 				  const char *buf, size_t count)
731 {
732 	unsigned int input;
733 	int ret;
734 
735 	ret = sscanf(buf, "%u", &input);
736 	if (ret != 1)
737 		return -EINVAL;
738 
739 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
740 	limits->max_perf_pct = min(limits->max_policy_pct,
741 				   limits->max_sysfs_pct);
742 	limits->max_perf_pct = max(limits->min_policy_pct,
743 				   limits->max_perf_pct);
744 	limits->max_perf_pct = max(limits->min_perf_pct,
745 				   limits->max_perf_pct);
746 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
747 
748 	if (hwp_active)
749 		intel_pstate_hwp_set_online_cpus();
750 	return count;
751 }
752 
753 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
754 				  const char *buf, size_t count)
755 {
756 	unsigned int input;
757 	int ret;
758 
759 	ret = sscanf(buf, "%u", &input);
760 	if (ret != 1)
761 		return -EINVAL;
762 
763 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
764 	limits->min_perf_pct = max(limits->min_policy_pct,
765 				   limits->min_sysfs_pct);
766 	limits->min_perf_pct = min(limits->max_policy_pct,
767 				   limits->min_perf_pct);
768 	limits->min_perf_pct = min(limits->max_perf_pct,
769 				   limits->min_perf_pct);
770 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
771 
772 	if (hwp_active)
773 		intel_pstate_hwp_set_online_cpus();
774 	return count;
775 }
776 
777 show_one(max_perf_pct, max_perf_pct);
778 show_one(min_perf_pct, min_perf_pct);
779 
780 define_one_global_rw(no_turbo);
781 define_one_global_rw(max_perf_pct);
782 define_one_global_rw(min_perf_pct);
783 define_one_global_ro(turbo_pct);
784 define_one_global_ro(num_pstates);
785 
786 static struct attribute *intel_pstate_attributes[] = {
787 	&no_turbo.attr,
788 	&max_perf_pct.attr,
789 	&min_perf_pct.attr,
790 	&turbo_pct.attr,
791 	&num_pstates.attr,
792 	NULL
793 };
794 
795 static struct attribute_group intel_pstate_attr_group = {
796 	.attrs = intel_pstate_attributes,
797 };
798 
799 static void __init intel_pstate_sysfs_expose_params(void)
800 {
801 	struct kobject *intel_pstate_kobject;
802 	int rc;
803 
804 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
805 						&cpu_subsys.dev_root->kobj);
806 	BUG_ON(!intel_pstate_kobject);
807 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
808 	BUG_ON(rc);
809 }
810 /************************** sysfs end ************************/
811 
812 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
813 {
814 	/* First disable HWP notification interrupt as we don't process them */
815 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
816 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
817 
818 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
819 }
820 
821 static int atom_get_min_pstate(void)
822 {
823 	u64 value;
824 
825 	rdmsrl(ATOM_RATIOS, value);
826 	return (value >> 8) & 0x7F;
827 }
828 
829 static int atom_get_max_pstate(void)
830 {
831 	u64 value;
832 
833 	rdmsrl(ATOM_RATIOS, value);
834 	return (value >> 16) & 0x7F;
835 }
836 
837 static int atom_get_turbo_pstate(void)
838 {
839 	u64 value;
840 
841 	rdmsrl(ATOM_TURBO_RATIOS, value);
842 	return value & 0x7F;
843 }
844 
845 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
846 {
847 	u64 val;
848 	int32_t vid_fp;
849 	u32 vid;
850 
851 	val = (u64)pstate << 8;
852 	if (limits->no_turbo && !limits->turbo_disabled)
853 		val |= (u64)1 << 32;
854 
855 	vid_fp = cpudata->vid.min + mul_fp(
856 		int_tofp(pstate - cpudata->pstate.min_pstate),
857 		cpudata->vid.ratio);
858 
859 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
860 	vid = ceiling_fp(vid_fp);
861 
862 	if (pstate > cpudata->pstate.max_pstate)
863 		vid = cpudata->vid.turbo;
864 
865 	return val | vid;
866 }
867 
868 static int silvermont_get_scaling(void)
869 {
870 	u64 value;
871 	int i;
872 	/* Defined in Table 35-6 from SDM (Sept 2015) */
873 	static int silvermont_freq_table[] = {
874 		83300, 100000, 133300, 116700, 80000};
875 
876 	rdmsrl(MSR_FSB_FREQ, value);
877 	i = value & 0x7;
878 	WARN_ON(i > 4);
879 
880 	return silvermont_freq_table[i];
881 }
882 
883 static int airmont_get_scaling(void)
884 {
885 	u64 value;
886 	int i;
887 	/* Defined in Table 35-10 from SDM (Sept 2015) */
888 	static int airmont_freq_table[] = {
889 		83300, 100000, 133300, 116700, 80000,
890 		93300, 90000, 88900, 87500};
891 
892 	rdmsrl(MSR_FSB_FREQ, value);
893 	i = value & 0xF;
894 	WARN_ON(i > 8);
895 
896 	return airmont_freq_table[i];
897 }
898 
899 static void atom_get_vid(struct cpudata *cpudata)
900 {
901 	u64 value;
902 
903 	rdmsrl(ATOM_VIDS, value);
904 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
905 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
906 	cpudata->vid.ratio = div_fp(
907 		cpudata->vid.max - cpudata->vid.min,
908 		int_tofp(cpudata->pstate.max_pstate -
909 			cpudata->pstate.min_pstate));
910 
911 	rdmsrl(ATOM_TURBO_VIDS, value);
912 	cpudata->vid.turbo = value & 0x7f;
913 }
914 
915 static int core_get_min_pstate(void)
916 {
917 	u64 value;
918 
919 	rdmsrl(MSR_PLATFORM_INFO, value);
920 	return (value >> 40) & 0xFF;
921 }
922 
923 static int core_get_max_pstate_physical(void)
924 {
925 	u64 value;
926 
927 	rdmsrl(MSR_PLATFORM_INFO, value);
928 	return (value >> 8) & 0xFF;
929 }
930 
931 static int core_get_max_pstate(void)
932 {
933 	u64 tar;
934 	u64 plat_info;
935 	int max_pstate;
936 	int err;
937 
938 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
939 	max_pstate = (plat_info >> 8) & 0xFF;
940 
941 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
942 	if (!err) {
943 		/* Do some sanity checking for safety */
944 		if (plat_info & 0x600000000) {
945 			u64 tdp_ctrl;
946 			u64 tdp_ratio;
947 			int tdp_msr;
948 
949 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
950 			if (err)
951 				goto skip_tar;
952 
953 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
954 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
955 			if (err)
956 				goto skip_tar;
957 
958 			/* For level 1 and 2, bits[23:16] contain the ratio */
959 			if (tdp_ctrl)
960 				tdp_ratio >>= 16;
961 
962 			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
963 			if (tdp_ratio - 1 == tar) {
964 				max_pstate = tar;
965 				pr_debug("max_pstate=TAC %x\n", max_pstate);
966 			} else {
967 				goto skip_tar;
968 			}
969 		}
970 	}
971 
972 skip_tar:
973 	return max_pstate;
974 }
975 
976 static int core_get_turbo_pstate(void)
977 {
978 	u64 value;
979 	int nont, ret;
980 
981 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
982 	nont = core_get_max_pstate();
983 	ret = (value) & 255;
984 	if (ret <= nont)
985 		ret = nont;
986 	return ret;
987 }
988 
989 static inline int core_get_scaling(void)
990 {
991 	return 100000;
992 }
993 
994 static u64 core_get_val(struct cpudata *cpudata, int pstate)
995 {
996 	u64 val;
997 
998 	val = (u64)pstate << 8;
999 	if (limits->no_turbo && !limits->turbo_disabled)
1000 		val |= (u64)1 << 32;
1001 
1002 	return val;
1003 }
1004 
1005 static int knl_get_turbo_pstate(void)
1006 {
1007 	u64 value;
1008 	int nont, ret;
1009 
1010 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1011 	nont = core_get_max_pstate();
1012 	ret = (((value) >> 8) & 0xFF);
1013 	if (ret <= nont)
1014 		ret = nont;
1015 	return ret;
1016 }
1017 
1018 static struct cpu_defaults core_params = {
1019 	.pid_policy = {
1020 		.sample_rate_ms = 10,
1021 		.deadband = 0,
1022 		.setpoint = 97,
1023 		.p_gain_pct = 20,
1024 		.d_gain_pct = 0,
1025 		.i_gain_pct = 0,
1026 	},
1027 	.funcs = {
1028 		.get_max = core_get_max_pstate,
1029 		.get_max_physical = core_get_max_pstate_physical,
1030 		.get_min = core_get_min_pstate,
1031 		.get_turbo = core_get_turbo_pstate,
1032 		.get_scaling = core_get_scaling,
1033 		.get_val = core_get_val,
1034 		.get_target_pstate = get_target_pstate_use_performance,
1035 	},
1036 };
1037 
1038 static struct cpu_defaults silvermont_params = {
1039 	.pid_policy = {
1040 		.sample_rate_ms = 10,
1041 		.deadband = 0,
1042 		.setpoint = 60,
1043 		.p_gain_pct = 14,
1044 		.d_gain_pct = 0,
1045 		.i_gain_pct = 4,
1046 		.boost_iowait = true,
1047 	},
1048 	.funcs = {
1049 		.get_max = atom_get_max_pstate,
1050 		.get_max_physical = atom_get_max_pstate,
1051 		.get_min = atom_get_min_pstate,
1052 		.get_turbo = atom_get_turbo_pstate,
1053 		.get_val = atom_get_val,
1054 		.get_scaling = silvermont_get_scaling,
1055 		.get_vid = atom_get_vid,
1056 		.get_target_pstate = get_target_pstate_use_cpu_load,
1057 	},
1058 };
1059 
1060 static struct cpu_defaults airmont_params = {
1061 	.pid_policy = {
1062 		.sample_rate_ms = 10,
1063 		.deadband = 0,
1064 		.setpoint = 60,
1065 		.p_gain_pct = 14,
1066 		.d_gain_pct = 0,
1067 		.i_gain_pct = 4,
1068 		.boost_iowait = true,
1069 	},
1070 	.funcs = {
1071 		.get_max = atom_get_max_pstate,
1072 		.get_max_physical = atom_get_max_pstate,
1073 		.get_min = atom_get_min_pstate,
1074 		.get_turbo = atom_get_turbo_pstate,
1075 		.get_val = atom_get_val,
1076 		.get_scaling = airmont_get_scaling,
1077 		.get_vid = atom_get_vid,
1078 		.get_target_pstate = get_target_pstate_use_cpu_load,
1079 	},
1080 };
1081 
1082 static struct cpu_defaults knl_params = {
1083 	.pid_policy = {
1084 		.sample_rate_ms = 10,
1085 		.deadband = 0,
1086 		.setpoint = 97,
1087 		.p_gain_pct = 20,
1088 		.d_gain_pct = 0,
1089 		.i_gain_pct = 0,
1090 	},
1091 	.funcs = {
1092 		.get_max = core_get_max_pstate,
1093 		.get_max_physical = core_get_max_pstate_physical,
1094 		.get_min = core_get_min_pstate,
1095 		.get_turbo = knl_get_turbo_pstate,
1096 		.get_scaling = core_get_scaling,
1097 		.get_val = core_get_val,
1098 		.get_target_pstate = get_target_pstate_use_performance,
1099 	},
1100 };
1101 
1102 static struct cpu_defaults bxt_params = {
1103 	.pid_policy = {
1104 		.sample_rate_ms = 10,
1105 		.deadband = 0,
1106 		.setpoint = 60,
1107 		.p_gain_pct = 14,
1108 		.d_gain_pct = 0,
1109 		.i_gain_pct = 4,
1110 		.boost_iowait = true,
1111 	},
1112 	.funcs = {
1113 		.get_max = core_get_max_pstate,
1114 		.get_max_physical = core_get_max_pstate_physical,
1115 		.get_min = core_get_min_pstate,
1116 		.get_turbo = core_get_turbo_pstate,
1117 		.get_scaling = core_get_scaling,
1118 		.get_val = core_get_val,
1119 		.get_target_pstate = get_target_pstate_use_cpu_load,
1120 	},
1121 };
1122 
1123 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1124 {
1125 	int max_perf = cpu->pstate.turbo_pstate;
1126 	int max_perf_adj;
1127 	int min_perf;
1128 
1129 	if (limits->no_turbo || limits->turbo_disabled)
1130 		max_perf = cpu->pstate.max_pstate;
1131 
1132 	/*
1133 	 * performance can be limited by user through sysfs, by cpufreq
1134 	 * policy, or by cpu specific default values determined through
1135 	 * experimentation.
1136 	 */
1137 	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1138 	*max = clamp_t(int, max_perf_adj,
1139 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1140 
1141 	min_perf = fp_toint(max_perf * limits->min_perf);
1142 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1143 }
1144 
1145 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1146 {
1147 	int pstate = cpu->pstate.min_pstate;
1148 
1149 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1150 	cpu->pstate.current_pstate = pstate;
1151 	/*
1152 	 * Generally, there is no guarantee that this code will always run on
1153 	 * the CPU being updated, so force the register update to run on the
1154 	 * right CPU.
1155 	 */
1156 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1157 		      pstate_funcs.get_val(cpu, pstate));
1158 }
1159 
1160 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1161 {
1162 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1163 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1164 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1165 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1166 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1167 
1168 	if (pstate_funcs.get_vid)
1169 		pstate_funcs.get_vid(cpu);
1170 
1171 	intel_pstate_set_min_pstate(cpu);
1172 }
1173 
1174 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1175 {
1176 	struct sample *sample = &cpu->sample;
1177 
1178 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1179 }
1180 
1181 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1182 {
1183 	u64 aperf, mperf;
1184 	unsigned long flags;
1185 	u64 tsc;
1186 
1187 	local_irq_save(flags);
1188 	rdmsrl(MSR_IA32_APERF, aperf);
1189 	rdmsrl(MSR_IA32_MPERF, mperf);
1190 	tsc = rdtsc();
1191 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1192 		local_irq_restore(flags);
1193 		return false;
1194 	}
1195 	local_irq_restore(flags);
1196 
1197 	cpu->last_sample_time = cpu->sample.time;
1198 	cpu->sample.time = time;
1199 	cpu->sample.aperf = aperf;
1200 	cpu->sample.mperf = mperf;
1201 	cpu->sample.tsc =  tsc;
1202 	cpu->sample.aperf -= cpu->prev_aperf;
1203 	cpu->sample.mperf -= cpu->prev_mperf;
1204 	cpu->sample.tsc -= cpu->prev_tsc;
1205 
1206 	cpu->prev_aperf = aperf;
1207 	cpu->prev_mperf = mperf;
1208 	cpu->prev_tsc = tsc;
1209 	/*
1210 	 * First time this function is invoked in a given cycle, all of the
1211 	 * previous sample data fields are equal to zero or stale and they must
1212 	 * be populated with meaningful numbers for things to work, so assume
1213 	 * that sample.time will always be reset before setting the utilization
1214 	 * update hook and make the caller skip the sample then.
1215 	 */
1216 	return !!cpu->last_sample_time;
1217 }
1218 
1219 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1220 {
1221 	return mul_ext_fp(cpu->sample.core_avg_perf,
1222 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1223 }
1224 
1225 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1226 {
1227 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1228 			  cpu->sample.core_avg_perf);
1229 }
1230 
1231 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1232 {
1233 	struct sample *sample = &cpu->sample;
1234 	int32_t busy_frac, boost;
1235 
1236 	busy_frac = div_fp(sample->mperf, sample->tsc);
1237 
1238 	boost = cpu->iowait_boost;
1239 	cpu->iowait_boost >>= 1;
1240 
1241 	if (busy_frac < boost)
1242 		busy_frac = boost;
1243 
1244 	sample->busy_scaled = busy_frac * 100;
1245 	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, sample->busy_scaled);
1246 }
1247 
1248 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1249 {
1250 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1251 	u64 duration_ns;
1252 
1253 	/*
1254 	 * perf_scaled is the average performance during the last sampling
1255 	 * period scaled by the ratio of the maximum P-state to the P-state
1256 	 * requested last time (in percent).  That measures the system's
1257 	 * response to the previous P-state selection.
1258 	 */
1259 	max_pstate = cpu->pstate.max_pstate_physical;
1260 	current_pstate = cpu->pstate.current_pstate;
1261 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1262 			       div_fp(100 * max_pstate, current_pstate));
1263 
1264 	/*
1265 	 * Since our utilization update callback will not run unless we are
1266 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1267 	 * than our sample interval.  If it is, then we were idle for a long
1268 	 * enough period of time to adjust our performance metric.
1269 	 */
1270 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1271 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1272 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1273 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1274 	} else {
1275 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1276 		if (sample_ratio < int_tofp(1))
1277 			perf_scaled = 0;
1278 	}
1279 
1280 	cpu->sample.busy_scaled = perf_scaled;
1281 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1282 }
1283 
1284 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1285 {
1286 	int max_perf, min_perf;
1287 
1288 	update_turbo_state();
1289 
1290 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1291 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1292 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1293 	if (pstate == cpu->pstate.current_pstate)
1294 		return;
1295 
1296 	cpu->pstate.current_pstate = pstate;
1297 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1298 }
1299 
1300 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1301 {
1302 	int from, target_pstate;
1303 	struct sample *sample;
1304 
1305 	from = cpu->pstate.current_pstate;
1306 
1307 	target_pstate = pstate_funcs.get_target_pstate(cpu);
1308 
1309 	intel_pstate_update_pstate(cpu, target_pstate);
1310 
1311 	sample = &cpu->sample;
1312 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1313 		fp_toint(sample->busy_scaled),
1314 		from,
1315 		cpu->pstate.current_pstate,
1316 		sample->mperf,
1317 		sample->aperf,
1318 		sample->tsc,
1319 		get_avg_frequency(cpu));
1320 }
1321 
1322 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1323 				     unsigned int flags)
1324 {
1325 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1326 	u64 delta_ns;
1327 
1328 	if (pid_params.boost_iowait) {
1329 		if (flags & SCHED_CPUFREQ_IOWAIT) {
1330 			cpu->iowait_boost = int_tofp(1);
1331 		} else if (cpu->iowait_boost) {
1332 			/* Clear iowait_boost if the CPU may have been idle. */
1333 			delta_ns = time - cpu->last_update;
1334 			if (delta_ns > TICK_NSEC)
1335 				cpu->iowait_boost = 0;
1336 		}
1337 		cpu->last_update = time;
1338 	}
1339 
1340 	delta_ns = time - cpu->sample.time;
1341 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1342 		bool sample_taken = intel_pstate_sample(cpu, time);
1343 
1344 		if (sample_taken) {
1345 			intel_pstate_calc_avg_perf(cpu);
1346 			if (!hwp_active)
1347 				intel_pstate_adjust_busy_pstate(cpu);
1348 		}
1349 	}
1350 }
1351 
1352 #define ICPU(model, policy) \
1353 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1354 			(unsigned long)&policy }
1355 
1356 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1357 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1358 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1359 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1360 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1361 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1362 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1363 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1364 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1365 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1366 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1367 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1368 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1369 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1370 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1371 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1372 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1373 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1374 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1375 	{}
1376 };
1377 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1378 
1379 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1380 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1381 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1382 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1383 	{}
1384 };
1385 
1386 static int intel_pstate_init_cpu(unsigned int cpunum)
1387 {
1388 	struct cpudata *cpu;
1389 
1390 	if (!all_cpu_data[cpunum])
1391 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1392 					       GFP_KERNEL);
1393 	if (!all_cpu_data[cpunum])
1394 		return -ENOMEM;
1395 
1396 	cpu = all_cpu_data[cpunum];
1397 
1398 	cpu->cpu = cpunum;
1399 
1400 	if (hwp_active) {
1401 		intel_pstate_hwp_enable(cpu);
1402 		pid_params.sample_rate_ms = 50;
1403 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1404 	}
1405 
1406 	intel_pstate_get_cpu_pstates(cpu);
1407 
1408 	intel_pstate_busy_pid_reset(cpu);
1409 
1410 	pr_debug("controlling: cpu %d\n", cpunum);
1411 
1412 	return 0;
1413 }
1414 
1415 static unsigned int intel_pstate_get(unsigned int cpu_num)
1416 {
1417 	struct cpudata *cpu = all_cpu_data[cpu_num];
1418 
1419 	return cpu ? get_avg_frequency(cpu) : 0;
1420 }
1421 
1422 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1423 {
1424 	struct cpudata *cpu = all_cpu_data[cpu_num];
1425 
1426 	if (cpu->update_util_set)
1427 		return;
1428 
1429 	/* Prevent intel_pstate_update_util() from using stale data. */
1430 	cpu->sample.time = 0;
1431 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1432 				     intel_pstate_update_util);
1433 	cpu->update_util_set = true;
1434 }
1435 
1436 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1437 {
1438 	struct cpudata *cpu_data = all_cpu_data[cpu];
1439 
1440 	if (!cpu_data->update_util_set)
1441 		return;
1442 
1443 	cpufreq_remove_update_util_hook(cpu);
1444 	cpu_data->update_util_set = false;
1445 	synchronize_sched();
1446 }
1447 
1448 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1449 {
1450 	limits->no_turbo = 0;
1451 	limits->turbo_disabled = 0;
1452 	limits->max_perf_pct = 100;
1453 	limits->max_perf = int_tofp(1);
1454 	limits->min_perf_pct = 100;
1455 	limits->min_perf = int_tofp(1);
1456 	limits->max_policy_pct = 100;
1457 	limits->max_sysfs_pct = 100;
1458 	limits->min_policy_pct = 0;
1459 	limits->min_sysfs_pct = 0;
1460 }
1461 
1462 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1463 {
1464 	struct cpudata *cpu;
1465 
1466 	if (!policy->cpuinfo.max_freq)
1467 		return -ENODEV;
1468 
1469 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1470 		 policy->cpuinfo.max_freq, policy->max);
1471 
1472 	cpu = all_cpu_data[0];
1473 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1474 	    policy->max < policy->cpuinfo.max_freq &&
1475 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1476 		pr_debug("policy->max > max non turbo frequency\n");
1477 		policy->max = policy->cpuinfo.max_freq;
1478 	}
1479 
1480 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1481 		limits = &performance_limits;
1482 		if (policy->max >= policy->cpuinfo.max_freq) {
1483 			pr_debug("set performance\n");
1484 			intel_pstate_set_performance_limits(limits);
1485 			goto out;
1486 		}
1487 	} else {
1488 		pr_debug("set powersave\n");
1489 		limits = &powersave_limits;
1490 	}
1491 
1492 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1493 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1494 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1495 					      policy->cpuinfo.max_freq);
1496 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1497 
1498 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1499 	limits->min_perf_pct = max(limits->min_policy_pct,
1500 				   limits->min_sysfs_pct);
1501 	limits->min_perf_pct = min(limits->max_policy_pct,
1502 				   limits->min_perf_pct);
1503 	limits->max_perf_pct = min(limits->max_policy_pct,
1504 				   limits->max_sysfs_pct);
1505 	limits->max_perf_pct = max(limits->min_policy_pct,
1506 				   limits->max_perf_pct);
1507 
1508 	/* Make sure min_perf_pct <= max_perf_pct */
1509 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1510 
1511 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
1512 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1513 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1514 
1515  out:
1516 	intel_pstate_set_update_util_hook(policy->cpu);
1517 
1518 	intel_pstate_hwp_set_policy(policy);
1519 
1520 	return 0;
1521 }
1522 
1523 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1524 {
1525 	cpufreq_verify_within_cpu_limits(policy);
1526 
1527 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1528 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1529 		return -EINVAL;
1530 
1531 	return 0;
1532 }
1533 
1534 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1535 {
1536 	int cpu_num = policy->cpu;
1537 	struct cpudata *cpu = all_cpu_data[cpu_num];
1538 
1539 	pr_debug("CPU %d exiting\n", cpu_num);
1540 
1541 	intel_pstate_clear_update_util_hook(cpu_num);
1542 
1543 	if (hwp_active)
1544 		return;
1545 
1546 	intel_pstate_set_min_pstate(cpu);
1547 }
1548 
1549 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1550 {
1551 	struct cpudata *cpu;
1552 	int rc;
1553 
1554 	rc = intel_pstate_init_cpu(policy->cpu);
1555 	if (rc)
1556 		return rc;
1557 
1558 	cpu = all_cpu_data[policy->cpu];
1559 
1560 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1561 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1562 	else
1563 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1564 
1565 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1566 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1567 
1568 	/* cpuinfo and default policy values */
1569 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1570 	update_turbo_state();
1571 	policy->cpuinfo.max_freq = limits->turbo_disabled ?
1572 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1573 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1574 
1575 	intel_pstate_init_acpi_perf_limits(policy);
1576 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1577 	cpumask_set_cpu(policy->cpu, policy->cpus);
1578 
1579 	return 0;
1580 }
1581 
1582 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1583 {
1584 	intel_pstate_exit_perf_limits(policy);
1585 
1586 	return 0;
1587 }
1588 
1589 static struct cpufreq_driver intel_pstate_driver = {
1590 	.flags		= CPUFREQ_CONST_LOOPS,
1591 	.verify		= intel_pstate_verify_policy,
1592 	.setpolicy	= intel_pstate_set_policy,
1593 	.resume		= intel_pstate_hwp_set_policy,
1594 	.get		= intel_pstate_get,
1595 	.init		= intel_pstate_cpu_init,
1596 	.exit		= intel_pstate_cpu_exit,
1597 	.stop_cpu	= intel_pstate_stop_cpu,
1598 	.name		= "intel_pstate",
1599 };
1600 
1601 static int no_load __initdata;
1602 static int no_hwp __initdata;
1603 static int hwp_only __initdata;
1604 static unsigned int force_load __initdata;
1605 
1606 static int __init intel_pstate_msrs_not_valid(void)
1607 {
1608 	if (!pstate_funcs.get_max() ||
1609 	    !pstate_funcs.get_min() ||
1610 	    !pstate_funcs.get_turbo())
1611 		return -ENODEV;
1612 
1613 	return 0;
1614 }
1615 
1616 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1617 {
1618 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1619 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1620 	pid_params.p_gain_pct = policy->p_gain_pct;
1621 	pid_params.i_gain_pct = policy->i_gain_pct;
1622 	pid_params.d_gain_pct = policy->d_gain_pct;
1623 	pid_params.deadband = policy->deadband;
1624 	pid_params.setpoint = policy->setpoint;
1625 }
1626 
1627 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1628 {
1629 	pstate_funcs.get_max   = funcs->get_max;
1630 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1631 	pstate_funcs.get_min   = funcs->get_min;
1632 	pstate_funcs.get_turbo = funcs->get_turbo;
1633 	pstate_funcs.get_scaling = funcs->get_scaling;
1634 	pstate_funcs.get_val   = funcs->get_val;
1635 	pstate_funcs.get_vid   = funcs->get_vid;
1636 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1637 
1638 }
1639 
1640 #ifdef CONFIG_ACPI
1641 
1642 static bool __init intel_pstate_no_acpi_pss(void)
1643 {
1644 	int i;
1645 
1646 	for_each_possible_cpu(i) {
1647 		acpi_status status;
1648 		union acpi_object *pss;
1649 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1650 		struct acpi_processor *pr = per_cpu(processors, i);
1651 
1652 		if (!pr)
1653 			continue;
1654 
1655 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1656 		if (ACPI_FAILURE(status))
1657 			continue;
1658 
1659 		pss = buffer.pointer;
1660 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1661 			kfree(pss);
1662 			return false;
1663 		}
1664 
1665 		kfree(pss);
1666 	}
1667 
1668 	return true;
1669 }
1670 
1671 static bool __init intel_pstate_has_acpi_ppc(void)
1672 {
1673 	int i;
1674 
1675 	for_each_possible_cpu(i) {
1676 		struct acpi_processor *pr = per_cpu(processors, i);
1677 
1678 		if (!pr)
1679 			continue;
1680 		if (acpi_has_method(pr->handle, "_PPC"))
1681 			return true;
1682 	}
1683 	return false;
1684 }
1685 
1686 enum {
1687 	PSS,
1688 	PPC,
1689 };
1690 
1691 struct hw_vendor_info {
1692 	u16  valid;
1693 	char oem_id[ACPI_OEM_ID_SIZE];
1694 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1695 	int  oem_pwr_table;
1696 };
1697 
1698 /* Hardware vendor-specific info that has its own power management modes */
1699 static struct hw_vendor_info vendor_info[] __initdata = {
1700 	{1, "HP    ", "ProLiant", PSS},
1701 	{1, "ORACLE", "X4-2    ", PPC},
1702 	{1, "ORACLE", "X4-2L   ", PPC},
1703 	{1, "ORACLE", "X4-2B   ", PPC},
1704 	{1, "ORACLE", "X3-2    ", PPC},
1705 	{1, "ORACLE", "X3-2L   ", PPC},
1706 	{1, "ORACLE", "X3-2B   ", PPC},
1707 	{1, "ORACLE", "X4470M2 ", PPC},
1708 	{1, "ORACLE", "X4270M3 ", PPC},
1709 	{1, "ORACLE", "X4270M2 ", PPC},
1710 	{1, "ORACLE", "X4170M2 ", PPC},
1711 	{1, "ORACLE", "X4170 M3", PPC},
1712 	{1, "ORACLE", "X4275 M3", PPC},
1713 	{1, "ORACLE", "X6-2    ", PPC},
1714 	{1, "ORACLE", "Sudbury ", PPC},
1715 	{0, "", ""},
1716 };
1717 
1718 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1719 {
1720 	struct acpi_table_header hdr;
1721 	struct hw_vendor_info *v_info;
1722 	const struct x86_cpu_id *id;
1723 	u64 misc_pwr;
1724 
1725 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1726 	if (id) {
1727 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1728 		if ( misc_pwr & (1 << 8))
1729 			return true;
1730 	}
1731 
1732 	if (acpi_disabled ||
1733 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1734 		return false;
1735 
1736 	for (v_info = vendor_info; v_info->valid; v_info++) {
1737 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1738 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1739 						ACPI_OEM_TABLE_ID_SIZE))
1740 			switch (v_info->oem_pwr_table) {
1741 			case PSS:
1742 				return intel_pstate_no_acpi_pss();
1743 			case PPC:
1744 				return intel_pstate_has_acpi_ppc() &&
1745 					(!force_load);
1746 			}
1747 	}
1748 
1749 	return false;
1750 }
1751 #else /* CONFIG_ACPI not enabled */
1752 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1753 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1754 #endif /* CONFIG_ACPI */
1755 
1756 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1757 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1758 	{}
1759 };
1760 
1761 static int __init intel_pstate_init(void)
1762 {
1763 	int cpu, rc = 0;
1764 	const struct x86_cpu_id *id;
1765 	struct cpu_defaults *cpu_def;
1766 
1767 	if (no_load)
1768 		return -ENODEV;
1769 
1770 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1771 		copy_cpu_funcs(&core_params.funcs);
1772 		hwp_active++;
1773 		goto hwp_cpu_matched;
1774 	}
1775 
1776 	id = x86_match_cpu(intel_pstate_cpu_ids);
1777 	if (!id)
1778 		return -ENODEV;
1779 
1780 	cpu_def = (struct cpu_defaults *)id->driver_data;
1781 
1782 	copy_pid_params(&cpu_def->pid_policy);
1783 	copy_cpu_funcs(&cpu_def->funcs);
1784 
1785 	if (intel_pstate_msrs_not_valid())
1786 		return -ENODEV;
1787 
1788 hwp_cpu_matched:
1789 	/*
1790 	 * The Intel pstate driver will be ignored if the platform
1791 	 * firmware has its own power management modes.
1792 	 */
1793 	if (intel_pstate_platform_pwr_mgmt_exists())
1794 		return -ENODEV;
1795 
1796 	pr_info("Intel P-state driver initializing\n");
1797 
1798 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1799 	if (!all_cpu_data)
1800 		return -ENOMEM;
1801 
1802 	if (!hwp_active && hwp_only)
1803 		goto out;
1804 
1805 	rc = cpufreq_register_driver(&intel_pstate_driver);
1806 	if (rc)
1807 		goto out;
1808 
1809 	intel_pstate_debug_expose_params();
1810 	intel_pstate_sysfs_expose_params();
1811 
1812 	if (hwp_active)
1813 		pr_info("HWP enabled\n");
1814 
1815 	return rc;
1816 out:
1817 	get_online_cpus();
1818 	for_each_online_cpu(cpu) {
1819 		if (all_cpu_data[cpu]) {
1820 			intel_pstate_clear_update_util_hook(cpu);
1821 			kfree(all_cpu_data[cpu]);
1822 		}
1823 	}
1824 
1825 	put_online_cpus();
1826 	vfree(all_cpu_data);
1827 	return -ENODEV;
1828 }
1829 device_initcall(intel_pstate_init);
1830 
1831 static int __init intel_pstate_setup(char *str)
1832 {
1833 	if (!str)
1834 		return -EINVAL;
1835 
1836 	if (!strcmp(str, "disable"))
1837 		no_load = 1;
1838 	if (!strcmp(str, "no_hwp")) {
1839 		pr_info("HWP disabled\n");
1840 		no_hwp = 1;
1841 	}
1842 	if (!strcmp(str, "force"))
1843 		force_load = 1;
1844 	if (!strcmp(str, "hwp_only"))
1845 		hwp_only = 1;
1846 
1847 #ifdef CONFIG_ACPI
1848 	if (!strcmp(str, "support_acpi_ppc"))
1849 		acpi_ppc = true;
1850 #endif
1851 
1852 	return 0;
1853 }
1854 early_param("intel_pstate", intel_pstate_setup);
1855 
1856 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1857 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1858 MODULE_LICENSE("GPL");
1859