xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/phy.c (revision 1846ac3dbec0894095520b2756b68c4fd81e3fbb)
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <asm/unaligned.h>
26 
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "rfbuffer.h"
30 #include "rfgain.h"
31 #include "../regd.h"
32 
33 
34 /******************\
35 * Helper functions *
36 \******************/
37 
38 /*
39  * Get the PHY Chip revision
40  */
41 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
42 {
43 	unsigned int i;
44 	u32 srev;
45 	u16 ret;
46 
47 	/*
48 	 * Set the radio chip access register
49 	 */
50 	switch (band) {
51 	case IEEE80211_BAND_2GHZ:
52 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
53 		break;
54 	case IEEE80211_BAND_5GHZ:
55 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
56 		break;
57 	default:
58 		return 0;
59 	}
60 
61 	usleep_range(2000, 2500);
62 
63 	/* ...wait until PHY is ready and read the selected radio revision */
64 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
65 
66 	for (i = 0; i < 8; i++)
67 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
68 
69 	if (ah->ah_version == AR5K_AR5210) {
70 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
71 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
72 	} else {
73 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
74 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
75 				((srev & 0x0f) << 4), 8);
76 	}
77 
78 	/* Reset to the 5GHz mode */
79 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
80 
81 	return ret;
82 }
83 
84 /*
85  * Check if a channel is supported
86  */
87 bool ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
88 {
89 	u16 freq = channel->center_freq;
90 
91 	/* Check if the channel is in our supported range */
92 	if (channel->band == IEEE80211_BAND_2GHZ) {
93 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
94 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
95 			return true;
96 	} else if (channel->band == IEEE80211_BAND_5GHZ)
97 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
98 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
99 			return true;
100 
101 	return false;
102 }
103 
104 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
105 				struct ieee80211_channel *channel)
106 {
107 	u8 refclk_freq;
108 
109 	if ((ah->ah_radio == AR5K_RF5112) ||
110 	(ah->ah_radio == AR5K_RF5413) ||
111 	(ah->ah_radio == AR5K_RF2413) ||
112 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
113 		refclk_freq = 40;
114 	else
115 		refclk_freq = 32;
116 
117 	if ((channel->center_freq % refclk_freq != 0) &&
118 	((channel->center_freq % refclk_freq < 10) ||
119 	(channel->center_freq % refclk_freq > 22)))
120 		return true;
121 	else
122 		return false;
123 }
124 
125 /*
126  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
127  */
128 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
129 					const struct ath5k_rf_reg *rf_regs,
130 					u32 val, u8 reg_id, bool set)
131 {
132 	const struct ath5k_rf_reg *rfreg = NULL;
133 	u8 offset, bank, num_bits, col, position;
134 	u16 entry;
135 	u32 mask, data, last_bit, bits_shifted, first_bit;
136 	u32 *rfb;
137 	s32 bits_left;
138 	int i;
139 
140 	data = 0;
141 	rfb = ah->ah_rf_banks;
142 
143 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
144 		if (rf_regs[i].index == reg_id) {
145 			rfreg = &rf_regs[i];
146 			break;
147 		}
148 	}
149 
150 	if (rfb == NULL || rfreg == NULL) {
151 		ATH5K_PRINTF("Rf register not found!\n");
152 		/* should not happen */
153 		return 0;
154 	}
155 
156 	bank = rfreg->bank;
157 	num_bits = rfreg->field.len;
158 	first_bit = rfreg->field.pos;
159 	col = rfreg->field.col;
160 
161 	/* first_bit is an offset from bank's
162 	 * start. Since we have all banks on
163 	 * the same array, we use this offset
164 	 * to mark each bank's start */
165 	offset = ah->ah_offset[bank];
166 
167 	/* Boundary check */
168 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
169 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
170 		return 0;
171 	}
172 
173 	entry = ((first_bit - 1) / 8) + offset;
174 	position = (first_bit - 1) % 8;
175 
176 	if (set)
177 		data = ath5k_hw_bitswap(val, num_bits);
178 
179 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
180 	     position = 0, entry++) {
181 
182 		last_bit = (position + bits_left > 8) ? 8 :
183 					position + bits_left;
184 
185 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
186 								(col * 8);
187 
188 		if (set) {
189 			rfb[entry] &= ~mask;
190 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
191 			data >>= (8 - position);
192 		} else {
193 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
194 				<< bits_shifted;
195 			bits_shifted += last_bit - position;
196 		}
197 
198 		bits_left -= 8 - position;
199 	}
200 
201 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
202 
203 	return data;
204 }
205 
206 /**
207  * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
208  *
209  * @ah: the &struct ath5k_hw
210  * @channel: the currently set channel upon reset
211  *
212  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
213  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
214  *
215  * Since delta slope is floating point we split it on its exponent and
216  * mantissa and provide these values on hw.
217  *
218  * For more infos i think this patent is related
219  * http://www.freepatentsonline.com/7184495.html
220  */
221 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
222 	struct ieee80211_channel *channel)
223 {
224 	/* Get exponent and mantissa and set it */
225 	u32 coef_scaled, coef_exp, coef_man,
226 		ds_coef_exp, ds_coef_man, clock;
227 
228 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
229 		(channel->hw_value == AR5K_MODE_11B));
230 
231 	/* Get coefficient
232 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
233 	 * we scale coef by shifting clock value by 24 for
234 	 * better precision since we use integers */
235 	switch (ah->ah_bwmode) {
236 	case AR5K_BWMODE_40MHZ:
237 		clock = 40 * 2;
238 		break;
239 	case AR5K_BWMODE_10MHZ:
240 		clock = 40 / 2;
241 		break;
242 	case AR5K_BWMODE_5MHZ:
243 		clock = 40 / 4;
244 		break;
245 	default:
246 		clock = 40;
247 		break;
248 	}
249 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
250 
251 	/* Get exponent
252 	 * ALGO: coef_exp = 14 - highest set bit position */
253 	coef_exp = ilog2(coef_scaled);
254 
255 	/* Doesn't make sense if it's zero*/
256 	if (!coef_scaled || !coef_exp)
257 		return -EINVAL;
258 
259 	/* Note: we've shifted coef_scaled by 24 */
260 	coef_exp = 14 - (coef_exp - 24);
261 
262 
263 	/* Get mantissa (significant digits)
264 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
265 	coef_man = coef_scaled +
266 		(1 << (24 - coef_exp - 1));
267 
268 	/* Calculate delta slope coefficient exponent
269 	 * and mantissa (remove scaling) and set them on hw */
270 	ds_coef_man = coef_man >> (24 - coef_exp);
271 	ds_coef_exp = coef_exp - 16;
272 
273 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
274 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
275 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
276 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
277 
278 	return 0;
279 }
280 
281 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
282 {
283 	/*Just a try M.F.*/
284 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
285 
286 	return 0;
287 }
288 
289 /*
290  * Wait for synth to settle
291  */
292 static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
293 			struct ieee80211_channel *channel)
294 {
295 	/*
296 	 * On 5211+ read activation -> rx delay
297 	 * and use it (100ns steps).
298 	 */
299 	if (ah->ah_version != AR5K_AR5210) {
300 		u32 delay;
301 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
302 			AR5K_PHY_RX_DELAY_M;
303 		delay = (channel->hw_value == AR5K_MODE_11B) ?
304 			((delay << 2) / 22) : (delay / 10);
305 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
306 			delay = delay << 1;
307 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
308 			delay = delay << 2;
309 		/* XXX: /2 on turbo ? Let's be safe
310 		 * for now */
311 		usleep_range(100 + delay, 100 + (2 * delay));
312 	} else {
313 		usleep_range(1000, 1500);
314 	}
315 }
316 
317 
318 /**********************\
319 * RF Gain optimization *
320 \**********************/
321 
322 /*
323  * This code is used to optimize RF gain on different environments
324  * (temperature mostly) based on feedback from a power detector.
325  *
326  * It's only used on RF5111 and RF5112, later RF chips seem to have
327  * auto adjustment on hw -notice they have a much smaller BANK 7 and
328  * no gain optimization ladder-.
329  *
330  * For more infos check out this patent doc
331  * http://www.freepatentsonline.com/7400691.html
332  *
333  * This paper describes power drops as seen on the receiver due to
334  * probe packets
335  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
336  * %20of%20Power%20Control.pdf
337  *
338  * And this is the MadWiFi bug entry related to the above
339  * http://madwifi-project.org/ticket/1659
340  * with various measurements and diagrams
341  */
342 
343 /* Initialize ah_gain during attach */
344 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
345 {
346 	/* Initialize the gain optimization values */
347 	switch (ah->ah_radio) {
348 	case AR5K_RF5111:
349 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
350 		ah->ah_gain.g_low = 20;
351 		ah->ah_gain.g_high = 35;
352 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
353 		break;
354 	case AR5K_RF5112:
355 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
356 		ah->ah_gain.g_low = 20;
357 		ah->ah_gain.g_high = 85;
358 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
359 		break;
360 	default:
361 		return -EINVAL;
362 	}
363 
364 	return 0;
365 }
366 
367 /* Schedule a gain probe check on the next transmitted packet.
368  * That means our next packet is going to be sent with lower
369  * tx power and a Peak to Average Power Detector (PAPD) will try
370  * to measure the gain.
371  *
372  * TODO: Force a tx packet (bypassing PCU arbitrator etc)
373  * just after we enable the probe so that we don't mess with
374  * standard traffic.
375  */
376 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
377 {
378 
379 	/* Skip if gain calibration is inactive or
380 	 * we already handle a probe request */
381 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
382 		return;
383 
384 	/* Send the packet with 2dB below max power as
385 	 * patent doc suggest */
386 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
387 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
388 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
389 
390 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
391 
392 }
393 
394 /* Calculate gain_F measurement correction
395  * based on the current step for RF5112 rev. 2 */
396 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
397 {
398 	u32 mix, step;
399 	u32 *rf;
400 	const struct ath5k_gain_opt *go;
401 	const struct ath5k_gain_opt_step *g_step;
402 	const struct ath5k_rf_reg *rf_regs;
403 
404 	/* Only RF5112 Rev. 2 supports it */
405 	if ((ah->ah_radio != AR5K_RF5112) ||
406 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
407 		return 0;
408 
409 	go = &rfgain_opt_5112;
410 	rf_regs = rf_regs_5112a;
411 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
412 
413 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
414 
415 	if (ah->ah_rf_banks == NULL)
416 		return 0;
417 
418 	rf = ah->ah_rf_banks;
419 	ah->ah_gain.g_f_corr = 0;
420 
421 	/* No VGA (Variable Gain Amplifier) override, skip */
422 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
423 		return 0;
424 
425 	/* Mix gain stepping */
426 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
427 
428 	/* Mix gain override */
429 	mix = g_step->gos_param[0];
430 
431 	switch (mix) {
432 	case 3:
433 		ah->ah_gain.g_f_corr = step * 2;
434 		break;
435 	case 2:
436 		ah->ah_gain.g_f_corr = (step - 5) * 2;
437 		break;
438 	case 1:
439 		ah->ah_gain.g_f_corr = step;
440 		break;
441 	default:
442 		ah->ah_gain.g_f_corr = 0;
443 		break;
444 	}
445 
446 	return ah->ah_gain.g_f_corr;
447 }
448 
449 /* Check if current gain_F measurement is in the range of our
450  * power detector windows. If we get a measurement outside range
451  * we know it's not accurate (detectors can't measure anything outside
452  * their detection window) so we must ignore it */
453 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
454 {
455 	const struct ath5k_rf_reg *rf_regs;
456 	u32 step, mix_ovr, level[4];
457 	u32 *rf;
458 
459 	if (ah->ah_rf_banks == NULL)
460 		return false;
461 
462 	rf = ah->ah_rf_banks;
463 
464 	if (ah->ah_radio == AR5K_RF5111) {
465 
466 		rf_regs = rf_regs_5111;
467 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
468 
469 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
470 			false);
471 
472 		level[0] = 0;
473 		level[1] = (step == 63) ? 50 : step + 4;
474 		level[2] = (step != 63) ? 64 : level[0];
475 		level[3] = level[2] + 50;
476 
477 		ah->ah_gain.g_high = level[3] -
478 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
479 		ah->ah_gain.g_low = level[0] +
480 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
481 	} else {
482 
483 		rf_regs = rf_regs_5112;
484 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
485 
486 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
487 			false);
488 
489 		level[0] = level[2] = 0;
490 
491 		if (mix_ovr == 1) {
492 			level[1] = level[3] = 83;
493 		} else {
494 			level[1] = level[3] = 107;
495 			ah->ah_gain.g_high = 55;
496 		}
497 	}
498 
499 	return (ah->ah_gain.g_current >= level[0] &&
500 			ah->ah_gain.g_current <= level[1]) ||
501 		(ah->ah_gain.g_current >= level[2] &&
502 			ah->ah_gain.g_current <= level[3]);
503 }
504 
505 /* Perform gain_F adjustment by choosing the right set
506  * of parameters from RF gain optimization ladder */
507 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
508 {
509 	const struct ath5k_gain_opt *go;
510 	const struct ath5k_gain_opt_step *g_step;
511 	int ret = 0;
512 
513 	switch (ah->ah_radio) {
514 	case AR5K_RF5111:
515 		go = &rfgain_opt_5111;
516 		break;
517 	case AR5K_RF5112:
518 		go = &rfgain_opt_5112;
519 		break;
520 	default:
521 		return 0;
522 	}
523 
524 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
525 
526 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
527 
528 		/* Reached maximum */
529 		if (ah->ah_gain.g_step_idx == 0)
530 			return -1;
531 
532 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
533 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
534 				ah->ah_gain.g_step_idx > 0;
535 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
536 			ah->ah_gain.g_target -= 2 *
537 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
538 			    g_step->gos_gain);
539 
540 		ret = 1;
541 		goto done;
542 	}
543 
544 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
545 
546 		/* Reached minimum */
547 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
548 			return -2;
549 
550 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
551 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
552 				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
553 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
554 			ah->ah_gain.g_target -= 2 *
555 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
556 			    g_step->gos_gain);
557 
558 		ret = 2;
559 		goto done;
560 	}
561 
562 done:
563 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
564 		"ret %d, gain step %u, current gain %u, target gain %u\n",
565 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
566 		ah->ah_gain.g_target);
567 
568 	return ret;
569 }
570 
571 /* Main callback for thermal RF gain calibration engine
572  * Check for a new gain reading and schedule an adjustment
573  * if needed.
574  */
575 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
576 {
577 	u32 data, type;
578 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
579 
580 	if (ah->ah_rf_banks == NULL ||
581 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
582 		return AR5K_RFGAIN_INACTIVE;
583 
584 	/* No check requested, either engine is inactive
585 	 * or an adjustment is already requested */
586 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
587 		goto done;
588 
589 	/* Read the PAPD (Peak to Average Power Detector)
590 	 * register */
591 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
592 
593 	/* No probe is scheduled, read gain_F measurement */
594 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
595 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
596 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
597 
598 		/* If tx packet is CCK correct the gain_F measurement
599 		 * by cck ofdm gain delta */
600 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
601 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
602 				ah->ah_gain.g_current +=
603 					ee->ee_cck_ofdm_gain_delta;
604 			else
605 				ah->ah_gain.g_current +=
606 					AR5K_GAIN_CCK_PROBE_CORR;
607 		}
608 
609 		/* Further correct gain_F measurement for
610 		 * RF5112A radios */
611 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
612 			ath5k_hw_rf_gainf_corr(ah);
613 			ah->ah_gain.g_current =
614 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
615 				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
616 				0;
617 		}
618 
619 		/* Check if measurement is ok and if we need
620 		 * to adjust gain, schedule a gain adjustment,
621 		 * else switch back to the active state */
622 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
623 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
624 		ath5k_hw_rf_gainf_adjust(ah)) {
625 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
626 		} else {
627 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
628 		}
629 	}
630 
631 done:
632 	return ah->ah_gain.g_state;
633 }
634 
635 /* Write initial RF gain table to set the RF sensitivity
636  * this one works on all RF chips and has nothing to do
637  * with gain_F calibration */
638 static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
639 {
640 	const struct ath5k_ini_rfgain *ath5k_rfg;
641 	unsigned int i, size, index;
642 
643 	switch (ah->ah_radio) {
644 	case AR5K_RF5111:
645 		ath5k_rfg = rfgain_5111;
646 		size = ARRAY_SIZE(rfgain_5111);
647 		break;
648 	case AR5K_RF5112:
649 		ath5k_rfg = rfgain_5112;
650 		size = ARRAY_SIZE(rfgain_5112);
651 		break;
652 	case AR5K_RF2413:
653 		ath5k_rfg = rfgain_2413;
654 		size = ARRAY_SIZE(rfgain_2413);
655 		break;
656 	case AR5K_RF2316:
657 		ath5k_rfg = rfgain_2316;
658 		size = ARRAY_SIZE(rfgain_2316);
659 		break;
660 	case AR5K_RF5413:
661 		ath5k_rfg = rfgain_5413;
662 		size = ARRAY_SIZE(rfgain_5413);
663 		break;
664 	case AR5K_RF2317:
665 	case AR5K_RF2425:
666 		ath5k_rfg = rfgain_2425;
667 		size = ARRAY_SIZE(rfgain_2425);
668 		break;
669 	default:
670 		return -EINVAL;
671 	}
672 
673 	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
674 
675 	for (i = 0; i < size; i++) {
676 		AR5K_REG_WAIT(i);
677 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
678 			(u32)ath5k_rfg[i].rfg_register);
679 	}
680 
681 	return 0;
682 }
683 
684 
685 
686 /********************\
687 * RF Registers setup *
688 \********************/
689 
690 /*
691  * Setup RF registers by writing RF buffer on hw
692  */
693 static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
694 	struct ieee80211_channel *channel, unsigned int mode)
695 {
696 	const struct ath5k_rf_reg *rf_regs;
697 	const struct ath5k_ini_rfbuffer *ini_rfb;
698 	const struct ath5k_gain_opt *go = NULL;
699 	const struct ath5k_gain_opt_step *g_step;
700 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
701 	u8 ee_mode = 0;
702 	u32 *rfb;
703 	int i, obdb = -1, bank = -1;
704 
705 	switch (ah->ah_radio) {
706 	case AR5K_RF5111:
707 		rf_regs = rf_regs_5111;
708 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
709 		ini_rfb = rfb_5111;
710 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
711 		go = &rfgain_opt_5111;
712 		break;
713 	case AR5K_RF5112:
714 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
715 			rf_regs = rf_regs_5112a;
716 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
717 			ini_rfb = rfb_5112a;
718 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
719 		} else {
720 			rf_regs = rf_regs_5112;
721 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
722 			ini_rfb = rfb_5112;
723 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
724 		}
725 		go = &rfgain_opt_5112;
726 		break;
727 	case AR5K_RF2413:
728 		rf_regs = rf_regs_2413;
729 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
730 		ini_rfb = rfb_2413;
731 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
732 		break;
733 	case AR5K_RF2316:
734 		rf_regs = rf_regs_2316;
735 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
736 		ini_rfb = rfb_2316;
737 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
738 		break;
739 	case AR5K_RF5413:
740 		rf_regs = rf_regs_5413;
741 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
742 		ini_rfb = rfb_5413;
743 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
744 		break;
745 	case AR5K_RF2317:
746 		rf_regs = rf_regs_2425;
747 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
748 		ini_rfb = rfb_2317;
749 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
750 		break;
751 	case AR5K_RF2425:
752 		rf_regs = rf_regs_2425;
753 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
754 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
755 			ini_rfb = rfb_2425;
756 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
757 		} else {
758 			ini_rfb = rfb_2417;
759 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
760 		}
761 		break;
762 	default:
763 		return -EINVAL;
764 	}
765 
766 	/* If it's the first time we set RF buffer, allocate
767 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
768 	 * we set above */
769 	if (ah->ah_rf_banks == NULL) {
770 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
771 								GFP_KERNEL);
772 		if (ah->ah_rf_banks == NULL) {
773 			ATH5K_ERR(ah, "out of memory\n");
774 			return -ENOMEM;
775 		}
776 	}
777 
778 	/* Copy values to modify them */
779 	rfb = ah->ah_rf_banks;
780 
781 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
782 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
783 			ATH5K_ERR(ah, "invalid bank\n");
784 			return -EINVAL;
785 		}
786 
787 		/* Bank changed, write down the offset */
788 		if (bank != ini_rfb[i].rfb_bank) {
789 			bank = ini_rfb[i].rfb_bank;
790 			ah->ah_offset[bank] = i;
791 		}
792 
793 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
794 	}
795 
796 	/* Set Output and Driver bias current (OB/DB) */
797 	if (channel->band == IEEE80211_BAND_2GHZ) {
798 
799 		if (channel->hw_value == AR5K_MODE_11B)
800 			ee_mode = AR5K_EEPROM_MODE_11B;
801 		else
802 			ee_mode = AR5K_EEPROM_MODE_11G;
803 
804 		/* For RF511X/RF211X combination we
805 		 * use b_OB and b_DB parameters stored
806 		 * in eeprom on ee->ee_ob[ee_mode][0]
807 		 *
808 		 * For all other chips we use OB/DB for 2GHz
809 		 * stored in the b/g modal section just like
810 		 * 802.11a on ee->ee_ob[ee_mode][1] */
811 		if ((ah->ah_radio == AR5K_RF5111) ||
812 		(ah->ah_radio == AR5K_RF5112))
813 			obdb = 0;
814 		else
815 			obdb = 1;
816 
817 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
818 						AR5K_RF_OB_2GHZ, true);
819 
820 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
821 						AR5K_RF_DB_2GHZ, true);
822 
823 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
824 	} else if ((channel->band == IEEE80211_BAND_5GHZ) ||
825 			(ah->ah_radio == AR5K_RF5111)) {
826 
827 		/* For 11a, Turbo and XR we need to choose
828 		 * OB/DB based on frequency range */
829 		ee_mode = AR5K_EEPROM_MODE_11A;
830 		obdb =	 channel->center_freq >= 5725 ? 3 :
831 			(channel->center_freq >= 5500 ? 2 :
832 			(channel->center_freq >= 5260 ? 1 :
833 			 (channel->center_freq > 4000 ? 0 : -1)));
834 
835 		if (obdb < 0)
836 			return -EINVAL;
837 
838 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
839 						AR5K_RF_OB_5GHZ, true);
840 
841 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
842 						AR5K_RF_DB_5GHZ, true);
843 	}
844 
845 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
846 
847 	/* Set turbo mode (N/A on RF5413) */
848 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
849 	(ah->ah_radio != AR5K_RF5413))
850 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
851 
852 	/* Bank Modifications (chip-specific) */
853 	if (ah->ah_radio == AR5K_RF5111) {
854 
855 		/* Set gain_F settings according to current step */
856 		if (channel->hw_value != AR5K_MODE_11B) {
857 
858 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
859 					AR5K_PHY_FRAME_CTL_TX_CLIP,
860 					g_step->gos_param[0]);
861 
862 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
863 							AR5K_RF_PWD_90, true);
864 
865 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
866 							AR5K_RF_PWD_84, true);
867 
868 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
869 						AR5K_RF_RFGAIN_SEL, true);
870 
871 			/* We programmed gain_F parameters, switch back
872 			 * to active state */
873 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
874 
875 		}
876 
877 		/* Bank 6/7 setup */
878 
879 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
880 						AR5K_RF_PWD_XPD, true);
881 
882 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
883 						AR5K_RF_XPD_GAIN, true);
884 
885 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
886 						AR5K_RF_GAIN_I, true);
887 
888 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
889 						AR5K_RF_PLO_SEL, true);
890 
891 		/* Tweak power detectors for half/quarter rate support */
892 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
893 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
894 			u8 wait_i;
895 
896 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
897 						AR5K_RF_WAIT_S, true);
898 
899 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
900 							0x1f : 0x10;
901 
902 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
903 						AR5K_RF_WAIT_I, true);
904 			ath5k_hw_rfb_op(ah, rf_regs, 3,
905 						AR5K_RF_MAX_TIME, true);
906 
907 		}
908 	}
909 
910 	if (ah->ah_radio == AR5K_RF5112) {
911 
912 		/* Set gain_F settings according to current step */
913 		if (channel->hw_value != AR5K_MODE_11B) {
914 
915 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
916 						AR5K_RF_MIXGAIN_OVR, true);
917 
918 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
919 						AR5K_RF_PWD_138, true);
920 
921 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
922 						AR5K_RF_PWD_137, true);
923 
924 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
925 						AR5K_RF_PWD_136, true);
926 
927 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
928 						AR5K_RF_PWD_132, true);
929 
930 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
931 						AR5K_RF_PWD_131, true);
932 
933 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
934 						AR5K_RF_PWD_130, true);
935 
936 			/* We programmed gain_F parameters, switch back
937 			 * to active state */
938 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
939 		}
940 
941 		/* Bank 6/7 setup */
942 
943 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
944 						AR5K_RF_XPD_SEL, true);
945 
946 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
947 			/* Rev. 1 supports only one xpd */
948 			ath5k_hw_rfb_op(ah, rf_regs,
949 						ee->ee_x_gain[ee_mode],
950 						AR5K_RF_XPD_GAIN, true);
951 
952 		} else {
953 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
954 			if (ee->ee_pd_gains[ee_mode] > 1) {
955 				ath5k_hw_rfb_op(ah, rf_regs,
956 						pdg_curve_to_idx[0],
957 						AR5K_RF_PD_GAIN_LO, true);
958 				ath5k_hw_rfb_op(ah, rf_regs,
959 						pdg_curve_to_idx[1],
960 						AR5K_RF_PD_GAIN_HI, true);
961 			} else {
962 				ath5k_hw_rfb_op(ah, rf_regs,
963 						pdg_curve_to_idx[0],
964 						AR5K_RF_PD_GAIN_LO, true);
965 				ath5k_hw_rfb_op(ah, rf_regs,
966 						pdg_curve_to_idx[0],
967 						AR5K_RF_PD_GAIN_HI, true);
968 			}
969 
970 			/* Lower synth voltage on Rev 2 */
971 			if (ah->ah_radio == AR5K_RF5112 &&
972 			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
973 				ath5k_hw_rfb_op(ah, rf_regs, 2,
974 						AR5K_RF_HIGH_VC_CP, true);
975 
976 				ath5k_hw_rfb_op(ah, rf_regs, 2,
977 						AR5K_RF_MID_VC_CP, true);
978 
979 				ath5k_hw_rfb_op(ah, rf_regs, 2,
980 						AR5K_RF_LOW_VC_CP, true);
981 
982 				ath5k_hw_rfb_op(ah, rf_regs, 2,
983 						AR5K_RF_PUSH_UP, true);
984 			}
985 
986 			/* Decrease power consumption on 5213+ BaseBand */
987 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
988 				ath5k_hw_rfb_op(ah, rf_regs, 1,
989 						AR5K_RF_PAD2GND, true);
990 
991 				ath5k_hw_rfb_op(ah, rf_regs, 1,
992 						AR5K_RF_XB2_LVL, true);
993 
994 				ath5k_hw_rfb_op(ah, rf_regs, 1,
995 						AR5K_RF_XB5_LVL, true);
996 
997 				ath5k_hw_rfb_op(ah, rf_regs, 1,
998 						AR5K_RF_PWD_167, true);
999 
1000 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1001 						AR5K_RF_PWD_166, true);
1002 			}
1003 		}
1004 
1005 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1006 						AR5K_RF_GAIN_I, true);
1007 
1008 		/* Tweak power detector for half/quarter rates */
1009 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1010 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1011 			u8 pd_delay;
1012 
1013 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1014 							0xf : 0x8;
1015 
1016 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1017 						AR5K_RF_PD_PERIOD_A, true);
1018 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1019 						AR5K_RF_PD_DELAY_A, true);
1020 
1021 		}
1022 	}
1023 
1024 	if (ah->ah_radio == AR5K_RF5413 &&
1025 	channel->band == IEEE80211_BAND_2GHZ) {
1026 
1027 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1028 									true);
1029 
1030 		/* Set optimum value for early revisions (on pci-e chips) */
1031 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1032 		ah->ah_mac_srev < AR5K_SREV_AR5413)
1033 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1034 						AR5K_RF_PWD_ICLOBUF_2G, true);
1035 
1036 	}
1037 
1038 	/* Write RF banks on hw */
1039 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1040 		AR5K_REG_WAIT(i);
1041 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 
1048 /**************************\
1049   PHY/RF channel functions
1050 \**************************/
1051 
1052 /*
1053  * Conversion needed for RF5110
1054  */
1055 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1056 {
1057 	u32 athchan;
1058 
1059 	/*
1060 	 * Convert IEEE channel/MHz to an internal channel value used
1061 	 * by the AR5210 chipset. This has not been verified with
1062 	 * newer chipsets like the AR5212A who have a completely
1063 	 * different RF/PHY part.
1064 	 */
1065 	athchan = (ath5k_hw_bitswap(
1066 			(ieee80211_frequency_to_channel(
1067 				channel->center_freq) - 24) / 2, 5)
1068 				<< 1) | (1 << 6) | 0x1;
1069 	return athchan;
1070 }
1071 
1072 /*
1073  * Set channel on RF5110
1074  */
1075 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1076 		struct ieee80211_channel *channel)
1077 {
1078 	u32 data;
1079 
1080 	/*
1081 	 * Set the channel and wait
1082 	 */
1083 	data = ath5k_hw_rf5110_chan2athchan(channel);
1084 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1085 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1086 	usleep_range(1000, 1500);
1087 
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Conversion needed for 5111
1093  */
1094 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1095 		struct ath5k_athchan_2ghz *athchan)
1096 {
1097 	int channel;
1098 
1099 	/* Cast this value to catch negative channel numbers (>= -19) */
1100 	channel = (int)ieee;
1101 
1102 	/*
1103 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1104 	 */
1105 	if (channel <= 13) {
1106 		athchan->a2_athchan = 115 + channel;
1107 		athchan->a2_flags = 0x46;
1108 	} else if (channel == 14) {
1109 		athchan->a2_athchan = 124;
1110 		athchan->a2_flags = 0x44;
1111 	} else if (channel >= 15 && channel <= 26) {
1112 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1113 		athchan->a2_flags = 0x46;
1114 	} else
1115 		return -EINVAL;
1116 
1117 	return 0;
1118 }
1119 
1120 /*
1121  * Set channel on 5111
1122  */
1123 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1124 		struct ieee80211_channel *channel)
1125 {
1126 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1127 	unsigned int ath5k_channel =
1128 		ieee80211_frequency_to_channel(channel->center_freq);
1129 	u32 data0, data1, clock;
1130 	int ret;
1131 
1132 	/*
1133 	 * Set the channel on the RF5111 radio
1134 	 */
1135 	data0 = data1 = 0;
1136 
1137 	if (channel->band == IEEE80211_BAND_2GHZ) {
1138 		/* Map 2GHz channel to 5GHz Atheros channel ID */
1139 		ret = ath5k_hw_rf5111_chan2athchan(
1140 			ieee80211_frequency_to_channel(channel->center_freq),
1141 			&ath5k_channel_2ghz);
1142 		if (ret)
1143 			return ret;
1144 
1145 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1146 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1147 		    << 5) | (1 << 4);
1148 	}
1149 
1150 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1151 		clock = 1;
1152 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1153 			(clock << 1) | (1 << 10) | 1;
1154 	} else {
1155 		clock = 0;
1156 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1157 			<< 2) | (clock << 1) | (1 << 10) | 1;
1158 	}
1159 
1160 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1161 			AR5K_RF_BUFFER);
1162 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1163 			AR5K_RF_BUFFER_CONTROL_3);
1164 
1165 	return 0;
1166 }
1167 
1168 /*
1169  * Set channel on 5112 and newer
1170  */
1171 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1172 		struct ieee80211_channel *channel)
1173 {
1174 	u32 data, data0, data1, data2;
1175 	u16 c;
1176 
1177 	data = data0 = data1 = data2 = 0;
1178 	c = channel->center_freq;
1179 
1180 	if (c < 4800) {
1181 		if (!((c - 2224) % 5)) {
1182 			data0 = ((2 * (c - 704)) - 3040) / 10;
1183 			data1 = 1;
1184 		} else if (!((c - 2192) % 5)) {
1185 			data0 = ((2 * (c - 672)) - 3040) / 10;
1186 			data1 = 0;
1187 		} else
1188 			return -EINVAL;
1189 
1190 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1191 	} else if ((c % 5) != 2 || c > 5435) {
1192 		if (!(c % 20) && c >= 5120) {
1193 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1194 			data2 = ath5k_hw_bitswap(3, 2);
1195 		} else if (!(c % 10)) {
1196 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1197 			data2 = ath5k_hw_bitswap(2, 2);
1198 		} else if (!(c % 5)) {
1199 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1200 			data2 = ath5k_hw_bitswap(1, 2);
1201 		} else
1202 			return -EINVAL;
1203 	} else {
1204 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1205 		data2 = ath5k_hw_bitswap(0, 2);
1206 	}
1207 
1208 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1209 
1210 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1211 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1212 
1213 	return 0;
1214 }
1215 
1216 /*
1217  * Set the channel on the RF2425
1218  */
1219 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1220 		struct ieee80211_channel *channel)
1221 {
1222 	u32 data, data0, data2;
1223 	u16 c;
1224 
1225 	data = data0 = data2 = 0;
1226 	c = channel->center_freq;
1227 
1228 	if (c < 4800) {
1229 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1230 		data2 = 0;
1231 	/* ? 5GHz ? */
1232 	} else if ((c % 5) != 2 || c > 5435) {
1233 		if (!(c % 20) && c < 5120)
1234 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1235 		else if (!(c % 10))
1236 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1237 		else if (!(c % 5))
1238 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1239 		else
1240 			return -EINVAL;
1241 		data2 = ath5k_hw_bitswap(1, 2);
1242 	} else {
1243 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1244 		data2 = ath5k_hw_bitswap(0, 2);
1245 	}
1246 
1247 	data = (data0 << 4) | data2 << 2 | 0x1001;
1248 
1249 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1250 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1251 
1252 	return 0;
1253 }
1254 
1255 /*
1256  * Set a channel on the radio chip
1257  */
1258 static int ath5k_hw_channel(struct ath5k_hw *ah,
1259 		struct ieee80211_channel *channel)
1260 {
1261 	int ret;
1262 	/*
1263 	 * Check bounds supported by the PHY (we don't care about regulatory
1264 	 * restrictions at this point).
1265 	 */
1266 	if (!ath5k_channel_ok(ah, channel)) {
1267 		ATH5K_ERR(ah,
1268 			"channel frequency (%u MHz) out of supported "
1269 			"band range\n",
1270 			channel->center_freq);
1271 			return -EINVAL;
1272 	}
1273 
1274 	/*
1275 	 * Set the channel and wait
1276 	 */
1277 	switch (ah->ah_radio) {
1278 	case AR5K_RF5110:
1279 		ret = ath5k_hw_rf5110_channel(ah, channel);
1280 		break;
1281 	case AR5K_RF5111:
1282 		ret = ath5k_hw_rf5111_channel(ah, channel);
1283 		break;
1284 	case AR5K_RF2317:
1285 	case AR5K_RF2425:
1286 		ret = ath5k_hw_rf2425_channel(ah, channel);
1287 		break;
1288 	default:
1289 		ret = ath5k_hw_rf5112_channel(ah, channel);
1290 		break;
1291 	}
1292 
1293 	if (ret)
1294 		return ret;
1295 
1296 	/* Set JAPAN setting for channel 14 */
1297 	if (channel->center_freq == 2484) {
1298 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1299 				AR5K_PHY_CCKTXCTL_JAPAN);
1300 	} else {
1301 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1302 				AR5K_PHY_CCKTXCTL_WORLD);
1303 	}
1304 
1305 	ah->ah_current_channel = channel;
1306 
1307 	return 0;
1308 }
1309 
1310 /*****************\
1311   PHY calibration
1312 \*****************/
1313 
1314 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1315 {
1316 	s32 val;
1317 
1318 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1319 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1320 }
1321 
1322 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1323 {
1324 	int i;
1325 
1326 	ah->ah_nfcal_hist.index = 0;
1327 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1328 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1329 }
1330 
1331 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1332 {
1333 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1334 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1335 	hist->nfval[hist->index] = noise_floor;
1336 }
1337 
1338 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1339 {
1340 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1341 	s16 tmp;
1342 	int i, j;
1343 
1344 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1345 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1346 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1347 			if (sort[j] > sort[j - 1]) {
1348 				tmp = sort[j];
1349 				sort[j] = sort[j - 1];
1350 				sort[j - 1] = tmp;
1351 			}
1352 		}
1353 	}
1354 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1355 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1356 			"cal %d:%d\n", i, sort[i]);
1357 	}
1358 	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1359 }
1360 
1361 /*
1362  * When we tell the hardware to perform a noise floor calibration
1363  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1364  * sample-and-hold the minimum noise level seen at the antennas.
1365  * This value is then stored in a ring buffer of recently measured
1366  * noise floor values so we have a moving window of the last few
1367  * samples.
1368  *
1369  * The median of the values in the history is then loaded into the
1370  * hardware for its own use for RSSI and CCA measurements.
1371  */
1372 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1373 {
1374 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1375 	u32 val;
1376 	s16 nf, threshold;
1377 	u8 ee_mode;
1378 
1379 	/* keep last value if calibration hasn't completed */
1380 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1381 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1382 			"NF did not complete in calibration window\n");
1383 
1384 		return;
1385 	}
1386 
1387 	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1388 
1389 	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1390 
1391 	/* completed NF calibration, test threshold */
1392 	nf = ath5k_hw_read_measured_noise_floor(ah);
1393 	threshold = ee->ee_noise_floor_thr[ee_mode];
1394 
1395 	if (nf > threshold) {
1396 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1397 			"noise floor failure detected; "
1398 			"read %d, threshold %d\n",
1399 			nf, threshold);
1400 
1401 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1402 	}
1403 
1404 	ath5k_hw_update_nfcal_hist(ah, nf);
1405 	nf = ath5k_hw_get_median_noise_floor(ah);
1406 
1407 	/* load noise floor (in .5 dBm) so the hardware will use it */
1408 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1409 	val |= (nf * 2) & AR5K_PHY_NF_M;
1410 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1411 
1412 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1413 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1414 
1415 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1416 		0, false);
1417 
1418 	/*
1419 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1420 	 * so that we're not capped by the median we just loaded.
1421 	 * This will be used as the initial value for the next noise
1422 	 * floor calibration.
1423 	 */
1424 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1425 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1426 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1427 		AR5K_PHY_AGCCTL_NF_EN |
1428 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1429 		AR5K_PHY_AGCCTL_NF);
1430 
1431 	ah->ah_noise_floor = nf;
1432 
1433 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1434 
1435 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1436 		"noise floor calibrated: %d\n", nf);
1437 }
1438 
1439 /*
1440  * Perform a PHY calibration on RF5110
1441  * -Fix BPSK/QAM Constellation (I/Q correction)
1442  */
1443 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1444 		struct ieee80211_channel *channel)
1445 {
1446 	u32 phy_sig, phy_agc, phy_sat, beacon;
1447 	int ret;
1448 
1449 	/*
1450 	 * Disable beacons and RX/TX queues, wait
1451 	 */
1452 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1453 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1454 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1455 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1456 
1457 	usleep_range(2000, 2500);
1458 
1459 	/*
1460 	 * Set the channel (with AGC turned off)
1461 	 */
1462 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1463 	udelay(10);
1464 	ret = ath5k_hw_channel(ah, channel);
1465 
1466 	/*
1467 	 * Activate PHY and wait
1468 	 */
1469 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1470 	usleep_range(1000, 1500);
1471 
1472 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1473 
1474 	if (ret)
1475 		return ret;
1476 
1477 	/*
1478 	 * Calibrate the radio chip
1479 	 */
1480 
1481 	/* Remember normal state */
1482 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1483 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1484 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1485 
1486 	/* Update radio registers */
1487 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1488 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1489 
1490 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1491 			AR5K_PHY_AGCCOARSE_LO)) |
1492 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1493 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1494 
1495 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1496 			AR5K_PHY_ADCSAT_THR)) |
1497 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1498 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1499 
1500 	udelay(20);
1501 
1502 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1503 	udelay(10);
1504 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1505 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1506 
1507 	usleep_range(1000, 1500);
1508 
1509 	/*
1510 	 * Enable calibration and wait until completion
1511 	 */
1512 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1513 
1514 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1515 			AR5K_PHY_AGCCTL_CAL, 0, false);
1516 
1517 	/* Reset to normal state */
1518 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1519 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1520 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1521 
1522 	if (ret) {
1523 		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1524 				channel->center_freq);
1525 		return ret;
1526 	}
1527 
1528 	/*
1529 	 * Re-enable RX/TX and beacons
1530 	 */
1531 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1532 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1533 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1534 
1535 	return 0;
1536 }
1537 
1538 /*
1539  * Perform I/Q calibration on RF5111/5112 and newer chips
1540  */
1541 static int
1542 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1543 {
1544 	u32 i_pwr, q_pwr;
1545 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1546 	int i;
1547 
1548 	/* Skip if I/Q calibration is not needed or if it's still running */
1549 	if (!ah->ah_iq_cal_needed)
1550 		return -EINVAL;
1551 	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1552 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1553 				"I/Q calibration still running");
1554 		return -EBUSY;
1555 	}
1556 
1557 	/* Calibration has finished, get the results and re-run */
1558 
1559 	/* Work around for empty results which can apparently happen on 5212:
1560 	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1561 	for (i = 0; i <= 10; i++) {
1562 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1563 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1564 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1565 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1566 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1567 		if (i_pwr && q_pwr)
1568 			break;
1569 	}
1570 
1571 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1572 
1573 	if (ah->ah_version == AR5K_AR5211)
1574 		q_coffd = q_pwr >> 6;
1575 	else
1576 		q_coffd = q_pwr >> 7;
1577 
1578 	/* In case i_coffd became zero, cancel calibration
1579 	 * not only it's too small, it'll also result a divide
1580 	 * by zero later on. */
1581 	if (i_coffd == 0 || q_coffd < 2)
1582 		return -ECANCELED;
1583 
1584 	/* Protect against loss of sign bits */
1585 
1586 	i_coff = (-iq_corr) / i_coffd;
1587 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1588 
1589 	if (ah->ah_version == AR5K_AR5211)
1590 		q_coff = (i_pwr / q_coffd) - 64;
1591 	else
1592 		q_coff = (i_pwr / q_coffd) - 128;
1593 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1594 
1595 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1596 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1597 			i_coff, q_coff, i_coffd, q_coffd);
1598 
1599 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1600 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1601 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1602 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1603 
1604 	/* Re-enable calibration -if we don't we'll commit
1605 	 * the same values again and again */
1606 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1607 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1608 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1609 
1610 	return 0;
1611 }
1612 
1613 /*
1614  * Perform a PHY calibration
1615  */
1616 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1617 		struct ieee80211_channel *channel)
1618 {
1619 	int ret;
1620 
1621 	if (ah->ah_radio == AR5K_RF5110)
1622 		return ath5k_hw_rf5110_calibrate(ah, channel);
1623 
1624 	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1625 	if (ret) {
1626 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1627 			"No I/Q correction performed (%uMHz)\n",
1628 			channel->center_freq);
1629 
1630 		/* Happens all the time if there is not much
1631 		 * traffic, consider it normal behaviour. */
1632 		ret = 0;
1633 	}
1634 
1635 	/* On full calibration do an AGC calibration and
1636 	 * request a PAPD probe for gainf calibration if
1637 	 * needed */
1638 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL) {
1639 
1640 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1641 					AR5K_PHY_AGCCTL_CAL);
1642 
1643 		ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1644 			AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF,
1645 			0, false);
1646 		if (ret) {
1647 			ATH5K_ERR(ah,
1648 				"gain calibration timeout (%uMHz)\n",
1649 				channel->center_freq);
1650 		}
1651 
1652 		if ((ah->ah_radio == AR5K_RF5111 ||
1653 			ah->ah_radio == AR5K_RF5112)
1654 			&& (channel->hw_value != AR5K_MODE_11B))
1655 			ath5k_hw_request_rfgain_probe(ah);
1656 	}
1657 
1658 	/* Update noise floor
1659 	 * XXX: Only do this after AGC calibration */
1660 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1661 		ath5k_hw_update_noise_floor(ah);
1662 
1663 	return ret;
1664 }
1665 
1666 
1667 /***************************\
1668 * Spur mitigation functions *
1669 \***************************/
1670 
1671 static void
1672 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1673 				struct ieee80211_channel *channel)
1674 {
1675 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1676 	u32 mag_mask[4] = {0, 0, 0, 0};
1677 	u32 pilot_mask[2] = {0, 0};
1678 	/* Note: fbin values are scaled up by 2 */
1679 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1680 	s32 spur_delta_phase, spur_freq_sigma_delta;
1681 	s32 spur_offset, num_symbols_x16;
1682 	u8 num_symbol_offsets, i, freq_band;
1683 
1684 	/* Convert current frequency to fbin value (the same way channels
1685 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1686 	 * up by 2 so we can compare it later */
1687 	if (channel->band == IEEE80211_BAND_2GHZ) {
1688 		chan_fbin = (channel->center_freq - 2300) * 10;
1689 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1690 	} else {
1691 		chan_fbin = (channel->center_freq - 4900) * 10;
1692 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1693 	}
1694 
1695 	/* Check if any spur_chan_fbin from EEPROM is
1696 	 * within our current channel's spur detection range */
1697 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1698 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1699 	/* XXX: Half/Quarter channels ?*/
1700 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1701 		spur_detection_window *= 2;
1702 
1703 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1704 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1705 
1706 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1707 		 * so it's zero if we got nothing from EEPROM */
1708 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1709 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1710 			break;
1711 		}
1712 
1713 		if ((chan_fbin - spur_detection_window <=
1714 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1715 		(chan_fbin + spur_detection_window >=
1716 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1717 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1718 			break;
1719 		}
1720 	}
1721 
1722 	/* We need to enable spur filter for this channel */
1723 	if (spur_chan_fbin) {
1724 		spur_offset = spur_chan_fbin - chan_fbin;
1725 		/*
1726 		 * Calculate deltas:
1727 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1728 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1729 		 * Note: Both values have 100Hz resolution
1730 		 */
1731 		switch (ah->ah_bwmode) {
1732 		case AR5K_BWMODE_40MHZ:
1733 			/* Both sample_freq and chip_freq are 80MHz */
1734 			spur_delta_phase = (spur_offset << 16) / 25;
1735 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1736 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1737 			break;
1738 		case AR5K_BWMODE_10MHZ:
1739 			/* Both sample_freq and chip_freq are 20MHz (?) */
1740 			spur_delta_phase = (spur_offset << 18) / 25;
1741 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1742 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1743 		case AR5K_BWMODE_5MHZ:
1744 			/* Both sample_freq and chip_freq are 10MHz (?) */
1745 			spur_delta_phase = (spur_offset << 19) / 25;
1746 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1747 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1748 		default:
1749 			if (channel->band == IEEE80211_BAND_5GHZ) {
1750 				/* Both sample_freq and chip_freq are 40MHz */
1751 				spur_delta_phase = (spur_offset << 17) / 25;
1752 				spur_freq_sigma_delta =
1753 						(spur_delta_phase >> 10);
1754 				symbol_width =
1755 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1756 			} else {
1757 				/* sample_freq -> 40MHz chip_freq -> 44MHz
1758 				 * (for b compatibility) */
1759 				spur_delta_phase = (spur_offset << 17) / 25;
1760 				spur_freq_sigma_delta =
1761 						(spur_offset << 8) / 55;
1762 				symbol_width =
1763 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1764 			}
1765 			break;
1766 		}
1767 
1768 		/* Calculate pilot and magnitude masks */
1769 
1770 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1771 		 * and divide by symbol_width to find how many symbols we have
1772 		 * Note: number of symbols is scaled up by 16 */
1773 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1774 
1775 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1776 		if (!(num_symbols_x16 & 0xF))
1777 			/* _X_ */
1778 			num_symbol_offsets = 3;
1779 		else
1780 			/* _xx_ */
1781 			num_symbol_offsets = 4;
1782 
1783 		for (i = 0; i < num_symbol_offsets; i++) {
1784 
1785 			/* Calculate pilot mask */
1786 			s32 curr_sym_off =
1787 				(num_symbols_x16 / 16) + i + 25;
1788 
1789 			/* Pilot magnitude mask seems to be a way to
1790 			 * declare the boundaries for our detection
1791 			 * window or something, it's 2 for the middle
1792 			 * value(s) where the symbol is expected to be
1793 			 * and 1 on the boundary values */
1794 			u8 plt_mag_map =
1795 				(i == 0 || i == (num_symbol_offsets - 1))
1796 								? 1 : 2;
1797 
1798 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1799 				if (curr_sym_off <= 25)
1800 					pilot_mask[0] |= 1 << curr_sym_off;
1801 				else if (curr_sym_off >= 27)
1802 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1803 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1804 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1805 
1806 			/* Calculate magnitude mask (for viterbi decoder) */
1807 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1808 				mag_mask[0] |=
1809 					plt_mag_map << (curr_sym_off + 1) * 2;
1810 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1811 				mag_mask[1] |=
1812 					plt_mag_map << (curr_sym_off - 15) * 2;
1813 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1814 				mag_mask[2] |=
1815 					plt_mag_map << (curr_sym_off - 31) * 2;
1816 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1817 				mag_mask[3] |=
1818 					plt_mag_map << (curr_sym_off - 47) * 2;
1819 
1820 		}
1821 
1822 		/* Write settings on hw to enable spur filter */
1823 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1824 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1825 		/* XXX: Self correlator also ? */
1826 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1827 					AR5K_PHY_IQ_PILOT_MASK_EN |
1828 					AR5K_PHY_IQ_CHAN_MASK_EN |
1829 					AR5K_PHY_IQ_SPUR_FILT_EN);
1830 
1831 		/* Set delta phase and freq sigma delta */
1832 		ath5k_hw_reg_write(ah,
1833 				AR5K_REG_SM(spur_delta_phase,
1834 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1835 				AR5K_REG_SM(spur_freq_sigma_delta,
1836 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1837 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1838 				AR5K_PHY_TIMING_11);
1839 
1840 		/* Write pilot masks */
1841 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1842 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1843 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1844 					pilot_mask[1]);
1845 
1846 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1847 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1848 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1849 					pilot_mask[1]);
1850 
1851 		/* Write magnitude masks */
1852 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1853 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1854 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1855 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1856 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1857 					mag_mask[3]);
1858 
1859 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1860 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1861 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1862 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1863 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1864 					mag_mask[3]);
1865 
1866 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1867 	AR5K_PHY_IQ_SPUR_FILT_EN) {
1868 		/* Clean up spur mitigation settings and disable filter */
1869 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1870 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1871 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1872 					AR5K_PHY_IQ_PILOT_MASK_EN |
1873 					AR5K_PHY_IQ_CHAN_MASK_EN |
1874 					AR5K_PHY_IQ_SPUR_FILT_EN);
1875 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1876 
1877 		/* Clear pilot masks */
1878 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1879 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1880 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1881 					0);
1882 
1883 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1884 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1885 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1886 					0);
1887 
1888 		/* Clear magnitude masks */
1889 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1890 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1891 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1892 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1893 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1894 					0);
1895 
1896 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1897 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1898 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1899 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1900 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1901 					0);
1902 	}
1903 }
1904 
1905 
1906 /*****************\
1907 * Antenna control *
1908 \*****************/
1909 
1910 static void /*TODO:Boundary check*/
1911 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1912 {
1913 	if (ah->ah_version != AR5K_AR5210)
1914 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1915 }
1916 
1917 /*
1918  * Enable/disable fast rx antenna diversity
1919  */
1920 static void
1921 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1922 {
1923 	switch (ee_mode) {
1924 	case AR5K_EEPROM_MODE_11G:
1925 		/* XXX: This is set to
1926 		 * disabled on initvals !!! */
1927 	case AR5K_EEPROM_MODE_11A:
1928 		if (enable)
1929 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1930 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1931 		else
1932 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1933 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1934 		break;
1935 	case AR5K_EEPROM_MODE_11B:
1936 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1937 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1938 		break;
1939 	default:
1940 		return;
1941 	}
1942 
1943 	if (enable) {
1944 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1945 				AR5K_PHY_RESTART_DIV_GC, 4);
1946 
1947 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1948 					AR5K_PHY_FAST_ANT_DIV_EN);
1949 	} else {
1950 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1951 				AR5K_PHY_RESTART_DIV_GC, 0);
1952 
1953 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1954 					AR5K_PHY_FAST_ANT_DIV_EN);
1955 	}
1956 }
1957 
1958 void
1959 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1960 {
1961 	u8 ant0, ant1;
1962 
1963 	/*
1964 	 * In case a fixed antenna was set as default
1965 	 * use the same switch table twice.
1966 	 */
1967 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1968 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1969 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1970 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1971 	else {
1972 		ant0 = AR5K_ANT_SWTABLE_A;
1973 		ant1 = AR5K_ANT_SWTABLE_B;
1974 	}
1975 
1976 	/* Set antenna idle switch table */
1977 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1978 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1979 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1980 			AR5K_PHY_ANT_CTL_TXRX_EN));
1981 
1982 	/* Set antenna switch tables */
1983 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1984 		AR5K_PHY_ANT_SWITCH_TABLE_0);
1985 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1986 		AR5K_PHY_ANT_SWITCH_TABLE_1);
1987 }
1988 
1989 /*
1990  * Set antenna operating mode
1991  */
1992 void
1993 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1994 {
1995 	struct ieee80211_channel *channel = ah->ah_current_channel;
1996 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1997 	bool use_def_for_sg;
1998 	int ee_mode;
1999 	u8 def_ant, tx_ant;
2000 	u32 sta_id1 = 0;
2001 
2002 	/* if channel is not initialized yet we can't set the antennas
2003 	 * so just store the mode. it will be set on the next reset */
2004 	if (channel == NULL) {
2005 		ah->ah_ant_mode = ant_mode;
2006 		return;
2007 	}
2008 
2009 	def_ant = ah->ah_def_ant;
2010 
2011 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
2012 	if (ee_mode < 0) {
2013 		ATH5K_ERR(ah,
2014 			"invalid channel: %d\n", channel->center_freq);
2015 		return;
2016 	}
2017 
2018 	switch (ant_mode) {
2019 	case AR5K_ANTMODE_DEFAULT:
2020 		tx_ant = 0;
2021 		use_def_for_tx = false;
2022 		update_def_on_tx = false;
2023 		use_def_for_rts = false;
2024 		use_def_for_sg = false;
2025 		fast_div = true;
2026 		break;
2027 	case AR5K_ANTMODE_FIXED_A:
2028 		def_ant = 1;
2029 		tx_ant = 1;
2030 		use_def_for_tx = true;
2031 		update_def_on_tx = false;
2032 		use_def_for_rts = true;
2033 		use_def_for_sg = true;
2034 		fast_div = false;
2035 		break;
2036 	case AR5K_ANTMODE_FIXED_B:
2037 		def_ant = 2;
2038 		tx_ant = 2;
2039 		use_def_for_tx = true;
2040 		update_def_on_tx = false;
2041 		use_def_for_rts = true;
2042 		use_def_for_sg = true;
2043 		fast_div = false;
2044 		break;
2045 	case AR5K_ANTMODE_SINGLE_AP:
2046 		def_ant = 1;	/* updated on tx */
2047 		tx_ant = 0;
2048 		use_def_for_tx = true;
2049 		update_def_on_tx = true;
2050 		use_def_for_rts = true;
2051 		use_def_for_sg = true;
2052 		fast_div = true;
2053 		break;
2054 	case AR5K_ANTMODE_SECTOR_AP:
2055 		tx_ant = 1;	/* variable */
2056 		use_def_for_tx = false;
2057 		update_def_on_tx = false;
2058 		use_def_for_rts = true;
2059 		use_def_for_sg = false;
2060 		fast_div = false;
2061 		break;
2062 	case AR5K_ANTMODE_SECTOR_STA:
2063 		tx_ant = 1;	/* variable */
2064 		use_def_for_tx = true;
2065 		update_def_on_tx = false;
2066 		use_def_for_rts = true;
2067 		use_def_for_sg = false;
2068 		fast_div = true;
2069 		break;
2070 	case AR5K_ANTMODE_DEBUG:
2071 		def_ant = 1;
2072 		tx_ant = 2;
2073 		use_def_for_tx = false;
2074 		update_def_on_tx = false;
2075 		use_def_for_rts = false;
2076 		use_def_for_sg = false;
2077 		fast_div = false;
2078 		break;
2079 	default:
2080 		return;
2081 	}
2082 
2083 	ah->ah_tx_ant = tx_ant;
2084 	ah->ah_ant_mode = ant_mode;
2085 	ah->ah_def_ant = def_ant;
2086 
2087 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2088 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2089 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2090 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2091 
2092 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2093 
2094 	if (sta_id1)
2095 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2096 
2097 	ath5k_hw_set_antenna_switch(ah, ee_mode);
2098 	/* Note: set diversity before default antenna
2099 	 * because it won't work correctly */
2100 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2101 	ath5k_hw_set_def_antenna(ah, def_ant);
2102 }
2103 
2104 
2105 /****************\
2106 * TX power setup *
2107 \****************/
2108 
2109 /*
2110  * Helper functions
2111  */
2112 
2113 /*
2114  * Do linear interpolation between two given (x, y) points
2115  */
2116 static s16
2117 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2118 					s16 y_left, s16 y_right)
2119 {
2120 	s16 ratio, result;
2121 
2122 	/* Avoid divide by zero and skip interpolation
2123 	 * if we have the same point */
2124 	if ((x_left == x_right) || (y_left == y_right))
2125 		return y_left;
2126 
2127 	/*
2128 	 * Since we use ints and not fps, we need to scale up in
2129 	 * order to get a sane ratio value (or else we 'll eg. get
2130 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2131 	 * to have some accuracy both for 0.5 and 0.25 steps.
2132 	 */
2133 	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2134 
2135 	/* Now scale down to be in range */
2136 	result = y_left + (ratio * (target - x_left) / 100);
2137 
2138 	return result;
2139 }
2140 
2141 /*
2142  * Find vertical boundary (min pwr) for the linear PCDAC curve.
2143  *
2144  * Since we have the top of the curve and we draw the line below
2145  * until we reach 1 (1 pcdac step) we need to know which point
2146  * (x value) that is so that we don't go below y axis and have negative
2147  * pcdac values when creating the curve, or fill the table with zeroes.
2148  */
2149 static s16
2150 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2151 				const s16 *pwrL, const s16 *pwrR)
2152 {
2153 	s8 tmp;
2154 	s16 min_pwrL, min_pwrR;
2155 	s16 pwr_i;
2156 
2157 	/* Some vendors write the same pcdac value twice !!! */
2158 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2159 		return max(pwrL[0], pwrR[0]);
2160 
2161 	if (pwrL[0] == pwrL[1])
2162 		min_pwrL = pwrL[0];
2163 	else {
2164 		pwr_i = pwrL[0];
2165 		do {
2166 			pwr_i--;
2167 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2168 							pwrL[0], pwrL[1],
2169 							stepL[0], stepL[1]);
2170 		} while (tmp > 1);
2171 
2172 		min_pwrL = pwr_i;
2173 	}
2174 
2175 	if (pwrR[0] == pwrR[1])
2176 		min_pwrR = pwrR[0];
2177 	else {
2178 		pwr_i = pwrR[0];
2179 		do {
2180 			pwr_i--;
2181 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2182 							pwrR[0], pwrR[1],
2183 							stepR[0], stepR[1]);
2184 		} while (tmp > 1);
2185 
2186 		min_pwrR = pwr_i;
2187 	}
2188 
2189 	/* Keep the right boundary so that it works for both curves */
2190 	return max(min_pwrL, min_pwrR);
2191 }
2192 
2193 /*
2194  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2195  * Power to PCDAC curve.
2196  *
2197  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2198  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2199  * PCDAC/PDADC step for each curve is 64 but we can write more than
2200  * one curves on hw so we can go up to 128 (which is the max step we
2201  * can write on the final table).
2202  *
2203  * We write y values (PCDAC/PDADC steps) on hw.
2204  */
2205 static void
2206 ath5k_create_power_curve(s16 pmin, s16 pmax,
2207 			const s16 *pwr, const u8 *vpd,
2208 			u8 num_points,
2209 			u8 *vpd_table, u8 type)
2210 {
2211 	u8 idx[2] = { 0, 1 };
2212 	s16 pwr_i = 2 * pmin;
2213 	int i;
2214 
2215 	if (num_points < 2)
2216 		return;
2217 
2218 	/* We want the whole line, so adjust boundaries
2219 	 * to cover the entire power range. Note that
2220 	 * power values are already 0.25dB so no need
2221 	 * to multiply pwr_i by 2 */
2222 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2223 		pwr_i = pmin;
2224 		pmin = 0;
2225 		pmax = 63;
2226 	}
2227 
2228 	/* Find surrounding turning points (TPs)
2229 	 * and interpolate between them */
2230 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2231 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2232 
2233 		/* We passed the right TP, move to the next set of TPs
2234 		 * if we pass the last TP, extrapolate above using the last
2235 		 * two TPs for ratio */
2236 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2237 			idx[0]++;
2238 			idx[1]++;
2239 		}
2240 
2241 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2242 						pwr[idx[0]], pwr[idx[1]],
2243 						vpd[idx[0]], vpd[idx[1]]);
2244 
2245 		/* Increase by 0.5dB
2246 		 * (0.25 dB units) */
2247 		pwr_i += 2;
2248 	}
2249 }
2250 
2251 /*
2252  * Get the surrounding per-channel power calibration piers
2253  * for a given frequency so that we can interpolate between
2254  * them and come up with an appropriate dataset for our current
2255  * channel.
2256  */
2257 static void
2258 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2259 			struct ieee80211_channel *channel,
2260 			struct ath5k_chan_pcal_info **pcinfo_l,
2261 			struct ath5k_chan_pcal_info **pcinfo_r)
2262 {
2263 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2264 	struct ath5k_chan_pcal_info *pcinfo;
2265 	u8 idx_l, idx_r;
2266 	u8 mode, max, i;
2267 	u32 target = channel->center_freq;
2268 
2269 	idx_l = 0;
2270 	idx_r = 0;
2271 
2272 	switch (channel->hw_value) {
2273 	case AR5K_EEPROM_MODE_11A:
2274 		pcinfo = ee->ee_pwr_cal_a;
2275 		mode = AR5K_EEPROM_MODE_11A;
2276 		break;
2277 	case AR5K_EEPROM_MODE_11B:
2278 		pcinfo = ee->ee_pwr_cal_b;
2279 		mode = AR5K_EEPROM_MODE_11B;
2280 		break;
2281 	case AR5K_EEPROM_MODE_11G:
2282 	default:
2283 		pcinfo = ee->ee_pwr_cal_g;
2284 		mode = AR5K_EEPROM_MODE_11G;
2285 		break;
2286 	}
2287 	max = ee->ee_n_piers[mode] - 1;
2288 
2289 	/* Frequency is below our calibrated
2290 	 * range. Use the lowest power curve
2291 	 * we have */
2292 	if (target < pcinfo[0].freq) {
2293 		idx_l = idx_r = 0;
2294 		goto done;
2295 	}
2296 
2297 	/* Frequency is above our calibrated
2298 	 * range. Use the highest power curve
2299 	 * we have */
2300 	if (target > pcinfo[max].freq) {
2301 		idx_l = idx_r = max;
2302 		goto done;
2303 	}
2304 
2305 	/* Frequency is inside our calibrated
2306 	 * channel range. Pick the surrounding
2307 	 * calibration piers so that we can
2308 	 * interpolate */
2309 	for (i = 0; i <= max; i++) {
2310 
2311 		/* Frequency matches one of our calibration
2312 		 * piers, no need to interpolate, just use
2313 		 * that calibration pier */
2314 		if (pcinfo[i].freq == target) {
2315 			idx_l = idx_r = i;
2316 			goto done;
2317 		}
2318 
2319 		/* We found a calibration pier that's above
2320 		 * frequency, use this pier and the previous
2321 		 * one to interpolate */
2322 		if (target < pcinfo[i].freq) {
2323 			idx_r = i;
2324 			idx_l = idx_r - 1;
2325 			goto done;
2326 		}
2327 	}
2328 
2329 done:
2330 	*pcinfo_l = &pcinfo[idx_l];
2331 	*pcinfo_r = &pcinfo[idx_r];
2332 }
2333 
2334 /*
2335  * Get the surrounding per-rate power calibration data
2336  * for a given frequency and interpolate between power
2337  * values to set max target power supported by hw for
2338  * each rate.
2339  */
2340 static void
2341 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2342 			struct ieee80211_channel *channel,
2343 			struct ath5k_rate_pcal_info *rates)
2344 {
2345 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2346 	struct ath5k_rate_pcal_info *rpinfo;
2347 	u8 idx_l, idx_r;
2348 	u8 mode, max, i;
2349 	u32 target = channel->center_freq;
2350 
2351 	idx_l = 0;
2352 	idx_r = 0;
2353 
2354 	switch (channel->hw_value) {
2355 	case AR5K_MODE_11A:
2356 		rpinfo = ee->ee_rate_tpwr_a;
2357 		mode = AR5K_EEPROM_MODE_11A;
2358 		break;
2359 	case AR5K_MODE_11B:
2360 		rpinfo = ee->ee_rate_tpwr_b;
2361 		mode = AR5K_EEPROM_MODE_11B;
2362 		break;
2363 	case AR5K_MODE_11G:
2364 	default:
2365 		rpinfo = ee->ee_rate_tpwr_g;
2366 		mode = AR5K_EEPROM_MODE_11G;
2367 		break;
2368 	}
2369 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2370 
2371 	/* Get the surrounding calibration
2372 	 * piers - same as above */
2373 	if (target < rpinfo[0].freq) {
2374 		idx_l = idx_r = 0;
2375 		goto done;
2376 	}
2377 
2378 	if (target > rpinfo[max].freq) {
2379 		idx_l = idx_r = max;
2380 		goto done;
2381 	}
2382 
2383 	for (i = 0; i <= max; i++) {
2384 
2385 		if (rpinfo[i].freq == target) {
2386 			idx_l = idx_r = i;
2387 			goto done;
2388 		}
2389 
2390 		if (target < rpinfo[i].freq) {
2391 			idx_r = i;
2392 			idx_l = idx_r - 1;
2393 			goto done;
2394 		}
2395 	}
2396 
2397 done:
2398 	/* Now interpolate power value, based on the frequency */
2399 	rates->freq = target;
2400 
2401 	rates->target_power_6to24 =
2402 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2403 					rpinfo[idx_r].freq,
2404 					rpinfo[idx_l].target_power_6to24,
2405 					rpinfo[idx_r].target_power_6to24);
2406 
2407 	rates->target_power_36 =
2408 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2409 					rpinfo[idx_r].freq,
2410 					rpinfo[idx_l].target_power_36,
2411 					rpinfo[idx_r].target_power_36);
2412 
2413 	rates->target_power_48 =
2414 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2415 					rpinfo[idx_r].freq,
2416 					rpinfo[idx_l].target_power_48,
2417 					rpinfo[idx_r].target_power_48);
2418 
2419 	rates->target_power_54 =
2420 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2421 					rpinfo[idx_r].freq,
2422 					rpinfo[idx_l].target_power_54,
2423 					rpinfo[idx_r].target_power_54);
2424 }
2425 
2426 /*
2427  * Get the max edge power for this channel if
2428  * we have such data from EEPROM's Conformance Test
2429  * Limits (CTL), and limit max power if needed.
2430  */
2431 static void
2432 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2433 			struct ieee80211_channel *channel)
2434 {
2435 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2436 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2437 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2438 	u8 *ctl_val = ee->ee_ctl;
2439 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2440 	s16 edge_pwr = 0;
2441 	u8 rep_idx;
2442 	u8 i, ctl_mode;
2443 	u8 ctl_idx = 0xFF;
2444 	u32 target = channel->center_freq;
2445 
2446 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2447 
2448 	switch (channel->hw_value) {
2449 	case AR5K_MODE_11A:
2450 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2451 			ctl_mode |= AR5K_CTL_TURBO;
2452 		else
2453 			ctl_mode |= AR5K_CTL_11A;
2454 		break;
2455 	case AR5K_MODE_11G:
2456 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2457 			ctl_mode |= AR5K_CTL_TURBOG;
2458 		else
2459 			ctl_mode |= AR5K_CTL_11G;
2460 		break;
2461 	case AR5K_MODE_11B:
2462 		ctl_mode |= AR5K_CTL_11B;
2463 		break;
2464 	default:
2465 		return;
2466 	}
2467 
2468 	for (i = 0; i < ee->ee_ctls; i++) {
2469 		if (ctl_val[i] == ctl_mode) {
2470 			ctl_idx = i;
2471 			break;
2472 		}
2473 	}
2474 
2475 	/* If we have a CTL dataset available grab it and find the
2476 	 * edge power for our frequency */
2477 	if (ctl_idx == 0xFF)
2478 		return;
2479 
2480 	/* Edge powers are sorted by frequency from lower
2481 	 * to higher. Each CTL corresponds to 8 edge power
2482 	 * measurements. */
2483 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2484 
2485 	/* Don't do boundaries check because we
2486 	 * might have more that one bands defined
2487 	 * for this mode */
2488 
2489 	/* Get the edge power that's closer to our
2490 	 * frequency */
2491 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2492 		rep_idx += i;
2493 		if (target <= rep[rep_idx].freq)
2494 			edge_pwr = (s16) rep[rep_idx].edge;
2495 	}
2496 
2497 	if (edge_pwr)
2498 		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2499 }
2500 
2501 
2502 /*
2503  * Power to PCDAC table functions
2504  */
2505 
2506 /*
2507  * Fill Power to PCDAC table on RF5111
2508  *
2509  * No further processing is needed for RF5111, the only thing we have to
2510  * do is fill the values below and above calibration range since eeprom data
2511  * may not cover the entire PCDAC table.
2512  */
2513 static void
2514 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2515 							s16 *table_max)
2516 {
2517 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2518 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2519 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2520 	s16	min_pwr, max_pwr;
2521 
2522 	/* Get table boundaries */
2523 	min_pwr = table_min[0];
2524 	pcdac_0 = pcdac_tmp[0];
2525 
2526 	max_pwr = table_max[0];
2527 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2528 
2529 	/* Extrapolate below minimum using pcdac_0 */
2530 	pcdac_i = 0;
2531 	for (i = 0; i < min_pwr; i++)
2532 		pcdac_out[pcdac_i++] = pcdac_0;
2533 
2534 	/* Copy values from pcdac_tmp */
2535 	pwr_idx = min_pwr;
2536 	for (i = 0; pwr_idx <= max_pwr &&
2537 		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2538 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2539 		pwr_idx++;
2540 	}
2541 
2542 	/* Extrapolate above maximum */
2543 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2544 		pcdac_out[pcdac_i++] = pcdac_n;
2545 
2546 }
2547 
2548 /*
2549  * Combine available XPD Curves and fill Linear Power to PCDAC table
2550  * on RF5112
2551  *
2552  * RFX112 can have up to 2 curves (one for low txpower range and one for
2553  * higher txpower range). We need to put them both on pcdac_out and place
2554  * them in the correct location. In case we only have one curve available
2555  * just fit it on pcdac_out (it's supposed to cover the entire range of
2556  * available pwr levels since it's always the higher power curve). Extrapolate
2557  * below and above final table if needed.
2558  */
2559 static void
2560 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2561 						s16 *table_max, u8 pdcurves)
2562 {
2563 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2564 	u8	*pcdac_low_pwr;
2565 	u8	*pcdac_high_pwr;
2566 	u8	*pcdac_tmp;
2567 	u8	pwr;
2568 	s16	max_pwr_idx;
2569 	s16	min_pwr_idx;
2570 	s16	mid_pwr_idx = 0;
2571 	/* Edge flag turns on the 7nth bit on the PCDAC
2572 	 * to declare the higher power curve (force values
2573 	 * to be greater than 64). If we only have one curve
2574 	 * we don't need to set this, if we have 2 curves and
2575 	 * fill the table backwards this can also be used to
2576 	 * switch from higher power curve to lower power curve */
2577 	u8	edge_flag;
2578 	int	i;
2579 
2580 	/* When we have only one curve available
2581 	 * that's the higher power curve. If we have
2582 	 * two curves the first is the high power curve
2583 	 * and the next is the low power curve. */
2584 	if (pdcurves > 1) {
2585 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2586 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2587 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2588 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2589 
2590 		/* If table size goes beyond 31.5dB, keep the
2591 		 * upper 31.5dB range when setting tx power.
2592 		 * Note: 126 = 31.5 dB in quarter dB steps */
2593 		if (table_max[0] - table_min[1] > 126)
2594 			min_pwr_idx = table_max[0] - 126;
2595 		else
2596 			min_pwr_idx = table_min[1];
2597 
2598 		/* Since we fill table backwards
2599 		 * start from high power curve */
2600 		pcdac_tmp = pcdac_high_pwr;
2601 
2602 		edge_flag = 0x40;
2603 	} else {
2604 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2605 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2606 		min_pwr_idx = table_min[0];
2607 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2608 		pcdac_tmp = pcdac_high_pwr;
2609 		edge_flag = 0;
2610 	}
2611 
2612 	/* This is used when setting tx power*/
2613 	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2614 
2615 	/* Fill Power to PCDAC table backwards */
2616 	pwr = max_pwr_idx;
2617 	for (i = 63; i >= 0; i--) {
2618 		/* Entering lower power range, reset
2619 		 * edge flag and set pcdac_tmp to lower
2620 		 * power curve.*/
2621 		if (edge_flag == 0x40 &&
2622 		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2623 			edge_flag = 0x00;
2624 			pcdac_tmp = pcdac_low_pwr;
2625 			pwr = mid_pwr_idx / 2;
2626 		}
2627 
2628 		/* Don't go below 1, extrapolate below if we have
2629 		 * already switched to the lower power curve -or
2630 		 * we only have one curve and edge_flag is zero
2631 		 * anyway */
2632 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2633 			while (i >= 0) {
2634 				pcdac_out[i] = pcdac_out[i + 1];
2635 				i--;
2636 			}
2637 			break;
2638 		}
2639 
2640 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2641 
2642 		/* Extrapolate above if pcdac is greater than
2643 		 * 126 -this can happen because we OR pcdac_out
2644 		 * value with edge_flag on high power curve */
2645 		if (pcdac_out[i] > 126)
2646 			pcdac_out[i] = 126;
2647 
2648 		/* Decrease by a 0.5dB step */
2649 		pwr--;
2650 	}
2651 }
2652 
2653 /* Write PCDAC values on hw */
2654 static void
2655 ath5k_write_pcdac_table(struct ath5k_hw *ah)
2656 {
2657 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2658 	int	i;
2659 
2660 	/*
2661 	 * Write TX power values
2662 	 */
2663 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2664 		ath5k_hw_reg_write(ah,
2665 			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
2666 			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
2667 			AR5K_PHY_PCDAC_TXPOWER(i));
2668 	}
2669 }
2670 
2671 
2672 /*
2673  * Power to PDADC table functions
2674  */
2675 
2676 /*
2677  * Set the gain boundaries and create final Power to PDADC table
2678  *
2679  * We can have up to 4 pd curves, we need to do a similar process
2680  * as we do for RF5112. This time we don't have an edge_flag but we
2681  * set the gain boundaries on a separate register.
2682  */
2683 static void
2684 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2685 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2686 {
2687 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2688 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2689 	u8 *pdadc_tmp;
2690 	s16 pdadc_0;
2691 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2692 	u8 pd_gain_overlap;
2693 
2694 	/* Note: Register value is initialized on initvals
2695 	 * there is no feedback from hw.
2696 	 * XXX: What about pd_gain_overlap from EEPROM ? */
2697 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2698 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2699 
2700 	/* Create final PDADC table */
2701 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2702 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2703 
2704 		if (pdg == pdcurves - 1)
2705 			/* 2 dB boundary stretch for last
2706 			 * (higher power) curve */
2707 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2708 		else
2709 			/* Set gain boundary in the middle
2710 			 * between this curve and the next one */
2711 			gain_boundaries[pdg] =
2712 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2713 
2714 		/* Sanity check in case our 2 db stretch got out of
2715 		 * range. */
2716 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2717 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2718 
2719 		/* For the first curve (lower power)
2720 		 * start from 0 dB */
2721 		if (pdg == 0)
2722 			pdadc_0 = 0;
2723 		else
2724 			/* For the other curves use the gain overlap */
2725 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2726 							pd_gain_overlap;
2727 
2728 		/* Force each power step to be at least 0.5 dB */
2729 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2730 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2731 		else
2732 			pwr_step = 1;
2733 
2734 		/* If pdadc_0 is negative, we need to extrapolate
2735 		 * below this pdgain by a number of pwr_steps */
2736 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2737 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2738 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2739 			pdadc_0++;
2740 		}
2741 
2742 		/* Set last pwr level, using gain boundaries */
2743 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2744 		/* Limit it to be inside pwr range */
2745 		table_size = pwr_max[pdg] - pwr_min[pdg];
2746 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2747 
2748 		/* Fill pdadc_out table */
2749 		while (pdadc_0 < max_idx && pdadc_i < 128)
2750 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2751 
2752 		/* Need to extrapolate above this pdgain? */
2753 		if (pdadc_n <= max_idx)
2754 			continue;
2755 
2756 		/* Force each power step to be at least 0.5 dB */
2757 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2758 			pwr_step = pdadc_tmp[table_size - 1] -
2759 						pdadc_tmp[table_size - 2];
2760 		else
2761 			pwr_step = 1;
2762 
2763 		/* Extrapolate above */
2764 		while ((pdadc_0 < (s16) pdadc_n) &&
2765 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2766 			s16 tmp = pdadc_tmp[table_size - 1] +
2767 					(pdadc_0 - max_idx) * pwr_step;
2768 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2769 			pdadc_0++;
2770 		}
2771 	}
2772 
2773 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2774 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2775 		pdg++;
2776 	}
2777 
2778 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2779 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2780 		pdadc_i++;
2781 	}
2782 
2783 	/* Set gain boundaries */
2784 	ath5k_hw_reg_write(ah,
2785 		AR5K_REG_SM(pd_gain_overlap,
2786 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2787 		AR5K_REG_SM(gain_boundaries[0],
2788 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2789 		AR5K_REG_SM(gain_boundaries[1],
2790 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2791 		AR5K_REG_SM(gain_boundaries[2],
2792 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2793 		AR5K_REG_SM(gain_boundaries[3],
2794 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2795 		AR5K_PHY_TPC_RG5);
2796 
2797 	/* Used for setting rate power table */
2798 	ah->ah_txpower.txp_min_idx = pwr_min[0];
2799 
2800 }
2801 
2802 /* Write PDADC values on hw */
2803 static void
2804 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2805 {
2806 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2807 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2808 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2809 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2810 	u32 reg;
2811 	u8 i;
2812 
2813 	/* Select the right pdgain curves */
2814 
2815 	/* Clear current settings */
2816 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2817 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2818 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2819 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2820 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2821 
2822 	/*
2823 	 * Use pd_gains curve from eeprom
2824 	 *
2825 	 * This overrides the default setting from initvals
2826 	 * in case some vendors (e.g. Zcomax) don't use the default
2827 	 * curves. If we don't honor their settings we 'll get a
2828 	 * 5dB (1 * gain overlap ?) drop.
2829 	 */
2830 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2831 
2832 	switch (pdcurves) {
2833 	case 3:
2834 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2835 		/* Fall through */
2836 	case 2:
2837 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2838 		/* Fall through */
2839 	case 1:
2840 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2841 		break;
2842 	}
2843 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2844 
2845 	/*
2846 	 * Write TX power values
2847 	 */
2848 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2849 		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
2850 		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
2851 	}
2852 }
2853 
2854 
2855 /*
2856  * Common code for PCDAC/PDADC tables
2857  */
2858 
2859 /*
2860  * This is the main function that uses all of the above
2861  * to set PCDAC/PDADC table on hw for the current channel.
2862  * This table is used for tx power calibration on the baseband,
2863  * without it we get weird tx power levels and in some cases
2864  * distorted spectral mask
2865  */
2866 static int
2867 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2868 			struct ieee80211_channel *channel,
2869 			u8 ee_mode, u8 type)
2870 {
2871 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2872 	struct ath5k_chan_pcal_info *pcinfo_L;
2873 	struct ath5k_chan_pcal_info *pcinfo_R;
2874 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2875 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2876 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2877 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2878 	u8 *tmpL;
2879 	u8 *tmpR;
2880 	u32 target = channel->center_freq;
2881 	int pdg, i;
2882 
2883 	/* Get surrounding freq piers for this channel */
2884 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2885 						&pcinfo_L,
2886 						&pcinfo_R);
2887 
2888 	/* Loop over pd gain curves on
2889 	 * surrounding freq piers by index */
2890 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2891 
2892 		/* Fill curves in reverse order
2893 		 * from lower power (max gain)
2894 		 * to higher power. Use curve -> idx
2895 		 * backmapping we did on eeprom init */
2896 		u8 idx = pdg_curve_to_idx[pdg];
2897 
2898 		/* Grab the needed curves by index */
2899 		pdg_L = &pcinfo_L->pd_curves[idx];
2900 		pdg_R = &pcinfo_R->pd_curves[idx];
2901 
2902 		/* Initialize the temp tables */
2903 		tmpL = ah->ah_txpower.tmpL[pdg];
2904 		tmpR = ah->ah_txpower.tmpR[pdg];
2905 
2906 		/* Set curve's x boundaries and create
2907 		 * curves so that they cover the same
2908 		 * range (if we don't do that one table
2909 		 * will have values on some range and the
2910 		 * other one won't have any so interpolation
2911 		 * will fail) */
2912 		table_min[pdg] = min(pdg_L->pd_pwr[0],
2913 					pdg_R->pd_pwr[0]) / 2;
2914 
2915 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2916 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2917 
2918 		/* Now create the curves on surrounding channels
2919 		 * and interpolate if needed to get the final
2920 		 * curve for this gain on this channel */
2921 		switch (type) {
2922 		case AR5K_PWRTABLE_LINEAR_PCDAC:
2923 			/* Override min/max so that we don't loose
2924 			 * accuracy (don't divide by 2) */
2925 			table_min[pdg] = min(pdg_L->pd_pwr[0],
2926 						pdg_R->pd_pwr[0]);
2927 
2928 			table_max[pdg] =
2929 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2930 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2931 
2932 			/* Override minimum so that we don't get
2933 			 * out of bounds while extrapolating
2934 			 * below. Don't do this when we have 2
2935 			 * curves and we are on the high power curve
2936 			 * because table_min is ok in this case */
2937 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2938 
2939 				table_min[pdg] =
2940 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2941 								pdg_R->pd_step,
2942 								pdg_L->pd_pwr,
2943 								pdg_R->pd_pwr);
2944 
2945 				/* Don't go too low because we will
2946 				 * miss the upper part of the curve.
2947 				 * Note: 126 = 31.5dB (max power supported)
2948 				 * in 0.25dB units */
2949 				if (table_max[pdg] - table_min[pdg] > 126)
2950 					table_min[pdg] = table_max[pdg] - 126;
2951 			}
2952 
2953 			/* Fall through */
2954 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2955 		case AR5K_PWRTABLE_PWR_TO_PDADC:
2956 
2957 			ath5k_create_power_curve(table_min[pdg],
2958 						table_max[pdg],
2959 						pdg_L->pd_pwr,
2960 						pdg_L->pd_step,
2961 						pdg_L->pd_points, tmpL, type);
2962 
2963 			/* We are in a calibration
2964 			 * pier, no need to interpolate
2965 			 * between freq piers */
2966 			if (pcinfo_L == pcinfo_R)
2967 				continue;
2968 
2969 			ath5k_create_power_curve(table_min[pdg],
2970 						table_max[pdg],
2971 						pdg_R->pd_pwr,
2972 						pdg_R->pd_step,
2973 						pdg_R->pd_points, tmpR, type);
2974 			break;
2975 		default:
2976 			return -EINVAL;
2977 		}
2978 
2979 		/* Interpolate between curves
2980 		 * of surrounding freq piers to
2981 		 * get the final curve for this
2982 		 * pd gain. Re-use tmpL for interpolation
2983 		 * output */
2984 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2985 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2986 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2987 							(s16) pcinfo_L->freq,
2988 							(s16) pcinfo_R->freq,
2989 							(s16) tmpL[i],
2990 							(s16) tmpR[i]);
2991 		}
2992 	}
2993 
2994 	/* Now we have a set of curves for this
2995 	 * channel on tmpL (x range is table_max - table_min
2996 	 * and y values are tmpL[pdg][]) sorted in the same
2997 	 * order as EEPROM (because we've used the backmapping).
2998 	 * So for RF5112 it's from higher power to lower power
2999 	 * and for RF2413 it's from lower power to higher power.
3000 	 * For RF5111 we only have one curve. */
3001 
3002 	/* Fill min and max power levels for this
3003 	 * channel by interpolating the values on
3004 	 * surrounding channels to complete the dataset */
3005 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3006 					(s16) pcinfo_L->freq,
3007 					(s16) pcinfo_R->freq,
3008 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3009 
3010 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3011 					(s16) pcinfo_L->freq,
3012 					(s16) pcinfo_R->freq,
3013 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3014 
3015 	/* Fill PCDAC/PDADC table */
3016 	switch (type) {
3017 	case AR5K_PWRTABLE_LINEAR_PCDAC:
3018 		/* For RF5112 we can have one or two curves
3019 		 * and each curve covers a certain power lvl
3020 		 * range so we need to do some more processing */
3021 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3022 						ee->ee_pd_gains[ee_mode]);
3023 
3024 		/* Set txp.offset so that we can
3025 		 * match max power value with max
3026 		 * table index */
3027 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3028 		break;
3029 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3030 		/* We are done for RF5111 since it has only
3031 		 * one curve, just fit the curve on the table */
3032 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3033 
3034 		/* No rate powertable adjustment for RF5111 */
3035 		ah->ah_txpower.txp_min_idx = 0;
3036 		ah->ah_txpower.txp_offset = 0;
3037 		break;
3038 	case AR5K_PWRTABLE_PWR_TO_PDADC:
3039 		/* Set PDADC boundaries and fill
3040 		 * final PDADC table */
3041 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3042 						ee->ee_pd_gains[ee_mode]);
3043 
3044 		/* Set txp.offset, note that table_min
3045 		 * can be negative */
3046 		ah->ah_txpower.txp_offset = table_min[0];
3047 		break;
3048 	default:
3049 		return -EINVAL;
3050 	}
3051 
3052 	ah->ah_txpower.txp_setup = true;
3053 
3054 	return 0;
3055 }
3056 
3057 /* Write power table for current channel to hw */
3058 static void
3059 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3060 {
3061 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3062 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3063 	else
3064 		ath5k_write_pcdac_table(ah);
3065 }
3066 
3067 /*
3068  * Per-rate tx power setting
3069  *
3070  * This is the code that sets the desired tx power (below
3071  * maximum) on hw for each rate (we also have TPC that sets
3072  * power per packet). We do that by providing an index on the
3073  * PCDAC/PDADC table we set up.
3074  */
3075 
3076 /*
3077  * Set rate power table
3078  *
3079  * For now we only limit txpower based on maximum tx power
3080  * supported by hw (what's inside rate_info). We need to limit
3081  * this even more, based on regulatory domain etc.
3082  *
3083  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3084  * and is indexed as follows:
3085  * rates[0] - rates[7] -> OFDM rates
3086  * rates[8] - rates[14] -> CCK rates
3087  * rates[15] -> XR rates (they all have the same power)
3088  */
3089 static void
3090 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3091 			struct ath5k_rate_pcal_info *rate_info,
3092 			u8 ee_mode)
3093 {
3094 	unsigned int i;
3095 	u16 *rates;
3096 
3097 	/* max_pwr is power level we got from driver/user in 0.5dB
3098 	 * units, switch to 0.25dB units so we can compare */
3099 	max_pwr *= 2;
3100 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3101 
3102 	/* apply rate limits */
3103 	rates = ah->ah_txpower.txp_rates_power_table;
3104 
3105 	/* OFDM rates 6 to 24Mb/s */
3106 	for (i = 0; i < 5; i++)
3107 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3108 
3109 	/* Rest OFDM rates */
3110 	rates[5] = min(rates[0], rate_info->target_power_36);
3111 	rates[6] = min(rates[0], rate_info->target_power_48);
3112 	rates[7] = min(rates[0], rate_info->target_power_54);
3113 
3114 	/* CCK rates */
3115 	/* 1L */
3116 	rates[8] = min(rates[0], rate_info->target_power_6to24);
3117 	/* 2L */
3118 	rates[9] = min(rates[0], rate_info->target_power_36);
3119 	/* 2S */
3120 	rates[10] = min(rates[0], rate_info->target_power_36);
3121 	/* 5L */
3122 	rates[11] = min(rates[0], rate_info->target_power_48);
3123 	/* 5S */
3124 	rates[12] = min(rates[0], rate_info->target_power_48);
3125 	/* 11L */
3126 	rates[13] = min(rates[0], rate_info->target_power_54);
3127 	/* 11S */
3128 	rates[14] = min(rates[0], rate_info->target_power_54);
3129 
3130 	/* XR rates */
3131 	rates[15] = min(rates[0], rate_info->target_power_6to24);
3132 
3133 	/* CCK rates have different peak to average ratio
3134 	 * so we have to tweak their power so that gainf
3135 	 * correction works ok. For this we use OFDM to
3136 	 * CCK delta from eeprom */
3137 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3138 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3139 		for (i = 8; i <= 15; i++)
3140 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3141 
3142 	/* Now that we have all rates setup use table offset to
3143 	 * match the power range set by user with the power indices
3144 	 * on PCDAC/PDADC table */
3145 	for (i = 0; i < 16; i++) {
3146 		rates[i] += ah->ah_txpower.txp_offset;
3147 		/* Don't get out of bounds */
3148 		if (rates[i] > 63)
3149 			rates[i] = 63;
3150 	}
3151 
3152 	/* Min/max in 0.25dB units */
3153 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3154 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3155 	ah->ah_txpower.txp_ofdm = rates[7];
3156 }
3157 
3158 
3159 /*
3160  * Set transmission power
3161  */
3162 static int
3163 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3164 		 u8 txpower)
3165 {
3166 	struct ath5k_rate_pcal_info rate_info;
3167 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3168 	int ee_mode;
3169 	u8 type;
3170 	int ret;
3171 
3172 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3173 		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3174 		return -EINVAL;
3175 	}
3176 
3177 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3178 	if (ee_mode < 0) {
3179 		ATH5K_ERR(ah,
3180 			"invalid channel: %d\n", channel->center_freq);
3181 		return -EINVAL;
3182 	}
3183 
3184 	/* Initialize TX power table */
3185 	switch (ah->ah_radio) {
3186 	case AR5K_RF5110:
3187 		/* TODO */
3188 		return 0;
3189 	case AR5K_RF5111:
3190 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3191 		break;
3192 	case AR5K_RF5112:
3193 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3194 		break;
3195 	case AR5K_RF2413:
3196 	case AR5K_RF5413:
3197 	case AR5K_RF2316:
3198 	case AR5K_RF2317:
3199 	case AR5K_RF2425:
3200 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3201 		break;
3202 	default:
3203 		return -EINVAL;
3204 	}
3205 
3206 	/*
3207 	 * If we don't change channel/mode skip tx powertable calculation
3208 	 * and use the cached one.
3209 	 */
3210 	if (!ah->ah_txpower.txp_setup ||
3211 	    (channel->hw_value != curr_channel->hw_value) ||
3212 	    (channel->center_freq != curr_channel->center_freq)) {
3213 		/* Reset TX power values */
3214 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3215 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3216 
3217 		/* Calculate the powertable */
3218 		ret = ath5k_setup_channel_powertable(ah, channel,
3219 							ee_mode, type);
3220 		if (ret)
3221 			return ret;
3222 	}
3223 
3224 	/* Write table on hw */
3225 	ath5k_write_channel_powertable(ah, ee_mode, type);
3226 
3227 	/* Limit max power if we have a CTL available */
3228 	ath5k_get_max_ctl_power(ah, channel);
3229 
3230 	/* FIXME: Antenna reduction stuff */
3231 
3232 	/* FIXME: Limit power on turbo modes */
3233 
3234 	/* FIXME: TPC scale reduction */
3235 
3236 	/* Get surrounding channels for per-rate power table
3237 	 * calibration */
3238 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3239 
3240 	/* Setup rate power table */
3241 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3242 
3243 	/* Write rate power table on hw */
3244 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3245 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3246 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3247 
3248 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3249 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3250 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3251 
3252 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3253 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3254 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3255 
3256 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3257 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3258 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3259 
3260 	/* FIXME: TPC support */
3261 	if (ah->ah_txpower.txp_tpc) {
3262 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3263 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3264 
3265 		ath5k_hw_reg_write(ah,
3266 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3267 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3268 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3269 			AR5K_TPC);
3270 	} else {
3271 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3272 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3273 	}
3274 
3275 	return 0;
3276 }
3277 
3278 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3279 {
3280 	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3281 		"changing txpower to %d\n", txpower);
3282 
3283 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3284 }
3285 
3286 /*************\
3287  Init function
3288 \*************/
3289 
3290 int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3291 		      u8 mode, bool fast)
3292 {
3293 	struct ieee80211_channel *curr_channel;
3294 	int ret, i;
3295 	u32 phy_tst1;
3296 	ret = 0;
3297 
3298 	/*
3299 	 * Sanity check for fast flag
3300 	 * Don't try fast channel change when changing modulation
3301 	 * mode/band. We check for chip compatibility on
3302 	 * ath5k_hw_reset.
3303 	 */
3304 	curr_channel = ah->ah_current_channel;
3305 	if (fast && (channel->hw_value != curr_channel->hw_value))
3306 		return -EINVAL;
3307 
3308 	/*
3309 	 * On fast channel change we only set the synth parameters
3310 	 * while PHY is running, enable calibration and skip the rest.
3311 	 */
3312 	if (fast) {
3313 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3314 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3315 		for (i = 0; i < 100; i++) {
3316 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3317 				break;
3318 			udelay(5);
3319 		}
3320 		/* Failed */
3321 		if (i >= 100)
3322 			return -EIO;
3323 
3324 		/* Set channel and wait for synth */
3325 		ret = ath5k_hw_channel(ah, channel);
3326 		if (ret)
3327 			return ret;
3328 
3329 		ath5k_hw_wait_for_synth(ah, channel);
3330 	}
3331 
3332 	/*
3333 	 * Set TX power
3334 	 *
3335 	 * Note: We need to do that before we set
3336 	 * RF buffer settings on 5211/5212+ so that we
3337 	 * properly set curve indices.
3338 	 */
3339 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3340 			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3341 	if (ret)
3342 		return ret;
3343 
3344 	/* Write OFDM timings on 5212*/
3345 	if (ah->ah_version == AR5K_AR5212 &&
3346 		channel->hw_value != AR5K_MODE_11B) {
3347 
3348 		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3349 		if (ret)
3350 			return ret;
3351 
3352 		/* Spur info is available only from EEPROM versions
3353 		 * greater than 5.3, but the EEPROM routines will use
3354 		 * static values for older versions */
3355 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3356 			ath5k_hw_set_spur_mitigation_filter(ah,
3357 							    channel);
3358 	}
3359 
3360 	/* If we used fast channel switching
3361 	 * we are done, release RF bus and
3362 	 * fire up NF calibration.
3363 	 *
3364 	 * Note: Only NF calibration due to
3365 	 * channel change, not AGC calibration
3366 	 * since AGC is still running !
3367 	 */
3368 	if (fast) {
3369 		/*
3370 		 * Release RF Bus grant
3371 		 */
3372 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3373 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3374 
3375 		/*
3376 		 * Start NF calibration
3377 		 */
3378 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3379 					AR5K_PHY_AGCCTL_NF);
3380 
3381 		return ret;
3382 	}
3383 
3384 	/*
3385 	 * For 5210 we do all initialization using
3386 	 * initvals, so we don't have to modify
3387 	 * any settings (5210 also only supports
3388 	 * a/aturbo modes)
3389 	 */
3390 	if (ah->ah_version != AR5K_AR5210) {
3391 
3392 		/*
3393 		 * Write initial RF gain settings
3394 		 * This should work for both 5111/5112
3395 		 */
3396 		ret = ath5k_hw_rfgain_init(ah, channel->band);
3397 		if (ret)
3398 			return ret;
3399 
3400 		usleep_range(1000, 1500);
3401 
3402 		/*
3403 		 * Write RF buffer
3404 		 */
3405 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3406 		if (ret)
3407 			return ret;
3408 
3409 		/*Enable/disable 802.11b mode on 5111
3410 		(enable 2111 frequency converter + CCK)*/
3411 		if (ah->ah_radio == AR5K_RF5111) {
3412 			if (mode == AR5K_MODE_11B)
3413 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3414 				    AR5K_TXCFG_B_MODE);
3415 			else
3416 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3417 				    AR5K_TXCFG_B_MODE);
3418 		}
3419 
3420 	} else if (ah->ah_version == AR5K_AR5210) {
3421 		usleep_range(1000, 1500);
3422 		/* Disable phy and wait */
3423 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3424 		usleep_range(1000, 1500);
3425 	}
3426 
3427 	/* Set channel on PHY */
3428 	ret = ath5k_hw_channel(ah, channel);
3429 	if (ret)
3430 		return ret;
3431 
3432 	/*
3433 	 * Enable the PHY and wait until completion
3434 	 * This includes BaseBand and Synthesizer
3435 	 * activation.
3436 	 */
3437 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3438 
3439 	ath5k_hw_wait_for_synth(ah, channel);
3440 
3441 	/*
3442 	 * Perform ADC test to see if baseband is ready
3443 	 * Set tx hold and check adc test register
3444 	 */
3445 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3446 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3447 	for (i = 0; i <= 20; i++) {
3448 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3449 			break;
3450 		usleep_range(200, 250);
3451 	}
3452 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3453 
3454 	/*
3455 	 * Start automatic gain control calibration
3456 	 *
3457 	 * During AGC calibration RX path is re-routed to
3458 	 * a power detector so we don't receive anything.
3459 	 *
3460 	 * This method is used to calibrate some static offsets
3461 	 * used together with on-the fly I/Q calibration (the
3462 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3463 	 * interrupt rx path.
3464 	 *
3465 	 * While rx path is re-routed to the power detector we also
3466 	 * start a noise floor calibration to measure the
3467 	 * card's noise floor (the noise we measure when we are not
3468 	 * transmitting or receiving anything).
3469 	 *
3470 	 * If we are in a noisy environment, AGC calibration may time
3471 	 * out and/or noise floor calibration might timeout.
3472 	 */
3473 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3474 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3475 
3476 	/* At the same time start I/Q calibration for QAM constellation
3477 	 * -no need for CCK- */
3478 	ah->ah_iq_cal_needed = false;
3479 	if (!(mode == AR5K_MODE_11B)) {
3480 		ah->ah_iq_cal_needed = true;
3481 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3482 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3483 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3484 				AR5K_PHY_IQ_RUN);
3485 	}
3486 
3487 	/* Wait for gain calibration to finish (we check for I/Q calibration
3488 	 * during ath5k_phy_calibrate) */
3489 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3490 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3491 		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3492 			channel->center_freq);
3493 	}
3494 
3495 	/* Restore antenna mode */
3496 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3497 
3498 	return ret;
3499 }
3500