// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Red Hat * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved. * * Author: Rob Clark */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include #include #include #include #include #include #include #include "msm_drv.h" #include "dpu_kms.h" #include "dpu_hwio.h" #include "dpu_hw_catalog.h" #include "dpu_hw_intf.h" #include "dpu_hw_ctl.h" #include "dpu_hw_dspp.h" #include "dpu_hw_dsc.h" #include "dpu_hw_merge3d.h" #include "dpu_formats.h" #include "dpu_encoder_phys.h" #include "dpu_crtc.h" #include "dpu_trace.h" #include "dpu_core_irq.h" #include "disp/msm_disp_snapshot.h" #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\ (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\ (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) /* * Two to anticipate panels that can do cmd/vid dynamic switching * plan is to create all possible physical encoder types, and switch between * them at runtime */ #define NUM_PHYS_ENCODER_TYPES 2 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) #define MAX_CHANNELS_PER_ENC 2 #define IDLE_SHORT_TIMEOUT 1 #define MAX_HDISPLAY_SPLIT 1080 /* timeout in frames waiting for frame done */ #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 /** * enum dpu_enc_rc_events - events for resource control state machine * @DPU_ENC_RC_EVENT_KICKOFF: * This event happens at NORMAL priority. * Event that signals the start of the transfer. When this event is * received, enable MDP/DSI core clocks. Regardless of the previous * state, the resource should be in ON state at the end of this event. * @DPU_ENC_RC_EVENT_FRAME_DONE: * This event happens at INTERRUPT level. * Event signals the end of the data transfer after the PP FRAME_DONE * event. At the end of this event, a delayed work is scheduled to go to * IDLE_PC state after IDLE_TIMEOUT time. * @DPU_ENC_RC_EVENT_PRE_STOP: * This event happens at NORMAL priority. * This event, when received during the ON state, leave the RC STATE * in the PRE_OFF state. It should be followed by the STOP event as * part of encoder disable. * If received during IDLE or OFF states, it will do nothing. * @DPU_ENC_RC_EVENT_STOP: * This event happens at NORMAL priority. * When this event is received, disable all the MDP/DSI core clocks, and * disable IRQs. It should be called from the PRE_OFF or IDLE states. * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. * PRE_OFF is expected when PRE_STOP was executed during the ON state. * Resource state should be in OFF at the end of the event. * @DPU_ENC_RC_EVENT_ENTER_IDLE: * This event happens at NORMAL priority from a work item. * Event signals that there were no frame updates for IDLE_TIMEOUT time. * This would disable MDP/DSI core clocks and change the resource state * to IDLE. */ enum dpu_enc_rc_events { DPU_ENC_RC_EVENT_KICKOFF = 1, DPU_ENC_RC_EVENT_FRAME_DONE, DPU_ENC_RC_EVENT_PRE_STOP, DPU_ENC_RC_EVENT_STOP, DPU_ENC_RC_EVENT_ENTER_IDLE }; /* * enum dpu_enc_rc_states - states that the resource control maintains * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state * @DPU_ENC_RC_STATE_ON: Resource is in ON state * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state */ enum dpu_enc_rc_states { DPU_ENC_RC_STATE_OFF, DPU_ENC_RC_STATE_PRE_OFF, DPU_ENC_RC_STATE_ON, DPU_ENC_RC_STATE_IDLE }; /** * struct dpu_encoder_virt - virtual encoder. Container of one or more physical * encoders. Virtual encoder manages one "logical" display. Physical * encoders manage one intf block, tied to a specific panel/sub-panel. * Virtual encoder defers as much as possible to the physical encoders. * Virtual encoder registers itself with the DRM Framework as the encoder. * @base: drm_encoder base class for registration with DRM * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes * @enabled: True if the encoder is active, protected by enc_lock * @commit_done_timedout: True if there has been a timeout on commit after * enabling the encoder. * @num_phys_encs: Actual number of physical encoders contained. * @phys_encs: Container of physical encoders managed. * @cur_master: Pointer to the current master in this mode. Optimization * Only valid after enable. Cleared as disable. * @cur_slave: As above but for the slave encoder. * @hw_pp: Handle to the pingpong blocks used for the display. No. * pingpong blocks can be different than num_phys_encs. * @hw_dsc: Handle to the DSC blocks used for the display. * @dsc_mask: Bitmask of used DSC blocks. * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped * for partial update right-only cases, such as pingpong * split where virtual pingpong does not generate IRQs * @crtc: Pointer to the currently assigned crtc. Normally you * would use crtc->state->encoder_mask to determine the * link between encoder/crtc. However in this case we need * to track crtc in the disable() hook which is called * _after_ encoder_mask is cleared. * @connector: If a mode is set, cached pointer to the active connector * @crtc_kickoff_cb: Callback into CRTC that will flush & start * all CTL paths * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb * @debugfs_root: Debug file system root file node * @enc_lock: Lock around physical encoder * create/destroy/enable/disable * @frame_busy_mask: Bitmask tracking which phys_enc we are still * busy processing current command. * Bit0 = phys_encs[0] etc. * @crtc_frame_event_cb: callback handler for frame event * @crtc_frame_event_cb_data: callback handler private data * @frame_done_timeout_ms: frame done timeout in ms * @frame_done_timer: watchdog timer for frame done event * @disp_info: local copy of msm_display_info struct * @idle_pc_supported: indicate if idle power collaps is supported * @rc_lock: resource control mutex lock to protect * virt encoder over various state changes * @rc_state: resource controller state * @delayed_off_work: delayed worker to schedule disabling of * clks and resources after IDLE_TIMEOUT time. * @topology: topology of the display * @idle_timeout: idle timeout duration in milliseconds * @wide_bus_en: wide bus is enabled on this interface * @dsc: drm_dsc_config pointer, for DSC-enabled encoders */ struct dpu_encoder_virt { struct drm_encoder base; spinlock_t enc_spinlock; bool enabled; bool commit_done_timedout; unsigned int num_phys_encs; struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; struct dpu_encoder_phys *cur_master; struct dpu_encoder_phys *cur_slave; struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; unsigned int dsc_mask; bool intfs_swapped; struct drm_crtc *crtc; struct drm_connector *connector; struct dentry *debugfs_root; struct mutex enc_lock; DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); void (*crtc_frame_event_cb)(void *, u32 event); void *crtc_frame_event_cb_data; atomic_t frame_done_timeout_ms; struct timer_list frame_done_timer; struct msm_display_info disp_info; bool idle_pc_supported; struct mutex rc_lock; enum dpu_enc_rc_states rc_state; struct delayed_work delayed_off_work; struct msm_display_topology topology; u32 idle_timeout; bool wide_bus_en; /* DSC configuration */ struct drm_dsc_config *dsc; }; #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) static u32 dither_matrix[DITHER_MATRIX_SZ] = { 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10 }; bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc) { const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); return dpu_enc->wide_bus_en; } bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc) { const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); return dpu_enc->dsc ? true : false; } int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc; int i, num_intf = 0; dpu_enc = to_dpu_encoder_virt(drm_enc); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->hw_intf && phys->hw_intf->ops.setup_misr && phys->hw_intf->ops.collect_misr) num_intf++; } return num_intf; } void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc; int i; dpu_enc = to_dpu_encoder_virt(drm_enc); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr) continue; phys->hw_intf->ops.setup_misr(phys->hw_intf); } } int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos) { struct dpu_encoder_virt *dpu_enc; int i, rc = 0, entries_added = 0; if (!drm_enc->crtc) { DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index); return -EINVAL; } dpu_enc = to_dpu_encoder_virt(drm_enc); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr) continue; rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]); if (rc) return rc; entries_added++; } return entries_added; } static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc) { struct dpu_hw_dither_cfg dither_cfg = { 0 }; if (!hw_pp->ops.setup_dither) return; switch (bpc) { case 6: dither_cfg.c0_bitdepth = 6; dither_cfg.c1_bitdepth = 6; dither_cfg.c2_bitdepth = 6; dither_cfg.c3_bitdepth = 6; dither_cfg.temporal_en = 0; break; default: hw_pp->ops.setup_dither(hw_pp, NULL); return; } memcpy(&dither_cfg.matrix, dither_matrix, sizeof(u32) * DITHER_MATRIX_SZ); hw_pp->ops.setup_dither(hw_pp, &dither_cfg); } static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode) { switch (intf_mode) { case INTF_MODE_VIDEO: return "INTF_MODE_VIDEO"; case INTF_MODE_CMD: return "INTF_MODE_CMD"; case INTF_MODE_WB_BLOCK: return "INTF_MODE_WB_BLOCK"; case INTF_MODE_WB_LINE: return "INTF_MODE_WB_LINE"; default: return "INTF_MODE_UNKNOWN"; } } void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, enum dpu_intr_idx intr_idx) { DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n", DRMID(phys_enc->parent), dpu_encoder_helper_get_intf_type(phys_enc->intf_mode), phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1, phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1, phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc, DPU_ENCODER_FRAME_EVENT_ERROR); } static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, u32 irq_idx, struct dpu_encoder_wait_info *info); int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, int irq_idx, void (*func)(void *arg), struct dpu_encoder_wait_info *wait_info) { u32 irq_status; int ret; if (!wait_info) { DPU_ERROR("invalid params\n"); return -EINVAL; } /* note: do master / slave checking outside */ /* return EWOULDBLOCK since we know the wait isn't necessary */ if (phys_enc->enable_state == DPU_ENC_DISABLED) { DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n", DRMID(phys_enc->parent), func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); return -EWOULDBLOCK; } if (irq_idx < 0) { DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n", DRMID(phys_enc->parent), func); return 0; } DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n", DRMID(phys_enc->parent), func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt)); ret = dpu_encoder_helper_wait_event_timeout( DRMID(phys_enc->parent), irq_idx, wait_info); if (ret <= 0) { irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx); if (irq_status) { unsigned long flags; DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), DRMID(phys_enc->parent), func, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt)); local_irq_save(flags); func(phys_enc); local_irq_restore(flags); ret = 0; } else { ret = -ETIMEDOUT; DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n", DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), DRMID(phys_enc->parent), func, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt)); } } else { ret = 0; trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), func, irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt)); } return ret; } int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL; return phys ? atomic_read(&phys->vsync_cnt) : 0; } int dpu_encoder_get_linecount(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc; struct dpu_encoder_phys *phys; int linecount = 0; dpu_enc = to_dpu_encoder_virt(drm_enc); phys = dpu_enc ? dpu_enc->cur_master : NULL; if (phys && phys->ops.get_line_count) linecount = phys->ops.get_line_count(phys); return linecount; } static void dpu_encoder_destroy(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = NULL; int i = 0; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); mutex_lock(&dpu_enc->enc_lock); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->ops.destroy) { phys->ops.destroy(phys); --dpu_enc->num_phys_encs; dpu_enc->phys_encs[i] = NULL; } } if (dpu_enc->num_phys_encs) DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", dpu_enc->num_phys_encs); dpu_enc->num_phys_encs = 0; mutex_unlock(&dpu_enc->enc_lock); drm_encoder_cleanup(drm_enc); mutex_destroy(&dpu_enc->enc_lock); } void dpu_encoder_helper_split_config( struct dpu_encoder_phys *phys_enc, enum dpu_intf interface) { struct dpu_encoder_virt *dpu_enc; struct split_pipe_cfg cfg = { 0 }; struct dpu_hw_mdp *hw_mdptop; struct msm_display_info *disp_info; if (!phys_enc->hw_mdptop || !phys_enc->parent) { DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL); return; } dpu_enc = to_dpu_encoder_virt(phys_enc->parent); hw_mdptop = phys_enc->hw_mdptop; disp_info = &dpu_enc->disp_info; if (disp_info->intf_type != INTF_DSI) return; /** * disable split modes since encoder will be operating in as the only * encoder, either for the entire use case in the case of, for example, * single DSI, or for this frame in the case of left/right only partial * update. */ if (phys_enc->split_role == ENC_ROLE_SOLO) { if (hw_mdptop->ops.setup_split_pipe) hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); return; } cfg.en = true; cfg.mode = phys_enc->intf_mode; cfg.intf = interface; if (cfg.en && phys_enc->ops.needs_single_flush && phys_enc->ops.needs_single_flush(phys_enc)) cfg.split_flush_en = true; if (phys_enc->split_role == ENC_ROLE_MASTER) { DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); if (hw_mdptop->ops.setup_split_pipe) hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); } } bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); int i, intf_count = 0, num_dsc = 0; for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) if (dpu_enc->phys_encs[i]) intf_count++; /* See dpu_encoder_get_topology, we only support 2:2:1 topology */ if (dpu_enc->dsc) num_dsc = 2; return (num_dsc > 0) && (num_dsc > intf_count); } static struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc) { struct msm_drm_private *priv = drm_enc->dev->dev_private; struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); int index = dpu_enc->disp_info.h_tile_instance[0]; if (dpu_enc->disp_info.intf_type == INTF_DSI) return msm_dsi_get_dsc_config(priv->dsi[index]); return NULL; } static struct msm_display_topology dpu_encoder_get_topology( struct dpu_encoder_virt *dpu_enc, struct dpu_kms *dpu_kms, struct drm_display_mode *mode, struct drm_crtc_state *crtc_state, struct drm_dsc_config *dsc) { struct msm_display_topology topology = {0}; int i, intf_count = 0; for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) if (dpu_enc->phys_encs[i]) intf_count++; /* Datapath topology selection * * Dual display * 2 LM, 2 INTF ( Split display using 2 interfaces) * * Single display * 1 LM, 1 INTF * 2 LM, 1 INTF (stream merge to support high resolution interfaces) * * Add dspps to the reservation requirements if ctm is requested */ if (intf_count == 2) topology.num_lm = 2; else if (!dpu_kms->catalog->caps->has_3d_merge) topology.num_lm = 1; else topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1; if (crtc_state->ctm) topology.num_dspp = topology.num_lm; topology.num_intf = intf_count; if (dsc) { /* * In case of Display Stream Compression (DSC), we would use * 2 DSC encoders, 2 layer mixers and 1 interface * this is power optimal and can drive up to (including) 4k * screens */ topology.num_dsc = 2; topology.num_lm = 2; topology.num_intf = 1; } return topology; } static int dpu_encoder_virt_atomic_check( struct drm_encoder *drm_enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct dpu_encoder_virt *dpu_enc; struct msm_drm_private *priv; struct dpu_kms *dpu_kms; struct drm_display_mode *adj_mode; struct msm_display_topology topology; struct dpu_global_state *global_state; struct drm_dsc_config *dsc; int i = 0; int ret = 0; if (!drm_enc || !crtc_state || !conn_state) { DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", drm_enc != NULL, crtc_state != NULL, conn_state != NULL); return -EINVAL; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); adj_mode = &crtc_state->adjusted_mode; global_state = dpu_kms_get_global_state(crtc_state->state); if (IS_ERR(global_state)) return PTR_ERR(global_state); trace_dpu_enc_atomic_check(DRMID(drm_enc)); /* perform atomic check on the first physical encoder (master) */ for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->ops.atomic_check) ret = phys->ops.atomic_check(phys, crtc_state, conn_state); if (ret) { DPU_ERROR_ENC(dpu_enc, "mode unsupported, phys idx %d\n", i); return ret; } } dsc = dpu_encoder_get_dsc_config(drm_enc); topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc); /* * Release and Allocate resources on every modeset * Dont allocate when active is false. */ if (drm_atomic_crtc_needs_modeset(crtc_state)) { dpu_rm_release(global_state, drm_enc); if (!crtc_state->active_changed || crtc_state->enable) ret = dpu_rm_reserve(&dpu_kms->rm, global_state, drm_enc, crtc_state, topology); } trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags); return ret; } static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, struct msm_display_info *disp_info) { struct dpu_vsync_source_cfg vsync_cfg = { 0 }; struct msm_drm_private *priv; struct dpu_kms *dpu_kms; struct dpu_hw_mdp *hw_mdptop; struct drm_encoder *drm_enc; struct dpu_encoder_phys *phys_enc; int i; if (!dpu_enc || !disp_info) { DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", dpu_enc != NULL, disp_info != NULL); return; } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { DPU_ERROR("invalid num phys enc %d/%d\n", dpu_enc->num_phys_encs, (int) ARRAY_SIZE(dpu_enc->hw_pp)); return; } drm_enc = &dpu_enc->base; /* this pointers are checked in virt_enable_helper */ priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); hw_mdptop = dpu_kms->hw_mdp; if (!hw_mdptop) { DPU_ERROR("invalid mdptop\n"); return; } if (hw_mdptop->ops.setup_vsync_source && disp_info->is_cmd_mode) { for (i = 0; i < dpu_enc->num_phys_encs; i++) vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; vsync_cfg.pp_count = dpu_enc->num_phys_encs; vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode); if (disp_info->is_te_using_watchdog_timer) vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; else vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); for (i = 0; i < dpu_enc->num_phys_encs; i++) { phys_enc = dpu_enc->phys_encs[i]; if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel) phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf, vsync_cfg.vsync_source); } } } static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) { struct dpu_encoder_virt *dpu_enc; int i; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->ops.irq_control) phys->ops.irq_control(phys, enable); } } static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, bool enable) { struct msm_drm_private *priv; struct dpu_kms *dpu_kms; struct dpu_encoder_virt *dpu_enc; dpu_enc = to_dpu_encoder_virt(drm_enc); priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); if (!dpu_enc->cur_master) { DPU_ERROR("encoder master not set\n"); return; } if (enable) { /* enable DPU core clks */ pm_runtime_get_sync(&dpu_kms->pdev->dev); /* enable all the irq */ _dpu_encoder_irq_control(drm_enc, true); } else { /* disable all the irq */ _dpu_encoder_irq_control(drm_enc, false); /* disable DPU core clks */ pm_runtime_put_sync(&dpu_kms->pdev->dev); } } static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, u32 sw_event) { struct dpu_encoder_virt *dpu_enc; struct msm_drm_private *priv; bool is_vid_mode = false; if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { DPU_ERROR("invalid parameters\n"); return -EINVAL; } dpu_enc = to_dpu_encoder_virt(drm_enc); priv = drm_enc->dev->dev_private; is_vid_mode = !dpu_enc->disp_info.is_cmd_mode; /* * when idle_pc is not supported, process only KICKOFF, STOP and MODESET * events and return early for other events (ie wb display). */ if (!dpu_enc->idle_pc_supported && (sw_event != DPU_ENC_RC_EVENT_KICKOFF && sw_event != DPU_ENC_RC_EVENT_STOP && sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) return 0; trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "begin"); switch (sw_event) { case DPU_ENC_RC_EVENT_KICKOFF: /* cancel delayed off work, if any */ if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", sw_event); mutex_lock(&dpu_enc->rc_lock); /* return if the resource control is already in ON state */ if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n", DRMID(drm_enc), sw_event); mutex_unlock(&dpu_enc->rc_lock); return 0; } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); mutex_unlock(&dpu_enc->rc_lock); return -EINVAL; } if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) _dpu_encoder_irq_control(drm_enc, true); else _dpu_encoder_resource_control_helper(drm_enc, true); dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "kickoff"); mutex_unlock(&dpu_enc->rc_lock); break; case DPU_ENC_RC_EVENT_FRAME_DONE: /* * mutex lock is not used as this event happens at interrupt * context. And locking is not required as, the other events * like KICKOFF and STOP does a wait-for-idle before executing * the resource_control */ if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); return -EINVAL; } /* * schedule off work item only when there are no * frames pending */ if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { DRM_DEBUG_KMS("id:%d skip schedule work\n", DRMID(drm_enc)); return 0; } queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, msecs_to_jiffies(dpu_enc->idle_timeout)); trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "frame done"); break; case DPU_ENC_RC_EVENT_PRE_STOP: /* cancel delayed off work, if any */ if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", sw_event); mutex_lock(&dpu_enc->rc_lock); if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { _dpu_encoder_irq_control(drm_enc, true); } /* skip if is already OFF or IDLE, resources are off already */ else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); mutex_unlock(&dpu_enc->rc_lock); return 0; } dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "pre stop"); mutex_unlock(&dpu_enc->rc_lock); break; case DPU_ENC_RC_EVENT_STOP: mutex_lock(&dpu_enc->rc_lock); /* return if the resource control is already in OFF state */ if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", DRMID(drm_enc), sw_event); mutex_unlock(&dpu_enc->rc_lock); return 0; } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); mutex_unlock(&dpu_enc->rc_lock); return -EINVAL; } /** * expect to arrive here only if in either idle state or pre-off * and in IDLE state the resources are already disabled */ if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) _dpu_encoder_resource_control_helper(drm_enc, false); dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "stop"); mutex_unlock(&dpu_enc->rc_lock); break; case DPU_ENC_RC_EVENT_ENTER_IDLE: mutex_lock(&dpu_enc->rc_lock); if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); mutex_unlock(&dpu_enc->rc_lock); return 0; } /* * if we are in ON but a frame was just kicked off, * ignore the IDLE event, it's probably a stale timer event */ if (dpu_enc->frame_busy_mask[0]) { DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); mutex_unlock(&dpu_enc->rc_lock); return 0; } if (is_vid_mode) _dpu_encoder_irq_control(drm_enc, false); else _dpu_encoder_resource_control_helper(drm_enc, false); dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "idle"); mutex_unlock(&dpu_enc->rc_lock); break; default: DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), sw_event); trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "error"); break; } trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "end"); return 0; } void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc, struct drm_writeback_job *job) { struct dpu_encoder_virt *dpu_enc; int i; dpu_enc = to_dpu_encoder_virt(drm_enc); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->ops.prepare_wb_job) phys->ops.prepare_wb_job(phys, job); } } void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc, struct drm_writeback_job *job) { struct dpu_encoder_virt *dpu_enc; int i; dpu_enc = to_dpu_encoder_virt(drm_enc); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->ops.cleanup_wb_job) phys->ops.cleanup_wb_job(phys, job); } } static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct dpu_encoder_virt *dpu_enc; struct msm_drm_private *priv; struct dpu_kms *dpu_kms; struct dpu_crtc_state *cstate; struct dpu_global_state *global_state; struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC]; struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC]; struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC]; struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL }; struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC]; int num_lm, num_ctl, num_pp, num_dsc; unsigned int dsc_mask = 0; int i; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); global_state = dpu_kms_get_existing_global_state(dpu_kms); if (IS_ERR_OR_NULL(global_state)) { DPU_ERROR("Failed to get global state"); return; } trace_dpu_enc_mode_set(DRMID(drm_enc)); /* Query resource that have been reserved in atomic check step. */ num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp, ARRAY_SIZE(hw_pp)); num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl)); num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp, ARRAY_SIZE(hw_dspp)); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i]) : NULL; num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, drm_enc->base.id, DPU_HW_BLK_DSC, hw_dsc, ARRAY_SIZE(hw_dsc)); for (i = 0; i < num_dsc; i++) { dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]); dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0); } dpu_enc->dsc_mask = dsc_mask; cstate = to_dpu_crtc_state(crtc_state); for (i = 0; i < num_lm; i++) { int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]); cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]); cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]); } cstate->num_mixers = num_lm; for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (!dpu_enc->hw_pp[i]) { DPU_ERROR_ENC(dpu_enc, "no pp block assigned at idx: %d\n", i); return; } if (!hw_ctl[i]) { DPU_ERROR_ENC(dpu_enc, "no ctl block assigned at idx: %d\n", i); return; } phys->hw_pp = dpu_enc->hw_pp[i]; phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]); phys->cached_mode = crtc_state->adjusted_mode; if (phys->ops.atomic_mode_set) phys->ops.atomic_mode_set(phys, crtc_state, conn_state); } } static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = NULL; int i; if (!drm_enc || !drm_enc->dev) { DPU_ERROR("invalid parameters\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); if (!dpu_enc || !dpu_enc->cur_master) { DPU_ERROR("invalid dpu encoder/master\n"); return; } if (dpu_enc->disp_info.intf_type == INTF_DP && dpu_enc->cur_master->hw_mdptop && dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select) dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select( dpu_enc->cur_master->hw_mdptop); _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); if (dpu_enc->disp_info.intf_type == INTF_DSI && !WARN_ON(dpu_enc->num_phys_encs == 0)) { unsigned bpc = dpu_enc->connector->display_info.bpc; for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { if (!dpu_enc->hw_pp[i]) continue; _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc); } } } void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); mutex_lock(&dpu_enc->enc_lock); if (!dpu_enc->enabled) goto out; if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); _dpu_encoder_virt_enable_helper(drm_enc); out: mutex_unlock(&dpu_enc->enc_lock); } static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc, struct drm_atomic_state *state) { struct dpu_encoder_virt *dpu_enc = NULL; int ret = 0; struct drm_display_mode *cur_mode = NULL; dpu_enc = to_dpu_encoder_virt(drm_enc); dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc); mutex_lock(&dpu_enc->enc_lock); dpu_enc->commit_done_timedout = false; dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc); cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, cur_mode->vdisplay); /* always enable slave encoder before master */ if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); if (ret) { DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", ret); goto out; } _dpu_encoder_virt_enable_helper(drm_enc); dpu_enc->enabled = true; out: mutex_unlock(&dpu_enc->enc_lock); } static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc, struct drm_atomic_state *state) { struct dpu_encoder_virt *dpu_enc = NULL; struct drm_crtc *crtc; struct drm_crtc_state *old_state = NULL; int i = 0; dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc); if (crtc) old_state = drm_atomic_get_old_crtc_state(state, crtc); /* * The encoder is already disabled if self refresh mode was set earlier, * in the old_state for the corresponding crtc. */ if (old_state && old_state->self_refresh_active) return; mutex_lock(&dpu_enc->enc_lock); dpu_enc->enabled = false; trace_dpu_enc_disable(DRMID(drm_enc)); /* wait for idle */ dpu_encoder_wait_for_tx_complete(drm_enc); dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->ops.disable) phys->ops.disable(phys); } /* after phys waits for frame-done, should be no more frames pending */ if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); del_timer_sync(&dpu_enc->frame_done_timer); } dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); dpu_enc->connector = NULL; DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); mutex_unlock(&dpu_enc->enc_lock); } static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog, struct dpu_rm *dpu_rm, enum dpu_intf_type type, u32 controller_id) { int i = 0; if (type == INTF_WB) return NULL; for (i = 0; i < catalog->intf_count; i++) { if (catalog->intf[i].type == type && catalog->intf[i].controller_id == controller_id) { return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id); } } return NULL; } void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, struct dpu_encoder_phys *phy_enc) { struct dpu_encoder_virt *dpu_enc = NULL; unsigned long lock_flags; if (!drm_enc || !phy_enc) return; DPU_ATRACE_BEGIN("encoder_vblank_callback"); dpu_enc = to_dpu_encoder_virt(drm_enc); atomic_inc(&phy_enc->vsync_cnt); spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); if (dpu_enc->crtc) dpu_crtc_vblank_callback(dpu_enc->crtc); spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); DPU_ATRACE_END("encoder_vblank_callback"); } void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, struct dpu_encoder_phys *phy_enc) { if (!phy_enc) return; DPU_ATRACE_BEGIN("encoder_underrun_callback"); atomic_inc(&phy_enc->underrun_cnt); /* trigger dump only on the first underrun */ if (atomic_read(&phy_enc->underrun_cnt) == 1) msm_disp_snapshot_state(drm_enc->dev); trace_dpu_enc_underrun_cb(DRMID(drm_enc), atomic_read(&phy_enc->underrun_cnt)); DPU_ATRACE_END("encoder_underrun_callback"); } void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); unsigned long lock_flags; spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); /* crtc should always be cleared before re-assigning */ WARN_ON(crtc && dpu_enc->crtc); dpu_enc->crtc = crtc; spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); } void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc, bool enable) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); unsigned long lock_flags; int i; trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); if (dpu_enc->crtc != crtc) { spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); return; } spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->ops.control_vblank_irq) phys->ops.control_vblank_irq(phys, enable); } } void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, void (*frame_event_cb)(void *, u32 event), void *frame_event_cb_data) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); unsigned long lock_flags; bool enable; enable = frame_event_cb ? true : false; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); dpu_enc->crtc_frame_event_cb = frame_event_cb; dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); } void dpu_encoder_frame_done_callback( struct drm_encoder *drm_enc, struct dpu_encoder_phys *ready_phys, u32 event) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); unsigned int i; if (event & (DPU_ENCODER_FRAME_EVENT_DONE | DPU_ENCODER_FRAME_EVENT_ERROR | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { if (!dpu_enc->frame_busy_mask[0]) { /** * suppress frame_done without waiter, * likely autorefresh */ trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event, dpu_encoder_helper_get_intf_type(ready_phys->intf_mode), ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1, ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1); return; } /* One of the physical encoders has become idle */ for (i = 0; i < dpu_enc->num_phys_encs; i++) { if (dpu_enc->phys_encs[i] == ready_phys) { trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, dpu_enc->frame_busy_mask[0]); clear_bit(i, dpu_enc->frame_busy_mask); } } if (!dpu_enc->frame_busy_mask[0]) { atomic_set(&dpu_enc->frame_done_timeout_ms, 0); del_timer(&dpu_enc->frame_done_timer); dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_FRAME_DONE); if (dpu_enc->crtc_frame_event_cb) dpu_enc->crtc_frame_event_cb( dpu_enc->crtc_frame_event_cb_data, event); } } else { if (dpu_enc->crtc_frame_event_cb) dpu_enc->crtc_frame_event_cb( dpu_enc->crtc_frame_event_cb_data, event); } } static void dpu_encoder_off_work(struct work_struct *work) { struct dpu_encoder_virt *dpu_enc = container_of(work, struct dpu_encoder_virt, delayed_off_work.work); dpu_encoder_resource_control(&dpu_enc->base, DPU_ENC_RC_EVENT_ENTER_IDLE); dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, DPU_ENCODER_FRAME_EVENT_IDLE); } /** * _dpu_encoder_trigger_flush - trigger flush for a physical encoder * @drm_enc: Pointer to drm encoder structure * @phys: Pointer to physical encoder structure * @extra_flush_bits: Additional bit mask to include in flush trigger */ static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) { struct dpu_hw_ctl *ctl; int pending_kickoff_cnt; u32 ret = UINT_MAX; if (!phys->hw_pp) { DPU_ERROR("invalid pingpong hw\n"); return; } ctl = phys->hw_ctl; if (!ctl->ops.trigger_flush) { DPU_ERROR("missing trigger cb\n"); return; } pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); if (extra_flush_bits && ctl->ops.update_pending_flush) ctl->ops.update_pending_flush(ctl, extra_flush_bits); ctl->ops.trigger_flush(ctl); if (ctl->ops.get_pending_flush) ret = ctl->ops.get_pending_flush(ctl); trace_dpu_enc_trigger_flush(DRMID(drm_enc), dpu_encoder_helper_get_intf_type(phys->intf_mode), phys->hw_intf ? phys->hw_intf->idx : -1, phys->hw_wb ? phys->hw_wb->idx : -1, pending_kickoff_cnt, ctl->idx, extra_flush_bits, ret); } /** * _dpu_encoder_trigger_start - trigger start for a physical encoder * @phys: Pointer to physical encoder structure */ static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) { if (!phys) { DPU_ERROR("invalid argument(s)\n"); return; } if (!phys->hw_pp) { DPU_ERROR("invalid pingpong hw\n"); return; } if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) phys->ops.trigger_start(phys); } void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) { struct dpu_hw_ctl *ctl; ctl = phys_enc->hw_ctl; if (ctl->ops.trigger_start) { ctl->ops.trigger_start(ctl); trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); } } static int dpu_encoder_helper_wait_event_timeout( int32_t drm_id, u32 irq_idx, struct dpu_encoder_wait_info *info) { int rc = 0; s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; s64 jiffies = msecs_to_jiffies(info->timeout_ms); s64 time; do { rc = wait_event_timeout(*(info->wq), atomic_read(info->atomic_cnt) == 0, jiffies); time = ktime_to_ms(ktime_get()); trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time, expected_time, atomic_read(info->atomic_cnt)); /* If we timed out, counter is valid and time is less, wait again */ } while (atomic_read(info->atomic_cnt) && (rc == 0) && (time < expected_time)); return rc; } static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) { struct dpu_encoder_virt *dpu_enc; struct dpu_hw_ctl *ctl; int rc; struct drm_encoder *drm_enc; dpu_enc = to_dpu_encoder_virt(phys_enc->parent); ctl = phys_enc->hw_ctl; drm_enc = phys_enc->parent; if (!ctl->ops.reset) return; DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc), ctl->idx); rc = ctl->ops.reset(ctl); if (rc) { DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); msm_disp_snapshot_state(drm_enc->dev); } phys_enc->enable_state = DPU_ENC_ENABLED; } /** * _dpu_encoder_kickoff_phys - handle physical encoder kickoff * Iterate through the physical encoders and perform consolidated flush * and/or control start triggering as needed. This is done in the virtual * encoder rather than the individual physical ones in order to handle * use cases that require visibility into multiple physical encoders at * a time. * @dpu_enc: Pointer to virtual encoder structure */ static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) { struct dpu_hw_ctl *ctl; uint32_t i, pending_flush; unsigned long lock_flags; pending_flush = 0x0; /* update pending counts and trigger kickoff ctl flush atomically */ spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); /* don't perform flush/start operations for slave encoders */ for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->enable_state == DPU_ENC_DISABLED) continue; ctl = phys->hw_ctl; /* * This is cleared in frame_done worker, which isn't invoked * for async commits. So don't set this for async, since it'll * roll over to the next commit. */ if (phys->split_role != ENC_ROLE_SLAVE) set_bit(i, dpu_enc->frame_busy_mask); if (!phys->ops.needs_single_flush || !phys->ops.needs_single_flush(phys)) _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); else if (ctl->ops.get_pending_flush) pending_flush |= ctl->ops.get_pending_flush(ctl); } /* for split flush, combine pending flush masks and send to master */ if (pending_flush && dpu_enc->cur_master) { _dpu_encoder_trigger_flush( &dpu_enc->base, dpu_enc->cur_master, pending_flush); } _dpu_encoder_trigger_start(dpu_enc->cur_master); spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); } void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc; struct dpu_encoder_phys *phys; unsigned int i; struct dpu_hw_ctl *ctl; struct msm_display_info *disp_info; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); disp_info = &dpu_enc->disp_info; for (i = 0; i < dpu_enc->num_phys_encs; i++) { phys = dpu_enc->phys_encs[i]; ctl = phys->hw_ctl; ctl->ops.clear_pending_flush(ctl); /* update only for command mode primary ctl */ if ((phys == dpu_enc->cur_master) && disp_info->is_cmd_mode && ctl->ops.trigger_pending) ctl->ops.trigger_pending(ctl); } } static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, struct drm_display_mode *mode) { u64 pclk_rate; u32 pclk_period; u32 line_time; /* * For linetime calculation, only operate on master encoder. */ if (!dpu_enc->cur_master) return 0; if (!dpu_enc->cur_master->ops.get_line_count) { DPU_ERROR("get_line_count function not defined\n"); return 0; } pclk_rate = mode->clock; /* pixel clock in kHz */ if (pclk_rate == 0) { DPU_ERROR("pclk is 0, cannot calculate line time\n"); return 0; } pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); if (pclk_period == 0) { DPU_ERROR("pclk period is 0\n"); return 0; } /* * Line time calculation based on Pixel clock and HTOTAL. * Final unit is in ns. */ line_time = (pclk_period * mode->htotal) / 1000; if (line_time == 0) { DPU_ERROR("line time calculation is 0\n"); return 0; } DPU_DEBUG_ENC(dpu_enc, "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", pclk_rate, pclk_period, line_time); return line_time; } int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) { struct drm_display_mode *mode; struct dpu_encoder_virt *dpu_enc; u32 cur_line; u32 line_time; u32 vtotal, time_to_vsync; ktime_t cur_time; dpu_enc = to_dpu_encoder_virt(drm_enc); if (!drm_enc->crtc || !drm_enc->crtc->state) { DPU_ERROR("crtc/crtc state object is NULL\n"); return -EINVAL; } mode = &drm_enc->crtc->state->adjusted_mode; line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); if (!line_time) return -EINVAL; cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); vtotal = mode->vtotal; if (cur_line >= vtotal) time_to_vsync = line_time * vtotal; else time_to_vsync = line_time * (vtotal - cur_line); if (time_to_vsync == 0) { DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", vtotal); return -EINVAL; } cur_time = ktime_get(); *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); DPU_DEBUG_ENC(dpu_enc, "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", cur_line, vtotal, time_to_vsync, ktime_to_ms(cur_time), ktime_to_ms(*wakeup_time)); return 0; } static u32 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc, u32 enc_ip_width) { int ssm_delay, total_pixels, soft_slice_per_enc; soft_slice_per_enc = enc_ip_width / dsc->slice_width; /* * minimum number of initial line pixels is a sum of: * 1. sub-stream multiplexer delay (83 groups for 8bpc, * 91 for 10 bpc) * 3 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3 * 3. the initial xmit delay * 4. total pipeline delay through the "lock step" of encoder (47) * 5. 6 additional pixels as the output of the rate buffer is * 48 bits wide */ ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92); total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47; if (soft_slice_per_enc > 1) total_pixels += (ssm_delay * 3); return DIV_ROUND_UP(total_pixels, dsc->slice_width); } static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl, struct dpu_hw_dsc *hw_dsc, struct dpu_hw_pingpong *hw_pp, struct drm_dsc_config *dsc, u32 common_mode, u32 initial_lines) { if (hw_dsc->ops.dsc_config) hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines); if (hw_dsc->ops.dsc_config_thresh) hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc); if (hw_pp->ops.setup_dsc) hw_pp->ops.setup_dsc(hw_pp); if (hw_dsc->ops.dsc_bind_pingpong_blk) hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx); if (hw_pp->ops.enable_dsc) hw_pp->ops.enable_dsc(hw_pp); if (ctl->ops.update_pending_flush_dsc) ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx); } static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc, struct drm_dsc_config *dsc) { /* coding only for 2LM, 2enc, 1 dsc config */ struct dpu_encoder_phys *enc_master = dpu_enc->cur_master; struct dpu_hw_ctl *ctl = enc_master->hw_ctl; struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; int this_frame_slices; int intf_ip_w, enc_ip_w; int dsc_common_mode; int pic_width; u32 initial_lines; int i; for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { hw_pp[i] = dpu_enc->hw_pp[i]; hw_dsc[i] = dpu_enc->hw_dsc[i]; if (!hw_pp[i] || !hw_dsc[i]) { DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n"); return; } } dsc_common_mode = 0; pic_width = dsc->pic_width; dsc_common_mode = DSC_MODE_SPLIT_PANEL; if (dpu_encoder_use_dsc_merge(enc_master->parent)) dsc_common_mode |= DSC_MODE_MULTIPLEX; if (enc_master->intf_mode == INTF_MODE_VIDEO) dsc_common_mode |= DSC_MODE_VIDEO; this_frame_slices = pic_width / dsc->slice_width; intf_ip_w = this_frame_slices * dsc->slice_width; /* * dsc merge case: when using 2 encoders for the same stream, * no. of slices need to be same on both the encoders. */ enc_ip_w = intf_ip_w / 2; initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i], dsc, dsc_common_mode, initial_lines); } void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc; struct dpu_encoder_phys *phys; bool needs_hw_reset = false; unsigned int i; dpu_enc = to_dpu_encoder_virt(drm_enc); trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); /* prepare for next kickoff, may include waiting on previous kickoff */ DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); for (i = 0; i < dpu_enc->num_phys_encs; i++) { phys = dpu_enc->phys_encs[i]; if (phys->ops.prepare_for_kickoff) phys->ops.prepare_for_kickoff(phys); if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) needs_hw_reset = true; } DPU_ATRACE_END("enc_prepare_for_kickoff"); dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); /* if any phys needs reset, reset all phys, in-order */ if (needs_hw_reset) { trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); for (i = 0; i < dpu_enc->num_phys_encs; i++) { dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); } } if (dpu_enc->dsc) dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc); } bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc; unsigned int i; struct dpu_encoder_phys *phys; dpu_enc = to_dpu_encoder_virt(drm_enc); if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { for (i = 0; i < dpu_enc->num_phys_encs; i++) { phys = dpu_enc->phys_encs[i]; if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) { DPU_DEBUG("invalid FB not kicking off\n"); return false; } } } return true; } void dpu_encoder_kickoff(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc; struct dpu_encoder_phys *phys; unsigned long timeout_ms; unsigned int i; DPU_ATRACE_BEGIN("encoder_kickoff"); dpu_enc = to_dpu_encoder_virt(drm_enc); trace_dpu_enc_kickoff(DRMID(drm_enc)); timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); mod_timer(&dpu_enc->frame_done_timer, jiffies + msecs_to_jiffies(timeout_ms)); /* All phys encs are ready to go, trigger the kickoff */ _dpu_encoder_kickoff_phys(dpu_enc); /* allow phys encs to handle any post-kickoff business */ for (i = 0; i < dpu_enc->num_phys_encs; i++) { phys = dpu_enc->phys_encs[i]; if (phys->ops.handle_post_kickoff) phys->ops.handle_post_kickoff(phys); } DPU_ATRACE_END("encoder_kickoff"); } static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc) { struct dpu_hw_mixer_cfg mixer; int i, num_lm; struct dpu_global_state *global_state; struct dpu_hw_blk *hw_lm[2]; struct dpu_hw_mixer *hw_mixer[2]; struct dpu_hw_ctl *ctl = phys_enc->hw_ctl; memset(&mixer, 0, sizeof(mixer)); /* reset all mixers for this encoder */ if (phys_enc->hw_ctl->ops.clear_all_blendstages) phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl); global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms); num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state, phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); for (i = 0; i < num_lm; i++) { hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]); if (phys_enc->hw_ctl->ops.update_pending_flush_mixer) phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx); /* clear all blendstages */ if (phys_enc->hw_ctl->ops.setup_blendstage) phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL); } } static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl, struct dpu_hw_dsc *hw_dsc, struct dpu_hw_pingpong *hw_pp) { if (hw_dsc->ops.dsc_disable) hw_dsc->ops.dsc_disable(hw_dsc); if (hw_pp->ops.disable_dsc) hw_pp->ops.disable_dsc(hw_pp); if (hw_dsc->ops.dsc_bind_pingpong_blk) hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE); if (ctl->ops.update_pending_flush_dsc) ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx); } static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc) { /* coding only for 2LM, 2enc, 1 dsc config */ struct dpu_encoder_phys *enc_master = dpu_enc->cur_master; struct dpu_hw_ctl *ctl = enc_master->hw_ctl; struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; int i; for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { hw_pp[i] = dpu_enc->hw_pp[i]; hw_dsc[i] = dpu_enc->hw_dsc[i]; if (hw_pp[i] && hw_dsc[i]) dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]); } } void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc) { struct dpu_hw_ctl *ctl = phys_enc->hw_ctl; struct dpu_hw_intf_cfg intf_cfg = { 0 }; int i; struct dpu_encoder_virt *dpu_enc; dpu_enc = to_dpu_encoder_virt(phys_enc->parent); phys_enc->hw_ctl->ops.reset(ctl); dpu_encoder_helper_reset_mixers(phys_enc); /* * TODO: move the once-only operation like CTL flush/trigger * into dpu_encoder_virt_disable() and all operations which need * to be done per phys encoder into the phys_disable() op. */ if (phys_enc->hw_wb) { /* disable the PP block */ if (phys_enc->hw_wb->ops.bind_pingpong_blk) phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE); /* mark WB flush as pending */ if (phys_enc->hw_ctl->ops.update_pending_flush_wb) phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx); } else { for (i = 0; i < dpu_enc->num_phys_encs; i++) { if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk) phys_enc->hw_intf->ops.bind_pingpong_blk( dpu_enc->phys_encs[i]->hw_intf, PINGPONG_NONE); /* mark INTF flush as pending */ if (phys_enc->hw_ctl->ops.update_pending_flush_intf) phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl, dpu_enc->phys_encs[i]->hw_intf->idx); } } /* reset the merge 3D HW block */ if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) { phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d, BLEND_3D_NONE); if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d) phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl, phys_enc->hw_pp->merge_3d->idx); } if (dpu_enc->dsc) { dpu_encoder_unprep_dsc(dpu_enc); dpu_enc->dsc = NULL; } intf_cfg.stream_sel = 0; /* Don't care value for video mode */ intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc); intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc); if (phys_enc->hw_intf) intf_cfg.intf = phys_enc->hw_intf->idx; if (phys_enc->hw_wb) intf_cfg.wb = phys_enc->hw_wb->idx; if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx; if (ctl->ops.reset_intf_cfg) ctl->ops.reset_intf_cfg(ctl, &intf_cfg); ctl->ops.trigger_flush(ctl); ctl->ops.trigger_start(ctl); ctl->ops.clear_pending_flush(ctl); } #ifdef CONFIG_DEBUG_FS static int _dpu_encoder_status_show(struct seq_file *s, void *data) { struct dpu_encoder_virt *dpu_enc = s->private; int i; mutex_lock(&dpu_enc->enc_lock); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d ", phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1, phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1, atomic_read(&phys->vsync_cnt), atomic_read(&phys->underrun_cnt)); seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode)); } mutex_unlock(&dpu_enc->enc_lock); return 0; } DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status); static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); char name[12]; if (!drm_enc->dev) { DPU_ERROR("invalid encoder or kms\n"); return -EINVAL; } snprintf(name, sizeof(name), "encoder%u", drm_enc->base.id); /* create overall sub-directory for the encoder */ dpu_enc->debugfs_root = debugfs_create_dir(name, drm_enc->dev->primary->debugfs_root); /* don't error check these */ debugfs_create_file("status", 0600, dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops); return 0; } #else static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) { return 0; } #endif static int dpu_encoder_late_register(struct drm_encoder *encoder) { return _dpu_encoder_init_debugfs(encoder); } static void dpu_encoder_early_unregister(struct drm_encoder *encoder) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); debugfs_remove_recursive(dpu_enc->debugfs_root); } static int dpu_encoder_virt_add_phys_encs( struct drm_device *dev, struct msm_display_info *disp_info, struct dpu_encoder_virt *dpu_enc, struct dpu_enc_phys_init_params *params) { struct dpu_encoder_phys *enc = NULL; DPU_DEBUG_ENC(dpu_enc, "\n"); /* * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types * in this function, check up-front. */ if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= ARRAY_SIZE(dpu_enc->phys_encs)) { DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", dpu_enc->num_phys_encs); return -EINVAL; } if (disp_info->intf_type == INTF_WB) { enc = dpu_encoder_phys_wb_init(dev, params); if (IS_ERR(enc)) { DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n", PTR_ERR(enc)); return PTR_ERR(enc); } dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; ++dpu_enc->num_phys_encs; } else if (disp_info->is_cmd_mode) { enc = dpu_encoder_phys_cmd_init(dev, params); if (IS_ERR(enc)) { DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", PTR_ERR(enc)); return PTR_ERR(enc); } dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; ++dpu_enc->num_phys_encs; } else { enc = dpu_encoder_phys_vid_init(dev, params); if (IS_ERR(enc)) { DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", PTR_ERR(enc)); return PTR_ERR(enc); } dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; ++dpu_enc->num_phys_encs; } if (params->split_role == ENC_ROLE_SLAVE) dpu_enc->cur_slave = enc; else dpu_enc->cur_master = enc; return 0; } static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, struct dpu_kms *dpu_kms, struct msm_display_info *disp_info) { int ret = 0; int i = 0; struct dpu_enc_phys_init_params phys_params; if (!dpu_enc) { DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL); return -EINVAL; } dpu_enc->cur_master = NULL; memset(&phys_params, 0, sizeof(phys_params)); phys_params.dpu_kms = dpu_kms; phys_params.parent = &dpu_enc->base; phys_params.enc_spinlock = &dpu_enc->enc_spinlock; WARN_ON(disp_info->num_of_h_tiles < 1); DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); if (disp_info->intf_type != INTF_WB) dpu_enc->idle_pc_supported = dpu_kms->catalog->caps->has_idle_pc; mutex_lock(&dpu_enc->enc_lock); for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { /* * Left-most tile is at index 0, content is controller id * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right */ u32 controller_id = disp_info->h_tile_instance[i]; if (disp_info->num_of_h_tiles > 1) { if (i == 0) phys_params.split_role = ENC_ROLE_MASTER; else phys_params.split_role = ENC_ROLE_SLAVE; } else { phys_params.split_role = ENC_ROLE_SOLO; } DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", i, controller_id, phys_params.split_role); phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm, disp_info->intf_type, controller_id); if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX) phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id); if (!phys_params.hw_intf && !phys_params.hw_wb) { DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i); ret = -EINVAL; break; } if (phys_params.hw_intf && phys_params.hw_wb) { DPU_ERROR_ENC(dpu_enc, "invalid phys both intf and wb block at idx: %d\n", i); ret = -EINVAL; break; } ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info, dpu_enc, &phys_params); if (ret) { DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); break; } } mutex_unlock(&dpu_enc->enc_lock); return ret; } static void dpu_encoder_frame_done_timeout(struct timer_list *t) { struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, frame_done_timer); struct drm_encoder *drm_enc = &dpu_enc->base; u32 event; if (!drm_enc->dev) { DPU_ERROR("invalid parameters\n"); return; } if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); return; } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); return; } DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n"); event = DPU_ENCODER_FRAME_EVENT_ERROR; trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); } static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { .atomic_mode_set = dpu_encoder_virt_atomic_mode_set, .atomic_disable = dpu_encoder_virt_atomic_disable, .atomic_enable = dpu_encoder_virt_atomic_enable, .atomic_check = dpu_encoder_virt_atomic_check, }; static const struct drm_encoder_funcs dpu_encoder_funcs = { .destroy = dpu_encoder_destroy, .late_register = dpu_encoder_late_register, .early_unregister = dpu_encoder_early_unregister, }; struct drm_encoder *dpu_encoder_init(struct drm_device *dev, int drm_enc_mode, struct msm_display_info *disp_info) { struct msm_drm_private *priv = dev->dev_private; struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); struct drm_encoder *drm_enc = NULL; struct dpu_encoder_virt *dpu_enc = NULL; int ret = 0; dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); if (!dpu_enc) return ERR_PTR(-ENOMEM); ret = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, drm_enc_mode, NULL); if (ret) { devm_kfree(dev->dev, dpu_enc); return ERR_PTR(ret); } drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); spin_lock_init(&dpu_enc->enc_spinlock); dpu_enc->enabled = false; mutex_init(&dpu_enc->enc_lock); mutex_init(&dpu_enc->rc_lock); ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); if (ret) goto fail; atomic_set(&dpu_enc->frame_done_timeout_ms, 0); timer_setup(&dpu_enc->frame_done_timer, dpu_encoder_frame_done_timeout, 0); if (disp_info->intf_type == INTF_DP) dpu_enc->wide_bus_en = msm_dp_wide_bus_available( priv->dp[disp_info->h_tile_instance[0]]); INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, dpu_encoder_off_work); dpu_enc->idle_timeout = IDLE_TIMEOUT; memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); DPU_DEBUG_ENC(dpu_enc, "created\n"); return &dpu_enc->base; fail: DPU_ERROR("failed to create encoder\n"); if (drm_enc) dpu_encoder_destroy(drm_enc); return ERR_PTR(ret); } /** * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state * @drm_enc: encoder pointer * * Wait for hardware to have flushed the current pending changes to hardware at * a vblank or CTL_START. Physical encoders will map this differently depending * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START. * * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise */ int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = NULL; int i, ret = 0; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return -EINVAL; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->ops.wait_for_commit_done) { DPU_ATRACE_BEGIN("wait_for_commit_done"); ret = phys->ops.wait_for_commit_done(phys); DPU_ATRACE_END("wait_for_commit_done"); if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) { dpu_enc->commit_done_timedout = true; msm_disp_snapshot_state(drm_enc->dev); } if (ret) return ret; } } return ret; } /** * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel * @drm_enc: encoder pointer * * Wait for the hardware to transfer all the pixels to the panel. Physical * encoders will map this differently depending on the type: vid mode -> vsync_irq, * cmd mode -> pp_done. * * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise */ int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = NULL; int i, ret = 0; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return -EINVAL; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys->ops.wait_for_tx_complete) { DPU_ATRACE_BEGIN("wait_for_tx_complete"); ret = phys->ops.wait_for_tx_complete(phys); DPU_ATRACE_END("wait_for_tx_complete"); if (ret) return ret; } } return ret; } enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) { struct dpu_encoder_virt *dpu_enc = NULL; if (!encoder) { DPU_ERROR("invalid encoder\n"); return INTF_MODE_NONE; } dpu_enc = to_dpu_encoder_virt(encoder); if (dpu_enc->cur_master) return dpu_enc->cur_master->intf_mode; if (dpu_enc->num_phys_encs) return dpu_enc->phys_encs[0]->intf_mode; return INTF_MODE_NONE; } unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc) { struct drm_encoder *encoder = phys_enc->parent; struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); return dpu_enc->dsc_mask; } void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc, struct dpu_enc_phys_init_params *p) { int i; phys_enc->hw_mdptop = p->dpu_kms->hw_mdp; phys_enc->hw_intf = p->hw_intf; phys_enc->hw_wb = p->hw_wb; phys_enc->parent = p->parent; phys_enc->dpu_kms = p->dpu_kms; phys_enc->split_role = p->split_role; phys_enc->enc_spinlock = p->enc_spinlock; phys_enc->enable_state = DPU_ENC_DISABLED; for (i = 0; i < ARRAY_SIZE(phys_enc->irq); i++) phys_enc->irq[i] = -EINVAL; atomic_set(&phys_enc->vblank_refcount, 0); atomic_set(&phys_enc->pending_kickoff_cnt, 0); atomic_set(&phys_enc->pending_ctlstart_cnt, 0); atomic_set(&phys_enc->vsync_cnt, 0); atomic_set(&phys_enc->underrun_cnt, 0); init_waitqueue_head(&phys_enc->pending_kickoff_wq); }