1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 
20 #include "msm_drv.h"
21 #include "dpu_kms.h"
22 #include "dpu_hwio.h"
23 #include "dpu_hw_catalog.h"
24 #include "dpu_hw_intf.h"
25 #include "dpu_hw_ctl.h"
26 #include "dpu_hw_dspp.h"
27 #include "dpu_hw_dsc.h"
28 #include "dpu_hw_merge3d.h"
29 #include "dpu_formats.h"
30 #include "dpu_encoder_phys.h"
31 #include "dpu_crtc.h"
32 #include "dpu_trace.h"
33 #include "dpu_core_irq.h"
34 #include "disp/msm_disp_snapshot.h"
35 
36 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
37 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
38 
39 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
40 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41 
42 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
43 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
44 
45 /*
46  * Two to anticipate panels that can do cmd/vid dynamic switching
47  * plan is to create all possible physical encoder types, and switch between
48  * them at runtime
49  */
50 #define NUM_PHYS_ENCODER_TYPES 2
51 
52 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
53 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
54 
55 #define MAX_CHANNELS_PER_ENC 2
56 
57 #define IDLE_SHORT_TIMEOUT	1
58 
59 #define MAX_HDISPLAY_SPLIT 1080
60 
61 /* timeout in frames waiting for frame done */
62 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
63 
64 /**
65  * enum dpu_enc_rc_events - events for resource control state machine
66  * @DPU_ENC_RC_EVENT_KICKOFF:
67  *	This event happens at NORMAL priority.
68  *	Event that signals the start of the transfer. When this event is
69  *	received, enable MDP/DSI core clocks. Regardless of the previous
70  *	state, the resource should be in ON state at the end of this event.
71  * @DPU_ENC_RC_EVENT_FRAME_DONE:
72  *	This event happens at INTERRUPT level.
73  *	Event signals the end of the data transfer after the PP FRAME_DONE
74  *	event. At the end of this event, a delayed work is scheduled to go to
75  *	IDLE_PC state after IDLE_TIMEOUT time.
76  * @DPU_ENC_RC_EVENT_PRE_STOP:
77  *	This event happens at NORMAL priority.
78  *	This event, when received during the ON state, leave the RC STATE
79  *	in the PRE_OFF state. It should be followed by the STOP event as
80  *	part of encoder disable.
81  *	If received during IDLE or OFF states, it will do nothing.
82  * @DPU_ENC_RC_EVENT_STOP:
83  *	This event happens at NORMAL priority.
84  *	When this event is received, disable all the MDP/DSI core clocks, and
85  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
86  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
87  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
88  *	Resource state should be in OFF at the end of the event.
89  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
90  *	This event happens at NORMAL priority from a work item.
91  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
92  *	This would disable MDP/DSI core clocks and change the resource state
93  *	to IDLE.
94  */
95 enum dpu_enc_rc_events {
96 	DPU_ENC_RC_EVENT_KICKOFF = 1,
97 	DPU_ENC_RC_EVENT_FRAME_DONE,
98 	DPU_ENC_RC_EVENT_PRE_STOP,
99 	DPU_ENC_RC_EVENT_STOP,
100 	DPU_ENC_RC_EVENT_ENTER_IDLE
101 };
102 
103 /*
104  * enum dpu_enc_rc_states - states that the resource control maintains
105  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
106  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
107  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
108  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
109  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
110  */
111 enum dpu_enc_rc_states {
112 	DPU_ENC_RC_STATE_OFF,
113 	DPU_ENC_RC_STATE_PRE_OFF,
114 	DPU_ENC_RC_STATE_ON,
115 	DPU_ENC_RC_STATE_IDLE
116 };
117 
118 /**
119  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
120  *	encoders. Virtual encoder manages one "logical" display. Physical
121  *	encoders manage one intf block, tied to a specific panel/sub-panel.
122  *	Virtual encoder defers as much as possible to the physical encoders.
123  *	Virtual encoder registers itself with the DRM Framework as the encoder.
124  * @base:		drm_encoder base class for registration with DRM
125  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
126  * @enabled:		True if the encoder is active, protected by enc_lock
127  * @commit_done_timedout: True if there has been a timeout on commit after
128  *			enabling the encoder.
129  * @num_phys_encs:	Actual number of physical encoders contained.
130  * @phys_encs:		Container of physical encoders managed.
131  * @cur_master:		Pointer to the current master in this mode. Optimization
132  *			Only valid after enable. Cleared as disable.
133  * @cur_slave:		As above but for the slave encoder.
134  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
135  *			pingpong blocks can be different than num_phys_encs.
136  * @hw_dsc:		Handle to the DSC blocks used for the display.
137  * @dsc_mask:		Bitmask of used DSC blocks.
138  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
139  *			for partial update right-only cases, such as pingpong
140  *			split where virtual pingpong does not generate IRQs
141  * @crtc:		Pointer to the currently assigned crtc. Normally you
142  *			would use crtc->state->encoder_mask to determine the
143  *			link between encoder/crtc. However in this case we need
144  *			to track crtc in the disable() hook which is called
145  *			_after_ encoder_mask is cleared.
146  * @connector:		If a mode is set, cached pointer to the active connector
147  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
148  *				all CTL paths
149  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
150  * @debugfs_root:		Debug file system root file node
151  * @enc_lock:			Lock around physical encoder
152  *				create/destroy/enable/disable
153  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
154  *				busy processing current command.
155  *				Bit0 = phys_encs[0] etc.
156  * @crtc_frame_event_cb:	callback handler for frame event
157  * @crtc_frame_event_cb_data:	callback handler private data
158  * @frame_done_timeout_ms:	frame done timeout in ms
159  * @frame_done_timer:		watchdog timer for frame done event
160  * @disp_info:			local copy of msm_display_info struct
161  * @idle_pc_supported:		indicate if idle power collaps is supported
162  * @rc_lock:			resource control mutex lock to protect
163  *				virt encoder over various state changes
164  * @rc_state:			resource controller state
165  * @delayed_off_work:		delayed worker to schedule disabling of
166  *				clks and resources after IDLE_TIMEOUT time.
167  * @topology:                   topology of the display
168  * @idle_timeout:		idle timeout duration in milliseconds
169  * @wide_bus_en:		wide bus is enabled on this interface
170  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
171  */
172 struct dpu_encoder_virt {
173 	struct drm_encoder base;
174 	spinlock_t enc_spinlock;
175 
176 	bool enabled;
177 	bool commit_done_timedout;
178 
179 	unsigned int num_phys_encs;
180 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
181 	struct dpu_encoder_phys *cur_master;
182 	struct dpu_encoder_phys *cur_slave;
183 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
184 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
185 
186 	unsigned int dsc_mask;
187 
188 	bool intfs_swapped;
189 
190 	struct drm_crtc *crtc;
191 	struct drm_connector *connector;
192 
193 	struct dentry *debugfs_root;
194 	struct mutex enc_lock;
195 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
196 	void (*crtc_frame_event_cb)(void *, u32 event);
197 	void *crtc_frame_event_cb_data;
198 
199 	atomic_t frame_done_timeout_ms;
200 	struct timer_list frame_done_timer;
201 
202 	struct msm_display_info disp_info;
203 
204 	bool idle_pc_supported;
205 	struct mutex rc_lock;
206 	enum dpu_enc_rc_states rc_state;
207 	struct delayed_work delayed_off_work;
208 	struct msm_display_topology topology;
209 
210 	u32 idle_timeout;
211 
212 	bool wide_bus_en;
213 
214 	/* DSC configuration */
215 	struct drm_dsc_config *dsc;
216 };
217 
218 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
219 
220 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
221 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
222 };
223 
224 
225 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
226 {
227 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
228 
229 	return dpu_enc->wide_bus_en;
230 }
231 
232 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
233 {
234 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
235 
236 	return dpu_enc->dsc ? true : false;
237 }
238 
239 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
240 {
241 	struct dpu_encoder_virt *dpu_enc;
242 	int i, num_intf = 0;
243 
244 	dpu_enc = to_dpu_encoder_virt(drm_enc);
245 
246 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
247 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
248 
249 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
250 				&& phys->hw_intf->ops.collect_misr)
251 			num_intf++;
252 	}
253 
254 	return num_intf;
255 }
256 
257 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
258 {
259 	struct dpu_encoder_virt *dpu_enc;
260 
261 	int i;
262 
263 	dpu_enc = to_dpu_encoder_virt(drm_enc);
264 
265 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
266 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
267 
268 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
269 			continue;
270 
271 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
272 	}
273 }
274 
275 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
276 {
277 	struct dpu_encoder_virt *dpu_enc;
278 
279 	int i, rc = 0, entries_added = 0;
280 
281 	if (!drm_enc->crtc) {
282 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
283 		return -EINVAL;
284 	}
285 
286 	dpu_enc = to_dpu_encoder_virt(drm_enc);
287 
288 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
289 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
290 
291 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
292 			continue;
293 
294 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
295 		if (rc)
296 			return rc;
297 		entries_added++;
298 	}
299 
300 	return entries_added;
301 }
302 
303 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
304 {
305 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
306 
307 	if (!hw_pp->ops.setup_dither)
308 		return;
309 
310 	switch (bpc) {
311 	case 6:
312 		dither_cfg.c0_bitdepth = 6;
313 		dither_cfg.c1_bitdepth = 6;
314 		dither_cfg.c2_bitdepth = 6;
315 		dither_cfg.c3_bitdepth = 6;
316 		dither_cfg.temporal_en = 0;
317 		break;
318 	default:
319 		hw_pp->ops.setup_dither(hw_pp, NULL);
320 		return;
321 	}
322 
323 	memcpy(&dither_cfg.matrix, dither_matrix,
324 			sizeof(u32) * DITHER_MATRIX_SZ);
325 
326 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
327 }
328 
329 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
330 {
331 	switch (intf_mode) {
332 	case INTF_MODE_VIDEO:
333 		return "INTF_MODE_VIDEO";
334 	case INTF_MODE_CMD:
335 		return "INTF_MODE_CMD";
336 	case INTF_MODE_WB_BLOCK:
337 		return "INTF_MODE_WB_BLOCK";
338 	case INTF_MODE_WB_LINE:
339 		return "INTF_MODE_WB_LINE";
340 	default:
341 		return "INTF_MODE_UNKNOWN";
342 	}
343 }
344 
345 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
346 		enum dpu_intr_idx intr_idx)
347 {
348 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
349 			DRMID(phys_enc->parent),
350 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
351 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
352 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
353 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
354 
355 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
356 				DPU_ENCODER_FRAME_EVENT_ERROR);
357 }
358 
359 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
360 		u32 irq_idx, struct dpu_encoder_wait_info *info);
361 
362 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
363 		int irq_idx,
364 		void (*func)(void *arg),
365 		struct dpu_encoder_wait_info *wait_info)
366 {
367 	u32 irq_status;
368 	int ret;
369 
370 	if (!wait_info) {
371 		DPU_ERROR("invalid params\n");
372 		return -EINVAL;
373 	}
374 	/* note: do master / slave checking outside */
375 
376 	/* return EWOULDBLOCK since we know the wait isn't necessary */
377 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
378 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
379 			  DRMID(phys_enc->parent), func,
380 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
381 		return -EWOULDBLOCK;
382 	}
383 
384 	if (irq_idx < 0) {
385 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
386 			      DRMID(phys_enc->parent), func);
387 		return 0;
388 	}
389 
390 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
391 		      DRMID(phys_enc->parent), func,
392 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
393 		      atomic_read(wait_info->atomic_cnt));
394 
395 	ret = dpu_encoder_helper_wait_event_timeout(
396 			DRMID(phys_enc->parent),
397 			irq_idx,
398 			wait_info);
399 
400 	if (ret <= 0) {
401 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
402 		if (irq_status) {
403 			unsigned long flags;
404 
405 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
406 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
407 				      DRMID(phys_enc->parent), func,
408 				      phys_enc->hw_pp->idx - PINGPONG_0,
409 				      atomic_read(wait_info->atomic_cnt));
410 			local_irq_save(flags);
411 			func(phys_enc);
412 			local_irq_restore(flags);
413 			ret = 0;
414 		} else {
415 			ret = -ETIMEDOUT;
416 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
417 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
418 				      DRMID(phys_enc->parent), func,
419 				      phys_enc->hw_pp->idx - PINGPONG_0,
420 				      atomic_read(wait_info->atomic_cnt));
421 		}
422 	} else {
423 		ret = 0;
424 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
425 			func, irq_idx,
426 			phys_enc->hw_pp->idx - PINGPONG_0,
427 			atomic_read(wait_info->atomic_cnt));
428 	}
429 
430 	return ret;
431 }
432 
433 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
434 {
435 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
436 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
437 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
438 }
439 
440 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
441 {
442 	struct dpu_encoder_virt *dpu_enc;
443 	struct dpu_encoder_phys *phys;
444 	int linecount = 0;
445 
446 	dpu_enc = to_dpu_encoder_virt(drm_enc);
447 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
448 
449 	if (phys && phys->ops.get_line_count)
450 		linecount = phys->ops.get_line_count(phys);
451 
452 	return linecount;
453 }
454 
455 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
456 {
457 	struct dpu_encoder_virt *dpu_enc = NULL;
458 	int i = 0;
459 
460 	if (!drm_enc) {
461 		DPU_ERROR("invalid encoder\n");
462 		return;
463 	}
464 
465 	dpu_enc = to_dpu_encoder_virt(drm_enc);
466 	DPU_DEBUG_ENC(dpu_enc, "\n");
467 
468 	mutex_lock(&dpu_enc->enc_lock);
469 
470 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
471 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
472 
473 		if (phys->ops.destroy) {
474 			phys->ops.destroy(phys);
475 			--dpu_enc->num_phys_encs;
476 			dpu_enc->phys_encs[i] = NULL;
477 		}
478 	}
479 
480 	if (dpu_enc->num_phys_encs)
481 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
482 				dpu_enc->num_phys_encs);
483 	dpu_enc->num_phys_encs = 0;
484 	mutex_unlock(&dpu_enc->enc_lock);
485 
486 	drm_encoder_cleanup(drm_enc);
487 	mutex_destroy(&dpu_enc->enc_lock);
488 }
489 
490 void dpu_encoder_helper_split_config(
491 		struct dpu_encoder_phys *phys_enc,
492 		enum dpu_intf interface)
493 {
494 	struct dpu_encoder_virt *dpu_enc;
495 	struct split_pipe_cfg cfg = { 0 };
496 	struct dpu_hw_mdp *hw_mdptop;
497 	struct msm_display_info *disp_info;
498 
499 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
500 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
501 		return;
502 	}
503 
504 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
505 	hw_mdptop = phys_enc->hw_mdptop;
506 	disp_info = &dpu_enc->disp_info;
507 
508 	if (disp_info->intf_type != INTF_DSI)
509 		return;
510 
511 	/**
512 	 * disable split modes since encoder will be operating in as the only
513 	 * encoder, either for the entire use case in the case of, for example,
514 	 * single DSI, or for this frame in the case of left/right only partial
515 	 * update.
516 	 */
517 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
518 		if (hw_mdptop->ops.setup_split_pipe)
519 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
520 		return;
521 	}
522 
523 	cfg.en = true;
524 	cfg.mode = phys_enc->intf_mode;
525 	cfg.intf = interface;
526 
527 	if (cfg.en && phys_enc->ops.needs_single_flush &&
528 			phys_enc->ops.needs_single_flush(phys_enc))
529 		cfg.split_flush_en = true;
530 
531 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
532 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
533 
534 		if (hw_mdptop->ops.setup_split_pipe)
535 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
536 	}
537 }
538 
539 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
540 {
541 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
542 	int i, intf_count = 0, num_dsc = 0;
543 
544 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
545 		if (dpu_enc->phys_encs[i])
546 			intf_count++;
547 
548 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
549 	if (dpu_enc->dsc)
550 		num_dsc = 2;
551 
552 	return (num_dsc > 0) && (num_dsc > intf_count);
553 }
554 
555 static struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
556 {
557 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
558 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
559 	int index = dpu_enc->disp_info.h_tile_instance[0];
560 
561 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
562 		return msm_dsi_get_dsc_config(priv->dsi[index]);
563 
564 	return NULL;
565 }
566 
567 static struct msm_display_topology dpu_encoder_get_topology(
568 			struct dpu_encoder_virt *dpu_enc,
569 			struct dpu_kms *dpu_kms,
570 			struct drm_display_mode *mode,
571 			struct drm_crtc_state *crtc_state,
572 			struct drm_dsc_config *dsc)
573 {
574 	struct msm_display_topology topology = {0};
575 	int i, intf_count = 0;
576 
577 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
578 		if (dpu_enc->phys_encs[i])
579 			intf_count++;
580 
581 	/* Datapath topology selection
582 	 *
583 	 * Dual display
584 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
585 	 *
586 	 * Single display
587 	 * 1 LM, 1 INTF
588 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
589 	 *
590 	 * Add dspps to the reservation requirements if ctm is requested
591 	 */
592 	if (intf_count == 2)
593 		topology.num_lm = 2;
594 	else if (!dpu_kms->catalog->caps->has_3d_merge)
595 		topology.num_lm = 1;
596 	else
597 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
598 
599 	if (crtc_state->ctm)
600 		topology.num_dspp = topology.num_lm;
601 
602 	topology.num_intf = intf_count;
603 
604 	if (dsc) {
605 		/*
606 		 * In case of Display Stream Compression (DSC), we would use
607 		 * 2 DSC encoders, 2 layer mixers and 1 interface
608 		 * this is power optimal and can drive up to (including) 4k
609 		 * screens
610 		 */
611 		topology.num_dsc = 2;
612 		topology.num_lm = 2;
613 		topology.num_intf = 1;
614 	}
615 
616 	return topology;
617 }
618 
619 static int dpu_encoder_virt_atomic_check(
620 		struct drm_encoder *drm_enc,
621 		struct drm_crtc_state *crtc_state,
622 		struct drm_connector_state *conn_state)
623 {
624 	struct dpu_encoder_virt *dpu_enc;
625 	struct msm_drm_private *priv;
626 	struct dpu_kms *dpu_kms;
627 	struct drm_display_mode *adj_mode;
628 	struct msm_display_topology topology;
629 	struct dpu_global_state *global_state;
630 	struct drm_dsc_config *dsc;
631 	int i = 0;
632 	int ret = 0;
633 
634 	if (!drm_enc || !crtc_state || !conn_state) {
635 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
636 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
637 		return -EINVAL;
638 	}
639 
640 	dpu_enc = to_dpu_encoder_virt(drm_enc);
641 	DPU_DEBUG_ENC(dpu_enc, "\n");
642 
643 	priv = drm_enc->dev->dev_private;
644 	dpu_kms = to_dpu_kms(priv->kms);
645 	adj_mode = &crtc_state->adjusted_mode;
646 	global_state = dpu_kms_get_global_state(crtc_state->state);
647 	if (IS_ERR(global_state))
648 		return PTR_ERR(global_state);
649 
650 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
651 
652 	/* perform atomic check on the first physical encoder (master) */
653 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
654 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
655 
656 		if (phys->ops.atomic_check)
657 			ret = phys->ops.atomic_check(phys, crtc_state,
658 					conn_state);
659 		if (ret) {
660 			DPU_ERROR_ENC(dpu_enc,
661 					"mode unsupported, phys idx %d\n", i);
662 			return ret;
663 		}
664 	}
665 
666 	dsc = dpu_encoder_get_dsc_config(drm_enc);
667 
668 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
669 
670 	/*
671 	 * Release and Allocate resources on every modeset
672 	 * Dont allocate when active is false.
673 	 */
674 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
675 		dpu_rm_release(global_state, drm_enc);
676 
677 		if (!crtc_state->active_changed || crtc_state->enable)
678 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
679 					drm_enc, crtc_state, topology);
680 	}
681 
682 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
683 
684 	return ret;
685 }
686 
687 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
688 			struct msm_display_info *disp_info)
689 {
690 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
691 	struct msm_drm_private *priv;
692 	struct dpu_kms *dpu_kms;
693 	struct dpu_hw_mdp *hw_mdptop;
694 	struct drm_encoder *drm_enc;
695 	struct dpu_encoder_phys *phys_enc;
696 	int i;
697 
698 	if (!dpu_enc || !disp_info) {
699 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
700 					dpu_enc != NULL, disp_info != NULL);
701 		return;
702 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
703 		DPU_ERROR("invalid num phys enc %d/%d\n",
704 				dpu_enc->num_phys_encs,
705 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
706 		return;
707 	}
708 
709 	drm_enc = &dpu_enc->base;
710 	/* this pointers are checked in virt_enable_helper */
711 	priv = drm_enc->dev->dev_private;
712 
713 	dpu_kms = to_dpu_kms(priv->kms);
714 	hw_mdptop = dpu_kms->hw_mdp;
715 	if (!hw_mdptop) {
716 		DPU_ERROR("invalid mdptop\n");
717 		return;
718 	}
719 
720 	if (hw_mdptop->ops.setup_vsync_source &&
721 			disp_info->is_cmd_mode) {
722 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
723 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
724 
725 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
726 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
727 
728 		if (disp_info->is_te_using_watchdog_timer)
729 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
730 		else
731 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
732 
733 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
734 
735 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
736 			phys_enc = dpu_enc->phys_encs[i];
737 
738 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
739 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
740 						vsync_cfg.vsync_source);
741 		}
742 	}
743 }
744 
745 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
746 {
747 	struct dpu_encoder_virt *dpu_enc;
748 	int i;
749 
750 	if (!drm_enc) {
751 		DPU_ERROR("invalid encoder\n");
752 		return;
753 	}
754 
755 	dpu_enc = to_dpu_encoder_virt(drm_enc);
756 
757 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
758 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
759 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
760 
761 		if (phys->ops.irq_control)
762 			phys->ops.irq_control(phys, enable);
763 	}
764 
765 }
766 
767 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
768 		bool enable)
769 {
770 	struct msm_drm_private *priv;
771 	struct dpu_kms *dpu_kms;
772 	struct dpu_encoder_virt *dpu_enc;
773 
774 	dpu_enc = to_dpu_encoder_virt(drm_enc);
775 	priv = drm_enc->dev->dev_private;
776 	dpu_kms = to_dpu_kms(priv->kms);
777 
778 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
779 
780 	if (!dpu_enc->cur_master) {
781 		DPU_ERROR("encoder master not set\n");
782 		return;
783 	}
784 
785 	if (enable) {
786 		/* enable DPU core clks */
787 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
788 
789 		/* enable all the irq */
790 		_dpu_encoder_irq_control(drm_enc, true);
791 
792 	} else {
793 		/* disable all the irq */
794 		_dpu_encoder_irq_control(drm_enc, false);
795 
796 		/* disable DPU core clks */
797 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
798 	}
799 
800 }
801 
802 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
803 		u32 sw_event)
804 {
805 	struct dpu_encoder_virt *dpu_enc;
806 	struct msm_drm_private *priv;
807 	bool is_vid_mode = false;
808 
809 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
810 		DPU_ERROR("invalid parameters\n");
811 		return -EINVAL;
812 	}
813 	dpu_enc = to_dpu_encoder_virt(drm_enc);
814 	priv = drm_enc->dev->dev_private;
815 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
816 
817 	/*
818 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
819 	 * events and return early for other events (ie wb display).
820 	 */
821 	if (!dpu_enc->idle_pc_supported &&
822 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
823 			sw_event != DPU_ENC_RC_EVENT_STOP &&
824 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
825 		return 0;
826 
827 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
828 			 dpu_enc->rc_state, "begin");
829 
830 	switch (sw_event) {
831 	case DPU_ENC_RC_EVENT_KICKOFF:
832 		/* cancel delayed off work, if any */
833 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
834 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
835 					sw_event);
836 
837 		mutex_lock(&dpu_enc->rc_lock);
838 
839 		/* return if the resource control is already in ON state */
840 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
841 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
842 				      DRMID(drm_enc), sw_event);
843 			mutex_unlock(&dpu_enc->rc_lock);
844 			return 0;
845 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
846 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
847 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
848 				      DRMID(drm_enc), sw_event,
849 				      dpu_enc->rc_state);
850 			mutex_unlock(&dpu_enc->rc_lock);
851 			return -EINVAL;
852 		}
853 
854 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
855 			_dpu_encoder_irq_control(drm_enc, true);
856 		else
857 			_dpu_encoder_resource_control_helper(drm_enc, true);
858 
859 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
860 
861 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
862 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
863 				 "kickoff");
864 
865 		mutex_unlock(&dpu_enc->rc_lock);
866 		break;
867 
868 	case DPU_ENC_RC_EVENT_FRAME_DONE:
869 		/*
870 		 * mutex lock is not used as this event happens at interrupt
871 		 * context. And locking is not required as, the other events
872 		 * like KICKOFF and STOP does a wait-for-idle before executing
873 		 * the resource_control
874 		 */
875 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
876 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
877 				      DRMID(drm_enc), sw_event,
878 				      dpu_enc->rc_state);
879 			return -EINVAL;
880 		}
881 
882 		/*
883 		 * schedule off work item only when there are no
884 		 * frames pending
885 		 */
886 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
887 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
888 				      DRMID(drm_enc));
889 			return 0;
890 		}
891 
892 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
893 				   msecs_to_jiffies(dpu_enc->idle_timeout));
894 
895 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
896 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
897 				 "frame done");
898 		break;
899 
900 	case DPU_ENC_RC_EVENT_PRE_STOP:
901 		/* cancel delayed off work, if any */
902 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
903 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
904 					sw_event);
905 
906 		mutex_lock(&dpu_enc->rc_lock);
907 
908 		if (is_vid_mode &&
909 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
910 			_dpu_encoder_irq_control(drm_enc, true);
911 		}
912 		/* skip if is already OFF or IDLE, resources are off already */
913 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
914 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
915 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
916 				      DRMID(drm_enc), sw_event,
917 				      dpu_enc->rc_state);
918 			mutex_unlock(&dpu_enc->rc_lock);
919 			return 0;
920 		}
921 
922 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
923 
924 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
925 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
926 				 "pre stop");
927 
928 		mutex_unlock(&dpu_enc->rc_lock);
929 		break;
930 
931 	case DPU_ENC_RC_EVENT_STOP:
932 		mutex_lock(&dpu_enc->rc_lock);
933 
934 		/* return if the resource control is already in OFF state */
935 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
936 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
937 				      DRMID(drm_enc), sw_event);
938 			mutex_unlock(&dpu_enc->rc_lock);
939 			return 0;
940 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
941 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
942 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
943 			mutex_unlock(&dpu_enc->rc_lock);
944 			return -EINVAL;
945 		}
946 
947 		/**
948 		 * expect to arrive here only if in either idle state or pre-off
949 		 * and in IDLE state the resources are already disabled
950 		 */
951 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
952 			_dpu_encoder_resource_control_helper(drm_enc, false);
953 
954 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
955 
956 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
957 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
958 				 "stop");
959 
960 		mutex_unlock(&dpu_enc->rc_lock);
961 		break;
962 
963 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
964 		mutex_lock(&dpu_enc->rc_lock);
965 
966 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
967 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
968 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
969 			mutex_unlock(&dpu_enc->rc_lock);
970 			return 0;
971 		}
972 
973 		/*
974 		 * if we are in ON but a frame was just kicked off,
975 		 * ignore the IDLE event, it's probably a stale timer event
976 		 */
977 		if (dpu_enc->frame_busy_mask[0]) {
978 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
979 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
980 			mutex_unlock(&dpu_enc->rc_lock);
981 			return 0;
982 		}
983 
984 		if (is_vid_mode)
985 			_dpu_encoder_irq_control(drm_enc, false);
986 		else
987 			_dpu_encoder_resource_control_helper(drm_enc, false);
988 
989 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
990 
991 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
992 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
993 				 "idle");
994 
995 		mutex_unlock(&dpu_enc->rc_lock);
996 		break;
997 
998 	default:
999 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1000 			  sw_event);
1001 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1002 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1003 				 "error");
1004 		break;
1005 	}
1006 
1007 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1008 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1009 			 "end");
1010 	return 0;
1011 }
1012 
1013 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1014 		struct drm_writeback_job *job)
1015 {
1016 	struct dpu_encoder_virt *dpu_enc;
1017 	int i;
1018 
1019 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1020 
1021 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1022 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1023 
1024 		if (phys->ops.prepare_wb_job)
1025 			phys->ops.prepare_wb_job(phys, job);
1026 
1027 	}
1028 }
1029 
1030 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1031 		struct drm_writeback_job *job)
1032 {
1033 	struct dpu_encoder_virt *dpu_enc;
1034 	int i;
1035 
1036 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1037 
1038 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1039 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1040 
1041 		if (phys->ops.cleanup_wb_job)
1042 			phys->ops.cleanup_wb_job(phys, job);
1043 
1044 	}
1045 }
1046 
1047 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1048 					     struct drm_crtc_state *crtc_state,
1049 					     struct drm_connector_state *conn_state)
1050 {
1051 	struct dpu_encoder_virt *dpu_enc;
1052 	struct msm_drm_private *priv;
1053 	struct dpu_kms *dpu_kms;
1054 	struct dpu_crtc_state *cstate;
1055 	struct dpu_global_state *global_state;
1056 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1057 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1058 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1059 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1060 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1061 	int num_lm, num_ctl, num_pp, num_dsc;
1062 	unsigned int dsc_mask = 0;
1063 	int i;
1064 
1065 	if (!drm_enc) {
1066 		DPU_ERROR("invalid encoder\n");
1067 		return;
1068 	}
1069 
1070 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1071 	DPU_DEBUG_ENC(dpu_enc, "\n");
1072 
1073 	priv = drm_enc->dev->dev_private;
1074 	dpu_kms = to_dpu_kms(priv->kms);
1075 
1076 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1077 	if (IS_ERR_OR_NULL(global_state)) {
1078 		DPU_ERROR("Failed to get global state");
1079 		return;
1080 	}
1081 
1082 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1083 
1084 	/* Query resource that have been reserved in atomic check step. */
1085 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1086 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1087 		ARRAY_SIZE(hw_pp));
1088 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1089 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1090 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1091 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1092 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1093 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1094 		ARRAY_SIZE(hw_dspp));
1095 
1096 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1097 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1098 						: NULL;
1099 
1100 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1101 						drm_enc->base.id, DPU_HW_BLK_DSC,
1102 						hw_dsc, ARRAY_SIZE(hw_dsc));
1103 	for (i = 0; i < num_dsc; i++) {
1104 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1105 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1106 	}
1107 
1108 	dpu_enc->dsc_mask = dsc_mask;
1109 
1110 	cstate = to_dpu_crtc_state(crtc_state);
1111 
1112 	for (i = 0; i < num_lm; i++) {
1113 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1114 
1115 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1116 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1117 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1118 	}
1119 
1120 	cstate->num_mixers = num_lm;
1121 
1122 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1123 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1124 
1125 		if (!dpu_enc->hw_pp[i]) {
1126 			DPU_ERROR_ENC(dpu_enc,
1127 				"no pp block assigned at idx: %d\n", i);
1128 			return;
1129 		}
1130 
1131 		if (!hw_ctl[i]) {
1132 			DPU_ERROR_ENC(dpu_enc,
1133 				"no ctl block assigned at idx: %d\n", i);
1134 			return;
1135 		}
1136 
1137 		phys->hw_pp = dpu_enc->hw_pp[i];
1138 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1139 
1140 		phys->cached_mode = crtc_state->adjusted_mode;
1141 		if (phys->ops.atomic_mode_set)
1142 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1143 	}
1144 }
1145 
1146 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1147 {
1148 	struct dpu_encoder_virt *dpu_enc = NULL;
1149 	int i;
1150 
1151 	if (!drm_enc || !drm_enc->dev) {
1152 		DPU_ERROR("invalid parameters\n");
1153 		return;
1154 	}
1155 
1156 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1157 	if (!dpu_enc || !dpu_enc->cur_master) {
1158 		DPU_ERROR("invalid dpu encoder/master\n");
1159 		return;
1160 	}
1161 
1162 
1163 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1164 		dpu_enc->cur_master->hw_mdptop &&
1165 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1166 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1167 			dpu_enc->cur_master->hw_mdptop);
1168 
1169 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1170 
1171 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1172 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1173 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1174 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1175 			if (!dpu_enc->hw_pp[i])
1176 				continue;
1177 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1178 		}
1179 	}
1180 }
1181 
1182 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1183 {
1184 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1185 
1186 	mutex_lock(&dpu_enc->enc_lock);
1187 
1188 	if (!dpu_enc->enabled)
1189 		goto out;
1190 
1191 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1192 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1193 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1194 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1195 
1196 	_dpu_encoder_virt_enable_helper(drm_enc);
1197 
1198 out:
1199 	mutex_unlock(&dpu_enc->enc_lock);
1200 }
1201 
1202 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1203 					struct drm_atomic_state *state)
1204 {
1205 	struct dpu_encoder_virt *dpu_enc = NULL;
1206 	int ret = 0;
1207 	struct drm_display_mode *cur_mode = NULL;
1208 
1209 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1210 
1211 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1212 
1213 	mutex_lock(&dpu_enc->enc_lock);
1214 
1215 	dpu_enc->commit_done_timedout = false;
1216 
1217 	dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1218 
1219 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1220 
1221 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1222 			     cur_mode->vdisplay);
1223 
1224 	/* always enable slave encoder before master */
1225 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1226 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1227 
1228 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1229 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1230 
1231 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1232 	if (ret) {
1233 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1234 				ret);
1235 		goto out;
1236 	}
1237 
1238 	_dpu_encoder_virt_enable_helper(drm_enc);
1239 
1240 	dpu_enc->enabled = true;
1241 
1242 out:
1243 	mutex_unlock(&dpu_enc->enc_lock);
1244 }
1245 
1246 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1247 					struct drm_atomic_state *state)
1248 {
1249 	struct dpu_encoder_virt *dpu_enc = NULL;
1250 	struct drm_crtc *crtc;
1251 	struct drm_crtc_state *old_state = NULL;
1252 	int i = 0;
1253 
1254 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1255 	DPU_DEBUG_ENC(dpu_enc, "\n");
1256 
1257 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1258 	if (crtc)
1259 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1260 
1261 	/*
1262 	 * The encoder is already disabled if self refresh mode was set earlier,
1263 	 * in the old_state for the corresponding crtc.
1264 	 */
1265 	if (old_state && old_state->self_refresh_active)
1266 		return;
1267 
1268 	mutex_lock(&dpu_enc->enc_lock);
1269 	dpu_enc->enabled = false;
1270 
1271 	trace_dpu_enc_disable(DRMID(drm_enc));
1272 
1273 	/* wait for idle */
1274 	dpu_encoder_wait_for_tx_complete(drm_enc);
1275 
1276 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1277 
1278 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1279 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1280 
1281 		if (phys->ops.disable)
1282 			phys->ops.disable(phys);
1283 	}
1284 
1285 
1286 	/* after phys waits for frame-done, should be no more frames pending */
1287 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1288 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1289 		del_timer_sync(&dpu_enc->frame_done_timer);
1290 	}
1291 
1292 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1293 
1294 	dpu_enc->connector = NULL;
1295 
1296 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1297 
1298 	mutex_unlock(&dpu_enc->enc_lock);
1299 }
1300 
1301 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1302 		struct dpu_rm *dpu_rm,
1303 		enum dpu_intf_type type, u32 controller_id)
1304 {
1305 	int i = 0;
1306 
1307 	if (type == INTF_WB)
1308 		return NULL;
1309 
1310 	for (i = 0; i < catalog->intf_count; i++) {
1311 		if (catalog->intf[i].type == type
1312 		    && catalog->intf[i].controller_id == controller_id) {
1313 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1314 		}
1315 	}
1316 
1317 	return NULL;
1318 }
1319 
1320 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1321 		struct dpu_encoder_phys *phy_enc)
1322 {
1323 	struct dpu_encoder_virt *dpu_enc = NULL;
1324 	unsigned long lock_flags;
1325 
1326 	if (!drm_enc || !phy_enc)
1327 		return;
1328 
1329 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1330 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1331 
1332 	atomic_inc(&phy_enc->vsync_cnt);
1333 
1334 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1335 	if (dpu_enc->crtc)
1336 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1337 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1338 
1339 	DPU_ATRACE_END("encoder_vblank_callback");
1340 }
1341 
1342 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1343 		struct dpu_encoder_phys *phy_enc)
1344 {
1345 	if (!phy_enc)
1346 		return;
1347 
1348 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1349 	atomic_inc(&phy_enc->underrun_cnt);
1350 
1351 	/* trigger dump only on the first underrun */
1352 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1353 		msm_disp_snapshot_state(drm_enc->dev);
1354 
1355 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1356 				  atomic_read(&phy_enc->underrun_cnt));
1357 	DPU_ATRACE_END("encoder_underrun_callback");
1358 }
1359 
1360 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1361 {
1362 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1363 	unsigned long lock_flags;
1364 
1365 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1366 	/* crtc should always be cleared before re-assigning */
1367 	WARN_ON(crtc && dpu_enc->crtc);
1368 	dpu_enc->crtc = crtc;
1369 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1370 }
1371 
1372 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1373 					struct drm_crtc *crtc, bool enable)
1374 {
1375 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1376 	unsigned long lock_flags;
1377 	int i;
1378 
1379 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1380 
1381 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1382 	if (dpu_enc->crtc != crtc) {
1383 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1384 		return;
1385 	}
1386 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1387 
1388 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1389 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1390 
1391 		if (phys->ops.control_vblank_irq)
1392 			phys->ops.control_vblank_irq(phys, enable);
1393 	}
1394 }
1395 
1396 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1397 		void (*frame_event_cb)(void *, u32 event),
1398 		void *frame_event_cb_data)
1399 {
1400 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1401 	unsigned long lock_flags;
1402 	bool enable;
1403 
1404 	enable = frame_event_cb ? true : false;
1405 
1406 	if (!drm_enc) {
1407 		DPU_ERROR("invalid encoder\n");
1408 		return;
1409 	}
1410 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1411 
1412 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1413 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1414 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1415 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1416 }
1417 
1418 void dpu_encoder_frame_done_callback(
1419 		struct drm_encoder *drm_enc,
1420 		struct dpu_encoder_phys *ready_phys, u32 event)
1421 {
1422 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1423 	unsigned int i;
1424 
1425 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1426 			| DPU_ENCODER_FRAME_EVENT_ERROR
1427 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1428 
1429 		if (!dpu_enc->frame_busy_mask[0]) {
1430 			/**
1431 			 * suppress frame_done without waiter,
1432 			 * likely autorefresh
1433 			 */
1434 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1435 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1436 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1437 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1438 			return;
1439 		}
1440 
1441 		/* One of the physical encoders has become idle */
1442 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1443 			if (dpu_enc->phys_encs[i] == ready_phys) {
1444 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1445 						dpu_enc->frame_busy_mask[0]);
1446 				clear_bit(i, dpu_enc->frame_busy_mask);
1447 			}
1448 		}
1449 
1450 		if (!dpu_enc->frame_busy_mask[0]) {
1451 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1452 			del_timer(&dpu_enc->frame_done_timer);
1453 
1454 			dpu_encoder_resource_control(drm_enc,
1455 					DPU_ENC_RC_EVENT_FRAME_DONE);
1456 
1457 			if (dpu_enc->crtc_frame_event_cb)
1458 				dpu_enc->crtc_frame_event_cb(
1459 					dpu_enc->crtc_frame_event_cb_data,
1460 					event);
1461 		}
1462 	} else {
1463 		if (dpu_enc->crtc_frame_event_cb)
1464 			dpu_enc->crtc_frame_event_cb(
1465 				dpu_enc->crtc_frame_event_cb_data, event);
1466 	}
1467 }
1468 
1469 static void dpu_encoder_off_work(struct work_struct *work)
1470 {
1471 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1472 			struct dpu_encoder_virt, delayed_off_work.work);
1473 
1474 	dpu_encoder_resource_control(&dpu_enc->base,
1475 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1476 
1477 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1478 				DPU_ENCODER_FRAME_EVENT_IDLE);
1479 }
1480 
1481 /**
1482  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1483  * @drm_enc: Pointer to drm encoder structure
1484  * @phys: Pointer to physical encoder structure
1485  * @extra_flush_bits: Additional bit mask to include in flush trigger
1486  */
1487 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1488 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1489 {
1490 	struct dpu_hw_ctl *ctl;
1491 	int pending_kickoff_cnt;
1492 	u32 ret = UINT_MAX;
1493 
1494 	if (!phys->hw_pp) {
1495 		DPU_ERROR("invalid pingpong hw\n");
1496 		return;
1497 	}
1498 
1499 	ctl = phys->hw_ctl;
1500 	if (!ctl->ops.trigger_flush) {
1501 		DPU_ERROR("missing trigger cb\n");
1502 		return;
1503 	}
1504 
1505 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1506 
1507 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1508 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1509 
1510 	ctl->ops.trigger_flush(ctl);
1511 
1512 	if (ctl->ops.get_pending_flush)
1513 		ret = ctl->ops.get_pending_flush(ctl);
1514 
1515 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1516 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1517 			phys->hw_intf ? phys->hw_intf->idx : -1,
1518 			phys->hw_wb ? phys->hw_wb->idx : -1,
1519 			pending_kickoff_cnt, ctl->idx,
1520 			extra_flush_bits, ret);
1521 }
1522 
1523 /**
1524  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1525  * @phys: Pointer to physical encoder structure
1526  */
1527 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1528 {
1529 	if (!phys) {
1530 		DPU_ERROR("invalid argument(s)\n");
1531 		return;
1532 	}
1533 
1534 	if (!phys->hw_pp) {
1535 		DPU_ERROR("invalid pingpong hw\n");
1536 		return;
1537 	}
1538 
1539 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1540 		phys->ops.trigger_start(phys);
1541 }
1542 
1543 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1544 {
1545 	struct dpu_hw_ctl *ctl;
1546 
1547 	ctl = phys_enc->hw_ctl;
1548 	if (ctl->ops.trigger_start) {
1549 		ctl->ops.trigger_start(ctl);
1550 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1551 	}
1552 }
1553 
1554 static int dpu_encoder_helper_wait_event_timeout(
1555 		int32_t drm_id,
1556 		u32 irq_idx,
1557 		struct dpu_encoder_wait_info *info)
1558 {
1559 	int rc = 0;
1560 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1561 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1562 	s64 time;
1563 
1564 	do {
1565 		rc = wait_event_timeout(*(info->wq),
1566 				atomic_read(info->atomic_cnt) == 0, jiffies);
1567 		time = ktime_to_ms(ktime_get());
1568 
1569 		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1570 						 expected_time,
1571 						 atomic_read(info->atomic_cnt));
1572 	/* If we timed out, counter is valid and time is less, wait again */
1573 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1574 			(time < expected_time));
1575 
1576 	return rc;
1577 }
1578 
1579 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1580 {
1581 	struct dpu_encoder_virt *dpu_enc;
1582 	struct dpu_hw_ctl *ctl;
1583 	int rc;
1584 	struct drm_encoder *drm_enc;
1585 
1586 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1587 	ctl = phys_enc->hw_ctl;
1588 	drm_enc = phys_enc->parent;
1589 
1590 	if (!ctl->ops.reset)
1591 		return;
1592 
1593 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1594 		      ctl->idx);
1595 
1596 	rc = ctl->ops.reset(ctl);
1597 	if (rc) {
1598 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1599 		msm_disp_snapshot_state(drm_enc->dev);
1600 	}
1601 
1602 	phys_enc->enable_state = DPU_ENC_ENABLED;
1603 }
1604 
1605 /**
1606  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1607  *	Iterate through the physical encoders and perform consolidated flush
1608  *	and/or control start triggering as needed. This is done in the virtual
1609  *	encoder rather than the individual physical ones in order to handle
1610  *	use cases that require visibility into multiple physical encoders at
1611  *	a time.
1612  * @dpu_enc: Pointer to virtual encoder structure
1613  */
1614 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1615 {
1616 	struct dpu_hw_ctl *ctl;
1617 	uint32_t i, pending_flush;
1618 	unsigned long lock_flags;
1619 
1620 	pending_flush = 0x0;
1621 
1622 	/* update pending counts and trigger kickoff ctl flush atomically */
1623 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1624 
1625 	/* don't perform flush/start operations for slave encoders */
1626 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1627 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1628 
1629 		if (phys->enable_state == DPU_ENC_DISABLED)
1630 			continue;
1631 
1632 		ctl = phys->hw_ctl;
1633 
1634 		/*
1635 		 * This is cleared in frame_done worker, which isn't invoked
1636 		 * for async commits. So don't set this for async, since it'll
1637 		 * roll over to the next commit.
1638 		 */
1639 		if (phys->split_role != ENC_ROLE_SLAVE)
1640 			set_bit(i, dpu_enc->frame_busy_mask);
1641 
1642 		if (!phys->ops.needs_single_flush ||
1643 				!phys->ops.needs_single_flush(phys))
1644 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1645 		else if (ctl->ops.get_pending_flush)
1646 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1647 	}
1648 
1649 	/* for split flush, combine pending flush masks and send to master */
1650 	if (pending_flush && dpu_enc->cur_master) {
1651 		_dpu_encoder_trigger_flush(
1652 				&dpu_enc->base,
1653 				dpu_enc->cur_master,
1654 				pending_flush);
1655 	}
1656 
1657 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1658 
1659 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1660 }
1661 
1662 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1663 {
1664 	struct dpu_encoder_virt *dpu_enc;
1665 	struct dpu_encoder_phys *phys;
1666 	unsigned int i;
1667 	struct dpu_hw_ctl *ctl;
1668 	struct msm_display_info *disp_info;
1669 
1670 	if (!drm_enc) {
1671 		DPU_ERROR("invalid encoder\n");
1672 		return;
1673 	}
1674 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1675 	disp_info = &dpu_enc->disp_info;
1676 
1677 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1678 		phys = dpu_enc->phys_encs[i];
1679 
1680 		ctl = phys->hw_ctl;
1681 		ctl->ops.clear_pending_flush(ctl);
1682 
1683 		/* update only for command mode primary ctl */
1684 		if ((phys == dpu_enc->cur_master) &&
1685 		    disp_info->is_cmd_mode
1686 		    && ctl->ops.trigger_pending)
1687 			ctl->ops.trigger_pending(ctl);
1688 	}
1689 }
1690 
1691 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1692 		struct drm_display_mode *mode)
1693 {
1694 	u64 pclk_rate;
1695 	u32 pclk_period;
1696 	u32 line_time;
1697 
1698 	/*
1699 	 * For linetime calculation, only operate on master encoder.
1700 	 */
1701 	if (!dpu_enc->cur_master)
1702 		return 0;
1703 
1704 	if (!dpu_enc->cur_master->ops.get_line_count) {
1705 		DPU_ERROR("get_line_count function not defined\n");
1706 		return 0;
1707 	}
1708 
1709 	pclk_rate = mode->clock; /* pixel clock in kHz */
1710 	if (pclk_rate == 0) {
1711 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1712 		return 0;
1713 	}
1714 
1715 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1716 	if (pclk_period == 0) {
1717 		DPU_ERROR("pclk period is 0\n");
1718 		return 0;
1719 	}
1720 
1721 	/*
1722 	 * Line time calculation based on Pixel clock and HTOTAL.
1723 	 * Final unit is in ns.
1724 	 */
1725 	line_time = (pclk_period * mode->htotal) / 1000;
1726 	if (line_time == 0) {
1727 		DPU_ERROR("line time calculation is 0\n");
1728 		return 0;
1729 	}
1730 
1731 	DPU_DEBUG_ENC(dpu_enc,
1732 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1733 			pclk_rate, pclk_period, line_time);
1734 
1735 	return line_time;
1736 }
1737 
1738 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1739 {
1740 	struct drm_display_mode *mode;
1741 	struct dpu_encoder_virt *dpu_enc;
1742 	u32 cur_line;
1743 	u32 line_time;
1744 	u32 vtotal, time_to_vsync;
1745 	ktime_t cur_time;
1746 
1747 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1748 
1749 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1750 		DPU_ERROR("crtc/crtc state object is NULL\n");
1751 		return -EINVAL;
1752 	}
1753 	mode = &drm_enc->crtc->state->adjusted_mode;
1754 
1755 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1756 	if (!line_time)
1757 		return -EINVAL;
1758 
1759 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1760 
1761 	vtotal = mode->vtotal;
1762 	if (cur_line >= vtotal)
1763 		time_to_vsync = line_time * vtotal;
1764 	else
1765 		time_to_vsync = line_time * (vtotal - cur_line);
1766 
1767 	if (time_to_vsync == 0) {
1768 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1769 				vtotal);
1770 		return -EINVAL;
1771 	}
1772 
1773 	cur_time = ktime_get();
1774 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1775 
1776 	DPU_DEBUG_ENC(dpu_enc,
1777 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1778 			cur_line, vtotal, time_to_vsync,
1779 			ktime_to_ms(cur_time),
1780 			ktime_to_ms(*wakeup_time));
1781 	return 0;
1782 }
1783 
1784 static u32
1785 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1786 				  u32 enc_ip_width)
1787 {
1788 	int ssm_delay, total_pixels, soft_slice_per_enc;
1789 
1790 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1791 
1792 	/*
1793 	 * minimum number of initial line pixels is a sum of:
1794 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1795 	 *    91 for 10 bpc) * 3
1796 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1797 	 * 3. the initial xmit delay
1798 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1799 	 * 5. 6 additional pixels as the output of the rate buffer is
1800 	 *    48 bits wide
1801 	 */
1802 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1803 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1804 	if (soft_slice_per_enc > 1)
1805 		total_pixels += (ssm_delay * 3);
1806 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1807 }
1808 
1809 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1810 				     struct dpu_hw_dsc *hw_dsc,
1811 				     struct dpu_hw_pingpong *hw_pp,
1812 				     struct drm_dsc_config *dsc,
1813 				     u32 common_mode,
1814 				     u32 initial_lines)
1815 {
1816 	if (hw_dsc->ops.dsc_config)
1817 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1818 
1819 	if (hw_dsc->ops.dsc_config_thresh)
1820 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1821 
1822 	if (hw_pp->ops.setup_dsc)
1823 		hw_pp->ops.setup_dsc(hw_pp);
1824 
1825 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1826 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1827 
1828 	if (hw_pp->ops.enable_dsc)
1829 		hw_pp->ops.enable_dsc(hw_pp);
1830 
1831 	if (ctl->ops.update_pending_flush_dsc)
1832 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1833 }
1834 
1835 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1836 				 struct drm_dsc_config *dsc)
1837 {
1838 	/* coding only for 2LM, 2enc, 1 dsc config */
1839 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1840 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1841 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1842 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1843 	int this_frame_slices;
1844 	int intf_ip_w, enc_ip_w;
1845 	int dsc_common_mode;
1846 	int pic_width;
1847 	u32 initial_lines;
1848 	int i;
1849 
1850 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1851 		hw_pp[i] = dpu_enc->hw_pp[i];
1852 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1853 
1854 		if (!hw_pp[i] || !hw_dsc[i]) {
1855 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1856 			return;
1857 		}
1858 	}
1859 
1860 	dsc_common_mode = 0;
1861 	pic_width = dsc->pic_width;
1862 
1863 	dsc_common_mode = DSC_MODE_SPLIT_PANEL;
1864 	if (dpu_encoder_use_dsc_merge(enc_master->parent))
1865 		dsc_common_mode |= DSC_MODE_MULTIPLEX;
1866 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1867 		dsc_common_mode |= DSC_MODE_VIDEO;
1868 
1869 	this_frame_slices = pic_width / dsc->slice_width;
1870 	intf_ip_w = this_frame_slices * dsc->slice_width;
1871 
1872 	/*
1873 	 * dsc merge case: when using 2 encoders for the same stream,
1874 	 * no. of slices need to be same on both the encoders.
1875 	 */
1876 	enc_ip_w = intf_ip_w / 2;
1877 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1878 
1879 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1880 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1881 					 dsc, dsc_common_mode, initial_lines);
1882 }
1883 
1884 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1885 {
1886 	struct dpu_encoder_virt *dpu_enc;
1887 	struct dpu_encoder_phys *phys;
1888 	bool needs_hw_reset = false;
1889 	unsigned int i;
1890 
1891 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1892 
1893 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1894 
1895 	/* prepare for next kickoff, may include waiting on previous kickoff */
1896 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1897 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1898 		phys = dpu_enc->phys_encs[i];
1899 		if (phys->ops.prepare_for_kickoff)
1900 			phys->ops.prepare_for_kickoff(phys);
1901 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1902 			needs_hw_reset = true;
1903 	}
1904 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1905 
1906 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1907 
1908 	/* if any phys needs reset, reset all phys, in-order */
1909 	if (needs_hw_reset) {
1910 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1911 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1912 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1913 		}
1914 	}
1915 
1916 	if (dpu_enc->dsc)
1917 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1918 }
1919 
1920 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1921 {
1922 	struct dpu_encoder_virt *dpu_enc;
1923 	unsigned int i;
1924 	struct dpu_encoder_phys *phys;
1925 
1926 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1927 
1928 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1929 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1930 			phys = dpu_enc->phys_encs[i];
1931 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1932 				DPU_DEBUG("invalid FB not kicking off\n");
1933 				return false;
1934 			}
1935 		}
1936 	}
1937 
1938 	return true;
1939 }
1940 
1941 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1942 {
1943 	struct dpu_encoder_virt *dpu_enc;
1944 	struct dpu_encoder_phys *phys;
1945 	unsigned long timeout_ms;
1946 	unsigned int i;
1947 
1948 	DPU_ATRACE_BEGIN("encoder_kickoff");
1949 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1950 
1951 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1952 
1953 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1954 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1955 
1956 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1957 	mod_timer(&dpu_enc->frame_done_timer,
1958 			jiffies + msecs_to_jiffies(timeout_ms));
1959 
1960 	/* All phys encs are ready to go, trigger the kickoff */
1961 	_dpu_encoder_kickoff_phys(dpu_enc);
1962 
1963 	/* allow phys encs to handle any post-kickoff business */
1964 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1965 		phys = dpu_enc->phys_encs[i];
1966 		if (phys->ops.handle_post_kickoff)
1967 			phys->ops.handle_post_kickoff(phys);
1968 	}
1969 
1970 	DPU_ATRACE_END("encoder_kickoff");
1971 }
1972 
1973 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1974 {
1975 	struct dpu_hw_mixer_cfg mixer;
1976 	int i, num_lm;
1977 	struct dpu_global_state *global_state;
1978 	struct dpu_hw_blk *hw_lm[2];
1979 	struct dpu_hw_mixer *hw_mixer[2];
1980 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1981 
1982 	memset(&mixer, 0, sizeof(mixer));
1983 
1984 	/* reset all mixers for this encoder */
1985 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
1986 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
1987 
1988 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
1989 
1990 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
1991 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1992 
1993 	for (i = 0; i < num_lm; i++) {
1994 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
1995 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
1996 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
1997 
1998 		/* clear all blendstages */
1999 		if (phys_enc->hw_ctl->ops.setup_blendstage)
2000 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2001 	}
2002 }
2003 
2004 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2005 				     struct dpu_hw_dsc *hw_dsc,
2006 				     struct dpu_hw_pingpong *hw_pp)
2007 {
2008 	if (hw_dsc->ops.dsc_disable)
2009 		hw_dsc->ops.dsc_disable(hw_dsc);
2010 
2011 	if (hw_pp->ops.disable_dsc)
2012 		hw_pp->ops.disable_dsc(hw_pp);
2013 
2014 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2015 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2016 
2017 	if (ctl->ops.update_pending_flush_dsc)
2018 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2019 }
2020 
2021 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2022 {
2023 	/* coding only for 2LM, 2enc, 1 dsc config */
2024 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2025 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2026 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2027 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2028 	int i;
2029 
2030 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2031 		hw_pp[i] = dpu_enc->hw_pp[i];
2032 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2033 
2034 		if (hw_pp[i] && hw_dsc[i])
2035 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2036 	}
2037 }
2038 
2039 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2040 {
2041 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2042 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2043 	int i;
2044 	struct dpu_encoder_virt *dpu_enc;
2045 
2046 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2047 
2048 	phys_enc->hw_ctl->ops.reset(ctl);
2049 
2050 	dpu_encoder_helper_reset_mixers(phys_enc);
2051 
2052 	/*
2053 	 * TODO: move the once-only operation like CTL flush/trigger
2054 	 * into dpu_encoder_virt_disable() and all operations which need
2055 	 * to be done per phys encoder into the phys_disable() op.
2056 	 */
2057 	if (phys_enc->hw_wb) {
2058 		/* disable the PP block */
2059 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2060 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2061 
2062 		/* mark WB flush as pending */
2063 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2064 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2065 	} else {
2066 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2067 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2068 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2069 						dpu_enc->phys_encs[i]->hw_intf,
2070 						PINGPONG_NONE);
2071 
2072 			/* mark INTF flush as pending */
2073 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2074 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2075 						dpu_enc->phys_encs[i]->hw_intf->idx);
2076 		}
2077 	}
2078 
2079 	/* reset the merge 3D HW block */
2080 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2081 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2082 				BLEND_3D_NONE);
2083 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2084 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2085 					phys_enc->hw_pp->merge_3d->idx);
2086 	}
2087 
2088 	if (dpu_enc->dsc) {
2089 		dpu_encoder_unprep_dsc(dpu_enc);
2090 		dpu_enc->dsc = NULL;
2091 	}
2092 
2093 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2094 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2095 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2096 
2097 	if (phys_enc->hw_intf)
2098 		intf_cfg.intf = phys_enc->hw_intf->idx;
2099 	if (phys_enc->hw_wb)
2100 		intf_cfg.wb = phys_enc->hw_wb->idx;
2101 
2102 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2103 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2104 
2105 	if (ctl->ops.reset_intf_cfg)
2106 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2107 
2108 	ctl->ops.trigger_flush(ctl);
2109 	ctl->ops.trigger_start(ctl);
2110 	ctl->ops.clear_pending_flush(ctl);
2111 }
2112 
2113 #ifdef CONFIG_DEBUG_FS
2114 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2115 {
2116 	struct dpu_encoder_virt *dpu_enc = s->private;
2117 	int i;
2118 
2119 	mutex_lock(&dpu_enc->enc_lock);
2120 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2121 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2122 
2123 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    ",
2124 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2125 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2126 				atomic_read(&phys->vsync_cnt),
2127 				atomic_read(&phys->underrun_cnt));
2128 
2129 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2130 	}
2131 	mutex_unlock(&dpu_enc->enc_lock);
2132 
2133 	return 0;
2134 }
2135 
2136 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2137 
2138 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2139 {
2140 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2141 
2142 	char name[12];
2143 
2144 	if (!drm_enc->dev) {
2145 		DPU_ERROR("invalid encoder or kms\n");
2146 		return -EINVAL;
2147 	}
2148 
2149 	snprintf(name, sizeof(name), "encoder%u", drm_enc->base.id);
2150 
2151 	/* create overall sub-directory for the encoder */
2152 	dpu_enc->debugfs_root = debugfs_create_dir(name,
2153 			drm_enc->dev->primary->debugfs_root);
2154 
2155 	/* don't error check these */
2156 	debugfs_create_file("status", 0600,
2157 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2158 
2159 	return 0;
2160 }
2161 #else
2162 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2163 {
2164 	return 0;
2165 }
2166 #endif
2167 
2168 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2169 {
2170 	return _dpu_encoder_init_debugfs(encoder);
2171 }
2172 
2173 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2174 {
2175 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2176 
2177 	debugfs_remove_recursive(dpu_enc->debugfs_root);
2178 }
2179 
2180 static int dpu_encoder_virt_add_phys_encs(
2181 		struct drm_device *dev,
2182 		struct msm_display_info *disp_info,
2183 		struct dpu_encoder_virt *dpu_enc,
2184 		struct dpu_enc_phys_init_params *params)
2185 {
2186 	struct dpu_encoder_phys *enc = NULL;
2187 
2188 	DPU_DEBUG_ENC(dpu_enc, "\n");
2189 
2190 	/*
2191 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2192 	 * in this function, check up-front.
2193 	 */
2194 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2195 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2196 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2197 			  dpu_enc->num_phys_encs);
2198 		return -EINVAL;
2199 	}
2200 
2201 
2202 	if (disp_info->intf_type == INTF_WB) {
2203 		enc = dpu_encoder_phys_wb_init(dev, params);
2204 
2205 		if (IS_ERR(enc)) {
2206 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2207 				PTR_ERR(enc));
2208 			return PTR_ERR(enc);
2209 		}
2210 
2211 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2212 		++dpu_enc->num_phys_encs;
2213 	} else if (disp_info->is_cmd_mode) {
2214 		enc = dpu_encoder_phys_cmd_init(dev, params);
2215 
2216 		if (IS_ERR(enc)) {
2217 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2218 				PTR_ERR(enc));
2219 			return PTR_ERR(enc);
2220 		}
2221 
2222 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2223 		++dpu_enc->num_phys_encs;
2224 	} else {
2225 		enc = dpu_encoder_phys_vid_init(dev, params);
2226 
2227 		if (IS_ERR(enc)) {
2228 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2229 				PTR_ERR(enc));
2230 			return PTR_ERR(enc);
2231 		}
2232 
2233 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2234 		++dpu_enc->num_phys_encs;
2235 	}
2236 
2237 	if (params->split_role == ENC_ROLE_SLAVE)
2238 		dpu_enc->cur_slave = enc;
2239 	else
2240 		dpu_enc->cur_master = enc;
2241 
2242 	return 0;
2243 }
2244 
2245 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2246 				 struct dpu_kms *dpu_kms,
2247 				 struct msm_display_info *disp_info)
2248 {
2249 	int ret = 0;
2250 	int i = 0;
2251 	struct dpu_enc_phys_init_params phys_params;
2252 
2253 	if (!dpu_enc) {
2254 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2255 		return -EINVAL;
2256 	}
2257 
2258 	dpu_enc->cur_master = NULL;
2259 
2260 	memset(&phys_params, 0, sizeof(phys_params));
2261 	phys_params.dpu_kms = dpu_kms;
2262 	phys_params.parent = &dpu_enc->base;
2263 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2264 
2265 	WARN_ON(disp_info->num_of_h_tiles < 1);
2266 
2267 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2268 
2269 	if (disp_info->intf_type != INTF_WB)
2270 		dpu_enc->idle_pc_supported =
2271 				dpu_kms->catalog->caps->has_idle_pc;
2272 
2273 	mutex_lock(&dpu_enc->enc_lock);
2274 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2275 		/*
2276 		 * Left-most tile is at index 0, content is controller id
2277 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2278 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2279 		 */
2280 		u32 controller_id = disp_info->h_tile_instance[i];
2281 
2282 		if (disp_info->num_of_h_tiles > 1) {
2283 			if (i == 0)
2284 				phys_params.split_role = ENC_ROLE_MASTER;
2285 			else
2286 				phys_params.split_role = ENC_ROLE_SLAVE;
2287 		} else {
2288 			phys_params.split_role = ENC_ROLE_SOLO;
2289 		}
2290 
2291 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2292 				i, controller_id, phys_params.split_role);
2293 
2294 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2295 							   disp_info->intf_type,
2296 							   controller_id);
2297 
2298 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2299 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2300 
2301 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2302 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2303 			ret = -EINVAL;
2304 			break;
2305 		}
2306 
2307 		if (phys_params.hw_intf && phys_params.hw_wb) {
2308 			DPU_ERROR_ENC(dpu_enc,
2309 					"invalid phys both intf and wb block at idx: %d\n", i);
2310 			ret = -EINVAL;
2311 			break;
2312 		}
2313 
2314 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2315 				dpu_enc, &phys_params);
2316 		if (ret) {
2317 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2318 			break;
2319 		}
2320 	}
2321 
2322 	mutex_unlock(&dpu_enc->enc_lock);
2323 
2324 	return ret;
2325 }
2326 
2327 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2328 {
2329 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2330 			frame_done_timer);
2331 	struct drm_encoder *drm_enc = &dpu_enc->base;
2332 	u32 event;
2333 
2334 	if (!drm_enc->dev) {
2335 		DPU_ERROR("invalid parameters\n");
2336 		return;
2337 	}
2338 
2339 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2340 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2341 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2342 		return;
2343 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2344 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2345 		return;
2346 	}
2347 
2348 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2349 
2350 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2351 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2352 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2353 }
2354 
2355 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2356 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2357 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2358 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2359 	.atomic_check = dpu_encoder_virt_atomic_check,
2360 };
2361 
2362 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2363 		.destroy = dpu_encoder_destroy,
2364 		.late_register = dpu_encoder_late_register,
2365 		.early_unregister = dpu_encoder_early_unregister,
2366 };
2367 
2368 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2369 		int drm_enc_mode,
2370 		struct msm_display_info *disp_info)
2371 {
2372 	struct msm_drm_private *priv = dev->dev_private;
2373 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2374 	struct drm_encoder *drm_enc = NULL;
2375 	struct dpu_encoder_virt *dpu_enc = NULL;
2376 	int ret = 0;
2377 
2378 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2379 	if (!dpu_enc)
2380 		return ERR_PTR(-ENOMEM);
2381 
2382 	ret = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2383 			       drm_enc_mode, NULL);
2384 	if (ret) {
2385 		devm_kfree(dev->dev, dpu_enc);
2386 		return ERR_PTR(ret);
2387 	}
2388 
2389 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2390 
2391 	spin_lock_init(&dpu_enc->enc_spinlock);
2392 	dpu_enc->enabled = false;
2393 	mutex_init(&dpu_enc->enc_lock);
2394 	mutex_init(&dpu_enc->rc_lock);
2395 
2396 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2397 	if (ret)
2398 		goto fail;
2399 
2400 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2401 	timer_setup(&dpu_enc->frame_done_timer,
2402 			dpu_encoder_frame_done_timeout, 0);
2403 
2404 	if (disp_info->intf_type == INTF_DP)
2405 		dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2406 				priv->dp[disp_info->h_tile_instance[0]]);
2407 
2408 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2409 			dpu_encoder_off_work);
2410 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2411 
2412 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2413 
2414 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2415 
2416 	return &dpu_enc->base;
2417 
2418 fail:
2419 	DPU_ERROR("failed to create encoder\n");
2420 	if (drm_enc)
2421 		dpu_encoder_destroy(drm_enc);
2422 
2423 	return ERR_PTR(ret);
2424 }
2425 
2426 /**
2427  * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2428  * @drm_enc:	encoder pointer
2429  *
2430  * Wait for hardware to have flushed the current pending changes to hardware at
2431  * a vblank or CTL_START. Physical encoders will map this differently depending
2432  * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2433  *
2434  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2435  */
2436 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2437 {
2438 	struct dpu_encoder_virt *dpu_enc = NULL;
2439 	int i, ret = 0;
2440 
2441 	if (!drm_enc) {
2442 		DPU_ERROR("invalid encoder\n");
2443 		return -EINVAL;
2444 	}
2445 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2446 	DPU_DEBUG_ENC(dpu_enc, "\n");
2447 
2448 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2449 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2450 
2451 		if (phys->ops.wait_for_commit_done) {
2452 			DPU_ATRACE_BEGIN("wait_for_commit_done");
2453 			ret = phys->ops.wait_for_commit_done(phys);
2454 			DPU_ATRACE_END("wait_for_commit_done");
2455 			if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2456 				dpu_enc->commit_done_timedout = true;
2457 				msm_disp_snapshot_state(drm_enc->dev);
2458 			}
2459 			if (ret)
2460 				return ret;
2461 		}
2462 	}
2463 
2464 	return ret;
2465 }
2466 
2467 /**
2468  * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2469  * @drm_enc:	encoder pointer
2470  *
2471  * Wait for the hardware to transfer all the pixels to the panel. Physical
2472  * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2473  * cmd mode -> pp_done.
2474  *
2475  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2476  */
2477 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2478 {
2479 	struct dpu_encoder_virt *dpu_enc = NULL;
2480 	int i, ret = 0;
2481 
2482 	if (!drm_enc) {
2483 		DPU_ERROR("invalid encoder\n");
2484 		return -EINVAL;
2485 	}
2486 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2487 	DPU_DEBUG_ENC(dpu_enc, "\n");
2488 
2489 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2490 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2491 
2492 		if (phys->ops.wait_for_tx_complete) {
2493 			DPU_ATRACE_BEGIN("wait_for_tx_complete");
2494 			ret = phys->ops.wait_for_tx_complete(phys);
2495 			DPU_ATRACE_END("wait_for_tx_complete");
2496 			if (ret)
2497 				return ret;
2498 		}
2499 	}
2500 
2501 	return ret;
2502 }
2503 
2504 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2505 {
2506 	struct dpu_encoder_virt *dpu_enc = NULL;
2507 
2508 	if (!encoder) {
2509 		DPU_ERROR("invalid encoder\n");
2510 		return INTF_MODE_NONE;
2511 	}
2512 	dpu_enc = to_dpu_encoder_virt(encoder);
2513 
2514 	if (dpu_enc->cur_master)
2515 		return dpu_enc->cur_master->intf_mode;
2516 
2517 	if (dpu_enc->num_phys_encs)
2518 		return dpu_enc->phys_encs[0]->intf_mode;
2519 
2520 	return INTF_MODE_NONE;
2521 }
2522 
2523 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2524 {
2525 	struct drm_encoder *encoder = phys_enc->parent;
2526 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2527 
2528 	return dpu_enc->dsc_mask;
2529 }
2530 
2531 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2532 			  struct dpu_enc_phys_init_params *p)
2533 {
2534 	int i;
2535 
2536 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2537 	phys_enc->hw_intf = p->hw_intf;
2538 	phys_enc->hw_wb = p->hw_wb;
2539 	phys_enc->parent = p->parent;
2540 	phys_enc->dpu_kms = p->dpu_kms;
2541 	phys_enc->split_role = p->split_role;
2542 	phys_enc->enc_spinlock = p->enc_spinlock;
2543 	phys_enc->enable_state = DPU_ENC_DISABLED;
2544 
2545 	for (i = 0; i < ARRAY_SIZE(phys_enc->irq); i++)
2546 		phys_enc->irq[i] = -EINVAL;
2547 
2548 	atomic_set(&phys_enc->vblank_refcount, 0);
2549 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2550 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2551 
2552 	atomic_set(&phys_enc->vsync_cnt, 0);
2553 	atomic_set(&phys_enc->underrun_cnt, 0);
2554 
2555 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2556 }
2557