1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define ATOM_RATIOS		0x66a
41 #define ATOM_VIDS		0x66b
42 #define ATOM_TURBO_RATIOS	0x66c
43 #define ATOM_TURBO_VIDS		0x66d
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 /**
88  * struct sample -	Store performance sample
89  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90  *			performance during last sample period
91  * @busy_scaled:	Scaled busy value which is used to calculate next
92  *			P state. This can be different than core_avg_perf
93  *			to account for cpu idle period
94  * @aperf:		Difference of actual performance frequency clock count
95  *			read from APERF MSR between last and current sample
96  * @mperf:		Difference of maximum performance frequency clock count
97  *			read from MPERF MSR between last and current sample
98  * @tsc:		Difference of time stamp counter between last and
99  *			current sample
100  * @time:		Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106 	int32_t core_avg_perf;
107 	int32_t busy_scaled;
108 	u64 aperf;
109 	u64 mperf;
110 	u64 tsc;
111 	u64 time;
112 };
113 
114 /**
115  * struct pstate_data - Store P state data
116  * @current_pstate:	Current requested P state
117  * @min_pstate:		Min P state possible for this platform
118  * @max_pstate:		Max P state possible for this platform
119  * @max_pstate_physical:This is physical Max P state for a processor
120  *			This can be higher than the max_pstate which can
121  *			be limited by platform thermal design power limits
122  * @scaling:		Scaling factor to  convert frequency to cpufreq
123  *			frequency units
124  * @turbo_pstate:	Max Turbo P state possible for this platform
125  *
126  * Stores the per cpu model P state limits and current P state.
127  */
128 struct pstate_data {
129 	int	current_pstate;
130 	int	min_pstate;
131 	int	max_pstate;
132 	int	max_pstate_physical;
133 	int	scaling;
134 	int	turbo_pstate;
135 };
136 
137 /**
138  * struct vid_data -	Stores voltage information data
139  * @min:		VID data for this platform corresponding to
140  *			the lowest P state
141  * @max:		VID data corresponding to the highest P State.
142  * @turbo:		VID data for turbo P state
143  * @ratio:		Ratio of (vid max - vid min) /
144  *			(max P state - Min P State)
145  *
146  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147  * This data is used in Atom platforms, where in addition to target P state,
148  * the voltage data needs to be specified to select next P State.
149  */
150 struct vid_data {
151 	int min;
152 	int max;
153 	int turbo;
154 	int32_t ratio;
155 };
156 
157 /**
158  * struct _pid -	Stores PID data
159  * @setpoint:		Target set point for busyness or performance
160  * @integral:		Storage for accumulated error values
161  * @p_gain:		PID proportional gain
162  * @i_gain:		PID integral gain
163  * @d_gain:		PID derivative gain
164  * @deadband:		PID deadband
165  * @last_err:		Last error storage for integral part of PID calculation
166  *
167  * Stores PID coefficients and last error for PID controller.
168  */
169 struct _pid {
170 	int setpoint;
171 	int32_t integral;
172 	int32_t p_gain;
173 	int32_t i_gain;
174 	int32_t d_gain;
175 	int deadband;
176 	int32_t last_err;
177 };
178 
179 /**
180  * struct perf_limits - Store user and policy limits
181  * @no_turbo:		User requested turbo state from intel_pstate sysfs
182  * @turbo_disabled:	Platform turbo status either from msr
183  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
184  *			matches the maximum turbo pstate
185  * @max_perf_pct:	Effective maximum performance limit in percentage, this
186  *			is minimum of either limits enforced by cpufreq policy
187  *			or limits from user set limits via intel_pstate sysfs
188  * @min_perf_pct:	Effective minimum performance limit in percentage, this
189  *			is maximum of either limits enforced by cpufreq policy
190  *			or limits from user set limits via intel_pstate sysfs
191  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
192  *			This value is used to limit max pstate
193  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
194  *			This value is used to limit min pstate
195  * @max_policy_pct:	The maximum performance in percentage enforced by
196  *			cpufreq setpolicy interface
197  * @max_sysfs_pct:	The maximum performance in percentage enforced by
198  *			intel pstate sysfs interface, unused when per cpu
199  *			controls are enforced
200  * @min_policy_pct:	The minimum performance in percentage enforced by
201  *			cpufreq setpolicy interface
202  * @min_sysfs_pct:	The minimum performance in percentage enforced by
203  *			intel pstate sysfs interface, unused when per cpu
204  *			controls are enforced
205  *
206  * Storage for user and policy defined limits.
207  */
208 struct perf_limits {
209 	int no_turbo;
210 	int turbo_disabled;
211 	int max_perf_pct;
212 	int min_perf_pct;
213 	int32_t max_perf;
214 	int32_t min_perf;
215 	int max_policy_pct;
216 	int max_sysfs_pct;
217 	int min_policy_pct;
218 	int min_sysfs_pct;
219 };
220 
221 /**
222  * struct cpudata -	Per CPU instance data storage
223  * @cpu:		CPU number for this instance data
224  * @policy:		CPUFreq policy value
225  * @update_util:	CPUFreq utility callback information
226  * @update_util_set:	CPUFreq utility callback is set
227  * @iowait_boost:	iowait-related boost fraction
228  * @last_update:	Time of the last update.
229  * @pstate:		Stores P state limits for this CPU
230  * @vid:		Stores VID limits for this CPU
231  * @pid:		Stores PID parameters for this CPU
232  * @last_sample_time:	Last Sample time
233  * @prev_aperf:		Last APERF value read from APERF MSR
234  * @prev_mperf:		Last MPERF value read from MPERF MSR
235  * @prev_tsc:		Last timestamp counter (TSC) value
236  * @prev_cummulative_iowait: IO Wait time difference from last and
237  *			current sample
238  * @sample:		Storage for storing last Sample data
239  * @perf_limits:	Pointer to perf_limit unique to this CPU
240  *			Not all field in the structure are applicable
241  *			when per cpu controls are enforced
242  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
243  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
244  *
245  * This structure stores per CPU instance data for all CPUs.
246  */
247 struct cpudata {
248 	int cpu;
249 
250 	unsigned int policy;
251 	struct update_util_data update_util;
252 	bool   update_util_set;
253 
254 	struct pstate_data pstate;
255 	struct vid_data vid;
256 	struct _pid pid;
257 
258 	u64	last_update;
259 	u64	last_sample_time;
260 	u64	prev_aperf;
261 	u64	prev_mperf;
262 	u64	prev_tsc;
263 	u64	prev_cummulative_iowait;
264 	struct sample sample;
265 	struct perf_limits *perf_limits;
266 #ifdef CONFIG_ACPI
267 	struct acpi_processor_performance acpi_perf_data;
268 	bool valid_pss_table;
269 #endif
270 	unsigned int iowait_boost;
271 };
272 
273 static struct cpudata **all_cpu_data;
274 
275 /**
276  * struct pstate_adjust_policy - Stores static PID configuration data
277  * @sample_rate_ms:	PID calculation sample rate in ms
278  * @sample_rate_ns:	Sample rate calculation in ns
279  * @deadband:		PID deadband
280  * @setpoint:		PID Setpoint
281  * @p_gain_pct:		PID proportional gain
282  * @i_gain_pct:		PID integral gain
283  * @d_gain_pct:		PID derivative gain
284  *
285  * Stores per CPU model static PID configuration data.
286  */
287 struct pstate_adjust_policy {
288 	int sample_rate_ms;
289 	s64 sample_rate_ns;
290 	int deadband;
291 	int setpoint;
292 	int p_gain_pct;
293 	int d_gain_pct;
294 	int i_gain_pct;
295 };
296 
297 /**
298  * struct pstate_funcs - Per CPU model specific callbacks
299  * @get_max:		Callback to get maximum non turbo effective P state
300  * @get_max_physical:	Callback to get maximum non turbo physical P state
301  * @get_min:		Callback to get minimum P state
302  * @get_turbo:		Callback to get turbo P state
303  * @get_scaling:	Callback to get frequency scaling factor
304  * @get_val:		Callback to convert P state to actual MSR write value
305  * @get_vid:		Callback to get VID data for Atom platforms
306  * @get_target_pstate:	Callback to a function to calculate next P state to use
307  *
308  * Core and Atom CPU models have different way to get P State limits. This
309  * structure is used to store those callbacks.
310  */
311 struct pstate_funcs {
312 	int (*get_max)(void);
313 	int (*get_max_physical)(void);
314 	int (*get_min)(void);
315 	int (*get_turbo)(void);
316 	int (*get_scaling)(void);
317 	u64 (*get_val)(struct cpudata*, int pstate);
318 	void (*get_vid)(struct cpudata *);
319 	int32_t (*get_target_pstate)(struct cpudata *);
320 };
321 
322 /**
323  * struct cpu_defaults- Per CPU model default config data
324  * @pid_policy:	PID config data
325  * @funcs:		Callback function data
326  */
327 struct cpu_defaults {
328 	struct pstate_adjust_policy pid_policy;
329 	struct pstate_funcs funcs;
330 };
331 
332 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
333 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
334 
335 static struct pstate_adjust_policy pid_params __read_mostly;
336 static struct pstate_funcs pstate_funcs __read_mostly;
337 static int hwp_active __read_mostly;
338 static bool per_cpu_limits __read_mostly;
339 
340 #ifdef CONFIG_ACPI
341 static bool acpi_ppc;
342 #endif
343 
344 static struct perf_limits performance_limits = {
345 	.no_turbo = 0,
346 	.turbo_disabled = 0,
347 	.max_perf_pct = 100,
348 	.max_perf = int_tofp(1),
349 	.min_perf_pct = 100,
350 	.min_perf = int_tofp(1),
351 	.max_policy_pct = 100,
352 	.max_sysfs_pct = 100,
353 	.min_policy_pct = 0,
354 	.min_sysfs_pct = 0,
355 };
356 
357 static struct perf_limits powersave_limits = {
358 	.no_turbo = 0,
359 	.turbo_disabled = 0,
360 	.max_perf_pct = 100,
361 	.max_perf = int_tofp(1),
362 	.min_perf_pct = 0,
363 	.min_perf = 0,
364 	.max_policy_pct = 100,
365 	.max_sysfs_pct = 100,
366 	.min_policy_pct = 0,
367 	.min_sysfs_pct = 0,
368 };
369 
370 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
371 static struct perf_limits *limits = &performance_limits;
372 #else
373 static struct perf_limits *limits = &powersave_limits;
374 #endif
375 
376 static DEFINE_MUTEX(intel_pstate_limits_lock);
377 
378 #ifdef CONFIG_ACPI
379 
380 static bool intel_pstate_get_ppc_enable_status(void)
381 {
382 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
383 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
384 		return true;
385 
386 	return acpi_ppc;
387 }
388 
389 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
390 {
391 	struct cpudata *cpu;
392 	int ret;
393 	int i;
394 
395 	if (hwp_active)
396 		return;
397 
398 	if (!intel_pstate_get_ppc_enable_status())
399 		return;
400 
401 	cpu = all_cpu_data[policy->cpu];
402 
403 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
404 						  policy->cpu);
405 	if (ret)
406 		return;
407 
408 	/*
409 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
410 	 * guarantee that the states returned by it map to the states in our
411 	 * list directly.
412 	 */
413 	if (cpu->acpi_perf_data.control_register.space_id !=
414 						ACPI_ADR_SPACE_FIXED_HARDWARE)
415 		goto err;
416 
417 	/*
418 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
419 	 * usual without taking _PSS into account
420 	 */
421 	if (cpu->acpi_perf_data.state_count < 2)
422 		goto err;
423 
424 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
425 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
426 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
427 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
428 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
429 			 (u32) cpu->acpi_perf_data.states[i].power,
430 			 (u32) cpu->acpi_perf_data.states[i].control);
431 	}
432 
433 	/*
434 	 * The _PSS table doesn't contain whole turbo frequency range.
435 	 * This just contains +1 MHZ above the max non turbo frequency,
436 	 * with control value corresponding to max turbo ratio. But
437 	 * when cpufreq set policy is called, it will call with this
438 	 * max frequency, which will cause a reduced performance as
439 	 * this driver uses real max turbo frequency as the max
440 	 * frequency. So correct this frequency in _PSS table to
441 	 * correct max turbo frequency based on the turbo state.
442 	 * Also need to convert to MHz as _PSS freq is in MHz.
443 	 */
444 	if (!limits->turbo_disabled)
445 		cpu->acpi_perf_data.states[0].core_frequency =
446 					policy->cpuinfo.max_freq / 1000;
447 	cpu->valid_pss_table = true;
448 	pr_debug("_PPC limits will be enforced\n");
449 
450 	return;
451 
452  err:
453 	cpu->valid_pss_table = false;
454 	acpi_processor_unregister_performance(policy->cpu);
455 }
456 
457 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
458 {
459 	struct cpudata *cpu;
460 
461 	cpu = all_cpu_data[policy->cpu];
462 	if (!cpu->valid_pss_table)
463 		return;
464 
465 	acpi_processor_unregister_performance(policy->cpu);
466 }
467 
468 #else
469 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
470 {
471 }
472 
473 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
474 {
475 }
476 #endif
477 
478 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
479 			     int deadband, int integral) {
480 	pid->setpoint = int_tofp(setpoint);
481 	pid->deadband  = int_tofp(deadband);
482 	pid->integral  = int_tofp(integral);
483 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
484 }
485 
486 static inline void pid_p_gain_set(struct _pid *pid, int percent)
487 {
488 	pid->p_gain = div_fp(percent, 100);
489 }
490 
491 static inline void pid_i_gain_set(struct _pid *pid, int percent)
492 {
493 	pid->i_gain = div_fp(percent, 100);
494 }
495 
496 static inline void pid_d_gain_set(struct _pid *pid, int percent)
497 {
498 	pid->d_gain = div_fp(percent, 100);
499 }
500 
501 static signed int pid_calc(struct _pid *pid, int32_t busy)
502 {
503 	signed int result;
504 	int32_t pterm, dterm, fp_error;
505 	int32_t integral_limit;
506 
507 	fp_error = pid->setpoint - busy;
508 
509 	if (abs(fp_error) <= pid->deadband)
510 		return 0;
511 
512 	pterm = mul_fp(pid->p_gain, fp_error);
513 
514 	pid->integral += fp_error;
515 
516 	/*
517 	 * We limit the integral here so that it will never
518 	 * get higher than 30.  This prevents it from becoming
519 	 * too large an input over long periods of time and allows
520 	 * it to get factored out sooner.
521 	 *
522 	 * The value of 30 was chosen through experimentation.
523 	 */
524 	integral_limit = int_tofp(30);
525 	if (pid->integral > integral_limit)
526 		pid->integral = integral_limit;
527 	if (pid->integral < -integral_limit)
528 		pid->integral = -integral_limit;
529 
530 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
531 	pid->last_err = fp_error;
532 
533 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
534 	result = result + (1 << (FRAC_BITS-1));
535 	return (signed int)fp_toint(result);
536 }
537 
538 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
539 {
540 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
541 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
542 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
543 
544 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
545 }
546 
547 static inline void intel_pstate_reset_all_pid(void)
548 {
549 	unsigned int cpu;
550 
551 	for_each_online_cpu(cpu) {
552 		if (all_cpu_data[cpu])
553 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
554 	}
555 }
556 
557 static inline void update_turbo_state(void)
558 {
559 	u64 misc_en;
560 	struct cpudata *cpu;
561 
562 	cpu = all_cpu_data[0];
563 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
564 	limits->turbo_disabled =
565 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
566 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
567 }
568 
569 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
570 {
571 	int min, hw_min, max, hw_max, cpu, range, adj_range;
572 	struct perf_limits *perf_limits = limits;
573 	u64 value, cap;
574 
575 	for_each_cpu(cpu, cpumask) {
576 		int max_perf_pct, min_perf_pct;
577 
578 		if (per_cpu_limits)
579 			perf_limits = all_cpu_data[cpu]->perf_limits;
580 
581 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
582 		hw_min = HWP_LOWEST_PERF(cap);
583 		hw_max = HWP_HIGHEST_PERF(cap);
584 		range = hw_max - hw_min;
585 
586 		max_perf_pct = perf_limits->max_perf_pct;
587 		min_perf_pct = perf_limits->min_perf_pct;
588 
589 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
590 		adj_range = min_perf_pct * range / 100;
591 		min = hw_min + adj_range;
592 		value &= ~HWP_MIN_PERF(~0L);
593 		value |= HWP_MIN_PERF(min);
594 
595 		adj_range = max_perf_pct * range / 100;
596 		max = hw_min + adj_range;
597 		if (limits->no_turbo) {
598 			hw_max = HWP_GUARANTEED_PERF(cap);
599 			if (hw_max < max)
600 				max = hw_max;
601 		}
602 
603 		value &= ~HWP_MAX_PERF(~0L);
604 		value |= HWP_MAX_PERF(max);
605 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
606 	}
607 }
608 
609 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
610 {
611 	if (hwp_active)
612 		intel_pstate_hwp_set(policy->cpus);
613 
614 	return 0;
615 }
616 
617 static void intel_pstate_hwp_set_online_cpus(void)
618 {
619 	get_online_cpus();
620 	intel_pstate_hwp_set(cpu_online_mask);
621 	put_online_cpus();
622 }
623 
624 /************************** debugfs begin ************************/
625 static int pid_param_set(void *data, u64 val)
626 {
627 	*(u32 *)data = val;
628 	intel_pstate_reset_all_pid();
629 	return 0;
630 }
631 
632 static int pid_param_get(void *data, u64 *val)
633 {
634 	*val = *(u32 *)data;
635 	return 0;
636 }
637 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
638 
639 struct pid_param {
640 	char *name;
641 	void *value;
642 };
643 
644 static struct pid_param pid_files[] = {
645 	{"sample_rate_ms", &pid_params.sample_rate_ms},
646 	{"d_gain_pct", &pid_params.d_gain_pct},
647 	{"i_gain_pct", &pid_params.i_gain_pct},
648 	{"deadband", &pid_params.deadband},
649 	{"setpoint", &pid_params.setpoint},
650 	{"p_gain_pct", &pid_params.p_gain_pct},
651 	{NULL, NULL}
652 };
653 
654 static void __init intel_pstate_debug_expose_params(void)
655 {
656 	struct dentry *debugfs_parent;
657 	int i = 0;
658 
659 	if (hwp_active ||
660 	    pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
661 		return;
662 
663 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
664 	if (IS_ERR_OR_NULL(debugfs_parent))
665 		return;
666 	while (pid_files[i].name) {
667 		debugfs_create_file(pid_files[i].name, 0660,
668 				    debugfs_parent, pid_files[i].value,
669 				    &fops_pid_param);
670 		i++;
671 	}
672 }
673 
674 /************************** debugfs end ************************/
675 
676 /************************** sysfs begin ************************/
677 #define show_one(file_name, object)					\
678 	static ssize_t show_##file_name					\
679 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
680 	{								\
681 		return sprintf(buf, "%u\n", limits->object);		\
682 	}
683 
684 static ssize_t show_turbo_pct(struct kobject *kobj,
685 				struct attribute *attr, char *buf)
686 {
687 	struct cpudata *cpu;
688 	int total, no_turbo, turbo_pct;
689 	uint32_t turbo_fp;
690 
691 	cpu = all_cpu_data[0];
692 
693 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
694 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
695 	turbo_fp = div_fp(no_turbo, total);
696 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
697 	return sprintf(buf, "%u\n", turbo_pct);
698 }
699 
700 static ssize_t show_num_pstates(struct kobject *kobj,
701 				struct attribute *attr, char *buf)
702 {
703 	struct cpudata *cpu;
704 	int total;
705 
706 	cpu = all_cpu_data[0];
707 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
708 	return sprintf(buf, "%u\n", total);
709 }
710 
711 static ssize_t show_no_turbo(struct kobject *kobj,
712 			     struct attribute *attr, char *buf)
713 {
714 	ssize_t ret;
715 
716 	update_turbo_state();
717 	if (limits->turbo_disabled)
718 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
719 	else
720 		ret = sprintf(buf, "%u\n", limits->no_turbo);
721 
722 	return ret;
723 }
724 
725 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
726 			      const char *buf, size_t count)
727 {
728 	unsigned int input;
729 	int ret;
730 
731 	ret = sscanf(buf, "%u", &input);
732 	if (ret != 1)
733 		return -EINVAL;
734 
735 	mutex_lock(&intel_pstate_limits_lock);
736 
737 	update_turbo_state();
738 	if (limits->turbo_disabled) {
739 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
740 		mutex_unlock(&intel_pstate_limits_lock);
741 		return -EPERM;
742 	}
743 
744 	limits->no_turbo = clamp_t(int, input, 0, 1);
745 
746 	mutex_unlock(&intel_pstate_limits_lock);
747 
748 	if (hwp_active)
749 		intel_pstate_hwp_set_online_cpus();
750 
751 	return count;
752 }
753 
754 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
755 				  const char *buf, size_t count)
756 {
757 	unsigned int input;
758 	int ret;
759 
760 	ret = sscanf(buf, "%u", &input);
761 	if (ret != 1)
762 		return -EINVAL;
763 
764 	mutex_lock(&intel_pstate_limits_lock);
765 
766 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
767 	limits->max_perf_pct = min(limits->max_policy_pct,
768 				   limits->max_sysfs_pct);
769 	limits->max_perf_pct = max(limits->min_policy_pct,
770 				   limits->max_perf_pct);
771 	limits->max_perf_pct = max(limits->min_perf_pct,
772 				   limits->max_perf_pct);
773 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
774 
775 	mutex_unlock(&intel_pstate_limits_lock);
776 
777 	if (hwp_active)
778 		intel_pstate_hwp_set_online_cpus();
779 	return count;
780 }
781 
782 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
783 				  const char *buf, size_t count)
784 {
785 	unsigned int input;
786 	int ret;
787 
788 	ret = sscanf(buf, "%u", &input);
789 	if (ret != 1)
790 		return -EINVAL;
791 
792 	mutex_lock(&intel_pstate_limits_lock);
793 
794 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
795 	limits->min_perf_pct = max(limits->min_policy_pct,
796 				   limits->min_sysfs_pct);
797 	limits->min_perf_pct = min(limits->max_policy_pct,
798 				   limits->min_perf_pct);
799 	limits->min_perf_pct = min(limits->max_perf_pct,
800 				   limits->min_perf_pct);
801 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
802 
803 	mutex_unlock(&intel_pstate_limits_lock);
804 
805 	if (hwp_active)
806 		intel_pstate_hwp_set_online_cpus();
807 	return count;
808 }
809 
810 show_one(max_perf_pct, max_perf_pct);
811 show_one(min_perf_pct, min_perf_pct);
812 
813 define_one_global_rw(no_turbo);
814 define_one_global_rw(max_perf_pct);
815 define_one_global_rw(min_perf_pct);
816 define_one_global_ro(turbo_pct);
817 define_one_global_ro(num_pstates);
818 
819 static struct attribute *intel_pstate_attributes[] = {
820 	&no_turbo.attr,
821 	&turbo_pct.attr,
822 	&num_pstates.attr,
823 	NULL
824 };
825 
826 static struct attribute_group intel_pstate_attr_group = {
827 	.attrs = intel_pstate_attributes,
828 };
829 
830 static void __init intel_pstate_sysfs_expose_params(void)
831 {
832 	struct kobject *intel_pstate_kobject;
833 	int rc;
834 
835 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
836 						&cpu_subsys.dev_root->kobj);
837 	if (WARN_ON(!intel_pstate_kobject))
838 		return;
839 
840 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
841 	if (WARN_ON(rc))
842 		return;
843 
844 	/*
845 	 * If per cpu limits are enforced there are no global limits, so
846 	 * return without creating max/min_perf_pct attributes
847 	 */
848 	if (per_cpu_limits)
849 		return;
850 
851 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
852 	WARN_ON(rc);
853 
854 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
855 	WARN_ON(rc);
856 
857 }
858 /************************** sysfs end ************************/
859 
860 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
861 {
862 	/* First disable HWP notification interrupt as we don't process them */
863 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
864 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
865 
866 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
867 }
868 
869 static int atom_get_min_pstate(void)
870 {
871 	u64 value;
872 
873 	rdmsrl(ATOM_RATIOS, value);
874 	return (value >> 8) & 0x7F;
875 }
876 
877 static int atom_get_max_pstate(void)
878 {
879 	u64 value;
880 
881 	rdmsrl(ATOM_RATIOS, value);
882 	return (value >> 16) & 0x7F;
883 }
884 
885 static int atom_get_turbo_pstate(void)
886 {
887 	u64 value;
888 
889 	rdmsrl(ATOM_TURBO_RATIOS, value);
890 	return value & 0x7F;
891 }
892 
893 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
894 {
895 	u64 val;
896 	int32_t vid_fp;
897 	u32 vid;
898 
899 	val = (u64)pstate << 8;
900 	if (limits->no_turbo && !limits->turbo_disabled)
901 		val |= (u64)1 << 32;
902 
903 	vid_fp = cpudata->vid.min + mul_fp(
904 		int_tofp(pstate - cpudata->pstate.min_pstate),
905 		cpudata->vid.ratio);
906 
907 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
908 	vid = ceiling_fp(vid_fp);
909 
910 	if (pstate > cpudata->pstate.max_pstate)
911 		vid = cpudata->vid.turbo;
912 
913 	return val | vid;
914 }
915 
916 static int silvermont_get_scaling(void)
917 {
918 	u64 value;
919 	int i;
920 	/* Defined in Table 35-6 from SDM (Sept 2015) */
921 	static int silvermont_freq_table[] = {
922 		83300, 100000, 133300, 116700, 80000};
923 
924 	rdmsrl(MSR_FSB_FREQ, value);
925 	i = value & 0x7;
926 	WARN_ON(i > 4);
927 
928 	return silvermont_freq_table[i];
929 }
930 
931 static int airmont_get_scaling(void)
932 {
933 	u64 value;
934 	int i;
935 	/* Defined in Table 35-10 from SDM (Sept 2015) */
936 	static int airmont_freq_table[] = {
937 		83300, 100000, 133300, 116700, 80000,
938 		93300, 90000, 88900, 87500};
939 
940 	rdmsrl(MSR_FSB_FREQ, value);
941 	i = value & 0xF;
942 	WARN_ON(i > 8);
943 
944 	return airmont_freq_table[i];
945 }
946 
947 static void atom_get_vid(struct cpudata *cpudata)
948 {
949 	u64 value;
950 
951 	rdmsrl(ATOM_VIDS, value);
952 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
953 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
954 	cpudata->vid.ratio = div_fp(
955 		cpudata->vid.max - cpudata->vid.min,
956 		int_tofp(cpudata->pstate.max_pstate -
957 			cpudata->pstate.min_pstate));
958 
959 	rdmsrl(ATOM_TURBO_VIDS, value);
960 	cpudata->vid.turbo = value & 0x7f;
961 }
962 
963 static int core_get_min_pstate(void)
964 {
965 	u64 value;
966 
967 	rdmsrl(MSR_PLATFORM_INFO, value);
968 	return (value >> 40) & 0xFF;
969 }
970 
971 static int core_get_max_pstate_physical(void)
972 {
973 	u64 value;
974 
975 	rdmsrl(MSR_PLATFORM_INFO, value);
976 	return (value >> 8) & 0xFF;
977 }
978 
979 static int core_get_max_pstate(void)
980 {
981 	u64 tar;
982 	u64 plat_info;
983 	int max_pstate;
984 	int err;
985 
986 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
987 	max_pstate = (plat_info >> 8) & 0xFF;
988 
989 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
990 	if (!err) {
991 		/* Do some sanity checking for safety */
992 		if (plat_info & 0x600000000) {
993 			u64 tdp_ctrl;
994 			u64 tdp_ratio;
995 			int tdp_msr;
996 
997 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
998 			if (err)
999 				goto skip_tar;
1000 
1001 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1002 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1003 			if (err)
1004 				goto skip_tar;
1005 
1006 			/* For level 1 and 2, bits[23:16] contain the ratio */
1007 			if (tdp_ctrl)
1008 				tdp_ratio >>= 16;
1009 
1010 			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1011 			if (tdp_ratio - 1 == tar) {
1012 				max_pstate = tar;
1013 				pr_debug("max_pstate=TAC %x\n", max_pstate);
1014 			} else {
1015 				goto skip_tar;
1016 			}
1017 		}
1018 	}
1019 
1020 skip_tar:
1021 	return max_pstate;
1022 }
1023 
1024 static int core_get_turbo_pstate(void)
1025 {
1026 	u64 value;
1027 	int nont, ret;
1028 
1029 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1030 	nont = core_get_max_pstate();
1031 	ret = (value) & 255;
1032 	if (ret <= nont)
1033 		ret = nont;
1034 	return ret;
1035 }
1036 
1037 static inline int core_get_scaling(void)
1038 {
1039 	return 100000;
1040 }
1041 
1042 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1043 {
1044 	u64 val;
1045 
1046 	val = (u64)pstate << 8;
1047 	if (limits->no_turbo && !limits->turbo_disabled)
1048 		val |= (u64)1 << 32;
1049 
1050 	return val;
1051 }
1052 
1053 static int knl_get_turbo_pstate(void)
1054 {
1055 	u64 value;
1056 	int nont, ret;
1057 
1058 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1059 	nont = core_get_max_pstate();
1060 	ret = (((value) >> 8) & 0xFF);
1061 	if (ret <= nont)
1062 		ret = nont;
1063 	return ret;
1064 }
1065 
1066 static struct cpu_defaults core_params = {
1067 	.pid_policy = {
1068 		.sample_rate_ms = 10,
1069 		.deadband = 0,
1070 		.setpoint = 97,
1071 		.p_gain_pct = 20,
1072 		.d_gain_pct = 0,
1073 		.i_gain_pct = 0,
1074 	},
1075 	.funcs = {
1076 		.get_max = core_get_max_pstate,
1077 		.get_max_physical = core_get_max_pstate_physical,
1078 		.get_min = core_get_min_pstate,
1079 		.get_turbo = core_get_turbo_pstate,
1080 		.get_scaling = core_get_scaling,
1081 		.get_val = core_get_val,
1082 		.get_target_pstate = get_target_pstate_use_performance,
1083 	},
1084 };
1085 
1086 static const struct cpu_defaults silvermont_params = {
1087 	.pid_policy = {
1088 		.sample_rate_ms = 10,
1089 		.deadband = 0,
1090 		.setpoint = 60,
1091 		.p_gain_pct = 14,
1092 		.d_gain_pct = 0,
1093 		.i_gain_pct = 4,
1094 	},
1095 	.funcs = {
1096 		.get_max = atom_get_max_pstate,
1097 		.get_max_physical = atom_get_max_pstate,
1098 		.get_min = atom_get_min_pstate,
1099 		.get_turbo = atom_get_turbo_pstate,
1100 		.get_val = atom_get_val,
1101 		.get_scaling = silvermont_get_scaling,
1102 		.get_vid = atom_get_vid,
1103 		.get_target_pstate = get_target_pstate_use_cpu_load,
1104 	},
1105 };
1106 
1107 static const struct cpu_defaults airmont_params = {
1108 	.pid_policy = {
1109 		.sample_rate_ms = 10,
1110 		.deadband = 0,
1111 		.setpoint = 60,
1112 		.p_gain_pct = 14,
1113 		.d_gain_pct = 0,
1114 		.i_gain_pct = 4,
1115 	},
1116 	.funcs = {
1117 		.get_max = atom_get_max_pstate,
1118 		.get_max_physical = atom_get_max_pstate,
1119 		.get_min = atom_get_min_pstate,
1120 		.get_turbo = atom_get_turbo_pstate,
1121 		.get_val = atom_get_val,
1122 		.get_scaling = airmont_get_scaling,
1123 		.get_vid = atom_get_vid,
1124 		.get_target_pstate = get_target_pstate_use_cpu_load,
1125 	},
1126 };
1127 
1128 static const struct cpu_defaults knl_params = {
1129 	.pid_policy = {
1130 		.sample_rate_ms = 10,
1131 		.deadband = 0,
1132 		.setpoint = 97,
1133 		.p_gain_pct = 20,
1134 		.d_gain_pct = 0,
1135 		.i_gain_pct = 0,
1136 	},
1137 	.funcs = {
1138 		.get_max = core_get_max_pstate,
1139 		.get_max_physical = core_get_max_pstate_physical,
1140 		.get_min = core_get_min_pstate,
1141 		.get_turbo = knl_get_turbo_pstate,
1142 		.get_scaling = core_get_scaling,
1143 		.get_val = core_get_val,
1144 		.get_target_pstate = get_target_pstate_use_performance,
1145 	},
1146 };
1147 
1148 static const struct cpu_defaults bxt_params = {
1149 	.pid_policy = {
1150 		.sample_rate_ms = 10,
1151 		.deadband = 0,
1152 		.setpoint = 60,
1153 		.p_gain_pct = 14,
1154 		.d_gain_pct = 0,
1155 		.i_gain_pct = 4,
1156 	},
1157 	.funcs = {
1158 		.get_max = core_get_max_pstate,
1159 		.get_max_physical = core_get_max_pstate_physical,
1160 		.get_min = core_get_min_pstate,
1161 		.get_turbo = core_get_turbo_pstate,
1162 		.get_scaling = core_get_scaling,
1163 		.get_val = core_get_val,
1164 		.get_target_pstate = get_target_pstate_use_cpu_load,
1165 	},
1166 };
1167 
1168 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1169 {
1170 	int max_perf = cpu->pstate.turbo_pstate;
1171 	int max_perf_adj;
1172 	int min_perf;
1173 	struct perf_limits *perf_limits = limits;
1174 
1175 	if (limits->no_turbo || limits->turbo_disabled)
1176 		max_perf = cpu->pstate.max_pstate;
1177 
1178 	if (per_cpu_limits)
1179 		perf_limits = cpu->perf_limits;
1180 
1181 	/*
1182 	 * performance can be limited by user through sysfs, by cpufreq
1183 	 * policy, or by cpu specific default values determined through
1184 	 * experimentation.
1185 	 */
1186 	max_perf_adj = fp_toint(max_perf * perf_limits->max_perf);
1187 	*max = clamp_t(int, max_perf_adj,
1188 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1189 
1190 	min_perf = fp_toint(max_perf * perf_limits->min_perf);
1191 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1192 }
1193 
1194 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1195 {
1196 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1197 	cpu->pstate.current_pstate = pstate;
1198 	/*
1199 	 * Generally, there is no guarantee that this code will always run on
1200 	 * the CPU being updated, so force the register update to run on the
1201 	 * right CPU.
1202 	 */
1203 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1204 		      pstate_funcs.get_val(cpu, pstate));
1205 }
1206 
1207 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1208 {
1209 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1210 }
1211 
1212 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1213 {
1214 	int min_pstate, max_pstate;
1215 
1216 	update_turbo_state();
1217 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1218 	intel_pstate_set_pstate(cpu, max_pstate);
1219 }
1220 
1221 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1222 {
1223 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1224 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1225 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1226 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1227 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1228 
1229 	if (pstate_funcs.get_vid)
1230 		pstate_funcs.get_vid(cpu);
1231 
1232 	intel_pstate_set_min_pstate(cpu);
1233 }
1234 
1235 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1236 {
1237 	struct sample *sample = &cpu->sample;
1238 
1239 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1240 }
1241 
1242 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1243 {
1244 	u64 aperf, mperf;
1245 	unsigned long flags;
1246 	u64 tsc;
1247 
1248 	local_irq_save(flags);
1249 	rdmsrl(MSR_IA32_APERF, aperf);
1250 	rdmsrl(MSR_IA32_MPERF, mperf);
1251 	tsc = rdtsc();
1252 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1253 		local_irq_restore(flags);
1254 		return false;
1255 	}
1256 	local_irq_restore(flags);
1257 
1258 	cpu->last_sample_time = cpu->sample.time;
1259 	cpu->sample.time = time;
1260 	cpu->sample.aperf = aperf;
1261 	cpu->sample.mperf = mperf;
1262 	cpu->sample.tsc =  tsc;
1263 	cpu->sample.aperf -= cpu->prev_aperf;
1264 	cpu->sample.mperf -= cpu->prev_mperf;
1265 	cpu->sample.tsc -= cpu->prev_tsc;
1266 
1267 	cpu->prev_aperf = aperf;
1268 	cpu->prev_mperf = mperf;
1269 	cpu->prev_tsc = tsc;
1270 	/*
1271 	 * First time this function is invoked in a given cycle, all of the
1272 	 * previous sample data fields are equal to zero or stale and they must
1273 	 * be populated with meaningful numbers for things to work, so assume
1274 	 * that sample.time will always be reset before setting the utilization
1275 	 * update hook and make the caller skip the sample then.
1276 	 */
1277 	return !!cpu->last_sample_time;
1278 }
1279 
1280 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1281 {
1282 	return mul_ext_fp(cpu->sample.core_avg_perf,
1283 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1284 }
1285 
1286 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1287 {
1288 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1289 			  cpu->sample.core_avg_perf);
1290 }
1291 
1292 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1293 {
1294 	struct sample *sample = &cpu->sample;
1295 	int32_t busy_frac, boost;
1296 	int target, avg_pstate;
1297 
1298 	busy_frac = div_fp(sample->mperf, sample->tsc);
1299 
1300 	boost = cpu->iowait_boost;
1301 	cpu->iowait_boost >>= 1;
1302 
1303 	if (busy_frac < boost)
1304 		busy_frac = boost;
1305 
1306 	sample->busy_scaled = busy_frac * 100;
1307 
1308 	target = limits->no_turbo || limits->turbo_disabled ?
1309 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1310 	target += target >> 2;
1311 	target = mul_fp(target, busy_frac);
1312 	if (target < cpu->pstate.min_pstate)
1313 		target = cpu->pstate.min_pstate;
1314 
1315 	/*
1316 	 * If the average P-state during the previous cycle was higher than the
1317 	 * current target, add 50% of the difference to the target to reduce
1318 	 * possible performance oscillations and offset possible performance
1319 	 * loss related to moving the workload from one CPU to another within
1320 	 * a package/module.
1321 	 */
1322 	avg_pstate = get_avg_pstate(cpu);
1323 	if (avg_pstate > target)
1324 		target += (avg_pstate - target) >> 1;
1325 
1326 	return target;
1327 }
1328 
1329 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1330 {
1331 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1332 	u64 duration_ns;
1333 
1334 	/*
1335 	 * perf_scaled is the ratio of the average P-state during the last
1336 	 * sampling period to the P-state requested last time (in percent).
1337 	 *
1338 	 * That measures the system's response to the previous P-state
1339 	 * selection.
1340 	 */
1341 	max_pstate = cpu->pstate.max_pstate_physical;
1342 	current_pstate = cpu->pstate.current_pstate;
1343 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1344 			       div_fp(100 * max_pstate, current_pstate));
1345 
1346 	/*
1347 	 * Since our utilization update callback will not run unless we are
1348 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1349 	 * than our sample interval.  If it is, then we were idle for a long
1350 	 * enough period of time to adjust our performance metric.
1351 	 */
1352 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1353 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1354 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1355 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1356 	} else {
1357 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1358 		if (sample_ratio < int_tofp(1))
1359 			perf_scaled = 0;
1360 	}
1361 
1362 	cpu->sample.busy_scaled = perf_scaled;
1363 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1364 }
1365 
1366 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1367 {
1368 	int max_perf, min_perf;
1369 
1370 	update_turbo_state();
1371 
1372 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1373 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1374 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1375 	if (pstate == cpu->pstate.current_pstate)
1376 		return;
1377 
1378 	cpu->pstate.current_pstate = pstate;
1379 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1380 }
1381 
1382 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1383 {
1384 	int from, target_pstate;
1385 	struct sample *sample;
1386 
1387 	from = cpu->pstate.current_pstate;
1388 
1389 	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1390 		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1391 
1392 	intel_pstate_update_pstate(cpu, target_pstate);
1393 
1394 	sample = &cpu->sample;
1395 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1396 		fp_toint(sample->busy_scaled),
1397 		from,
1398 		cpu->pstate.current_pstate,
1399 		sample->mperf,
1400 		sample->aperf,
1401 		sample->tsc,
1402 		get_avg_frequency(cpu),
1403 		fp_toint(cpu->iowait_boost * 100));
1404 }
1405 
1406 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1407 				     unsigned int flags)
1408 {
1409 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1410 	u64 delta_ns;
1411 
1412 	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1413 		if (flags & SCHED_CPUFREQ_IOWAIT) {
1414 			cpu->iowait_boost = int_tofp(1);
1415 		} else if (cpu->iowait_boost) {
1416 			/* Clear iowait_boost if the CPU may have been idle. */
1417 			delta_ns = time - cpu->last_update;
1418 			if (delta_ns > TICK_NSEC)
1419 				cpu->iowait_boost = 0;
1420 		}
1421 		cpu->last_update = time;
1422 	}
1423 
1424 	delta_ns = time - cpu->sample.time;
1425 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1426 		bool sample_taken = intel_pstate_sample(cpu, time);
1427 
1428 		if (sample_taken) {
1429 			intel_pstate_calc_avg_perf(cpu);
1430 			if (!hwp_active)
1431 				intel_pstate_adjust_busy_pstate(cpu);
1432 		}
1433 	}
1434 }
1435 
1436 #define ICPU(model, policy) \
1437 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1438 			(unsigned long)&policy }
1439 
1440 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1441 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1442 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1443 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1444 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1445 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1446 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1447 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1448 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1449 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1450 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1451 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1452 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1453 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1454 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1455 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1456 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1457 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1458 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1459 	{}
1460 };
1461 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1462 
1463 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1464 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1465 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1466 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1467 	{}
1468 };
1469 
1470 static int intel_pstate_init_cpu(unsigned int cpunum)
1471 {
1472 	struct cpudata *cpu;
1473 
1474 	cpu = all_cpu_data[cpunum];
1475 
1476 	if (!cpu) {
1477 		unsigned int size = sizeof(struct cpudata);
1478 
1479 		if (per_cpu_limits)
1480 			size += sizeof(struct perf_limits);
1481 
1482 		cpu = kzalloc(size, GFP_KERNEL);
1483 		if (!cpu)
1484 			return -ENOMEM;
1485 
1486 		all_cpu_data[cpunum] = cpu;
1487 		if (per_cpu_limits)
1488 			cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1489 
1490 	}
1491 
1492 	cpu = all_cpu_data[cpunum];
1493 
1494 	cpu->cpu = cpunum;
1495 
1496 	if (hwp_active) {
1497 		intel_pstate_hwp_enable(cpu);
1498 		pid_params.sample_rate_ms = 50;
1499 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1500 	}
1501 
1502 	intel_pstate_get_cpu_pstates(cpu);
1503 
1504 	intel_pstate_busy_pid_reset(cpu);
1505 
1506 	pr_debug("controlling: cpu %d\n", cpunum);
1507 
1508 	return 0;
1509 }
1510 
1511 static unsigned int intel_pstate_get(unsigned int cpu_num)
1512 {
1513 	struct cpudata *cpu = all_cpu_data[cpu_num];
1514 
1515 	return cpu ? get_avg_frequency(cpu) : 0;
1516 }
1517 
1518 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1519 {
1520 	struct cpudata *cpu = all_cpu_data[cpu_num];
1521 
1522 	if (cpu->update_util_set)
1523 		return;
1524 
1525 	/* Prevent intel_pstate_update_util() from using stale data. */
1526 	cpu->sample.time = 0;
1527 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1528 				     intel_pstate_update_util);
1529 	cpu->update_util_set = true;
1530 }
1531 
1532 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1533 {
1534 	struct cpudata *cpu_data = all_cpu_data[cpu];
1535 
1536 	if (!cpu_data->update_util_set)
1537 		return;
1538 
1539 	cpufreq_remove_update_util_hook(cpu);
1540 	cpu_data->update_util_set = false;
1541 	synchronize_sched();
1542 }
1543 
1544 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1545 {
1546 	mutex_lock(&intel_pstate_limits_lock);
1547 	limits->no_turbo = 0;
1548 	limits->turbo_disabled = 0;
1549 	limits->max_perf_pct = 100;
1550 	limits->max_perf = int_tofp(1);
1551 	limits->min_perf_pct = 100;
1552 	limits->min_perf = int_tofp(1);
1553 	limits->max_policy_pct = 100;
1554 	limits->max_sysfs_pct = 100;
1555 	limits->min_policy_pct = 0;
1556 	limits->min_sysfs_pct = 0;
1557 	mutex_unlock(&intel_pstate_limits_lock);
1558 }
1559 
1560 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1561 					    struct perf_limits *limits)
1562 {
1563 
1564 	mutex_lock(&intel_pstate_limits_lock);
1565 
1566 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1567 					      policy->cpuinfo.max_freq);
1568 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1569 	if (policy->max == policy->min) {
1570 		limits->min_policy_pct = limits->max_policy_pct;
1571 	} else {
1572 		limits->min_policy_pct = (policy->min * 100) /
1573 						policy->cpuinfo.max_freq;
1574 		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1575 						 0, 100);
1576 	}
1577 
1578 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1579 	limits->min_perf_pct = max(limits->min_policy_pct,
1580 				   limits->min_sysfs_pct);
1581 	limits->min_perf_pct = min(limits->max_policy_pct,
1582 				   limits->min_perf_pct);
1583 	limits->max_perf_pct = min(limits->max_policy_pct,
1584 				   limits->max_sysfs_pct);
1585 	limits->max_perf_pct = max(limits->min_policy_pct,
1586 				   limits->max_perf_pct);
1587 
1588 	/* Make sure min_perf_pct <= max_perf_pct */
1589 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1590 
1591 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
1592 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1593 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1594 
1595 	mutex_unlock(&intel_pstate_limits_lock);
1596 
1597 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
1598 		 limits->max_perf_pct, limits->min_perf_pct);
1599 }
1600 
1601 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1602 {
1603 	struct cpudata *cpu;
1604 	struct perf_limits *perf_limits = NULL;
1605 
1606 	if (!policy->cpuinfo.max_freq)
1607 		return -ENODEV;
1608 
1609 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1610 		 policy->cpuinfo.max_freq, policy->max);
1611 
1612 	cpu = all_cpu_data[policy->cpu];
1613 	cpu->policy = policy->policy;
1614 
1615 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1616 	    policy->max < policy->cpuinfo.max_freq &&
1617 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1618 		pr_debug("policy->max > max non turbo frequency\n");
1619 		policy->max = policy->cpuinfo.max_freq;
1620 	}
1621 
1622 	if (per_cpu_limits)
1623 		perf_limits = cpu->perf_limits;
1624 
1625 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1626 		if (!perf_limits) {
1627 			limits = &performance_limits;
1628 			perf_limits = limits;
1629 		}
1630 		if (policy->max >= policy->cpuinfo.max_freq) {
1631 			pr_debug("set performance\n");
1632 			intel_pstate_set_performance_limits(perf_limits);
1633 			goto out;
1634 		}
1635 	} else {
1636 		pr_debug("set powersave\n");
1637 		if (!perf_limits) {
1638 			limits = &powersave_limits;
1639 			perf_limits = limits;
1640 		}
1641 
1642 	}
1643 
1644 	intel_pstate_update_perf_limits(policy, perf_limits);
1645  out:
1646 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1647 		/*
1648 		 * NOHZ_FULL CPUs need this as the governor callback may not
1649 		 * be invoked on them.
1650 		 */
1651 		intel_pstate_clear_update_util_hook(policy->cpu);
1652 		intel_pstate_max_within_limits(cpu);
1653 	}
1654 
1655 	intel_pstate_set_update_util_hook(policy->cpu);
1656 
1657 	intel_pstate_hwp_set_policy(policy);
1658 
1659 	return 0;
1660 }
1661 
1662 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1663 {
1664 	cpufreq_verify_within_cpu_limits(policy);
1665 
1666 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1667 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1668 		return -EINVAL;
1669 
1670 	return 0;
1671 }
1672 
1673 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1674 {
1675 	int cpu_num = policy->cpu;
1676 	struct cpudata *cpu = all_cpu_data[cpu_num];
1677 
1678 	pr_debug("CPU %d exiting\n", cpu_num);
1679 
1680 	intel_pstate_clear_update_util_hook(cpu_num);
1681 
1682 	if (hwp_active)
1683 		return;
1684 
1685 	intel_pstate_set_min_pstate(cpu);
1686 }
1687 
1688 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1689 {
1690 	struct cpudata *cpu;
1691 	int rc;
1692 
1693 	rc = intel_pstate_init_cpu(policy->cpu);
1694 	if (rc)
1695 		return rc;
1696 
1697 	cpu = all_cpu_data[policy->cpu];
1698 
1699 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1700 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1701 	else
1702 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1703 
1704 	/*
1705 	 * We need sane value in the cpu->perf_limits, so inherit from global
1706 	 * perf_limits limits, which are seeded with values based on the
1707 	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
1708 	 */
1709 	if (per_cpu_limits)
1710 		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
1711 
1712 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1713 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1714 
1715 	/* cpuinfo and default policy values */
1716 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1717 	update_turbo_state();
1718 	policy->cpuinfo.max_freq = limits->turbo_disabled ?
1719 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1720 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1721 
1722 	intel_pstate_init_acpi_perf_limits(policy);
1723 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1724 	cpumask_set_cpu(policy->cpu, policy->cpus);
1725 
1726 	return 0;
1727 }
1728 
1729 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1730 {
1731 	intel_pstate_exit_perf_limits(policy);
1732 
1733 	return 0;
1734 }
1735 
1736 static struct cpufreq_driver intel_pstate_driver = {
1737 	.flags		= CPUFREQ_CONST_LOOPS,
1738 	.verify		= intel_pstate_verify_policy,
1739 	.setpolicy	= intel_pstate_set_policy,
1740 	.resume		= intel_pstate_hwp_set_policy,
1741 	.get		= intel_pstate_get,
1742 	.init		= intel_pstate_cpu_init,
1743 	.exit		= intel_pstate_cpu_exit,
1744 	.stop_cpu	= intel_pstate_stop_cpu,
1745 	.name		= "intel_pstate",
1746 };
1747 
1748 static int no_load __initdata;
1749 static int no_hwp __initdata;
1750 static int hwp_only __initdata;
1751 static unsigned int force_load __initdata;
1752 
1753 static int __init intel_pstate_msrs_not_valid(void)
1754 {
1755 	if (!pstate_funcs.get_max() ||
1756 	    !pstate_funcs.get_min() ||
1757 	    !pstate_funcs.get_turbo())
1758 		return -ENODEV;
1759 
1760 	return 0;
1761 }
1762 
1763 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1764 {
1765 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1766 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1767 	pid_params.p_gain_pct = policy->p_gain_pct;
1768 	pid_params.i_gain_pct = policy->i_gain_pct;
1769 	pid_params.d_gain_pct = policy->d_gain_pct;
1770 	pid_params.deadband = policy->deadband;
1771 	pid_params.setpoint = policy->setpoint;
1772 }
1773 
1774 #ifdef CONFIG_ACPI
1775 static void intel_pstate_use_acpi_profile(void)
1776 {
1777 	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
1778 		pstate_funcs.get_target_pstate =
1779 				get_target_pstate_use_cpu_load;
1780 }
1781 #else
1782 static void intel_pstate_use_acpi_profile(void)
1783 {
1784 }
1785 #endif
1786 
1787 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1788 {
1789 	pstate_funcs.get_max   = funcs->get_max;
1790 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1791 	pstate_funcs.get_min   = funcs->get_min;
1792 	pstate_funcs.get_turbo = funcs->get_turbo;
1793 	pstate_funcs.get_scaling = funcs->get_scaling;
1794 	pstate_funcs.get_val   = funcs->get_val;
1795 	pstate_funcs.get_vid   = funcs->get_vid;
1796 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1797 
1798 	intel_pstate_use_acpi_profile();
1799 }
1800 
1801 #ifdef CONFIG_ACPI
1802 
1803 static bool __init intel_pstate_no_acpi_pss(void)
1804 {
1805 	int i;
1806 
1807 	for_each_possible_cpu(i) {
1808 		acpi_status status;
1809 		union acpi_object *pss;
1810 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1811 		struct acpi_processor *pr = per_cpu(processors, i);
1812 
1813 		if (!pr)
1814 			continue;
1815 
1816 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1817 		if (ACPI_FAILURE(status))
1818 			continue;
1819 
1820 		pss = buffer.pointer;
1821 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1822 			kfree(pss);
1823 			return false;
1824 		}
1825 
1826 		kfree(pss);
1827 	}
1828 
1829 	return true;
1830 }
1831 
1832 static bool __init intel_pstate_has_acpi_ppc(void)
1833 {
1834 	int i;
1835 
1836 	for_each_possible_cpu(i) {
1837 		struct acpi_processor *pr = per_cpu(processors, i);
1838 
1839 		if (!pr)
1840 			continue;
1841 		if (acpi_has_method(pr->handle, "_PPC"))
1842 			return true;
1843 	}
1844 	return false;
1845 }
1846 
1847 enum {
1848 	PSS,
1849 	PPC,
1850 };
1851 
1852 struct hw_vendor_info {
1853 	u16  valid;
1854 	char oem_id[ACPI_OEM_ID_SIZE];
1855 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1856 	int  oem_pwr_table;
1857 };
1858 
1859 /* Hardware vendor-specific info that has its own power management modes */
1860 static struct hw_vendor_info vendor_info[] __initdata = {
1861 	{1, "HP    ", "ProLiant", PSS},
1862 	{1, "ORACLE", "X4-2    ", PPC},
1863 	{1, "ORACLE", "X4-2L   ", PPC},
1864 	{1, "ORACLE", "X4-2B   ", PPC},
1865 	{1, "ORACLE", "X3-2    ", PPC},
1866 	{1, "ORACLE", "X3-2L   ", PPC},
1867 	{1, "ORACLE", "X3-2B   ", PPC},
1868 	{1, "ORACLE", "X4470M2 ", PPC},
1869 	{1, "ORACLE", "X4270M3 ", PPC},
1870 	{1, "ORACLE", "X4270M2 ", PPC},
1871 	{1, "ORACLE", "X4170M2 ", PPC},
1872 	{1, "ORACLE", "X4170 M3", PPC},
1873 	{1, "ORACLE", "X4275 M3", PPC},
1874 	{1, "ORACLE", "X6-2    ", PPC},
1875 	{1, "ORACLE", "Sudbury ", PPC},
1876 	{0, "", ""},
1877 };
1878 
1879 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1880 {
1881 	struct acpi_table_header hdr;
1882 	struct hw_vendor_info *v_info;
1883 	const struct x86_cpu_id *id;
1884 	u64 misc_pwr;
1885 
1886 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1887 	if (id) {
1888 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1889 		if ( misc_pwr & (1 << 8))
1890 			return true;
1891 	}
1892 
1893 	if (acpi_disabled ||
1894 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1895 		return false;
1896 
1897 	for (v_info = vendor_info; v_info->valid; v_info++) {
1898 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1899 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1900 						ACPI_OEM_TABLE_ID_SIZE))
1901 			switch (v_info->oem_pwr_table) {
1902 			case PSS:
1903 				return intel_pstate_no_acpi_pss();
1904 			case PPC:
1905 				return intel_pstate_has_acpi_ppc() &&
1906 					(!force_load);
1907 			}
1908 	}
1909 
1910 	return false;
1911 }
1912 #else /* CONFIG_ACPI not enabled */
1913 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1914 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1915 #endif /* CONFIG_ACPI */
1916 
1917 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1918 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1919 	{}
1920 };
1921 
1922 static int __init intel_pstate_init(void)
1923 {
1924 	int cpu, rc = 0;
1925 	const struct x86_cpu_id *id;
1926 	struct cpu_defaults *cpu_def;
1927 
1928 	if (no_load)
1929 		return -ENODEV;
1930 
1931 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1932 		copy_cpu_funcs(&core_params.funcs);
1933 		hwp_active++;
1934 		goto hwp_cpu_matched;
1935 	}
1936 
1937 	id = x86_match_cpu(intel_pstate_cpu_ids);
1938 	if (!id)
1939 		return -ENODEV;
1940 
1941 	cpu_def = (struct cpu_defaults *)id->driver_data;
1942 
1943 	copy_pid_params(&cpu_def->pid_policy);
1944 	copy_cpu_funcs(&cpu_def->funcs);
1945 
1946 	if (intel_pstate_msrs_not_valid())
1947 		return -ENODEV;
1948 
1949 hwp_cpu_matched:
1950 	/*
1951 	 * The Intel pstate driver will be ignored if the platform
1952 	 * firmware has its own power management modes.
1953 	 */
1954 	if (intel_pstate_platform_pwr_mgmt_exists())
1955 		return -ENODEV;
1956 
1957 	pr_info("Intel P-state driver initializing\n");
1958 
1959 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1960 	if (!all_cpu_data)
1961 		return -ENOMEM;
1962 
1963 	if (!hwp_active && hwp_only)
1964 		goto out;
1965 
1966 	rc = cpufreq_register_driver(&intel_pstate_driver);
1967 	if (rc)
1968 		goto out;
1969 
1970 	intel_pstate_debug_expose_params();
1971 	intel_pstate_sysfs_expose_params();
1972 
1973 	if (hwp_active)
1974 		pr_info("HWP enabled\n");
1975 
1976 	return rc;
1977 out:
1978 	get_online_cpus();
1979 	for_each_online_cpu(cpu) {
1980 		if (all_cpu_data[cpu]) {
1981 			intel_pstate_clear_update_util_hook(cpu);
1982 			kfree(all_cpu_data[cpu]);
1983 		}
1984 	}
1985 
1986 	put_online_cpus();
1987 	vfree(all_cpu_data);
1988 	return -ENODEV;
1989 }
1990 device_initcall(intel_pstate_init);
1991 
1992 static int __init intel_pstate_setup(char *str)
1993 {
1994 	if (!str)
1995 		return -EINVAL;
1996 
1997 	if (!strcmp(str, "disable"))
1998 		no_load = 1;
1999 	if (!strcmp(str, "no_hwp")) {
2000 		pr_info("HWP disabled\n");
2001 		no_hwp = 1;
2002 	}
2003 	if (!strcmp(str, "force"))
2004 		force_load = 1;
2005 	if (!strcmp(str, "hwp_only"))
2006 		hwp_only = 1;
2007 	if (!strcmp(str, "per_cpu_perf_limits"))
2008 		per_cpu_limits = true;
2009 
2010 #ifdef CONFIG_ACPI
2011 	if (!strcmp(str, "support_acpi_ppc"))
2012 		acpi_ppc = true;
2013 #endif
2014 
2015 	return 0;
2016 }
2017 early_param("intel_pstate", intel_pstate_setup);
2018 
2019 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2020 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2021 MODULE_LICENSE("GPL");
2022