1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define ATOM_RATIOS		0x66a
41 #define ATOM_VIDS		0x66b
42 #define ATOM_TURBO_RATIOS	0x66c
43 #define ATOM_TURBO_VIDS		0x66d
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 /**
88  * struct sample -	Store performance sample
89  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90  *			performance during last sample period
91  * @busy_scaled:	Scaled busy value which is used to calculate next
92  *			P state. This can be different than core_avg_perf
93  *			to account for cpu idle period
94  * @aperf:		Difference of actual performance frequency clock count
95  *			read from APERF MSR between last and current sample
96  * @mperf:		Difference of maximum performance frequency clock count
97  *			read from MPERF MSR between last and current sample
98  * @tsc:		Difference of time stamp counter between last and
99  *			current sample
100  * @time:		Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106 	int32_t core_avg_perf;
107 	int32_t busy_scaled;
108 	u64 aperf;
109 	u64 mperf;
110 	u64 tsc;
111 	u64 time;
112 };
113 
114 /**
115  * struct pstate_data - Store P state data
116  * @current_pstate:	Current requested P state
117  * @min_pstate:		Min P state possible for this platform
118  * @max_pstate:		Max P state possible for this platform
119  * @max_pstate_physical:This is physical Max P state for a processor
120  *			This can be higher than the max_pstate which can
121  *			be limited by platform thermal design power limits
122  * @scaling:		Scaling factor to  convert frequency to cpufreq
123  *			frequency units
124  * @turbo_pstate:	Max Turbo P state possible for this platform
125  *
126  * Stores the per cpu model P state limits and current P state.
127  */
128 struct pstate_data {
129 	int	current_pstate;
130 	int	min_pstate;
131 	int	max_pstate;
132 	int	max_pstate_physical;
133 	int	scaling;
134 	int	turbo_pstate;
135 };
136 
137 /**
138  * struct vid_data -	Stores voltage information data
139  * @min:		VID data for this platform corresponding to
140  *			the lowest P state
141  * @max:		VID data corresponding to the highest P State.
142  * @turbo:		VID data for turbo P state
143  * @ratio:		Ratio of (vid max - vid min) /
144  *			(max P state - Min P State)
145  *
146  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147  * This data is used in Atom platforms, where in addition to target P state,
148  * the voltage data needs to be specified to select next P State.
149  */
150 struct vid_data {
151 	int min;
152 	int max;
153 	int turbo;
154 	int32_t ratio;
155 };
156 
157 /**
158  * struct _pid -	Stores PID data
159  * @setpoint:		Target set point for busyness or performance
160  * @integral:		Storage for accumulated error values
161  * @p_gain:		PID proportional gain
162  * @i_gain:		PID integral gain
163  * @d_gain:		PID derivative gain
164  * @deadband:		PID deadband
165  * @last_err:		Last error storage for integral part of PID calculation
166  *
167  * Stores PID coefficients and last error for PID controller.
168  */
169 struct _pid {
170 	int setpoint;
171 	int32_t integral;
172 	int32_t p_gain;
173 	int32_t i_gain;
174 	int32_t d_gain;
175 	int deadband;
176 	int32_t last_err;
177 };
178 
179 /**
180  * struct cpudata -	Per CPU instance data storage
181  * @cpu:		CPU number for this instance data
182  * @update_util:	CPUFreq utility callback information
183  * @update_util_set:	CPUFreq utility callback is set
184  * @pstate:		Stores P state limits for this CPU
185  * @vid:		Stores VID limits for this CPU
186  * @pid:		Stores PID parameters for this CPU
187  * @last_sample_time:	Last Sample time
188  * @prev_aperf:		Last APERF value read from APERF MSR
189  * @prev_mperf:		Last MPERF value read from MPERF MSR
190  * @prev_tsc:		Last timestamp counter (TSC) value
191  * @prev_cummulative_iowait: IO Wait time difference from last and
192  *			current sample
193  * @sample:		Storage for storing last Sample data
194  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
195  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
196  *
197  * This structure stores per CPU instance data for all CPUs.
198  */
199 struct cpudata {
200 	int cpu;
201 
202 	struct update_util_data update_util;
203 	bool   update_util_set;
204 
205 	struct pstate_data pstate;
206 	struct vid_data vid;
207 	struct _pid pid;
208 
209 	u64	last_sample_time;
210 	u64	prev_aperf;
211 	u64	prev_mperf;
212 	u64	prev_tsc;
213 	u64	prev_cummulative_iowait;
214 	struct sample sample;
215 #ifdef CONFIG_ACPI
216 	struct acpi_processor_performance acpi_perf_data;
217 	bool valid_pss_table;
218 #endif
219 };
220 
221 static struct cpudata **all_cpu_data;
222 
223 /**
224  * struct pid_adjust_policy - Stores static PID configuration data
225  * @sample_rate_ms:	PID calculation sample rate in ms
226  * @sample_rate_ns:	Sample rate calculation in ns
227  * @deadband:		PID deadband
228  * @setpoint:		PID Setpoint
229  * @p_gain_pct:		PID proportional gain
230  * @i_gain_pct:		PID integral gain
231  * @d_gain_pct:		PID derivative gain
232  *
233  * Stores per CPU model static PID configuration data.
234  */
235 struct pstate_adjust_policy {
236 	int sample_rate_ms;
237 	s64 sample_rate_ns;
238 	int deadband;
239 	int setpoint;
240 	int p_gain_pct;
241 	int d_gain_pct;
242 	int i_gain_pct;
243 };
244 
245 /**
246  * struct pstate_funcs - Per CPU model specific callbacks
247  * @get_max:		Callback to get maximum non turbo effective P state
248  * @get_max_physical:	Callback to get maximum non turbo physical P state
249  * @get_min:		Callback to get minimum P state
250  * @get_turbo:		Callback to get turbo P state
251  * @get_scaling:	Callback to get frequency scaling factor
252  * @get_val:		Callback to convert P state to actual MSR write value
253  * @get_vid:		Callback to get VID data for Atom platforms
254  * @get_target_pstate:	Callback to a function to calculate next P state to use
255  *
256  * Core and Atom CPU models have different way to get P State limits. This
257  * structure is used to store those callbacks.
258  */
259 struct pstate_funcs {
260 	int (*get_max)(void);
261 	int (*get_max_physical)(void);
262 	int (*get_min)(void);
263 	int (*get_turbo)(void);
264 	int (*get_scaling)(void);
265 	u64 (*get_val)(struct cpudata*, int pstate);
266 	void (*get_vid)(struct cpudata *);
267 	int32_t (*get_target_pstate)(struct cpudata *);
268 };
269 
270 /**
271  * struct cpu_defaults- Per CPU model default config data
272  * @pid_policy:	PID config data
273  * @funcs:		Callback function data
274  */
275 struct cpu_defaults {
276 	struct pstate_adjust_policy pid_policy;
277 	struct pstate_funcs funcs;
278 };
279 
280 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
281 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
282 
283 static struct pstate_adjust_policy pid_params __read_mostly;
284 static struct pstate_funcs pstate_funcs __read_mostly;
285 static int hwp_active __read_mostly;
286 
287 #ifdef CONFIG_ACPI
288 static bool acpi_ppc;
289 #endif
290 
291 /**
292  * struct perf_limits - Store user and policy limits
293  * @no_turbo:		User requested turbo state from intel_pstate sysfs
294  * @turbo_disabled:	Platform turbo status either from msr
295  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
296  *			matches the maximum turbo pstate
297  * @max_perf_pct:	Effective maximum performance limit in percentage, this
298  *			is minimum of either limits enforced by cpufreq policy
299  *			or limits from user set limits via intel_pstate sysfs
300  * @min_perf_pct:	Effective minimum performance limit in percentage, this
301  *			is maximum of either limits enforced by cpufreq policy
302  *			or limits from user set limits via intel_pstate sysfs
303  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
304  *			This value is used to limit max pstate
305  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
306  *			This value is used to limit min pstate
307  * @max_policy_pct:	The maximum performance in percentage enforced by
308  *			cpufreq setpolicy interface
309  * @max_sysfs_pct:	The maximum performance in percentage enforced by
310  *			intel pstate sysfs interface
311  * @min_policy_pct:	The minimum performance in percentage enforced by
312  *			cpufreq setpolicy interface
313  * @min_sysfs_pct:	The minimum performance in percentage enforced by
314  *			intel pstate sysfs interface
315  *
316  * Storage for user and policy defined limits.
317  */
318 struct perf_limits {
319 	int no_turbo;
320 	int turbo_disabled;
321 	int max_perf_pct;
322 	int min_perf_pct;
323 	int32_t max_perf;
324 	int32_t min_perf;
325 	int max_policy_pct;
326 	int max_sysfs_pct;
327 	int min_policy_pct;
328 	int min_sysfs_pct;
329 };
330 
331 static struct perf_limits performance_limits = {
332 	.no_turbo = 0,
333 	.turbo_disabled = 0,
334 	.max_perf_pct = 100,
335 	.max_perf = int_tofp(1),
336 	.min_perf_pct = 100,
337 	.min_perf = int_tofp(1),
338 	.max_policy_pct = 100,
339 	.max_sysfs_pct = 100,
340 	.min_policy_pct = 0,
341 	.min_sysfs_pct = 0,
342 };
343 
344 static struct perf_limits powersave_limits = {
345 	.no_turbo = 0,
346 	.turbo_disabled = 0,
347 	.max_perf_pct = 100,
348 	.max_perf = int_tofp(1),
349 	.min_perf_pct = 0,
350 	.min_perf = 0,
351 	.max_policy_pct = 100,
352 	.max_sysfs_pct = 100,
353 	.min_policy_pct = 0,
354 	.min_sysfs_pct = 0,
355 };
356 
357 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
358 static struct perf_limits *limits = &performance_limits;
359 #else
360 static struct perf_limits *limits = &powersave_limits;
361 #endif
362 
363 #ifdef CONFIG_ACPI
364 
365 static bool intel_pstate_get_ppc_enable_status(void)
366 {
367 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
368 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
369 		return true;
370 
371 	return acpi_ppc;
372 }
373 
374 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
375 {
376 	struct cpudata *cpu;
377 	int ret;
378 	int i;
379 
380 	if (hwp_active)
381 		return;
382 
383 	if (!intel_pstate_get_ppc_enable_status())
384 		return;
385 
386 	cpu = all_cpu_data[policy->cpu];
387 
388 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
389 						  policy->cpu);
390 	if (ret)
391 		return;
392 
393 	/*
394 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
395 	 * guarantee that the states returned by it map to the states in our
396 	 * list directly.
397 	 */
398 	if (cpu->acpi_perf_data.control_register.space_id !=
399 						ACPI_ADR_SPACE_FIXED_HARDWARE)
400 		goto err;
401 
402 	/*
403 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
404 	 * usual without taking _PSS into account
405 	 */
406 	if (cpu->acpi_perf_data.state_count < 2)
407 		goto err;
408 
409 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
410 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
411 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
412 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
413 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
414 			 (u32) cpu->acpi_perf_data.states[i].power,
415 			 (u32) cpu->acpi_perf_data.states[i].control);
416 	}
417 
418 	/*
419 	 * The _PSS table doesn't contain whole turbo frequency range.
420 	 * This just contains +1 MHZ above the max non turbo frequency,
421 	 * with control value corresponding to max turbo ratio. But
422 	 * when cpufreq set policy is called, it will call with this
423 	 * max frequency, which will cause a reduced performance as
424 	 * this driver uses real max turbo frequency as the max
425 	 * frequency. So correct this frequency in _PSS table to
426 	 * correct max turbo frequency based on the turbo state.
427 	 * Also need to convert to MHz as _PSS freq is in MHz.
428 	 */
429 	if (!limits->turbo_disabled)
430 		cpu->acpi_perf_data.states[0].core_frequency =
431 					policy->cpuinfo.max_freq / 1000;
432 	cpu->valid_pss_table = true;
433 	pr_debug("_PPC limits will be enforced\n");
434 
435 	return;
436 
437  err:
438 	cpu->valid_pss_table = false;
439 	acpi_processor_unregister_performance(policy->cpu);
440 }
441 
442 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
443 {
444 	struct cpudata *cpu;
445 
446 	cpu = all_cpu_data[policy->cpu];
447 	if (!cpu->valid_pss_table)
448 		return;
449 
450 	acpi_processor_unregister_performance(policy->cpu);
451 }
452 
453 #else
454 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
455 {
456 }
457 
458 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
459 {
460 }
461 #endif
462 
463 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
464 			     int deadband, int integral) {
465 	pid->setpoint = int_tofp(setpoint);
466 	pid->deadband  = int_tofp(deadband);
467 	pid->integral  = int_tofp(integral);
468 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
469 }
470 
471 static inline void pid_p_gain_set(struct _pid *pid, int percent)
472 {
473 	pid->p_gain = div_fp(percent, 100);
474 }
475 
476 static inline void pid_i_gain_set(struct _pid *pid, int percent)
477 {
478 	pid->i_gain = div_fp(percent, 100);
479 }
480 
481 static inline void pid_d_gain_set(struct _pid *pid, int percent)
482 {
483 	pid->d_gain = div_fp(percent, 100);
484 }
485 
486 static signed int pid_calc(struct _pid *pid, int32_t busy)
487 {
488 	signed int result;
489 	int32_t pterm, dterm, fp_error;
490 	int32_t integral_limit;
491 
492 	fp_error = pid->setpoint - busy;
493 
494 	if (abs(fp_error) <= pid->deadband)
495 		return 0;
496 
497 	pterm = mul_fp(pid->p_gain, fp_error);
498 
499 	pid->integral += fp_error;
500 
501 	/*
502 	 * We limit the integral here so that it will never
503 	 * get higher than 30.  This prevents it from becoming
504 	 * too large an input over long periods of time and allows
505 	 * it to get factored out sooner.
506 	 *
507 	 * The value of 30 was chosen through experimentation.
508 	 */
509 	integral_limit = int_tofp(30);
510 	if (pid->integral > integral_limit)
511 		pid->integral = integral_limit;
512 	if (pid->integral < -integral_limit)
513 		pid->integral = -integral_limit;
514 
515 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
516 	pid->last_err = fp_error;
517 
518 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
519 	result = result + (1 << (FRAC_BITS-1));
520 	return (signed int)fp_toint(result);
521 }
522 
523 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
524 {
525 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
526 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
527 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
528 
529 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
530 }
531 
532 static inline void intel_pstate_reset_all_pid(void)
533 {
534 	unsigned int cpu;
535 
536 	for_each_online_cpu(cpu) {
537 		if (all_cpu_data[cpu])
538 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
539 	}
540 }
541 
542 static inline void update_turbo_state(void)
543 {
544 	u64 misc_en;
545 	struct cpudata *cpu;
546 
547 	cpu = all_cpu_data[0];
548 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
549 	limits->turbo_disabled =
550 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
551 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
552 }
553 
554 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
555 {
556 	int min, hw_min, max, hw_max, cpu, range, adj_range;
557 	u64 value, cap;
558 
559 	rdmsrl(MSR_HWP_CAPABILITIES, cap);
560 	hw_min = HWP_LOWEST_PERF(cap);
561 	hw_max = HWP_HIGHEST_PERF(cap);
562 	range = hw_max - hw_min;
563 
564 	for_each_cpu(cpu, cpumask) {
565 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
566 		adj_range = limits->min_perf_pct * range / 100;
567 		min = hw_min + adj_range;
568 		value &= ~HWP_MIN_PERF(~0L);
569 		value |= HWP_MIN_PERF(min);
570 
571 		adj_range = limits->max_perf_pct * range / 100;
572 		max = hw_min + adj_range;
573 		if (limits->no_turbo) {
574 			hw_max = HWP_GUARANTEED_PERF(cap);
575 			if (hw_max < max)
576 				max = hw_max;
577 		}
578 
579 		value &= ~HWP_MAX_PERF(~0L);
580 		value |= HWP_MAX_PERF(max);
581 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
582 	}
583 }
584 
585 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
586 {
587 	if (hwp_active)
588 		intel_pstate_hwp_set(policy->cpus);
589 
590 	return 0;
591 }
592 
593 static void intel_pstate_hwp_set_online_cpus(void)
594 {
595 	get_online_cpus();
596 	intel_pstate_hwp_set(cpu_online_mask);
597 	put_online_cpus();
598 }
599 
600 /************************** debugfs begin ************************/
601 static int pid_param_set(void *data, u64 val)
602 {
603 	*(u32 *)data = val;
604 	intel_pstate_reset_all_pid();
605 	return 0;
606 }
607 
608 static int pid_param_get(void *data, u64 *val)
609 {
610 	*val = *(u32 *)data;
611 	return 0;
612 }
613 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
614 
615 struct pid_param {
616 	char *name;
617 	void *value;
618 };
619 
620 static struct pid_param pid_files[] = {
621 	{"sample_rate_ms", &pid_params.sample_rate_ms},
622 	{"d_gain_pct", &pid_params.d_gain_pct},
623 	{"i_gain_pct", &pid_params.i_gain_pct},
624 	{"deadband", &pid_params.deadband},
625 	{"setpoint", &pid_params.setpoint},
626 	{"p_gain_pct", &pid_params.p_gain_pct},
627 	{NULL, NULL}
628 };
629 
630 static void __init intel_pstate_debug_expose_params(void)
631 {
632 	struct dentry *debugfs_parent;
633 	int i = 0;
634 
635 	if (hwp_active)
636 		return;
637 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
638 	if (IS_ERR_OR_NULL(debugfs_parent))
639 		return;
640 	while (pid_files[i].name) {
641 		debugfs_create_file(pid_files[i].name, 0660,
642 				    debugfs_parent, pid_files[i].value,
643 				    &fops_pid_param);
644 		i++;
645 	}
646 }
647 
648 /************************** debugfs end ************************/
649 
650 /************************** sysfs begin ************************/
651 #define show_one(file_name, object)					\
652 	static ssize_t show_##file_name					\
653 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
654 	{								\
655 		return sprintf(buf, "%u\n", limits->object);		\
656 	}
657 
658 static ssize_t show_turbo_pct(struct kobject *kobj,
659 				struct attribute *attr, char *buf)
660 {
661 	struct cpudata *cpu;
662 	int total, no_turbo, turbo_pct;
663 	uint32_t turbo_fp;
664 
665 	cpu = all_cpu_data[0];
666 
667 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
668 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
669 	turbo_fp = div_fp(no_turbo, total);
670 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
671 	return sprintf(buf, "%u\n", turbo_pct);
672 }
673 
674 static ssize_t show_num_pstates(struct kobject *kobj,
675 				struct attribute *attr, char *buf)
676 {
677 	struct cpudata *cpu;
678 	int total;
679 
680 	cpu = all_cpu_data[0];
681 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
682 	return sprintf(buf, "%u\n", total);
683 }
684 
685 static ssize_t show_no_turbo(struct kobject *kobj,
686 			     struct attribute *attr, char *buf)
687 {
688 	ssize_t ret;
689 
690 	update_turbo_state();
691 	if (limits->turbo_disabled)
692 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
693 	else
694 		ret = sprintf(buf, "%u\n", limits->no_turbo);
695 
696 	return ret;
697 }
698 
699 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
700 			      const char *buf, size_t count)
701 {
702 	unsigned int input;
703 	int ret;
704 
705 	ret = sscanf(buf, "%u", &input);
706 	if (ret != 1)
707 		return -EINVAL;
708 
709 	update_turbo_state();
710 	if (limits->turbo_disabled) {
711 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
712 		return -EPERM;
713 	}
714 
715 	limits->no_turbo = clamp_t(int, input, 0, 1);
716 
717 	if (hwp_active)
718 		intel_pstate_hwp_set_online_cpus();
719 
720 	return count;
721 }
722 
723 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
724 				  const char *buf, size_t count)
725 {
726 	unsigned int input;
727 	int ret;
728 
729 	ret = sscanf(buf, "%u", &input);
730 	if (ret != 1)
731 		return -EINVAL;
732 
733 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
734 	limits->max_perf_pct = min(limits->max_policy_pct,
735 				   limits->max_sysfs_pct);
736 	limits->max_perf_pct = max(limits->min_policy_pct,
737 				   limits->max_perf_pct);
738 	limits->max_perf_pct = max(limits->min_perf_pct,
739 				   limits->max_perf_pct);
740 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
741 
742 	if (hwp_active)
743 		intel_pstate_hwp_set_online_cpus();
744 	return count;
745 }
746 
747 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
748 				  const char *buf, size_t count)
749 {
750 	unsigned int input;
751 	int ret;
752 
753 	ret = sscanf(buf, "%u", &input);
754 	if (ret != 1)
755 		return -EINVAL;
756 
757 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
758 	limits->min_perf_pct = max(limits->min_policy_pct,
759 				   limits->min_sysfs_pct);
760 	limits->min_perf_pct = min(limits->max_policy_pct,
761 				   limits->min_perf_pct);
762 	limits->min_perf_pct = min(limits->max_perf_pct,
763 				   limits->min_perf_pct);
764 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
765 
766 	if (hwp_active)
767 		intel_pstate_hwp_set_online_cpus();
768 	return count;
769 }
770 
771 show_one(max_perf_pct, max_perf_pct);
772 show_one(min_perf_pct, min_perf_pct);
773 
774 define_one_global_rw(no_turbo);
775 define_one_global_rw(max_perf_pct);
776 define_one_global_rw(min_perf_pct);
777 define_one_global_ro(turbo_pct);
778 define_one_global_ro(num_pstates);
779 
780 static struct attribute *intel_pstate_attributes[] = {
781 	&no_turbo.attr,
782 	&max_perf_pct.attr,
783 	&min_perf_pct.attr,
784 	&turbo_pct.attr,
785 	&num_pstates.attr,
786 	NULL
787 };
788 
789 static struct attribute_group intel_pstate_attr_group = {
790 	.attrs = intel_pstate_attributes,
791 };
792 
793 static void __init intel_pstate_sysfs_expose_params(void)
794 {
795 	struct kobject *intel_pstate_kobject;
796 	int rc;
797 
798 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
799 						&cpu_subsys.dev_root->kobj);
800 	BUG_ON(!intel_pstate_kobject);
801 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
802 	BUG_ON(rc);
803 }
804 /************************** sysfs end ************************/
805 
806 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
807 {
808 	/* First disable HWP notification interrupt as we don't process them */
809 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
810 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
811 
812 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
813 }
814 
815 static int atom_get_min_pstate(void)
816 {
817 	u64 value;
818 
819 	rdmsrl(ATOM_RATIOS, value);
820 	return (value >> 8) & 0x7F;
821 }
822 
823 static int atom_get_max_pstate(void)
824 {
825 	u64 value;
826 
827 	rdmsrl(ATOM_RATIOS, value);
828 	return (value >> 16) & 0x7F;
829 }
830 
831 static int atom_get_turbo_pstate(void)
832 {
833 	u64 value;
834 
835 	rdmsrl(ATOM_TURBO_RATIOS, value);
836 	return value & 0x7F;
837 }
838 
839 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
840 {
841 	u64 val;
842 	int32_t vid_fp;
843 	u32 vid;
844 
845 	val = (u64)pstate << 8;
846 	if (limits->no_turbo && !limits->turbo_disabled)
847 		val |= (u64)1 << 32;
848 
849 	vid_fp = cpudata->vid.min + mul_fp(
850 		int_tofp(pstate - cpudata->pstate.min_pstate),
851 		cpudata->vid.ratio);
852 
853 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
854 	vid = ceiling_fp(vid_fp);
855 
856 	if (pstate > cpudata->pstate.max_pstate)
857 		vid = cpudata->vid.turbo;
858 
859 	return val | vid;
860 }
861 
862 static int silvermont_get_scaling(void)
863 {
864 	u64 value;
865 	int i;
866 	/* Defined in Table 35-6 from SDM (Sept 2015) */
867 	static int silvermont_freq_table[] = {
868 		83300, 100000, 133300, 116700, 80000};
869 
870 	rdmsrl(MSR_FSB_FREQ, value);
871 	i = value & 0x7;
872 	WARN_ON(i > 4);
873 
874 	return silvermont_freq_table[i];
875 }
876 
877 static int airmont_get_scaling(void)
878 {
879 	u64 value;
880 	int i;
881 	/* Defined in Table 35-10 from SDM (Sept 2015) */
882 	static int airmont_freq_table[] = {
883 		83300, 100000, 133300, 116700, 80000,
884 		93300, 90000, 88900, 87500};
885 
886 	rdmsrl(MSR_FSB_FREQ, value);
887 	i = value & 0xF;
888 	WARN_ON(i > 8);
889 
890 	return airmont_freq_table[i];
891 }
892 
893 static void atom_get_vid(struct cpudata *cpudata)
894 {
895 	u64 value;
896 
897 	rdmsrl(ATOM_VIDS, value);
898 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
899 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
900 	cpudata->vid.ratio = div_fp(
901 		cpudata->vid.max - cpudata->vid.min,
902 		int_tofp(cpudata->pstate.max_pstate -
903 			cpudata->pstate.min_pstate));
904 
905 	rdmsrl(ATOM_TURBO_VIDS, value);
906 	cpudata->vid.turbo = value & 0x7f;
907 }
908 
909 static int core_get_min_pstate(void)
910 {
911 	u64 value;
912 
913 	rdmsrl(MSR_PLATFORM_INFO, value);
914 	return (value >> 40) & 0xFF;
915 }
916 
917 static int core_get_max_pstate_physical(void)
918 {
919 	u64 value;
920 
921 	rdmsrl(MSR_PLATFORM_INFO, value);
922 	return (value >> 8) & 0xFF;
923 }
924 
925 static int core_get_max_pstate(void)
926 {
927 	u64 tar;
928 	u64 plat_info;
929 	int max_pstate;
930 	int err;
931 
932 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
933 	max_pstate = (plat_info >> 8) & 0xFF;
934 
935 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
936 	if (!err) {
937 		/* Do some sanity checking for safety */
938 		if (plat_info & 0x600000000) {
939 			u64 tdp_ctrl;
940 			u64 tdp_ratio;
941 			int tdp_msr;
942 
943 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
944 			if (err)
945 				goto skip_tar;
946 
947 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
948 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
949 			if (err)
950 				goto skip_tar;
951 
952 			/* For level 1 and 2, bits[23:16] contain the ratio */
953 			if (tdp_ctrl)
954 				tdp_ratio >>= 16;
955 
956 			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
957 			if (tdp_ratio - 1 == tar) {
958 				max_pstate = tar;
959 				pr_debug("max_pstate=TAC %x\n", max_pstate);
960 			} else {
961 				goto skip_tar;
962 			}
963 		}
964 	}
965 
966 skip_tar:
967 	return max_pstate;
968 }
969 
970 static int core_get_turbo_pstate(void)
971 {
972 	u64 value;
973 	int nont, ret;
974 
975 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
976 	nont = core_get_max_pstate();
977 	ret = (value) & 255;
978 	if (ret <= nont)
979 		ret = nont;
980 	return ret;
981 }
982 
983 static inline int core_get_scaling(void)
984 {
985 	return 100000;
986 }
987 
988 static u64 core_get_val(struct cpudata *cpudata, int pstate)
989 {
990 	u64 val;
991 
992 	val = (u64)pstate << 8;
993 	if (limits->no_turbo && !limits->turbo_disabled)
994 		val |= (u64)1 << 32;
995 
996 	return val;
997 }
998 
999 static int knl_get_turbo_pstate(void)
1000 {
1001 	u64 value;
1002 	int nont, ret;
1003 
1004 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1005 	nont = core_get_max_pstate();
1006 	ret = (((value) >> 8) & 0xFF);
1007 	if (ret <= nont)
1008 		ret = nont;
1009 	return ret;
1010 }
1011 
1012 static struct cpu_defaults core_params = {
1013 	.pid_policy = {
1014 		.sample_rate_ms = 10,
1015 		.deadband = 0,
1016 		.setpoint = 97,
1017 		.p_gain_pct = 20,
1018 		.d_gain_pct = 0,
1019 		.i_gain_pct = 0,
1020 	},
1021 	.funcs = {
1022 		.get_max = core_get_max_pstate,
1023 		.get_max_physical = core_get_max_pstate_physical,
1024 		.get_min = core_get_min_pstate,
1025 		.get_turbo = core_get_turbo_pstate,
1026 		.get_scaling = core_get_scaling,
1027 		.get_val = core_get_val,
1028 		.get_target_pstate = get_target_pstate_use_performance,
1029 	},
1030 };
1031 
1032 static struct cpu_defaults silvermont_params = {
1033 	.pid_policy = {
1034 		.sample_rate_ms = 10,
1035 		.deadband = 0,
1036 		.setpoint = 60,
1037 		.p_gain_pct = 14,
1038 		.d_gain_pct = 0,
1039 		.i_gain_pct = 4,
1040 	},
1041 	.funcs = {
1042 		.get_max = atom_get_max_pstate,
1043 		.get_max_physical = atom_get_max_pstate,
1044 		.get_min = atom_get_min_pstate,
1045 		.get_turbo = atom_get_turbo_pstate,
1046 		.get_val = atom_get_val,
1047 		.get_scaling = silvermont_get_scaling,
1048 		.get_vid = atom_get_vid,
1049 		.get_target_pstate = get_target_pstate_use_cpu_load,
1050 	},
1051 };
1052 
1053 static struct cpu_defaults airmont_params = {
1054 	.pid_policy = {
1055 		.sample_rate_ms = 10,
1056 		.deadband = 0,
1057 		.setpoint = 60,
1058 		.p_gain_pct = 14,
1059 		.d_gain_pct = 0,
1060 		.i_gain_pct = 4,
1061 	},
1062 	.funcs = {
1063 		.get_max = atom_get_max_pstate,
1064 		.get_max_physical = atom_get_max_pstate,
1065 		.get_min = atom_get_min_pstate,
1066 		.get_turbo = atom_get_turbo_pstate,
1067 		.get_val = atom_get_val,
1068 		.get_scaling = airmont_get_scaling,
1069 		.get_vid = atom_get_vid,
1070 		.get_target_pstate = get_target_pstate_use_cpu_load,
1071 	},
1072 };
1073 
1074 static struct cpu_defaults knl_params = {
1075 	.pid_policy = {
1076 		.sample_rate_ms = 10,
1077 		.deadband = 0,
1078 		.setpoint = 97,
1079 		.p_gain_pct = 20,
1080 		.d_gain_pct = 0,
1081 		.i_gain_pct = 0,
1082 	},
1083 	.funcs = {
1084 		.get_max = core_get_max_pstate,
1085 		.get_max_physical = core_get_max_pstate_physical,
1086 		.get_min = core_get_min_pstate,
1087 		.get_turbo = knl_get_turbo_pstate,
1088 		.get_scaling = core_get_scaling,
1089 		.get_val = core_get_val,
1090 		.get_target_pstate = get_target_pstate_use_performance,
1091 	},
1092 };
1093 
1094 static struct cpu_defaults bxt_params = {
1095 	.pid_policy = {
1096 		.sample_rate_ms = 10,
1097 		.deadband = 0,
1098 		.setpoint = 60,
1099 		.p_gain_pct = 14,
1100 		.d_gain_pct = 0,
1101 		.i_gain_pct = 4,
1102 	},
1103 	.funcs = {
1104 		.get_max = core_get_max_pstate,
1105 		.get_max_physical = core_get_max_pstate_physical,
1106 		.get_min = core_get_min_pstate,
1107 		.get_turbo = core_get_turbo_pstate,
1108 		.get_scaling = core_get_scaling,
1109 		.get_val = core_get_val,
1110 		.get_target_pstate = get_target_pstate_use_cpu_load,
1111 	},
1112 };
1113 
1114 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1115 {
1116 	int max_perf = cpu->pstate.turbo_pstate;
1117 	int max_perf_adj;
1118 	int min_perf;
1119 
1120 	if (limits->no_turbo || limits->turbo_disabled)
1121 		max_perf = cpu->pstate.max_pstate;
1122 
1123 	/*
1124 	 * performance can be limited by user through sysfs, by cpufreq
1125 	 * policy, or by cpu specific default values determined through
1126 	 * experimentation.
1127 	 */
1128 	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1129 	*max = clamp_t(int, max_perf_adj,
1130 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1131 
1132 	min_perf = fp_toint(max_perf * limits->min_perf);
1133 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1134 }
1135 
1136 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1137 {
1138 	int pstate = cpu->pstate.min_pstate;
1139 
1140 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1141 	cpu->pstate.current_pstate = pstate;
1142 	/*
1143 	 * Generally, there is no guarantee that this code will always run on
1144 	 * the CPU being updated, so force the register update to run on the
1145 	 * right CPU.
1146 	 */
1147 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1148 		      pstate_funcs.get_val(cpu, pstate));
1149 }
1150 
1151 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1152 {
1153 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1154 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1155 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1156 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1157 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1158 
1159 	if (pstate_funcs.get_vid)
1160 		pstate_funcs.get_vid(cpu);
1161 
1162 	intel_pstate_set_min_pstate(cpu);
1163 }
1164 
1165 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1166 {
1167 	struct sample *sample = &cpu->sample;
1168 
1169 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1170 }
1171 
1172 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1173 {
1174 	u64 aperf, mperf;
1175 	unsigned long flags;
1176 	u64 tsc;
1177 
1178 	local_irq_save(flags);
1179 	rdmsrl(MSR_IA32_APERF, aperf);
1180 	rdmsrl(MSR_IA32_MPERF, mperf);
1181 	tsc = rdtsc();
1182 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1183 		local_irq_restore(flags);
1184 		return false;
1185 	}
1186 	local_irq_restore(flags);
1187 
1188 	cpu->last_sample_time = cpu->sample.time;
1189 	cpu->sample.time = time;
1190 	cpu->sample.aperf = aperf;
1191 	cpu->sample.mperf = mperf;
1192 	cpu->sample.tsc =  tsc;
1193 	cpu->sample.aperf -= cpu->prev_aperf;
1194 	cpu->sample.mperf -= cpu->prev_mperf;
1195 	cpu->sample.tsc -= cpu->prev_tsc;
1196 
1197 	cpu->prev_aperf = aperf;
1198 	cpu->prev_mperf = mperf;
1199 	cpu->prev_tsc = tsc;
1200 	/*
1201 	 * First time this function is invoked in a given cycle, all of the
1202 	 * previous sample data fields are equal to zero or stale and they must
1203 	 * be populated with meaningful numbers for things to work, so assume
1204 	 * that sample.time will always be reset before setting the utilization
1205 	 * update hook and make the caller skip the sample then.
1206 	 */
1207 	return !!cpu->last_sample_time;
1208 }
1209 
1210 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1211 {
1212 	return mul_ext_fp(cpu->sample.core_avg_perf,
1213 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1214 }
1215 
1216 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1217 {
1218 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1219 			  cpu->sample.core_avg_perf);
1220 }
1221 
1222 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1223 {
1224 	struct sample *sample = &cpu->sample;
1225 	u64 cummulative_iowait, delta_iowait_us;
1226 	u64 delta_iowait_mperf;
1227 	u64 mperf, now;
1228 	int32_t cpu_load;
1229 
1230 	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1231 
1232 	/*
1233 	 * Convert iowait time into number of IO cycles spent at max_freq.
1234 	 * IO is considered as busy only for the cpu_load algorithm. For
1235 	 * performance this is not needed since we always try to reach the
1236 	 * maximum P-State, so we are already boosting the IOs.
1237 	 */
1238 	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1239 	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1240 		cpu->pstate.max_pstate, MSEC_PER_SEC);
1241 
1242 	mperf = cpu->sample.mperf + delta_iowait_mperf;
1243 	cpu->prev_cummulative_iowait = cummulative_iowait;
1244 
1245 	/*
1246 	 * The load can be estimated as the ratio of the mperf counter
1247 	 * running at a constant frequency during active periods
1248 	 * (C0) and the time stamp counter running at the same frequency
1249 	 * also during C-states.
1250 	 */
1251 	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1252 	cpu->sample.busy_scaled = cpu_load;
1253 
1254 	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1255 }
1256 
1257 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1258 {
1259 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1260 	u64 duration_ns;
1261 
1262 	/*
1263 	 * perf_scaled is the average performance during the last sampling
1264 	 * period scaled by the ratio of the maximum P-state to the P-state
1265 	 * requested last time (in percent).  That measures the system's
1266 	 * response to the previous P-state selection.
1267 	 */
1268 	max_pstate = cpu->pstate.max_pstate_physical;
1269 	current_pstate = cpu->pstate.current_pstate;
1270 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1271 			       div_fp(100 * max_pstate, current_pstate));
1272 
1273 	/*
1274 	 * Since our utilization update callback will not run unless we are
1275 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1276 	 * than our sample interval.  If it is, then we were idle for a long
1277 	 * enough period of time to adjust our performance metric.
1278 	 */
1279 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1280 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1281 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1282 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1283 	} else {
1284 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1285 		if (sample_ratio < int_tofp(1))
1286 			perf_scaled = 0;
1287 	}
1288 
1289 	cpu->sample.busy_scaled = perf_scaled;
1290 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1291 }
1292 
1293 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1294 {
1295 	int max_perf, min_perf;
1296 
1297 	update_turbo_state();
1298 
1299 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1300 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1301 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1302 	if (pstate == cpu->pstate.current_pstate)
1303 		return;
1304 
1305 	cpu->pstate.current_pstate = pstate;
1306 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1307 }
1308 
1309 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1310 {
1311 	int from, target_pstate;
1312 	struct sample *sample;
1313 
1314 	from = cpu->pstate.current_pstate;
1315 
1316 	target_pstate = pstate_funcs.get_target_pstate(cpu);
1317 
1318 	intel_pstate_update_pstate(cpu, target_pstate);
1319 
1320 	sample = &cpu->sample;
1321 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1322 		fp_toint(sample->busy_scaled),
1323 		from,
1324 		cpu->pstate.current_pstate,
1325 		sample->mperf,
1326 		sample->aperf,
1327 		sample->tsc,
1328 		get_avg_frequency(cpu));
1329 }
1330 
1331 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1332 				     unsigned int flags)
1333 {
1334 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1335 	u64 delta_ns = time - cpu->sample.time;
1336 
1337 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1338 		bool sample_taken = intel_pstate_sample(cpu, time);
1339 
1340 		if (sample_taken) {
1341 			intel_pstate_calc_avg_perf(cpu);
1342 			if (!hwp_active)
1343 				intel_pstate_adjust_busy_pstate(cpu);
1344 		}
1345 	}
1346 }
1347 
1348 #define ICPU(model, policy) \
1349 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1350 			(unsigned long)&policy }
1351 
1352 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1353 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1354 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1355 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1356 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1357 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1358 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1359 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1360 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1361 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1362 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1363 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1364 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1365 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1366 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1367 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1368 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1369 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1370 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1371 	{}
1372 };
1373 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1374 
1375 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1376 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1377 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1378 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1379 	{}
1380 };
1381 
1382 static int intel_pstate_init_cpu(unsigned int cpunum)
1383 {
1384 	struct cpudata *cpu;
1385 
1386 	if (!all_cpu_data[cpunum])
1387 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1388 					       GFP_KERNEL);
1389 	if (!all_cpu_data[cpunum])
1390 		return -ENOMEM;
1391 
1392 	cpu = all_cpu_data[cpunum];
1393 
1394 	cpu->cpu = cpunum;
1395 
1396 	if (hwp_active) {
1397 		intel_pstate_hwp_enable(cpu);
1398 		pid_params.sample_rate_ms = 50;
1399 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1400 	}
1401 
1402 	intel_pstate_get_cpu_pstates(cpu);
1403 
1404 	intel_pstate_busy_pid_reset(cpu);
1405 
1406 	pr_debug("controlling: cpu %d\n", cpunum);
1407 
1408 	return 0;
1409 }
1410 
1411 static unsigned int intel_pstate_get(unsigned int cpu_num)
1412 {
1413 	struct cpudata *cpu = all_cpu_data[cpu_num];
1414 
1415 	return cpu ? get_avg_frequency(cpu) : 0;
1416 }
1417 
1418 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1419 {
1420 	struct cpudata *cpu = all_cpu_data[cpu_num];
1421 
1422 	if (cpu->update_util_set)
1423 		return;
1424 
1425 	/* Prevent intel_pstate_update_util() from using stale data. */
1426 	cpu->sample.time = 0;
1427 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1428 				     intel_pstate_update_util);
1429 	cpu->update_util_set = true;
1430 }
1431 
1432 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1433 {
1434 	struct cpudata *cpu_data = all_cpu_data[cpu];
1435 
1436 	if (!cpu_data->update_util_set)
1437 		return;
1438 
1439 	cpufreq_remove_update_util_hook(cpu);
1440 	cpu_data->update_util_set = false;
1441 	synchronize_sched();
1442 }
1443 
1444 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1445 {
1446 	limits->no_turbo = 0;
1447 	limits->turbo_disabled = 0;
1448 	limits->max_perf_pct = 100;
1449 	limits->max_perf = int_tofp(1);
1450 	limits->min_perf_pct = 100;
1451 	limits->min_perf = int_tofp(1);
1452 	limits->max_policy_pct = 100;
1453 	limits->max_sysfs_pct = 100;
1454 	limits->min_policy_pct = 0;
1455 	limits->min_sysfs_pct = 0;
1456 }
1457 
1458 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1459 {
1460 	struct cpudata *cpu;
1461 
1462 	if (!policy->cpuinfo.max_freq)
1463 		return -ENODEV;
1464 
1465 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1466 		 policy->cpuinfo.max_freq, policy->max);
1467 
1468 	cpu = all_cpu_data[0];
1469 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1470 	    policy->max < policy->cpuinfo.max_freq &&
1471 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1472 		pr_debug("policy->max > max non turbo frequency\n");
1473 		policy->max = policy->cpuinfo.max_freq;
1474 	}
1475 
1476 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1477 		limits = &performance_limits;
1478 		if (policy->max >= policy->cpuinfo.max_freq) {
1479 			pr_debug("set performance\n");
1480 			intel_pstate_set_performance_limits(limits);
1481 			goto out;
1482 		}
1483 	} else {
1484 		pr_debug("set powersave\n");
1485 		limits = &powersave_limits;
1486 	}
1487 
1488 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1489 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1490 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1491 					      policy->cpuinfo.max_freq);
1492 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1493 
1494 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1495 	limits->min_perf_pct = max(limits->min_policy_pct,
1496 				   limits->min_sysfs_pct);
1497 	limits->min_perf_pct = min(limits->max_policy_pct,
1498 				   limits->min_perf_pct);
1499 	limits->max_perf_pct = min(limits->max_policy_pct,
1500 				   limits->max_sysfs_pct);
1501 	limits->max_perf_pct = max(limits->min_policy_pct,
1502 				   limits->max_perf_pct);
1503 
1504 	/* Make sure min_perf_pct <= max_perf_pct */
1505 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1506 
1507 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
1508 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1509 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1510 
1511  out:
1512 	intel_pstate_set_update_util_hook(policy->cpu);
1513 
1514 	intel_pstate_hwp_set_policy(policy);
1515 
1516 	return 0;
1517 }
1518 
1519 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1520 {
1521 	cpufreq_verify_within_cpu_limits(policy);
1522 
1523 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1524 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1525 		return -EINVAL;
1526 
1527 	return 0;
1528 }
1529 
1530 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1531 {
1532 	int cpu_num = policy->cpu;
1533 	struct cpudata *cpu = all_cpu_data[cpu_num];
1534 
1535 	pr_debug("CPU %d exiting\n", cpu_num);
1536 
1537 	intel_pstate_clear_update_util_hook(cpu_num);
1538 
1539 	if (hwp_active)
1540 		return;
1541 
1542 	intel_pstate_set_min_pstate(cpu);
1543 }
1544 
1545 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1546 {
1547 	struct cpudata *cpu;
1548 	int rc;
1549 
1550 	rc = intel_pstate_init_cpu(policy->cpu);
1551 	if (rc)
1552 		return rc;
1553 
1554 	cpu = all_cpu_data[policy->cpu];
1555 
1556 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1557 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1558 	else
1559 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1560 
1561 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1562 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1563 
1564 	/* cpuinfo and default policy values */
1565 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1566 	update_turbo_state();
1567 	policy->cpuinfo.max_freq = limits->turbo_disabled ?
1568 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1569 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1570 
1571 	intel_pstate_init_acpi_perf_limits(policy);
1572 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1573 	cpumask_set_cpu(policy->cpu, policy->cpus);
1574 
1575 	return 0;
1576 }
1577 
1578 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1579 {
1580 	intel_pstate_exit_perf_limits(policy);
1581 
1582 	return 0;
1583 }
1584 
1585 static struct cpufreq_driver intel_pstate_driver = {
1586 	.flags		= CPUFREQ_CONST_LOOPS,
1587 	.verify		= intel_pstate_verify_policy,
1588 	.setpolicy	= intel_pstate_set_policy,
1589 	.resume		= intel_pstate_hwp_set_policy,
1590 	.get		= intel_pstate_get,
1591 	.init		= intel_pstate_cpu_init,
1592 	.exit		= intel_pstate_cpu_exit,
1593 	.stop_cpu	= intel_pstate_stop_cpu,
1594 	.name		= "intel_pstate",
1595 };
1596 
1597 static int no_load __initdata;
1598 static int no_hwp __initdata;
1599 static int hwp_only __initdata;
1600 static unsigned int force_load __initdata;
1601 
1602 static int __init intel_pstate_msrs_not_valid(void)
1603 {
1604 	if (!pstate_funcs.get_max() ||
1605 	    !pstate_funcs.get_min() ||
1606 	    !pstate_funcs.get_turbo())
1607 		return -ENODEV;
1608 
1609 	return 0;
1610 }
1611 
1612 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1613 {
1614 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1615 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1616 	pid_params.p_gain_pct = policy->p_gain_pct;
1617 	pid_params.i_gain_pct = policy->i_gain_pct;
1618 	pid_params.d_gain_pct = policy->d_gain_pct;
1619 	pid_params.deadband = policy->deadband;
1620 	pid_params.setpoint = policy->setpoint;
1621 }
1622 
1623 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1624 {
1625 	pstate_funcs.get_max   = funcs->get_max;
1626 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1627 	pstate_funcs.get_min   = funcs->get_min;
1628 	pstate_funcs.get_turbo = funcs->get_turbo;
1629 	pstate_funcs.get_scaling = funcs->get_scaling;
1630 	pstate_funcs.get_val   = funcs->get_val;
1631 	pstate_funcs.get_vid   = funcs->get_vid;
1632 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1633 
1634 }
1635 
1636 #ifdef CONFIG_ACPI
1637 
1638 static bool __init intel_pstate_no_acpi_pss(void)
1639 {
1640 	int i;
1641 
1642 	for_each_possible_cpu(i) {
1643 		acpi_status status;
1644 		union acpi_object *pss;
1645 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1646 		struct acpi_processor *pr = per_cpu(processors, i);
1647 
1648 		if (!pr)
1649 			continue;
1650 
1651 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1652 		if (ACPI_FAILURE(status))
1653 			continue;
1654 
1655 		pss = buffer.pointer;
1656 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1657 			kfree(pss);
1658 			return false;
1659 		}
1660 
1661 		kfree(pss);
1662 	}
1663 
1664 	return true;
1665 }
1666 
1667 static bool __init intel_pstate_has_acpi_ppc(void)
1668 {
1669 	int i;
1670 
1671 	for_each_possible_cpu(i) {
1672 		struct acpi_processor *pr = per_cpu(processors, i);
1673 
1674 		if (!pr)
1675 			continue;
1676 		if (acpi_has_method(pr->handle, "_PPC"))
1677 			return true;
1678 	}
1679 	return false;
1680 }
1681 
1682 enum {
1683 	PSS,
1684 	PPC,
1685 };
1686 
1687 struct hw_vendor_info {
1688 	u16  valid;
1689 	char oem_id[ACPI_OEM_ID_SIZE];
1690 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1691 	int  oem_pwr_table;
1692 };
1693 
1694 /* Hardware vendor-specific info that has its own power management modes */
1695 static struct hw_vendor_info vendor_info[] __initdata = {
1696 	{1, "HP    ", "ProLiant", PSS},
1697 	{1, "ORACLE", "X4-2    ", PPC},
1698 	{1, "ORACLE", "X4-2L   ", PPC},
1699 	{1, "ORACLE", "X4-2B   ", PPC},
1700 	{1, "ORACLE", "X3-2    ", PPC},
1701 	{1, "ORACLE", "X3-2L   ", PPC},
1702 	{1, "ORACLE", "X3-2B   ", PPC},
1703 	{1, "ORACLE", "X4470M2 ", PPC},
1704 	{1, "ORACLE", "X4270M3 ", PPC},
1705 	{1, "ORACLE", "X4270M2 ", PPC},
1706 	{1, "ORACLE", "X4170M2 ", PPC},
1707 	{1, "ORACLE", "X4170 M3", PPC},
1708 	{1, "ORACLE", "X4275 M3", PPC},
1709 	{1, "ORACLE", "X6-2    ", PPC},
1710 	{1, "ORACLE", "Sudbury ", PPC},
1711 	{0, "", ""},
1712 };
1713 
1714 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1715 {
1716 	struct acpi_table_header hdr;
1717 	struct hw_vendor_info *v_info;
1718 	const struct x86_cpu_id *id;
1719 	u64 misc_pwr;
1720 
1721 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1722 	if (id) {
1723 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1724 		if ( misc_pwr & (1 << 8))
1725 			return true;
1726 	}
1727 
1728 	if (acpi_disabled ||
1729 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1730 		return false;
1731 
1732 	for (v_info = vendor_info; v_info->valid; v_info++) {
1733 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1734 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1735 						ACPI_OEM_TABLE_ID_SIZE))
1736 			switch (v_info->oem_pwr_table) {
1737 			case PSS:
1738 				return intel_pstate_no_acpi_pss();
1739 			case PPC:
1740 				return intel_pstate_has_acpi_ppc() &&
1741 					(!force_load);
1742 			}
1743 	}
1744 
1745 	return false;
1746 }
1747 #else /* CONFIG_ACPI not enabled */
1748 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1749 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1750 #endif /* CONFIG_ACPI */
1751 
1752 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1753 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1754 	{}
1755 };
1756 
1757 static int __init intel_pstate_init(void)
1758 {
1759 	int cpu, rc = 0;
1760 	const struct x86_cpu_id *id;
1761 	struct cpu_defaults *cpu_def;
1762 
1763 	if (no_load)
1764 		return -ENODEV;
1765 
1766 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1767 		copy_cpu_funcs(&core_params.funcs);
1768 		hwp_active++;
1769 		goto hwp_cpu_matched;
1770 	}
1771 
1772 	id = x86_match_cpu(intel_pstate_cpu_ids);
1773 	if (!id)
1774 		return -ENODEV;
1775 
1776 	cpu_def = (struct cpu_defaults *)id->driver_data;
1777 
1778 	copy_pid_params(&cpu_def->pid_policy);
1779 	copy_cpu_funcs(&cpu_def->funcs);
1780 
1781 	if (intel_pstate_msrs_not_valid())
1782 		return -ENODEV;
1783 
1784 hwp_cpu_matched:
1785 	/*
1786 	 * The Intel pstate driver will be ignored if the platform
1787 	 * firmware has its own power management modes.
1788 	 */
1789 	if (intel_pstate_platform_pwr_mgmt_exists())
1790 		return -ENODEV;
1791 
1792 	pr_info("Intel P-state driver initializing\n");
1793 
1794 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1795 	if (!all_cpu_data)
1796 		return -ENOMEM;
1797 
1798 	if (!hwp_active && hwp_only)
1799 		goto out;
1800 
1801 	rc = cpufreq_register_driver(&intel_pstate_driver);
1802 	if (rc)
1803 		goto out;
1804 
1805 	intel_pstate_debug_expose_params();
1806 	intel_pstate_sysfs_expose_params();
1807 
1808 	if (hwp_active)
1809 		pr_info("HWP enabled\n");
1810 
1811 	return rc;
1812 out:
1813 	get_online_cpus();
1814 	for_each_online_cpu(cpu) {
1815 		if (all_cpu_data[cpu]) {
1816 			intel_pstate_clear_update_util_hook(cpu);
1817 			kfree(all_cpu_data[cpu]);
1818 		}
1819 	}
1820 
1821 	put_online_cpus();
1822 	vfree(all_cpu_data);
1823 	return -ENODEV;
1824 }
1825 device_initcall(intel_pstate_init);
1826 
1827 static int __init intel_pstate_setup(char *str)
1828 {
1829 	if (!str)
1830 		return -EINVAL;
1831 
1832 	if (!strcmp(str, "disable"))
1833 		no_load = 1;
1834 	if (!strcmp(str, "no_hwp")) {
1835 		pr_info("HWP disabled\n");
1836 		no_hwp = 1;
1837 	}
1838 	if (!strcmp(str, "force"))
1839 		force_load = 1;
1840 	if (!strcmp(str, "hwp_only"))
1841 		hwp_only = 1;
1842 
1843 #ifdef CONFIG_ACPI
1844 	if (!strcmp(str, "support_acpi_ppc"))
1845 		acpi_ppc = true;
1846 #endif
1847 
1848 	return 0;
1849 }
1850 early_param("intel_pstate", intel_pstate_setup);
1851 
1852 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1853 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1854 MODULE_LICENSE("GPL");
1855