phy.c (1846ac3dbec0894095520b2756b68c4fd81e3fbb) | phy.c (c47faa364cfb249d5d7670fb7293a6f9acd8aa9e) |
---|---|
1/* | 1/* |
2 * PHY functions 3 * | |
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> 5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> 6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> 7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 * 21 */ 22 | 2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> 3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> 4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> 5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * 19 */ 20 |
21/***********************\ 22* PHY related functions * 23\***********************/ 24 |
|
23#include <linux/delay.h> 24#include <linux/slab.h> 25#include <asm/unaligned.h> 26 27#include "ath5k.h" 28#include "reg.h" 29#include "rfbuffer.h" 30#include "rfgain.h" 31#include "../regd.h" 32 33 | 25#include <linux/delay.h> 26#include <linux/slab.h> 27#include <asm/unaligned.h> 28 29#include "ath5k.h" 30#include "reg.h" 31#include "rfbuffer.h" 32#include "rfgain.h" 33#include "../regd.h" 34 35 |
36/** 37 * DOC: PHY related functions 38 * 39 * Here we handle the low-level functions related to baseband 40 * and analog frontend (RF) parts. This is by far the most complex 41 * part of the hw code so make sure you know what you are doing. 42 * 43 * Here is a list of what this is all about: 44 * 45 * - Channel setting/switching 46 * 47 * - Automatic Gain Control (AGC) calibration 48 * 49 * - Noise Floor calibration 50 * 51 * - I/Q imbalance calibration (QAM correction) 52 * 53 * - Calibration due to thermal changes (gain_F) 54 * 55 * - Spur noise mitigation 56 * 57 * - RF/PHY initialization for the various operating modes and bwmodes 58 * 59 * - Antenna control 60 * 61 * - TX power control per channel/rate/packet type 62 * 63 * Also have in mind we never got documentation for most of these 64 * functions, what we have comes mostly from Atheros's code, reverse 65 * engineering and patent docs/presentations etc. 66 */ 67 68 |
|
34/******************\ 35* Helper functions * 36\******************/ 37 | 69/******************\ 70* Helper functions * 71\******************/ 72 |
38/* 39 * Get the PHY Chip revision | 73/** 74 * ath5k_hw_radio_revision() - Get the PHY Chip revision 75 * @ah: The &struct ath5k_hw 76 * @band: One of enum ieee80211_band 77 * 78 * Returns the revision number of a 2GHz, 5GHz or single chip 79 * radio. |
40 */ | 80 */ |
41u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band) | 81u16 82ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band) |
42{ 43 unsigned int i; 44 u32 srev; 45 u16 ret; 46 47 /* 48 * Set the radio chip access register 49 */ --- 26 unchanged lines hidden (view full) --- 76 } 77 78 /* Reset to the 5GHz mode */ 79 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 80 81 return ret; 82} 83 | 83{ 84 unsigned int i; 85 u32 srev; 86 u16 ret; 87 88 /* 89 * Set the radio chip access register 90 */ --- 26 unchanged lines hidden (view full) --- 117 } 118 119 /* Reset to the 5GHz mode */ 120 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 121 122 return ret; 123} 124 |
84/* 85 * Check if a channel is supported | 125/** 126 * ath5k_channel_ok() - Check if a channel is supported by the hw 127 * @ah: The &struct ath5k_hw 128 * @channel: The &struct ieee80211_channel 129 * 130 * Note: We don't do any regulatory domain checks here, it's just 131 * a sanity check. |
86 */ | 132 */ |
87bool ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel) | 133bool 134ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel) |
88{ 89 u16 freq = channel->center_freq; 90 91 /* Check if the channel is in our supported range */ 92 if (channel->band == IEEE80211_BAND_2GHZ) { 93 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && 94 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) 95 return true; 96 } else if (channel->band == IEEE80211_BAND_5GHZ) 97 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && 98 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) 99 return true; 100 101 return false; 102} 103 | 135{ 136 u16 freq = channel->center_freq; 137 138 /* Check if the channel is in our supported range */ 139 if (channel->band == IEEE80211_BAND_2GHZ) { 140 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && 141 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) 142 return true; 143 } else if (channel->band == IEEE80211_BAND_5GHZ) 144 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && 145 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) 146 return true; 147 148 return false; 149} 150 |
104bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, | 151/** 152 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise 153 * @ah: The &struct ath5k_hw 154 * @channel: The &struct ieee80211_channel 155 */ 156bool 157ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, |
105 struct ieee80211_channel *channel) 106{ 107 u8 refclk_freq; 108 109 if ((ah->ah_radio == AR5K_RF5112) || 110 (ah->ah_radio == AR5K_RF5413) || 111 (ah->ah_radio == AR5K_RF2413) || 112 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) --- 4 unchanged lines hidden (view full) --- 117 if ((channel->center_freq % refclk_freq != 0) && 118 ((channel->center_freq % refclk_freq < 10) || 119 (channel->center_freq % refclk_freq > 22))) 120 return true; 121 else 122 return false; 123} 124 | 158 struct ieee80211_channel *channel) 159{ 160 u8 refclk_freq; 161 162 if ((ah->ah_radio == AR5K_RF5112) || 163 (ah->ah_radio == AR5K_RF5413) || 164 (ah->ah_radio == AR5K_RF2413) || 165 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) --- 4 unchanged lines hidden (view full) --- 170 if ((channel->center_freq % refclk_freq != 0) && 171 ((channel->center_freq % refclk_freq < 10) || 172 (channel->center_freq % refclk_freq > 22))) 173 return true; 174 else 175 return false; 176} 177 |
125/* 126 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER | 178/** 179 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer 180 * @ah: The &struct ath5k_hw 181 * @rf_regs: The struct ath5k_rf_reg 182 * @val: New value 183 * @reg_id: RF register ID 184 * @set: Indicate we need to swap data 185 * 186 * This is an internal function used to modify RF Banks before 187 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more 188 * infos. |
127 */ | 189 */ |
128static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, 129 const struct ath5k_rf_reg *rf_regs, | 190static unsigned int 191ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs, |
130 u32 val, u8 reg_id, bool set) 131{ 132 const struct ath5k_rf_reg *rfreg = NULL; 133 u8 offset, bank, num_bits, col, position; 134 u16 entry; 135 u32 mask, data, last_bit, bits_shifted, first_bit; 136 u32 *rfb; 137 s32 bits_left; --- 61 unchanged lines hidden (view full) --- 199 } 200 201 data = set ? 1 : ath5k_hw_bitswap(data, num_bits); 202 203 return data; 204} 205 206/** | 192 u32 val, u8 reg_id, bool set) 193{ 194 const struct ath5k_rf_reg *rfreg = NULL; 195 u8 offset, bank, num_bits, col, position; 196 u16 entry; 197 u32 mask, data, last_bit, bits_shifted, first_bit; 198 u32 *rfb; 199 s32 bits_left; --- 61 unchanged lines hidden (view full) --- 261 } 262 263 data = set ? 1 : ath5k_hw_bitswap(data, num_bits); 264 265 return data; 266} 267 268/** |
207 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212 208 * | 269 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212 |
209 * @ah: the &struct ath5k_hw 210 * @channel: the currently set channel upon reset 211 * 212 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM 213 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init. 214 * 215 * Since delta slope is floating point we split it on its exponent and 216 * mantissa and provide these values on hw. 217 * 218 * For more infos i think this patent is related | 270 * @ah: the &struct ath5k_hw 271 * @channel: the currently set channel upon reset 272 * 273 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM 274 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init. 275 * 276 * Since delta slope is floating point we split it on its exponent and 277 * mantissa and provide these values on hw. 278 * 279 * For more infos i think this patent is related |
219 * http://www.freepatentsonline.com/7184495.html | 280 * "http://www.freepatentsonline.com/7184495.html" |
220 */ | 281 */ |
221static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, 222 struct ieee80211_channel *channel) | 282static inline int 283ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, 284 struct ieee80211_channel *channel) |
223{ 224 /* Get exponent and mantissa and set it */ 225 u32 coef_scaled, coef_exp, coef_man, 226 ds_coef_exp, ds_coef_man, clock; 227 228 BUG_ON(!(ah->ah_version == AR5K_AR5212) || 229 (channel->hw_value == AR5K_MODE_11B)); 230 --- 42 unchanged lines hidden (view full) --- 273 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 274 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); 275 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 276 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); 277 278 return 0; 279} 280 | 285{ 286 /* Get exponent and mantissa and set it */ 287 u32 coef_scaled, coef_exp, coef_man, 288 ds_coef_exp, ds_coef_man, clock; 289 290 BUG_ON(!(ah->ah_version == AR5K_AR5212) || 291 (channel->hw_value == AR5K_MODE_11B)); 292 --- 42 unchanged lines hidden (view full) --- 335 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 336 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); 337 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 338 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); 339 340 return 0; 341} 342 |
343/** 344 * ath5k_hw_phy_disable() - Disable PHY 345 * @ah: The &struct ath5k_hw 346 */ |
|
281int ath5k_hw_phy_disable(struct ath5k_hw *ah) 282{ 283 /*Just a try M.F.*/ 284 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 285 286 return 0; 287} 288 | 347int ath5k_hw_phy_disable(struct ath5k_hw *ah) 348{ 349 /*Just a try M.F.*/ 350 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 351 352 return 0; 353} 354 |
289/* 290 * Wait for synth to settle | 355/** 356 * ath5k_hw_wait_for_synth() - Wait for synth to settle 357 * @ah: The &struct ath5k_hw 358 * @channel: The &struct ieee80211_channel |
291 */ | 359 */ |
292static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah, | 360static void 361ath5k_hw_wait_for_synth(struct ath5k_hw *ah, |
293 struct ieee80211_channel *channel) 294{ 295 /* 296 * On 5211+ read activation -> rx delay 297 * and use it (100ns steps). 298 */ 299 if (ah->ah_version != AR5K_AR5210) { 300 u32 delay; --- 13 unchanged lines hidden (view full) --- 314 } 315} 316 317 318/**********************\ 319* RF Gain optimization * 320\**********************/ 321 | 362 struct ieee80211_channel *channel) 363{ 364 /* 365 * On 5211+ read activation -> rx delay 366 * and use it (100ns steps). 367 */ 368 if (ah->ah_version != AR5K_AR5210) { 369 u32 delay; --- 13 unchanged lines hidden (view full) --- 383 } 384} 385 386 387/**********************\ 388* RF Gain optimization * 389\**********************/ 390 |
322/* | 391/** 392 * DOC: RF Gain optimization 393 * |
323 * This code is used to optimize RF gain on different environments 324 * (temperature mostly) based on feedback from a power detector. 325 * 326 * It's only used on RF5111 and RF5112, later RF chips seem to have 327 * auto adjustment on hw -notice they have a much smaller BANK 7 and 328 * no gain optimization ladder-. 329 * 330 * For more infos check out this patent doc | 394 * This code is used to optimize RF gain on different environments 395 * (temperature mostly) based on feedback from a power detector. 396 * 397 * It's only used on RF5111 and RF5112, later RF chips seem to have 398 * auto adjustment on hw -notice they have a much smaller BANK 7 and 399 * no gain optimization ladder-. 400 * 401 * For more infos check out this patent doc |
331 * http://www.freepatentsonline.com/7400691.html | 402 * "http://www.freepatentsonline.com/7400691.html" |
332 * 333 * This paper describes power drops as seen on the receiver due to 334 * probe packets | 403 * 404 * This paper describes power drops as seen on the receiver due to 405 * probe packets |
335 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues 336 * %20of%20Power%20Control.pdf | 406 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues 407 * %20of%20Power%20Control.pdf" |
337 * 338 * And this is the MadWiFi bug entry related to the above | 408 * 409 * And this is the MadWiFi bug entry related to the above |
339 * http://madwifi-project.org/ticket/1659 | 410 * "http://madwifi-project.org/ticket/1659" |
340 * with various measurements and diagrams 341 */ 342 | 411 * with various measurements and diagrams 412 */ 413 |
343/* Initialize ah_gain during attach */ | 414/** 415 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach 416 * @ah: The &struct ath5k_hw 417 */ |
344int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) 345{ 346 /* Initialize the gain optimization values */ 347 switch (ah->ah_radio) { 348 case AR5K_RF5111: 349 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; 350 ah->ah_gain.g_low = 20; 351 ah->ah_gain.g_high = 35; --- 7 unchanged lines hidden (view full) --- 359 break; 360 default: 361 return -EINVAL; 362 } 363 364 return 0; 365} 366 | 418int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) 419{ 420 /* Initialize the gain optimization values */ 421 switch (ah->ah_radio) { 422 case AR5K_RF5111: 423 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; 424 ah->ah_gain.g_low = 20; 425 ah->ah_gain.g_high = 35; --- 7 unchanged lines hidden (view full) --- 433 break; 434 default: 435 return -EINVAL; 436 } 437 438 return 0; 439} 440 |
367/* Schedule a gain probe check on the next transmitted packet. | 441/** 442 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet 443 * @ah: The &struct ath5k_hw 444 * 445 * Schedules a gain probe check on the next transmitted packet. |
368 * That means our next packet is going to be sent with lower 369 * tx power and a Peak to Average Power Detector (PAPD) will try 370 * to measure the gain. 371 * 372 * TODO: Force a tx packet (bypassing PCU arbitrator etc) 373 * just after we enable the probe so that we don't mess with 374 * standard traffic. 375 */ | 446 * That means our next packet is going to be sent with lower 447 * tx power and a Peak to Average Power Detector (PAPD) will try 448 * to measure the gain. 449 * 450 * TODO: Force a tx packet (bypassing PCU arbitrator etc) 451 * just after we enable the probe so that we don't mess with 452 * standard traffic. 453 */ |
376static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) | 454static void 455ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) |
377{ 378 379 /* Skip if gain calibration is inactive or 380 * we already handle a probe request */ 381 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) 382 return; 383 384 /* Send the packet with 2dB below max power as 385 * patent doc suggest */ 386 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4, 387 AR5K_PHY_PAPD_PROBE_TXPOWER) | 388 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); 389 390 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; 391 392} 393 | 456{ 457 458 /* Skip if gain calibration is inactive or 459 * we already handle a probe request */ 460 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) 461 return; 462 463 /* Send the packet with 2dB below max power as 464 * patent doc suggest */ 465 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4, 466 AR5K_PHY_PAPD_PROBE_TXPOWER) | 467 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); 468 469 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; 470 471} 472 |
394/* Calculate gain_F measurement correction 395 * based on the current step for RF5112 rev. 2 */ 396static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) | 473/** 474 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction 475 * @ah: The &struct ath5k_hw 476 * 477 * Calculate Gain_F measurement correction 478 * based on the current step for RF5112 rev. 2 479 */ 480static u32 481ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) |
397{ 398 u32 mix, step; 399 u32 *rf; 400 const struct ath5k_gain_opt *go; 401 const struct ath5k_gain_opt_step *g_step; 402 const struct ath5k_rf_reg *rf_regs; 403 404 /* Only RF5112 Rev. 2 supports it */ --- 36 unchanged lines hidden (view full) --- 441 default: 442 ah->ah_gain.g_f_corr = 0; 443 break; 444 } 445 446 return ah->ah_gain.g_f_corr; 447} 448 | 482{ 483 u32 mix, step; 484 u32 *rf; 485 const struct ath5k_gain_opt *go; 486 const struct ath5k_gain_opt_step *g_step; 487 const struct ath5k_rf_reg *rf_regs; 488 489 /* Only RF5112 Rev. 2 supports it */ --- 36 unchanged lines hidden (view full) --- 526 default: 527 ah->ah_gain.g_f_corr = 0; 528 break; 529 } 530 531 return ah->ah_gain.g_f_corr; 532} 533 |
449/* Check if current gain_F measurement is in the range of our | 534/** 535 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector 536 * @ah: The &struct ath5k_hw 537 * 538 * Check if current gain_F measurement is in the range of our |
450 * power detector windows. If we get a measurement outside range 451 * we know it's not accurate (detectors can't measure anything outside | 539 * power detector windows. If we get a measurement outside range 540 * we know it's not accurate (detectors can't measure anything outside |
452 * their detection window) so we must ignore it */ 453static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) | 541 * their detection window) so we must ignore it. 542 * 543 * Returns true if readback was O.K. or false on failure 544 */ 545static bool 546ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) |
454{ 455 const struct ath5k_rf_reg *rf_regs; 456 u32 step, mix_ovr, level[4]; 457 u32 *rf; 458 459 if (ah->ah_rf_banks == NULL) 460 return false; 461 --- 35 unchanged lines hidden (view full) --- 497 } 498 499 return (ah->ah_gain.g_current >= level[0] && 500 ah->ah_gain.g_current <= level[1]) || 501 (ah->ah_gain.g_current >= level[2] && 502 ah->ah_gain.g_current <= level[3]); 503} 504 | 547{ 548 const struct ath5k_rf_reg *rf_regs; 549 u32 step, mix_ovr, level[4]; 550 u32 *rf; 551 552 if (ah->ah_rf_banks == NULL) 553 return false; 554 --- 35 unchanged lines hidden (view full) --- 590 } 591 592 return (ah->ah_gain.g_current >= level[0] && 593 ah->ah_gain.g_current <= level[1]) || 594 (ah->ah_gain.g_current >= level[2] && 595 ah->ah_gain.g_current <= level[3]); 596} 597 |
505/* Perform gain_F adjustment by choosing the right set 506 * of parameters from RF gain optimization ladder */ 507static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) | 598/** 599 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment 600 * @ah: The &struct ath5k_hw 601 * 602 * Choose the right target gain based on current gain 603 * and RF gain optimization ladder 604 */ 605static s8 606ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) |
508{ 509 const struct ath5k_gain_opt *go; 510 const struct ath5k_gain_opt_step *g_step; 511 int ret = 0; 512 513 switch (ah->ah_radio) { 514 case AR5K_RF5111: 515 go = &rfgain_opt_5111; --- 47 unchanged lines hidden (view full) --- 563 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 564 "ret %d, gain step %u, current gain %u, target gain %u\n", 565 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, 566 ah->ah_gain.g_target); 567 568 return ret; 569} 570 | 607{ 608 const struct ath5k_gain_opt *go; 609 const struct ath5k_gain_opt_step *g_step; 610 int ret = 0; 611 612 switch (ah->ah_radio) { 613 case AR5K_RF5111: 614 go = &rfgain_opt_5111; --- 47 unchanged lines hidden (view full) --- 662 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 663 "ret %d, gain step %u, current gain %u, target gain %u\n", 664 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, 665 ah->ah_gain.g_target); 666 667 return ret; 668} 669 |
571/* Main callback for thermal RF gain calibration engine | 670/** 671 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration 672 * @ah: The &struct ath5k_hw 673 * 674 * Main callback for thermal RF gain calibration engine |
572 * Check for a new gain reading and schedule an adjustment 573 * if needed. | 675 * Check for a new gain reading and schedule an adjustment 676 * if needed. |
677 * 678 * Returns one of enum ath5k_rfgain codes |
|
574 */ | 679 */ |
575enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) | 680enum ath5k_rfgain 681ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) |
576{ 577 u32 data, type; 578 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 579 580 if (ah->ah_rf_banks == NULL || 581 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) 582 return AR5K_RFGAIN_INACTIVE; 583 --- 43 unchanged lines hidden (view full) --- 627 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 628 } 629 } 630 631done: 632 return ah->ah_gain.g_state; 633} 634 | 682{ 683 u32 data, type; 684 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 685 686 if (ah->ah_rf_banks == NULL || 687 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) 688 return AR5K_RFGAIN_INACTIVE; 689 --- 43 unchanged lines hidden (view full) --- 733 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 734 } 735 } 736 737done: 738 return ah->ah_gain.g_state; 739} 740 |
635/* Write initial RF gain table to set the RF sensitivity 636 * this one works on all RF chips and has nothing to do 637 * with gain_F calibration */ 638static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band) | 741/** 742 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw 743 * @ah: The &struct ath5k_hw 744 * @band: One of enum ieee80211_band 745 * 746 * Write initial RF gain table to set the RF sensitivity. 747 * 748 * NOTE: This one works on all RF chips and has nothing to do 749 * with Gain_F calibration 750 */ 751static int 752ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band) |
639{ 640 const struct ath5k_ini_rfgain *ath5k_rfg; 641 unsigned int i, size, index; 642 643 switch (ah->ah_radio) { 644 case AR5K_RF5111: 645 ath5k_rfg = rfgain_5111; 646 size = ARRAY_SIZE(rfgain_5111); --- 30 unchanged lines hidden (view full) --- 677 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index], 678 (u32)ath5k_rfg[i].rfg_register); 679 } 680 681 return 0; 682} 683 684 | 753{ 754 const struct ath5k_ini_rfgain *ath5k_rfg; 755 unsigned int i, size, index; 756 757 switch (ah->ah_radio) { 758 case AR5K_RF5111: 759 ath5k_rfg = rfgain_5111; 760 size = ARRAY_SIZE(rfgain_5111); --- 30 unchanged lines hidden (view full) --- 791 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index], 792 (u32)ath5k_rfg[i].rfg_register); 793 } 794 795 return 0; 796} 797 798 |
685 | |
686/********************\ 687* RF Registers setup * 688\********************/ 689 | 799/********************\ 800* RF Registers setup * 801\********************/ 802 |
690/* 691 * Setup RF registers by writing RF buffer on hw | 803/** 804 * ath5k_hw_rfregs_init() - Initialize RF register settings 805 * @ah: The &struct ath5k_hw 806 * @channel: The &struct ieee80211_channel 807 * @mode: One of enum ath5k_driver_mode 808 * 809 * Setup RF registers by writing RF buffer on hw. For 810 * more infos on this, check out rfbuffer.h |
692 */ | 811 */ |
693static int ath5k_hw_rfregs_init(struct ath5k_hw *ah, 694 struct ieee80211_channel *channel, unsigned int mode) | 812static int 813ath5k_hw_rfregs_init(struct ath5k_hw *ah, 814 struct ieee80211_channel *channel, 815 unsigned int mode) |
695{ 696 const struct ath5k_rf_reg *rf_regs; 697 const struct ath5k_ini_rfbuffer *ini_rfb; 698 const struct ath5k_gain_opt *go = NULL; 699 const struct ath5k_gain_opt_step *g_step; 700 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 701 u8 ee_mode = 0; 702 u32 *rfb; --- 341 unchanged lines hidden (view full) --- 1044 return 0; 1045} 1046 1047 1048/**************************\ 1049 PHY/RF channel functions 1050\**************************/ 1051 | 816{ 817 const struct ath5k_rf_reg *rf_regs; 818 const struct ath5k_ini_rfbuffer *ini_rfb; 819 const struct ath5k_gain_opt *go = NULL; 820 const struct ath5k_gain_opt_step *g_step; 821 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 822 u8 ee_mode = 0; 823 u32 *rfb; --- 341 unchanged lines hidden (view full) --- 1165 return 0; 1166} 1167 1168 1169/**************************\ 1170 PHY/RF channel functions 1171\**************************/ 1172 |
1052/* 1053 * Conversion needed for RF5110 | 1173/** 1174 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110 1175 * @channel: The &struct ieee80211_channel 1176 * 1177 * Map channel frequency to IEEE channel number and convert it 1178 * to an internal channel value used by the RF5110 chipset. |
1054 */ | 1179 */ |
1055static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) | 1180static u32 1181ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) |
1056{ 1057 u32 athchan; 1058 | 1182{ 1183 u32 athchan; 1184 |
1059 /* 1060 * Convert IEEE channel/MHz to an internal channel value used 1061 * by the AR5210 chipset. This has not been verified with 1062 * newer chipsets like the AR5212A who have a completely 1063 * different RF/PHY part. 1064 */ | |
1065 athchan = (ath5k_hw_bitswap( 1066 (ieee80211_frequency_to_channel( 1067 channel->center_freq) - 24) / 2, 5) 1068 << 1) | (1 << 6) | 0x1; 1069 return athchan; 1070} 1071 | 1185 athchan = (ath5k_hw_bitswap( 1186 (ieee80211_frequency_to_channel( 1187 channel->center_freq) - 24) / 2, 5) 1188 << 1) | (1 << 6) | 0x1; 1189 return athchan; 1190} 1191 |
1072/* 1073 * Set channel on RF5110 | 1192/** 1193 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110 1194 * @ah: The &struct ath5k_hw 1195 * @channel: The &struct ieee80211_channel |
1074 */ | 1196 */ |
1075static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, | 1197static int 1198ath5k_hw_rf5110_channel(struct ath5k_hw *ah, |
1076 struct ieee80211_channel *channel) 1077{ 1078 u32 data; 1079 1080 /* 1081 * Set the channel and wait 1082 */ 1083 data = ath5k_hw_rf5110_chan2athchan(channel); 1084 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); 1085 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); 1086 usleep_range(1000, 1500); 1087 1088 return 0; 1089} 1090 | 1199 struct ieee80211_channel *channel) 1200{ 1201 u32 data; 1202 1203 /* 1204 * Set the channel and wait 1205 */ 1206 data = ath5k_hw_rf5110_chan2athchan(channel); 1207 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); 1208 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); 1209 usleep_range(1000, 1500); 1210 1211 return 0; 1212} 1213 |
1091/* 1092 * Conversion needed for 5111 | 1214/** 1215 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111 1216 * @ieee: IEEE channel number 1217 * @athchan: The &struct ath5k_athchan_2ghz 1218 * 1219 * In order to enable the RF2111 frequency converter on RF5111/2111 setups 1220 * we need to add some offsets and extra flags to the data values we pass 1221 * on to the PHY. So for every 2GHz channel this function gets called 1222 * to do the conversion. |
1093 */ | 1223 */ |
1094static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, | 1224static int 1225ath5k_hw_rf5111_chan2athchan(unsigned int ieee, |
1095 struct ath5k_athchan_2ghz *athchan) 1096{ 1097 int channel; 1098 1099 /* Cast this value to catch negative channel numbers (>= -19) */ 1100 channel = (int)ieee; 1101 1102 /* --- 9 unchanged lines hidden (view full) --- 1112 athchan->a2_athchan = ((channel - 14) * 4) + 132; 1113 athchan->a2_flags = 0x46; 1114 } else 1115 return -EINVAL; 1116 1117 return 0; 1118} 1119 | 1226 struct ath5k_athchan_2ghz *athchan) 1227{ 1228 int channel; 1229 1230 /* Cast this value to catch negative channel numbers (>= -19) */ 1231 channel = (int)ieee; 1232 1233 /* --- 9 unchanged lines hidden (view full) --- 1243 athchan->a2_athchan = ((channel - 14) * 4) + 132; 1244 athchan->a2_flags = 0x46; 1245 } else 1246 return -EINVAL; 1247 1248 return 0; 1249} 1250 |
1120/* 1121 * Set channel on 5111 | 1251/** 1252 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111 1253 * @ah: The &struct ath5k_hw 1254 * @channel: The &struct ieee80211_channel |
1122 */ | 1255 */ |
1123static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, | 1256static int 1257ath5k_hw_rf5111_channel(struct ath5k_hw *ah, |
1124 struct ieee80211_channel *channel) 1125{ 1126 struct ath5k_athchan_2ghz ath5k_channel_2ghz; 1127 unsigned int ath5k_channel = 1128 ieee80211_frequency_to_channel(channel->center_freq); 1129 u32 data0, data1, clock; 1130 int ret; 1131 --- 28 unchanged lines hidden (view full) --- 1160 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), 1161 AR5K_RF_BUFFER); 1162 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), 1163 AR5K_RF_BUFFER_CONTROL_3); 1164 1165 return 0; 1166} 1167 | 1258 struct ieee80211_channel *channel) 1259{ 1260 struct ath5k_athchan_2ghz ath5k_channel_2ghz; 1261 unsigned int ath5k_channel = 1262 ieee80211_frequency_to_channel(channel->center_freq); 1263 u32 data0, data1, clock; 1264 int ret; 1265 --- 28 unchanged lines hidden (view full) --- 1294 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), 1295 AR5K_RF_BUFFER); 1296 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), 1297 AR5K_RF_BUFFER_CONTROL_3); 1298 1299 return 0; 1300} 1301 |
1168/* 1169 * Set channel on 5112 and newer | 1302/** 1303 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer 1304 * @ah: The &struct ath5k_hw 1305 * @channel: The &struct ieee80211_channel 1306 * 1307 * On RF5112/2112 and newer we don't need to do any conversion. 1308 * We pass the frequency value after a few modifications to the 1309 * chip directly. 1310 * 1311 * NOTE: Make sure channel frequency given is within our range or else 1312 * we might damage the chip ! Use ath5k_channel_ok before calling this one. |
1170 */ | 1313 */ |
1171static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, | 1314static int 1315ath5k_hw_rf5112_channel(struct ath5k_hw *ah, |
1172 struct ieee80211_channel *channel) 1173{ 1174 u32 data, data0, data1, data2; 1175 u16 c; 1176 1177 data = data0 = data1 = data2 = 0; 1178 c = channel->center_freq; 1179 | 1316 struct ieee80211_channel *channel) 1317{ 1318 u32 data, data0, data1, data2; 1319 u16 c; 1320 1321 data = data0 = data1 = data2 = 0; 1322 c = channel->center_freq; 1323 |
1324 /* My guess based on code: 1325 * 2GHz RF has 2 synth modes, one with a Local Oscillator 1326 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz 1327 * (3040/2). data0 is used to set the PLL divider and data1 1328 * selects synth mode. */ |
|
1180 if (c < 4800) { | 1329 if (c < 4800) { |
1330 /* Channel 14 and all frequencies with 2Hz spacing 1331 * below/above (non-standard channels) */ |
|
1181 if (!((c - 2224) % 5)) { | 1332 if (!((c - 2224) % 5)) { |
1333 /* Same as (c - 2224) / 5 */ |
|
1182 data0 = ((2 * (c - 704)) - 3040) / 10; 1183 data1 = 1; | 1334 data0 = ((2 * (c - 704)) - 3040) / 10; 1335 data1 = 1; |
1336 /* Channel 1 and all frequencies with 5Hz spacing 1337 * below/above (standard channels without channel 14) */ |
|
1184 } else if (!((c - 2192) % 5)) { | 1338 } else if (!((c - 2192) % 5)) { |
1339 /* Same as (c - 2192) / 5 */ |
|
1185 data0 = ((2 * (c - 672)) - 3040) / 10; 1186 data1 = 0; 1187 } else 1188 return -EINVAL; 1189 1190 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); | 1340 data0 = ((2 * (c - 672)) - 3040) / 10; 1341 data1 = 0; 1342 } else 1343 return -EINVAL; 1344 1345 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); |
1346 /* This is more complex, we have a single synthesizer with 1347 * 4 reference clock settings (?) based on frequency spacing 1348 * and set using data2. LO is at 4800Hz and data0 is again used 1349 * to set some divider. 1350 * 1351 * NOTE: There is an old atheros presentation at Stanford 1352 * that mentions a method called dual direct conversion 1353 * with 1GHz sliding IF for RF5110. Maybe that's what we 1354 * have here, or an updated version. */ |
|
1191 } else if ((c % 5) != 2 || c > 5435) { 1192 if (!(c % 20) && c >= 5120) { 1193 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); 1194 data2 = ath5k_hw_bitswap(3, 2); 1195 } else if (!(c % 10)) { 1196 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); 1197 data2 = ath5k_hw_bitswap(2, 2); 1198 } else if (!(c % 5)) { --- 9 unchanged lines hidden (view full) --- 1208 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; 1209 1210 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 1211 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 1212 1213 return 0; 1214} 1215 | 1355 } else if ((c % 5) != 2 || c > 5435) { 1356 if (!(c % 20) && c >= 5120) { 1357 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); 1358 data2 = ath5k_hw_bitswap(3, 2); 1359 } else if (!(c % 10)) { 1360 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); 1361 data2 = ath5k_hw_bitswap(2, 2); 1362 } else if (!(c % 5)) { --- 9 unchanged lines hidden (view full) --- 1372 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; 1373 1374 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 1375 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 1376 1377 return 0; 1378} 1379 |
1216/* 1217 * Set the channel on the RF2425 | 1380/** 1381 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425 1382 * @ah: The &struct ath5k_hw 1383 * @channel: The &struct ieee80211_channel 1384 * 1385 * AR2425/2417 have a different 2GHz RF so code changes 1386 * a little bit from RF5112. |
1218 */ | 1387 */ |
1219static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, | 1388static int 1389ath5k_hw_rf2425_channel(struct ath5k_hw *ah, |
1220 struct ieee80211_channel *channel) 1221{ 1222 u32 data, data0, data2; 1223 u16 c; 1224 1225 data = data0 = data2 = 0; 1226 c = channel->center_freq; 1227 --- 19 unchanged lines hidden (view full) --- 1247 data = (data0 << 4) | data2 << 2 | 0x1001; 1248 1249 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 1250 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 1251 1252 return 0; 1253} 1254 | 1390 struct ieee80211_channel *channel) 1391{ 1392 u32 data, data0, data2; 1393 u16 c; 1394 1395 data = data0 = data2 = 0; 1396 c = channel->center_freq; 1397 --- 19 unchanged lines hidden (view full) --- 1417 data = (data0 << 4) | data2 << 2 | 0x1001; 1418 1419 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 1420 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 1421 1422 return 0; 1423} 1424 |
1255/* 1256 * Set a channel on the radio chip | 1425/** 1426 * ath5k_hw_channel() - Set a channel on the radio chip 1427 * @ah: The &struct ath5k_hw 1428 * @channel: The &struct ieee80211_channel 1429 * 1430 * This is the main function called to set a channel on the 1431 * radio chip based on the radio chip version. |
1257 */ | 1432 */ |
1258static int ath5k_hw_channel(struct ath5k_hw *ah, | 1433static int 1434ath5k_hw_channel(struct ath5k_hw *ah, |
1259 struct ieee80211_channel *channel) 1260{ 1261 int ret; 1262 /* 1263 * Check bounds supported by the PHY (we don't care about regulatory 1264 * restrictions at this point). 1265 */ 1266 if (!ath5k_channel_ok(ah, channel)) { --- 35 unchanged lines hidden (view full) --- 1302 AR5K_PHY_CCKTXCTL_WORLD); 1303 } 1304 1305 ah->ah_current_channel = channel; 1306 1307 return 0; 1308} 1309 | 1435 struct ieee80211_channel *channel) 1436{ 1437 int ret; 1438 /* 1439 * Check bounds supported by the PHY (we don't care about regulatory 1440 * restrictions at this point). 1441 */ 1442 if (!ath5k_channel_ok(ah, channel)) { --- 35 unchanged lines hidden (view full) --- 1478 AR5K_PHY_CCKTXCTL_WORLD); 1479 } 1480 1481 ah->ah_current_channel = channel; 1482 1483 return 0; 1484} 1485 |
1486 |
|
1310/*****************\ 1311 PHY calibration 1312\*****************/ 1313 | 1487/*****************\ 1488 PHY calibration 1489\*****************/ 1490 |
1314static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah) | 1491/** 1492 * DOC: PHY Calibration routines 1493 * 1494 * Noise floor calibration: When we tell the hardware to 1495 * perform a noise floor calibration by setting the 1496 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically 1497 * sample-and-hold the minimum noise level seen at the antennas. 1498 * This value is then stored in a ring buffer of recently measured 1499 * noise floor values so we have a moving window of the last few 1500 * samples. The median of the values in the history is then loaded 1501 * into the hardware for its own use for RSSI and CCA measurements. 1502 * This type of calibration doesn't interfere with traffic. 1503 * 1504 * AGC calibration: When we tell the hardware to perform 1505 * an AGC (Automatic Gain Control) calibration by setting the 1506 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does 1507 * a calibration on the DC offsets of ADCs. During this period 1508 * rx/tx gets disabled so we have to deal with it on the driver 1509 * part. 1510 * 1511 * I/Q calibration: When we tell the hardware to perform 1512 * an I/Q calibration, it tries to correct I/Q imbalance and 1513 * fix QAM constellation by sampling data from rxed frames. 1514 * It doesn't interfere with traffic. 1515 * 1516 * For more infos on AGC and I/Q calibration check out patent doc 1517 * #03/094463. 1518 */ 1519 1520/** 1521 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw 1522 * @ah: The &struct ath5k_hw 1523 */ 1524static s32 1525ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah) |
1315{ 1316 s32 val; 1317 1318 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF); 1319 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8); 1320} 1321 | 1526{ 1527 s32 val; 1528 1529 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF); 1530 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8); 1531} 1532 |
1322void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah) | 1533/** 1534 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer 1535 * @ah: The &struct ath5k_hw 1536 */ 1537void 1538ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah) |
1323{ 1324 int i; 1325 1326 ah->ah_nfcal_hist.index = 0; 1327 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) 1328 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE; 1329} 1330 | 1539{ 1540 int i; 1541 1542 ah->ah_nfcal_hist.index = 0; 1543 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) 1544 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE; 1545} 1546 |
1547/** 1548 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer 1549 * @ah: The &struct ath5k_hw 1550 * @noise_floor: The NF we got from hw 1551 */ |
|
1331static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor) 1332{ 1333 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist; 1334 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1); 1335 hist->nfval[hist->index] = noise_floor; 1336} 1337 | 1552static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor) 1553{ 1554 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist; 1555 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1); 1556 hist->nfval[hist->index] = noise_floor; 1557} 1558 |
1338static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah) | 1559/** 1560 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer 1561 * @ah: The &struct ath5k_hw 1562 */ 1563static s16 1564ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah) |
1339{ 1340 s16 sort[ATH5K_NF_CAL_HIST_MAX]; 1341 s16 tmp; 1342 int i, j; 1343 1344 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort)); 1345 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) { 1346 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) { --- 6 unchanged lines hidden (view full) --- 1353 } 1354 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) { 1355 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1356 "cal %d:%d\n", i, sort[i]); 1357 } 1358 return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2]; 1359} 1360 | 1565{ 1566 s16 sort[ATH5K_NF_CAL_HIST_MAX]; 1567 s16 tmp; 1568 int i, j; 1569 1570 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort)); 1571 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) { 1572 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) { --- 6 unchanged lines hidden (view full) --- 1579 } 1580 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) { 1581 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1582 "cal %d:%d\n", i, sort[i]); 1583 } 1584 return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2]; 1585} 1586 |
1361/* 1362 * When we tell the hardware to perform a noise floor calibration 1363 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically 1364 * sample-and-hold the minimum noise level seen at the antennas. 1365 * This value is then stored in a ring buffer of recently measured 1366 * noise floor values so we have a moving window of the last few 1367 * samples. | 1587/** 1588 * ath5k_hw_update_noise_floor() - Update NF on hardware 1589 * @ah: The &struct ath5k_hw |
1368 * | 1590 * |
1369 * The median of the values in the history is then loaded into the 1370 * hardware for its own use for RSSI and CCA measurements. | 1591 * This is the main function we call to perform a NF calibration, 1592 * it reads NF from hardware, calculates the median and updates 1593 * NF on hw. |
1371 */ | 1594 */ |
1372void ath5k_hw_update_noise_floor(struct ath5k_hw *ah) | 1595void 1596ath5k_hw_update_noise_floor(struct ath5k_hw *ah) |
1373{ 1374 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1375 u32 val; 1376 s16 nf, threshold; 1377 u8 ee_mode; 1378 1379 /* keep last value if calibration hasn't completed */ 1380 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) { --- 50 unchanged lines hidden (view full) --- 1431 ah->ah_noise_floor = nf; 1432 1433 ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF; 1434 1435 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1436 "noise floor calibrated: %d\n", nf); 1437} 1438 | 1597{ 1598 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1599 u32 val; 1600 s16 nf, threshold; 1601 u8 ee_mode; 1602 1603 /* keep last value if calibration hasn't completed */ 1604 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) { --- 50 unchanged lines hidden (view full) --- 1655 ah->ah_noise_floor = nf; 1656 1657 ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF; 1658 1659 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1660 "noise floor calibrated: %d\n", nf); 1661} 1662 |
1439/* 1440 * Perform a PHY calibration on RF5110 1441 * -Fix BPSK/QAM Constellation (I/Q correction) | 1663/** 1664 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110 1665 * @ah: The &struct ath5k_hw 1666 * @channel: The &struct ieee80211_channel 1667 * 1668 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110 |
1442 */ | 1669 */ |
1443static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, | 1670static int 1671ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, |
1444 struct ieee80211_channel *channel) 1445{ 1446 u32 phy_sig, phy_agc, phy_sat, beacon; 1447 int ret; 1448 1449 /* 1450 * Disable beacons and RX/TX queues, wait 1451 */ --- 78 unchanged lines hidden (view full) --- 1530 */ 1531 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, 1532 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); 1533 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); 1534 1535 return 0; 1536} 1537 | 1672 struct ieee80211_channel *channel) 1673{ 1674 u32 phy_sig, phy_agc, phy_sat, beacon; 1675 int ret; 1676 1677 /* 1678 * Disable beacons and RX/TX queues, wait 1679 */ --- 78 unchanged lines hidden (view full) --- 1758 */ 1759 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, 1760 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); 1761 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); 1762 1763 return 0; 1764} 1765 |
1538/* 1539 * Perform I/Q calibration on RF5111/5112 and newer chips | 1766/** 1767 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer 1768 * @ah: The &struct ath5k_hw |
1540 */ 1541static int 1542ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah) 1543{ 1544 u32 i_pwr, q_pwr; 1545 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; 1546 int i; 1547 --- 57 unchanged lines hidden (view full) --- 1605 * the same values again and again */ 1606 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 1607 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 1608 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); 1609 1610 return 0; 1611} 1612 | 1769 */ 1770static int 1771ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah) 1772{ 1773 u32 i_pwr, q_pwr; 1774 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; 1775 int i; 1776 --- 57 unchanged lines hidden (view full) --- 1834 * the same values again and again */ 1835 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 1836 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 1837 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); 1838 1839 return 0; 1840} 1841 |
1613/* 1614 * Perform a PHY calibration | 1842/** 1843 * ath5k_hw_phy_calibrate() - Perform a PHY calibration 1844 * @ah: The &struct ath5k_hw 1845 * @channel: The &struct ieee80211_channel 1846 * 1847 * The main function we call from above to perform 1848 * a short or full PHY calibration based on RF chip 1849 * and current channel |
1615 */ | 1850 */ |
1616int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, | 1851int 1852ath5k_hw_phy_calibrate(struct ath5k_hw *ah, |
1617 struct ieee80211_channel *channel) 1618{ 1619 int ret; 1620 1621 if (ah->ah_radio == AR5K_RF5110) 1622 return ath5k_hw_rf5110_calibrate(ah, channel); 1623 1624 ret = ath5k_hw_rf511x_iq_calibrate(ah); --- 38 unchanged lines hidden (view full) --- 1663 return ret; 1664} 1665 1666 1667/***************************\ 1668* Spur mitigation functions * 1669\***************************/ 1670 | 1853 struct ieee80211_channel *channel) 1854{ 1855 int ret; 1856 1857 if (ah->ah_radio == AR5K_RF5110) 1858 return ath5k_hw_rf5110_calibrate(ah, channel); 1859 1860 ret = ath5k_hw_rf511x_iq_calibrate(ah); --- 38 unchanged lines hidden (view full) --- 1899 return ret; 1900} 1901 1902 1903/***************************\ 1904* Spur mitigation functions * 1905\***************************/ 1906 |
1907/** 1908 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter 1909 * @ah: The &struct ath5k_hw 1910 * @channel: The &struct ieee80211_channel 1911 * 1912 * This function gets called during PHY initialization to 1913 * configure the spur filter for the given channel. Spur is noise 1914 * generated due to "reflection" effects, for more information on this 1915 * method check out patent US7643810 1916 */ |
|
1671static void 1672ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, 1673 struct ieee80211_channel *channel) 1674{ 1675 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1676 u32 mag_mask[4] = {0, 0, 0, 0}; 1677 u32 pilot_mask[2] = {0, 0}; 1678 /* Note: fbin values are scaled up by 2 */ --- 223 unchanged lines hidden (view full) --- 1902 } 1903} 1904 1905 1906/*****************\ 1907* Antenna control * 1908\*****************/ 1909 | 1917static void 1918ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, 1919 struct ieee80211_channel *channel) 1920{ 1921 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1922 u32 mag_mask[4] = {0, 0, 0, 0}; 1923 u32 pilot_mask[2] = {0, 0}; 1924 /* Note: fbin values are scaled up by 2 */ --- 223 unchanged lines hidden (view full) --- 2148 } 2149} 2150 2151 2152/*****************\ 2153* Antenna control * 2154\*****************/ 2155 |
1910static void /*TODO:Boundary check*/ | 2156/** 2157 * DOC: Antenna control 2158 * 2159 * Hw supports up to 14 antennas ! I haven't found any card that implements 2160 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2 2161 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX) 2162 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional). 2163 * 2164 * We can have a single antenna for RX and multiple antennas for TX. 2165 * RX antenna is our "default" antenna (usually antenna 1) set on 2166 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor 2167 * (0 for automatic selection, 1 - 14 antenna number). 2168 * 2169 * We can let hw do all the work doing fast antenna diversity for both 2170 * tx and rx or we can do things manually. Here are the options we have 2171 * (all are bits of STA_ID1 register): 2172 * 2173 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX 2174 * control descriptor, use the default antenna to transmit or else use the last 2175 * antenna on which we received an ACK. 2176 * 2177 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to 2178 * the antenna on which we got the ACK for that frame. 2179 * 2180 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the 2181 * one on the TX descriptor. 2182 * 2183 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames 2184 * (ACKs etc), or else use current antenna (the one we just used for TX). 2185 * 2186 * Using the above we support the following scenarios: 2187 * 2188 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically 2189 * 2190 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present 2191 * 2192 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present 2193 * 2194 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap 2195 * 2196 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc 2197 * 2198 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc 2199 * 2200 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx- 2201 * 2202 * Also note that when setting antenna to F on tx descriptor card inverts 2203 * current tx antenna. 2204 */ 2205 2206/** 2207 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer 2208 * @ah: The &struct ath5k_hw 2209 * @ant: Antenna number 2210 */ 2211static void |
1911ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant) 1912{ 1913 if (ah->ah_version != AR5K_AR5210) 1914 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA); 1915} 1916 | 2212ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant) 2213{ 2214 if (ah->ah_version != AR5K_AR5210) 2215 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA); 2216} 2217 |
1917/* 1918 * Enable/disable fast rx antenna diversity | 2218/** 2219 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity 2220 * @ah: The &struct ath5k_hw 2221 * @ee_mode: One of enum ath5k_driver_mode 2222 * @enable: True to enable, false to disable |
1919 */ 1920static void 1921ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable) 1922{ 1923 switch (ee_mode) { 1924 case AR5K_EEPROM_MODE_11G: 1925 /* XXX: This is set to 1926 * disabled on initvals !!! */ --- 23 unchanged lines hidden (view full) --- 1950 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, 1951 AR5K_PHY_RESTART_DIV_GC, 0); 1952 1953 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, 1954 AR5K_PHY_FAST_ANT_DIV_EN); 1955 } 1956} 1957 | 2223 */ 2224static void 2225ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable) 2226{ 2227 switch (ee_mode) { 2228 case AR5K_EEPROM_MODE_11G: 2229 /* XXX: This is set to 2230 * disabled on initvals !!! */ --- 23 unchanged lines hidden (view full) --- 2254 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, 2255 AR5K_PHY_RESTART_DIV_GC, 0); 2256 2257 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, 2258 AR5K_PHY_FAST_ANT_DIV_EN); 2259 } 2260} 2261 |
2262/** 2263 * ath5k_hw_set_antenna_switch() - Set up antenna switch table 2264 * @ah: The &struct ath5k_hw 2265 * @ee_mode: One of enum ath5k_driver_mode 2266 * 2267 * Switch table comes from EEPROM and includes information on controlling 2268 * the 2 antenna RX attenuators 2269 */ |
|
1958void 1959ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode) 1960{ 1961 u8 ant0, ant1; 1962 1963 /* 1964 * In case a fixed antenna was set as default 1965 * use the same switch table twice. --- 15 unchanged lines hidden (view full) --- 1981 1982 /* Set antenna switch tables */ 1983 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0], 1984 AR5K_PHY_ANT_SWITCH_TABLE_0); 1985 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1], 1986 AR5K_PHY_ANT_SWITCH_TABLE_1); 1987} 1988 | 2270void 2271ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode) 2272{ 2273 u8 ant0, ant1; 2274 2275 /* 2276 * In case a fixed antenna was set as default 2277 * use the same switch table twice. --- 15 unchanged lines hidden (view full) --- 2293 2294 /* Set antenna switch tables */ 2295 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0], 2296 AR5K_PHY_ANT_SWITCH_TABLE_0); 2297 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1], 2298 AR5K_PHY_ANT_SWITCH_TABLE_1); 2299} 2300 |
1989/* 1990 * Set antenna operating mode | 2301/** 2302 * ath5k_hw_set_antenna_mode() - Set antenna operating mode 2303 * @ah: The &struct ath5k_hw 2304 * @ant_mode: One of enum ath5k_ant_mode |
1991 */ 1992void 1993ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode) 1994{ 1995 struct ieee80211_channel *channel = ah->ah_current_channel; 1996 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div; 1997 bool use_def_for_sg; 1998 int ee_mode; --- 106 unchanged lines hidden (view full) --- 2105/****************\ 2106* TX power setup * 2107\****************/ 2108 2109/* 2110 * Helper functions 2111 */ 2112 | 2305 */ 2306void 2307ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode) 2308{ 2309 struct ieee80211_channel *channel = ah->ah_current_channel; 2310 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div; 2311 bool use_def_for_sg; 2312 int ee_mode; --- 106 unchanged lines hidden (view full) --- 2419/****************\ 2420* TX power setup * 2421\****************/ 2422 2423/* 2424 * Helper functions 2425 */ 2426 |
2113/* 2114 * Do linear interpolation between two given (x, y) points | 2427/** 2428 * ath5k_get_interpolated_value() - Get interpolated Y val between two points 2429 * @target: X value of the middle point 2430 * @x_left: X value of the left point 2431 * @x_right: X value of the right point 2432 * @y_left: Y value of the left point 2433 * @y_right: Y value of the right point |
2115 */ 2116static s16 2117ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, 2118 s16 y_left, s16 y_right) 2119{ 2120 s16 ratio, result; 2121 2122 /* Avoid divide by zero and skip interpolation --- 10 unchanged lines hidden (view full) --- 2133 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left)); 2134 2135 /* Now scale down to be in range */ 2136 result = y_left + (ratio * (target - x_left) / 100); 2137 2138 return result; 2139} 2140 | 2434 */ 2435static s16 2436ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, 2437 s16 y_left, s16 y_right) 2438{ 2439 s16 ratio, result; 2440 2441 /* Avoid divide by zero and skip interpolation --- 10 unchanged lines hidden (view full) --- 2452 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left)); 2453 2454 /* Now scale down to be in range */ 2455 result = y_left + (ratio * (target - x_left) / 100); 2456 2457 return result; 2458} 2459 |
2141/* 2142 * Find vertical boundary (min pwr) for the linear PCDAC curve. | 2460/** 2461 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the 2462 * linear PCDAC curve 2463 * @stepL: Left array with y values (pcdac steps) 2464 * @stepR: Right array with y values (pcdac steps) 2465 * @pwrL: Left array with x values (power steps) 2466 * @pwrR: Right array with x values (power steps) |
2143 * 2144 * Since we have the top of the curve and we draw the line below 2145 * until we reach 1 (1 pcdac step) we need to know which point | 2467 * 2468 * Since we have the top of the curve and we draw the line below 2469 * until we reach 1 (1 pcdac step) we need to know which point |
2146 * (x value) that is so that we don't go below y axis and have negative 2147 * pcdac values when creating the curve, or fill the table with zeroes. | 2470 * (x value) that is so that we don't go below x axis and have negative 2471 * pcdac values when creating the curve, or fill the table with zeros. |
2148 */ 2149static s16 2150ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, 2151 const s16 *pwrL, const s16 *pwrR) 2152{ 2153 s8 tmp; 2154 s16 min_pwrL, min_pwrR; 2155 s16 pwr_i; --- 29 unchanged lines hidden (view full) --- 2185 2186 min_pwrR = pwr_i; 2187 } 2188 2189 /* Keep the right boundary so that it works for both curves */ 2190 return max(min_pwrL, min_pwrR); 2191} 2192 | 2472 */ 2473static s16 2474ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, 2475 const s16 *pwrL, const s16 *pwrR) 2476{ 2477 s8 tmp; 2478 s16 min_pwrL, min_pwrR; 2479 s16 pwr_i; --- 29 unchanged lines hidden (view full) --- 2509 2510 min_pwrR = pwr_i; 2511 } 2512 2513 /* Keep the right boundary so that it works for both curves */ 2514 return max(min_pwrL, min_pwrR); 2515} 2516 |
2193/* | 2517/** 2518 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve 2519 * @pmin: Minimum power value (xmin) 2520 * @pmax: Maximum power value (xmax) 2521 * @pwr: Array of power steps (x values) 2522 * @vpd: Array of matching PCDAC/PDADC steps (y values) 2523 * @num_points: Number of provided points 2524 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values) 2525 * @type: One of enum ath5k_powertable_type (eeprom.h) 2526 * |
2194 * Interpolate (pwr,vpd) points to create a Power to PDADC or a 2195 * Power to PCDAC curve. 2196 * 2197 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC 2198 * steps (offsets) on y axis. Power can go up to 31.5dB and max 2199 * PCDAC/PDADC step for each curve is 64 but we can write more than 2200 * one curves on hw so we can go up to 128 (which is the max step we 2201 * can write on the final table). --- 41 unchanged lines hidden (view full) --- 2243 vpd[idx[0]], vpd[idx[1]]); 2244 2245 /* Increase by 0.5dB 2246 * (0.25 dB units) */ 2247 pwr_i += 2; 2248 } 2249} 2250 | 2527 * Interpolate (pwr,vpd) points to create a Power to PDADC or a 2528 * Power to PCDAC curve. 2529 * 2530 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC 2531 * steps (offsets) on y axis. Power can go up to 31.5dB and max 2532 * PCDAC/PDADC step for each curve is 64 but we can write more than 2533 * one curves on hw so we can go up to 128 (which is the max step we 2534 * can write on the final table). --- 41 unchanged lines hidden (view full) --- 2576 vpd[idx[0]], vpd[idx[1]]); 2577 2578 /* Increase by 0.5dB 2579 * (0.25 dB units) */ 2580 pwr_i += 2; 2581 } 2582} 2583 |
2251/* | 2584/** 2585 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers 2586 * for a given channel. 2587 * @ah: The &struct ath5k_hw 2588 * @channel: The &struct ieee80211_channel 2589 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier 2590 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier 2591 * |
2252 * Get the surrounding per-channel power calibration piers 2253 * for a given frequency so that we can interpolate between 2254 * them and come up with an appropriate dataset for our current 2255 * channel. 2256 */ 2257static void 2258ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, 2259 struct ieee80211_channel *channel, --- 66 unchanged lines hidden (view full) --- 2326 } 2327 } 2328 2329done: 2330 *pcinfo_l = &pcinfo[idx_l]; 2331 *pcinfo_r = &pcinfo[idx_r]; 2332} 2333 | 2592 * Get the surrounding per-channel power calibration piers 2593 * for a given frequency so that we can interpolate between 2594 * them and come up with an appropriate dataset for our current 2595 * channel. 2596 */ 2597static void 2598ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, 2599 struct ieee80211_channel *channel, --- 66 unchanged lines hidden (view full) --- 2666 } 2667 } 2668 2669done: 2670 *pcinfo_l = &pcinfo[idx_l]; 2671 *pcinfo_r = &pcinfo[idx_r]; 2672} 2673 |
2334/* | 2674/** 2675 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power 2676 * calibration data 2677 * @ah: The &struct ath5k_hw *ah, 2678 * @channel: The &struct ieee80211_channel 2679 * @rates: The &struct ath5k_rate_pcal_info to fill 2680 * |
2335 * Get the surrounding per-rate power calibration data 2336 * for a given frequency and interpolate between power 2337 * values to set max target power supported by hw for | 2681 * Get the surrounding per-rate power calibration data 2682 * for a given frequency and interpolate between power 2683 * values to set max target power supported by hw for |
2338 * each rate. | 2684 * each rate on this frequency. |
2339 */ 2340static void 2341ath5k_get_rate_pcal_data(struct ath5k_hw *ah, 2342 struct ieee80211_channel *channel, 2343 struct ath5k_rate_pcal_info *rates) 2344{ 2345 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2346 struct ath5k_rate_pcal_info *rpinfo; --- 71 unchanged lines hidden (view full) --- 2418 2419 rates->target_power_54 = 2420 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2421 rpinfo[idx_r].freq, 2422 rpinfo[idx_l].target_power_54, 2423 rpinfo[idx_r].target_power_54); 2424} 2425 | 2685 */ 2686static void 2687ath5k_get_rate_pcal_data(struct ath5k_hw *ah, 2688 struct ieee80211_channel *channel, 2689 struct ath5k_rate_pcal_info *rates) 2690{ 2691 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2692 struct ath5k_rate_pcal_info *rpinfo; --- 71 unchanged lines hidden (view full) --- 2764 2765 rates->target_power_54 = 2766 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2767 rpinfo[idx_r].freq, 2768 rpinfo[idx_l].target_power_54, 2769 rpinfo[idx_r].target_power_54); 2770} 2771 |
2426/* | 2772/** 2773 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency 2774 * @ah: the &struct ath5k_hw 2775 * @channel: The &struct ieee80211_channel 2776 * |
2427 * Get the max edge power for this channel if 2428 * we have such data from EEPROM's Conformance Test 2429 * Limits (CTL), and limit max power if needed. 2430 */ 2431static void 2432ath5k_get_max_ctl_power(struct ath5k_hw *ah, 2433 struct ieee80211_channel *channel) 2434{ --- 63 unchanged lines hidden (view full) --- 2498 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr); 2499} 2500 2501 2502/* 2503 * Power to PCDAC table functions 2504 */ 2505 | 2777 * Get the max edge power for this channel if 2778 * we have such data from EEPROM's Conformance Test 2779 * Limits (CTL), and limit max power if needed. 2780 */ 2781static void 2782ath5k_get_max_ctl_power(struct ath5k_hw *ah, 2783 struct ieee80211_channel *channel) 2784{ --- 63 unchanged lines hidden (view full) --- 2848 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr); 2849} 2850 2851 2852/* 2853 * Power to PCDAC table functions 2854 */ 2855 |
2506/* 2507 * Fill Power to PCDAC table on RF5111 | 2856/** 2857 * DOC: Power to PCDAC table functions |
2508 * | 2858 * |
2859 * For RF5111 we have an XPD -eXternal Power Detector- curve 2860 * for each calibrated channel. Each curve has 0,5dB Power steps 2861 * on x axis and PCDAC steps (offsets) on y axis and looks like an 2862 * exponential function. To recreate the curve we read 11 points 2863 * from eeprom (eeprom.c) and interpolate here. 2864 * 2865 * For RF5112 we have 4 XPD -eXternal Power Detector- curves 2866 * for each calibrated channel on 0, -6, -12 and -18dBm but we only 2867 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB 2868 * power steps on x axis and PCDAC steps on y axis and looks like a 2869 * linear function. To recreate the curve and pass the power values 2870 * on hw, we get 4 points for xpd 0 (lower gain -> max power) 2871 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c) 2872 * and interpolate here. 2873 * 2874 * For a given channel we get the calibrated points (piers) for it or 2875 * -if we don't have calibration data for this specific channel- from the 2876 * available surrounding channels we have calibration data for, after we do a 2877 * linear interpolation between them. Then since we have our calibrated points 2878 * for this channel, we do again a linear interpolation between them to get the 2879 * whole curve. 2880 * 2881 * We finally write the Y values of the curve(s) (the PCDAC values) on hw 2882 */ 2883 2884/** 2885 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111 2886 * @ah: The &struct ath5k_hw 2887 * @table_min: Minimum power (x min) 2888 * @table_max: Maximum power (x max) 2889 * |
|
2509 * No further processing is needed for RF5111, the only thing we have to 2510 * do is fill the values below and above calibration range since eeprom data 2511 * may not cover the entire PCDAC table. 2512 */ 2513static void 2514ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, 2515 s16 *table_max) 2516{ --- 23 unchanged lines hidden (view full) --- 2540 } 2541 2542 /* Extrapolate above maximum */ 2543 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) 2544 pcdac_out[pcdac_i++] = pcdac_n; 2545 2546} 2547 | 2890 * No further processing is needed for RF5111, the only thing we have to 2891 * do is fill the values below and above calibration range since eeprom data 2892 * may not cover the entire PCDAC table. 2893 */ 2894static void 2895ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, 2896 s16 *table_max) 2897{ --- 23 unchanged lines hidden (view full) --- 2921 } 2922 2923 /* Extrapolate above maximum */ 2924 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) 2925 pcdac_out[pcdac_i++] = pcdac_n; 2926 2927} 2928 |
2548/* 2549 * Combine available XPD Curves and fill Linear Power to PCDAC table 2550 * on RF5112 | 2929/** 2930 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves 2931 * @ah: The &struct ath5k_hw 2932 * @table_min: Minimum power (x min) 2933 * @table_max: Maximum power (x max) 2934 * @pdcurves: Number of pd curves |
2551 * | 2935 * |
2936 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112 |
|
2552 * RFX112 can have up to 2 curves (one for low txpower range and one for 2553 * higher txpower range). We need to put them both on pcdac_out and place 2554 * them in the correct location. In case we only have one curve available 2555 * just fit it on pcdac_out (it's supposed to cover the entire range of 2556 * available pwr levels since it's always the higher power curve). Extrapolate 2557 * below and above final table if needed. 2558 */ 2559static void --- 85 unchanged lines hidden (view full) --- 2645 if (pcdac_out[i] > 126) 2646 pcdac_out[i] = 126; 2647 2648 /* Decrease by a 0.5dB step */ 2649 pwr--; 2650 } 2651} 2652 | 2937 * RFX112 can have up to 2 curves (one for low txpower range and one for 2938 * higher txpower range). We need to put them both on pcdac_out and place 2939 * them in the correct location. In case we only have one curve available 2940 * just fit it on pcdac_out (it's supposed to cover the entire range of 2941 * available pwr levels since it's always the higher power curve). Extrapolate 2942 * below and above final table if needed. 2943 */ 2944static void --- 85 unchanged lines hidden (view full) --- 3030 if (pcdac_out[i] > 126) 3031 pcdac_out[i] = 126; 3032 3033 /* Decrease by a 0.5dB step */ 3034 pwr--; 3035 } 3036} 3037 |
2653/* Write PCDAC values on hw */ | 3038/** 3039 * ath5k_write_pcdac_table() - Write the PCDAC values on hw 3040 * @ah: The &struct ath5k_hw 3041 */ |
2654static void 2655ath5k_write_pcdac_table(struct ath5k_hw *ah) 2656{ 2657 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 2658 int i; 2659 2660 /* 2661 * Write TX power values --- 6 unchanged lines hidden (view full) --- 2668 } 2669} 2670 2671 2672/* 2673 * Power to PDADC table functions 2674 */ 2675 | 3042static void 3043ath5k_write_pcdac_table(struct ath5k_hw *ah) 3044{ 3045 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 3046 int i; 3047 3048 /* 3049 * Write TX power values --- 6 unchanged lines hidden (view full) --- 3056 } 3057} 3058 3059 3060/* 3061 * Power to PDADC table functions 3062 */ 3063 |
2676/* 2677 * Set the gain boundaries and create final Power to PDADC table | 3064/** 3065 * DOC: Power to PDADC table functions |
2678 * | 3066 * |
3067 * For RF2413 and later we have a Power to PDADC table (Power Detector) 3068 * instead of a PCDAC (Power Control) and 4 pd gain curves for each 3069 * calibrated channel. Each curve has power on x axis in 0.5 db steps and 3070 * PDADC steps on y axis and looks like an exponential function like the 3071 * RF5111 curve. 3072 * 3073 * To recreate the curves we read the points from eeprom (eeprom.c) 3074 * and interpolate here. Note that in most cases only 2 (higher and lower) 3075 * curves are used (like RF5112) but vendors have the opportunity to include 3076 * all 4 curves on eeprom. The final curve (higher power) has an extra 3077 * point for better accuracy like RF5112. 3078 * 3079 * The process is similar to what we do above for RF5111/5112 3080 */ 3081 3082/** 3083 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves 3084 * @ah: The &struct ath5k_hw 3085 * @pwr_min: Minimum power (x min) 3086 * @pwr_max: Maximum power (x max) 3087 * @pdcurves: Number of available curves 3088 * 3089 * Combine the various pd curves and create the final Power to PDADC table |
|
2679 * We can have up to 4 pd curves, we need to do a similar process 2680 * as we do for RF5112. This time we don't have an edge_flag but we 2681 * set the gain boundaries on a separate register. 2682 */ 2683static void 2684ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, 2685 s16 *pwr_min, s16 *pwr_max, u8 pdcurves) 2686{ --- 107 unchanged lines hidden (view full) --- 2794 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), 2795 AR5K_PHY_TPC_RG5); 2796 2797 /* Used for setting rate power table */ 2798 ah->ah_txpower.txp_min_idx = pwr_min[0]; 2799 2800} 2801 | 3090 * We can have up to 4 pd curves, we need to do a similar process 3091 * as we do for RF5112. This time we don't have an edge_flag but we 3092 * set the gain boundaries on a separate register. 3093 */ 3094static void 3095ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, 3096 s16 *pwr_min, s16 *pwr_max, u8 pdcurves) 3097{ --- 107 unchanged lines hidden (view full) --- 3205 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), 3206 AR5K_PHY_TPC_RG5); 3207 3208 /* Used for setting rate power table */ 3209 ah->ah_txpower.txp_min_idx = pwr_min[0]; 3210 3211} 3212 |
2802/* Write PDADC values on hw */ | 3213/** 3214 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw 3215 * @ah: The &struct ath5k_hw 3216 * @ee_mode: One of enum ath5k_driver_mode 3217 */ |
2803static void 2804ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode) 2805{ 2806 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2807 u8 *pdadc_out = ah->ah_txpower.txp_pd_table; 2808 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode]; 2809 u8 pdcurves = ee->ee_pd_gains[ee_mode]; 2810 u32 reg; --- 40 unchanged lines hidden (view full) --- 2851 } 2852} 2853 2854 2855/* 2856 * Common code for PCDAC/PDADC tables 2857 */ 2858 | 3218static void 3219ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode) 3220{ 3221 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 3222 u8 *pdadc_out = ah->ah_txpower.txp_pd_table; 3223 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode]; 3224 u8 pdcurves = ee->ee_pd_gains[ee_mode]; 3225 u32 reg; --- 40 unchanged lines hidden (view full) --- 3266 } 3267} 3268 3269 3270/* 3271 * Common code for PCDAC/PDADC tables 3272 */ 3273 |
2859/* | 3274/** 3275 * ath5k_setup_channel_powertable() - Set up power table for this channel 3276 * @ah: The &struct ath5k_hw 3277 * @channel: The &struct ieee80211_channel 3278 * @ee_mode: One of enum ath5k_driver_mode 3279 * @type: One of enum ath5k_powertable_type (eeprom.h) 3280 * |
2860 * This is the main function that uses all of the above 2861 * to set PCDAC/PDADC table on hw for the current channel. 2862 * This table is used for tx power calibration on the baseband, 2863 * without it we get weird tx power levels and in some cases 2864 * distorted spectral mask 2865 */ 2866static int 2867ath5k_setup_channel_powertable(struct ath5k_hw *ah, --- 181 unchanged lines hidden (view full) --- 3049 return -EINVAL; 3050 } 3051 3052 ah->ah_txpower.txp_setup = true; 3053 3054 return 0; 3055} 3056 | 3281 * This is the main function that uses all of the above 3282 * to set PCDAC/PDADC table on hw for the current channel. 3283 * This table is used for tx power calibration on the baseband, 3284 * without it we get weird tx power levels and in some cases 3285 * distorted spectral mask 3286 */ 3287static int 3288ath5k_setup_channel_powertable(struct ath5k_hw *ah, --- 181 unchanged lines hidden (view full) --- 3470 return -EINVAL; 3471 } 3472 3473 ah->ah_txpower.txp_setup = true; 3474 3475 return 0; 3476} 3477 |
3057/* Write power table for current channel to hw */ | 3478/** 3479 * ath5k_write_channel_powertable() - Set power table for current channel on hw 3480 * @ah: The &struct ath5k_hw 3481 * @ee_mode: One of enum ath5k_driver_mode 3482 * @type: One of enum ath5k_powertable_type (eeprom.h) 3483 */ |
3058static void 3059ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type) 3060{ 3061 if (type == AR5K_PWRTABLE_PWR_TO_PDADC) 3062 ath5k_write_pwr_to_pdadc_table(ah, ee_mode); 3063 else 3064 ath5k_write_pcdac_table(ah); 3065} 3066 | 3484static void 3485ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type) 3486{ 3487 if (type == AR5K_PWRTABLE_PWR_TO_PDADC) 3488 ath5k_write_pwr_to_pdadc_table(ah, ee_mode); 3489 else 3490 ath5k_write_pcdac_table(ah); 3491} 3492 |
3067/* 3068 * Per-rate tx power setting | 3493 3494/** 3495 * DOC: Per-rate tx power setting |
3069 * | 3496 * |
3070 * This is the code that sets the desired tx power (below | 3497 * This is the code that sets the desired tx power limit (below |
3071 * maximum) on hw for each rate (we also have TPC that sets | 3498 * maximum) on hw for each rate (we also have TPC that sets |
3072 * power per packet). We do that by providing an index on the 3073 * PCDAC/PDADC table we set up. 3074 */ 3075 3076/* 3077 * Set rate power table | 3499 * power per packet type). We do that by providing an index on the 3500 * PCDAC/PDADC table we set up above, for each rate. |
3078 * 3079 * For now we only limit txpower based on maximum tx power | 3501 * 3502 * For now we only limit txpower based on maximum tx power |
3080 * supported by hw (what's inside rate_info). We need to limit 3081 * this even more, based on regulatory domain etc. | 3503 * supported by hw (what's inside rate_info) + conformance test 3504 * limits. We need to limit this even more, based on regulatory domain 3505 * etc to be safe. Normally this is done from above so we don't care 3506 * here, all we care is that the tx power we set will be O.K. 3507 * for the hw (e.g. won't create noise on PA etc). |
3082 * | 3508 * |
3083 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps) 3084 * and is indexed as follows: | 3509 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps - 3510 * x values) and is indexed as follows: |
3085 * rates[0] - rates[7] -> OFDM rates 3086 * rates[8] - rates[14] -> CCK rates 3087 * rates[15] -> XR rates (they all have the same power) 3088 */ | 3511 * rates[0] - rates[7] -> OFDM rates 3512 * rates[8] - rates[14] -> CCK rates 3513 * rates[15] -> XR rates (they all have the same power) 3514 */ |
3515 3516/** 3517 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power 3518 * @ah: The &struct ath5k_hw 3519 * @max_pwr: The maximum tx power requested in 0.5dB steps 3520 * @rate_info: The &struct ath5k_rate_pcal_info to fill 3521 * @ee_mode: One of enum ath5k_driver_mode 3522 */ |
|
3089static void 3090ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, 3091 struct ath5k_rate_pcal_info *rate_info, 3092 u8 ee_mode) 3093{ 3094 unsigned int i; 3095 u16 *rates; 3096 --- 54 unchanged lines hidden (view full) --- 3151 3152 /* Min/max in 0.25dB units */ 3153 ah->ah_txpower.txp_min_pwr = 2 * rates[7]; 3154 ah->ah_txpower.txp_cur_pwr = 2 * rates[0]; 3155 ah->ah_txpower.txp_ofdm = rates[7]; 3156} 3157 3158 | 3523static void 3524ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, 3525 struct ath5k_rate_pcal_info *rate_info, 3526 u8 ee_mode) 3527{ 3528 unsigned int i; 3529 u16 *rates; 3530 --- 54 unchanged lines hidden (view full) --- 3585 3586 /* Min/max in 0.25dB units */ 3587 ah->ah_txpower.txp_min_pwr = 2 * rates[7]; 3588 ah->ah_txpower.txp_cur_pwr = 2 * rates[0]; 3589 ah->ah_txpower.txp_ofdm = rates[7]; 3590} 3591 3592 |
3159/* 3160 * Set transmission power | 3593/** 3594 * ath5k_hw_txpower() - Set transmission power limit for a given channel 3595 * @ah: The &struct ath5k_hw 3596 * @channel: The &struct ieee80211_channel 3597 * @txpower: Requested tx power in 0.5dB steps 3598 * 3599 * Combines all of the above to set the requested tx power limit 3600 * on hw. |
3161 */ 3162static int 3163ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, 3164 u8 txpower) 3165{ 3166 struct ath5k_rate_pcal_info rate_info; 3167 struct ieee80211_channel *curr_channel = ah->ah_current_channel; 3168 int ee_mode; --- 101 unchanged lines hidden (view full) --- 3270 } else { 3271 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | 3272 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); 3273 } 3274 3275 return 0; 3276} 3277 | 3601 */ 3602static int 3603ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, 3604 u8 txpower) 3605{ 3606 struct ath5k_rate_pcal_info rate_info; 3607 struct ieee80211_channel *curr_channel = ah->ah_current_channel; 3608 int ee_mode; --- 101 unchanged lines hidden (view full) --- 3710 } else { 3711 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | 3712 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); 3713 } 3714 3715 return 0; 3716} 3717 |
3278int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower) | 3718/** 3719 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel 3720 * @ah: The &struct ath5k_hw 3721 * @txpower: The requested tx power limit in 0.5dB steps 3722 * 3723 * This function provides access to ath5k_hw_txpower to the driver in 3724 * case user or an application changes it while PHY is running. 3725 */ 3726int 3727ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower) |
3279{ 3280 ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER, 3281 "changing txpower to %d\n", txpower); 3282 3283 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower); 3284} 3285 | 3728{ 3729 ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER, 3730 "changing txpower to %d\n", txpower); 3731 3732 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower); 3733} 3734 |
3735 |
|
3286/*************\ 3287 Init function 3288\*************/ 3289 | 3736/*************\ 3737 Init function 3738\*************/ 3739 |
3290int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, | 3740/** 3741 * ath5k_hw_phy_init() - Initialize PHY 3742 * @ah: The &struct ath5k_hw 3743 * @channel: The @struct ieee80211_channel 3744 * @mode: One of enum ath5k_driver_mode 3745 * @fast: Try a fast channel switch instead 3746 * 3747 * This is the main function used during reset to initialize PHY 3748 * or do a fast channel change if possible. 3749 * 3750 * NOTE: Do not call this one from the driver, it assumes PHY is in a 3751 * warm reset state ! 3752 */ 3753int 3754ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, |
3291 u8 mode, bool fast) 3292{ 3293 struct ieee80211_channel *curr_channel; 3294 int ret, i; 3295 u32 phy_tst1; 3296 ret = 0; 3297 3298 /* --- 201 unchanged lines hidden --- | 3755 u8 mode, bool fast) 3756{ 3757 struct ieee80211_channel *curr_channel; 3758 int ret, i; 3759 u32 phy_tst1; 3760 ret = 0; 3761 3762 /* --- 201 unchanged lines hidden --- |