1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 */ 11 12 /* 13 * This file implements UBIFS superblock. The superblock is stored at the first 14 * LEB of the volume and is never changed by UBIFS. Only user-space tools may 15 * change it. The superblock node mostly contains geometry information. 16 */ 17 18 #include "ubifs.h" 19 #ifndef __UBOOT__ 20 #include <linux/slab.h> 21 #include <linux/random.h> 22 #include <linux/math64.h> 23 #else 24 25 #include <linux/compat.h> 26 #include <linux/err.h> 27 #include <ubi_uboot.h> 28 #include <linux/stat.h> 29 #endif 30 31 /* 32 * Default journal size in logical eraseblocks as a percent of total 33 * flash size. 34 */ 35 #define DEFAULT_JNL_PERCENT 5 36 37 /* Default maximum journal size in bytes */ 38 #define DEFAULT_MAX_JNL (32*1024*1024) 39 40 /* Default indexing tree fanout */ 41 #define DEFAULT_FANOUT 8 42 43 /* Default number of data journal heads */ 44 #define DEFAULT_JHEADS_CNT 1 45 46 /* Default positions of different LEBs in the main area */ 47 #define DEFAULT_IDX_LEB 0 48 #define DEFAULT_DATA_LEB 1 49 #define DEFAULT_GC_LEB 2 50 51 /* Default number of LEB numbers in LPT's save table */ 52 #define DEFAULT_LSAVE_CNT 256 53 54 /* Default reserved pool size as a percent of maximum free space */ 55 #define DEFAULT_RP_PERCENT 5 56 57 /* The default maximum size of reserved pool in bytes */ 58 #define DEFAULT_MAX_RP_SIZE (5*1024*1024) 59 60 /* Default time granularity in nanoseconds */ 61 #define DEFAULT_TIME_GRAN 1000000000 62 63 #ifndef __UBOOT__ 64 /** 65 * create_default_filesystem - format empty UBI volume. 66 * @c: UBIFS file-system description object 67 * 68 * This function creates default empty file-system. Returns zero in case of 69 * success and a negative error code in case of failure. 70 */ 71 static int create_default_filesystem(struct ubifs_info *c) 72 { 73 struct ubifs_sb_node *sup; 74 struct ubifs_mst_node *mst; 75 struct ubifs_idx_node *idx; 76 struct ubifs_branch *br; 77 struct ubifs_ino_node *ino; 78 struct ubifs_cs_node *cs; 79 union ubifs_key key; 80 int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first; 81 int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0; 82 int min_leb_cnt = UBIFS_MIN_LEB_CNT; 83 long long tmp64, main_bytes; 84 __le64 tmp_le64; 85 86 /* Some functions called from here depend on the @c->key_len filed */ 87 c->key_len = UBIFS_SK_LEN; 88 89 /* 90 * First of all, we have to calculate default file-system geometry - 91 * log size, journal size, etc. 92 */ 93 if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT) 94 /* We can first multiply then divide and have no overflow */ 95 jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100; 96 else 97 jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT; 98 99 if (jnl_lebs < UBIFS_MIN_JNL_LEBS) 100 jnl_lebs = UBIFS_MIN_JNL_LEBS; 101 if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL) 102 jnl_lebs = DEFAULT_MAX_JNL / c->leb_size; 103 104 /* 105 * The log should be large enough to fit reference nodes for all bud 106 * LEBs. Because buds do not have to start from the beginning of LEBs 107 * (half of the LEB may contain committed data), the log should 108 * generally be larger, make it twice as large. 109 */ 110 tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1; 111 log_lebs = tmp / c->leb_size; 112 /* Plus one LEB reserved for commit */ 113 log_lebs += 1; 114 if (c->leb_cnt - min_leb_cnt > 8) { 115 /* And some extra space to allow writes while committing */ 116 log_lebs += 1; 117 min_leb_cnt += 1; 118 } 119 120 max_buds = jnl_lebs - log_lebs; 121 if (max_buds < UBIFS_MIN_BUD_LEBS) 122 max_buds = UBIFS_MIN_BUD_LEBS; 123 124 /* 125 * Orphan nodes are stored in a separate area. One node can store a lot 126 * of orphan inode numbers, but when new orphan comes we just add a new 127 * orphan node. At some point the nodes are consolidated into one 128 * orphan node. 129 */ 130 orph_lebs = UBIFS_MIN_ORPH_LEBS; 131 if (c->leb_cnt - min_leb_cnt > 1) 132 /* 133 * For debugging purposes it is better to have at least 2 134 * orphan LEBs, because the orphan subsystem would need to do 135 * consolidations and would be stressed more. 136 */ 137 orph_lebs += 1; 138 139 main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs; 140 main_lebs -= orph_lebs; 141 142 lpt_first = UBIFS_LOG_LNUM + log_lebs; 143 c->lsave_cnt = DEFAULT_LSAVE_CNT; 144 c->max_leb_cnt = c->leb_cnt; 145 err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs, 146 &big_lpt); 147 if (err) 148 return err; 149 150 dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first, 151 lpt_first + lpt_lebs - 1); 152 153 main_first = c->leb_cnt - main_lebs; 154 155 /* Create default superblock */ 156 tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); 157 sup = kzalloc(tmp, GFP_KERNEL); 158 if (!sup) 159 return -ENOMEM; 160 161 tmp64 = (long long)max_buds * c->leb_size; 162 if (big_lpt) 163 sup_flags |= UBIFS_FLG_BIGLPT; 164 165 sup->ch.node_type = UBIFS_SB_NODE; 166 sup->key_hash = UBIFS_KEY_HASH_R5; 167 sup->flags = cpu_to_le32(sup_flags); 168 sup->min_io_size = cpu_to_le32(c->min_io_size); 169 sup->leb_size = cpu_to_le32(c->leb_size); 170 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 171 sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt); 172 sup->max_bud_bytes = cpu_to_le64(tmp64); 173 sup->log_lebs = cpu_to_le32(log_lebs); 174 sup->lpt_lebs = cpu_to_le32(lpt_lebs); 175 sup->orph_lebs = cpu_to_le32(orph_lebs); 176 sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT); 177 sup->fanout = cpu_to_le32(DEFAULT_FANOUT); 178 sup->lsave_cnt = cpu_to_le32(c->lsave_cnt); 179 sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION); 180 sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN); 181 if (c->mount_opts.override_compr) 182 sup->default_compr = cpu_to_le16(c->mount_opts.compr_type); 183 else 184 sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO); 185 186 generate_random_uuid(sup->uuid); 187 188 main_bytes = (long long)main_lebs * c->leb_size; 189 tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100); 190 if (tmp64 > DEFAULT_MAX_RP_SIZE) 191 tmp64 = DEFAULT_MAX_RP_SIZE; 192 sup->rp_size = cpu_to_le64(tmp64); 193 sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION); 194 195 err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0); 196 kfree(sup); 197 if (err) 198 return err; 199 200 dbg_gen("default superblock created at LEB 0:0"); 201 202 /* Create default master node */ 203 mst = kzalloc(c->mst_node_alsz, GFP_KERNEL); 204 if (!mst) 205 return -ENOMEM; 206 207 mst->ch.node_type = UBIFS_MST_NODE; 208 mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM); 209 mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO); 210 mst->cmt_no = 0; 211 mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB); 212 mst->root_offs = 0; 213 tmp = ubifs_idx_node_sz(c, 1); 214 mst->root_len = cpu_to_le32(tmp); 215 mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB); 216 mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB); 217 mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size)); 218 mst->index_size = cpu_to_le64(ALIGN(tmp, 8)); 219 mst->lpt_lnum = cpu_to_le32(c->lpt_lnum); 220 mst->lpt_offs = cpu_to_le32(c->lpt_offs); 221 mst->nhead_lnum = cpu_to_le32(c->nhead_lnum); 222 mst->nhead_offs = cpu_to_le32(c->nhead_offs); 223 mst->ltab_lnum = cpu_to_le32(c->ltab_lnum); 224 mst->ltab_offs = cpu_to_le32(c->ltab_offs); 225 mst->lsave_lnum = cpu_to_le32(c->lsave_lnum); 226 mst->lsave_offs = cpu_to_le32(c->lsave_offs); 227 mst->lscan_lnum = cpu_to_le32(main_first); 228 mst->empty_lebs = cpu_to_le32(main_lebs - 2); 229 mst->idx_lebs = cpu_to_le32(1); 230 mst->leb_cnt = cpu_to_le32(c->leb_cnt); 231 232 /* Calculate lprops statistics */ 233 tmp64 = main_bytes; 234 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); 235 tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); 236 mst->total_free = cpu_to_le64(tmp64); 237 238 tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); 239 ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) - 240 UBIFS_INO_NODE_SZ; 241 tmp64 += ino_waste; 242 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8); 243 mst->total_dirty = cpu_to_le64(tmp64); 244 245 /* The indexing LEB does not contribute to dark space */ 246 tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm); 247 mst->total_dark = cpu_to_le64(tmp64); 248 249 mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ); 250 251 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0); 252 if (err) { 253 kfree(mst); 254 return err; 255 } 256 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, 257 0); 258 kfree(mst); 259 if (err) 260 return err; 261 262 dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM); 263 264 /* Create the root indexing node */ 265 tmp = ubifs_idx_node_sz(c, 1); 266 idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL); 267 if (!idx) 268 return -ENOMEM; 269 270 c->key_fmt = UBIFS_SIMPLE_KEY_FMT; 271 c->key_hash = key_r5_hash; 272 273 idx->ch.node_type = UBIFS_IDX_NODE; 274 idx->child_cnt = cpu_to_le16(1); 275 ino_key_init(c, &key, UBIFS_ROOT_INO); 276 br = ubifs_idx_branch(c, idx, 0); 277 key_write_idx(c, &key, &br->key); 278 br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB); 279 br->len = cpu_to_le32(UBIFS_INO_NODE_SZ); 280 err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0); 281 kfree(idx); 282 if (err) 283 return err; 284 285 dbg_gen("default root indexing node created LEB %d:0", 286 main_first + DEFAULT_IDX_LEB); 287 288 /* Create default root inode */ 289 tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); 290 ino = kzalloc(tmp, GFP_KERNEL); 291 if (!ino) 292 return -ENOMEM; 293 294 ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO); 295 ino->ch.node_type = UBIFS_INO_NODE; 296 ino->creat_sqnum = cpu_to_le64(++c->max_sqnum); 297 ino->nlink = cpu_to_le32(2); 298 tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec); 299 ino->atime_sec = tmp_le64; 300 ino->ctime_sec = tmp_le64; 301 ino->mtime_sec = tmp_le64; 302 ino->atime_nsec = 0; 303 ino->ctime_nsec = 0; 304 ino->mtime_nsec = 0; 305 ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO); 306 ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ); 307 308 /* Set compression enabled by default */ 309 ino->flags = cpu_to_le32(UBIFS_COMPR_FL); 310 311 err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ, 312 main_first + DEFAULT_DATA_LEB, 0); 313 kfree(ino); 314 if (err) 315 return err; 316 317 dbg_gen("root inode created at LEB %d:0", 318 main_first + DEFAULT_DATA_LEB); 319 320 /* 321 * The first node in the log has to be the commit start node. This is 322 * always the case during normal file-system operation. Write a fake 323 * commit start node to the log. 324 */ 325 tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size); 326 cs = kzalloc(tmp, GFP_KERNEL); 327 if (!cs) 328 return -ENOMEM; 329 330 cs->ch.node_type = UBIFS_CS_NODE; 331 err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0); 332 kfree(cs); 333 if (err) 334 return err; 335 336 ubifs_msg(c, "default file-system created"); 337 return 0; 338 } 339 #endif 340 341 /** 342 * validate_sb - validate superblock node. 343 * @c: UBIFS file-system description object 344 * @sup: superblock node 345 * 346 * This function validates superblock node @sup. Since most of data was read 347 * from the superblock and stored in @c, the function validates fields in @c 348 * instead. Returns zero in case of success and %-EINVAL in case of validation 349 * failure. 350 */ 351 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup) 352 { 353 long long max_bytes; 354 int err = 1, min_leb_cnt; 355 356 if (!c->key_hash) { 357 err = 2; 358 goto failed; 359 } 360 361 if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) { 362 err = 3; 363 goto failed; 364 } 365 366 if (le32_to_cpu(sup->min_io_size) != c->min_io_size) { 367 ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real", 368 le32_to_cpu(sup->min_io_size), c->min_io_size); 369 goto failed; 370 } 371 372 if (le32_to_cpu(sup->leb_size) != c->leb_size) { 373 ubifs_err(c, "LEB size mismatch: %d in superblock, %d real", 374 le32_to_cpu(sup->leb_size), c->leb_size); 375 goto failed; 376 } 377 378 if (c->log_lebs < UBIFS_MIN_LOG_LEBS || 379 c->lpt_lebs < UBIFS_MIN_LPT_LEBS || 380 c->orph_lebs < UBIFS_MIN_ORPH_LEBS || 381 c->main_lebs < UBIFS_MIN_MAIN_LEBS) { 382 err = 4; 383 goto failed; 384 } 385 386 /* 387 * Calculate minimum allowed amount of main area LEBs. This is very 388 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we 389 * have just read from the superblock. 390 */ 391 min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs; 392 min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6; 393 394 if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) { 395 ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required", 396 c->leb_cnt, c->vi.size, min_leb_cnt); 397 goto failed; 398 } 399 400 if (c->max_leb_cnt < c->leb_cnt) { 401 ubifs_err(c, "max. LEB count %d less than LEB count %d", 402 c->max_leb_cnt, c->leb_cnt); 403 goto failed; 404 } 405 406 if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) { 407 ubifs_err(c, "too few main LEBs count %d, must be at least %d", 408 c->main_lebs, UBIFS_MIN_MAIN_LEBS); 409 goto failed; 410 } 411 412 max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS; 413 if (c->max_bud_bytes < max_bytes) { 414 ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes", 415 c->max_bud_bytes, max_bytes); 416 goto failed; 417 } 418 419 max_bytes = (long long)c->leb_size * c->main_lebs; 420 if (c->max_bud_bytes > max_bytes) { 421 ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area", 422 c->max_bud_bytes, max_bytes); 423 goto failed; 424 } 425 426 if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 || 427 c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) { 428 err = 9; 429 goto failed; 430 } 431 432 if (c->fanout < UBIFS_MIN_FANOUT || 433 ubifs_idx_node_sz(c, c->fanout) > c->leb_size) { 434 err = 10; 435 goto failed; 436 } 437 438 if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT && 439 c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - 440 c->log_lebs - c->lpt_lebs - c->orph_lebs)) { 441 err = 11; 442 goto failed; 443 } 444 445 if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs + 446 c->orph_lebs + c->main_lebs != c->leb_cnt) { 447 err = 12; 448 goto failed; 449 } 450 451 if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) { 452 err = 13; 453 goto failed; 454 } 455 456 if (c->rp_size < 0 || max_bytes < c->rp_size) { 457 err = 14; 458 goto failed; 459 } 460 461 if (le32_to_cpu(sup->time_gran) > 1000000000 || 462 le32_to_cpu(sup->time_gran) < 1) { 463 err = 15; 464 goto failed; 465 } 466 467 return 0; 468 469 failed: 470 ubifs_err(c, "bad superblock, error %d", err); 471 ubifs_dump_node(c, sup); 472 return -EINVAL; 473 } 474 475 /** 476 * ubifs_read_sb_node - read superblock node. 477 * @c: UBIFS file-system description object 478 * 479 * This function returns a pointer to the superblock node or a negative error 480 * code. Note, the user of this function is responsible of kfree()'ing the 481 * returned superblock buffer. 482 */ 483 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c) 484 { 485 struct ubifs_sb_node *sup; 486 int err; 487 488 sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS); 489 if (!sup) 490 return ERR_PTR(-ENOMEM); 491 492 err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ, 493 UBIFS_SB_LNUM, 0); 494 if (err) { 495 kfree(sup); 496 return ERR_PTR(err); 497 } 498 499 return sup; 500 } 501 502 /** 503 * ubifs_write_sb_node - write superblock node. 504 * @c: UBIFS file-system description object 505 * @sup: superblock node read with 'ubifs_read_sb_node()' 506 * 507 * This function returns %0 on success and a negative error code on failure. 508 */ 509 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup) 510 { 511 int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); 512 513 ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1); 514 return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len); 515 } 516 517 /** 518 * ubifs_read_superblock - read superblock. 519 * @c: UBIFS file-system description object 520 * 521 * This function finds, reads and checks the superblock. If an empty UBI volume 522 * is being mounted, this function creates default superblock. Returns zero in 523 * case of success, and a negative error code in case of failure. 524 */ 525 int ubifs_read_superblock(struct ubifs_info *c) 526 { 527 int err, sup_flags; 528 struct ubifs_sb_node *sup; 529 530 if (c->empty) { 531 #ifndef __UBOOT__ 532 err = create_default_filesystem(c); 533 if (err) 534 return err; 535 #else 536 printf("No UBIFS filesystem found!\n"); 537 return -1; 538 #endif 539 } 540 541 sup = ubifs_read_sb_node(c); 542 if (IS_ERR(sup)) 543 return PTR_ERR(sup); 544 545 c->fmt_version = le32_to_cpu(sup->fmt_version); 546 c->ro_compat_version = le32_to_cpu(sup->ro_compat_version); 547 548 /* 549 * The software supports all previous versions but not future versions, 550 * due to the unavailability of time-travelling equipment. 551 */ 552 if (c->fmt_version > UBIFS_FORMAT_VERSION) { 553 ubifs_assert(!c->ro_media || c->ro_mount); 554 if (!c->ro_mount || 555 c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) { 556 ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 557 c->fmt_version, c->ro_compat_version, 558 UBIFS_FORMAT_VERSION, 559 UBIFS_RO_COMPAT_VERSION); 560 if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) { 561 ubifs_msg(c, "only R/O mounting is possible"); 562 err = -EROFS; 563 } else 564 err = -EINVAL; 565 goto out; 566 } 567 568 /* 569 * The FS is mounted R/O, and the media format is 570 * R/O-compatible with the UBIFS implementation, so we can 571 * mount. 572 */ 573 c->rw_incompat = 1; 574 } 575 576 if (c->fmt_version < 3) { 577 ubifs_err(c, "on-flash format version %d is not supported", 578 c->fmt_version); 579 err = -EINVAL; 580 goto out; 581 } 582 583 switch (sup->key_hash) { 584 case UBIFS_KEY_HASH_R5: 585 c->key_hash = key_r5_hash; 586 c->key_hash_type = UBIFS_KEY_HASH_R5; 587 break; 588 589 case UBIFS_KEY_HASH_TEST: 590 c->key_hash = key_test_hash; 591 c->key_hash_type = UBIFS_KEY_HASH_TEST; 592 break; 593 }; 594 595 c->key_fmt = sup->key_fmt; 596 597 switch (c->key_fmt) { 598 case UBIFS_SIMPLE_KEY_FMT: 599 c->key_len = UBIFS_SK_LEN; 600 break; 601 default: 602 ubifs_err(c, "unsupported key format"); 603 err = -EINVAL; 604 goto out; 605 } 606 607 c->leb_cnt = le32_to_cpu(sup->leb_cnt); 608 c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt); 609 c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes); 610 c->log_lebs = le32_to_cpu(sup->log_lebs); 611 c->lpt_lebs = le32_to_cpu(sup->lpt_lebs); 612 c->orph_lebs = le32_to_cpu(sup->orph_lebs); 613 c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT; 614 c->fanout = le32_to_cpu(sup->fanout); 615 c->lsave_cnt = le32_to_cpu(sup->lsave_cnt); 616 c->rp_size = le64_to_cpu(sup->rp_size); 617 #ifndef __UBOOT__ 618 c->rp_uid = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid)); 619 c->rp_gid = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid)); 620 #else 621 c->rp_uid.val = le32_to_cpu(sup->rp_uid); 622 c->rp_gid.val = le32_to_cpu(sup->rp_gid); 623 #endif 624 sup_flags = le32_to_cpu(sup->flags); 625 if (!c->mount_opts.override_compr) 626 c->default_compr = le16_to_cpu(sup->default_compr); 627 628 c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran); 629 memcpy(&c->uuid, &sup->uuid, 16); 630 c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT); 631 c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP); 632 633 /* Automatically increase file system size to the maximum size */ 634 c->old_leb_cnt = c->leb_cnt; 635 if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) { 636 c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size); 637 if (c->ro_mount) 638 dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs", 639 c->old_leb_cnt, c->leb_cnt); 640 #ifndef __UBOOT__ 641 else { 642 dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs", 643 c->old_leb_cnt, c->leb_cnt); 644 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 645 err = ubifs_write_sb_node(c, sup); 646 if (err) 647 goto out; 648 c->old_leb_cnt = c->leb_cnt; 649 } 650 #endif 651 } 652 653 c->log_bytes = (long long)c->log_lebs * c->leb_size; 654 c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1; 655 c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs; 656 c->lpt_last = c->lpt_first + c->lpt_lebs - 1; 657 c->orph_first = c->lpt_last + 1; 658 c->orph_last = c->orph_first + c->orph_lebs - 1; 659 c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS; 660 c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs; 661 c->main_first = c->leb_cnt - c->main_lebs; 662 663 err = validate_sb(c, sup); 664 out: 665 kfree(sup); 666 return err; 667 } 668 669 /** 670 * fixup_leb - fixup/unmap an LEB containing free space. 671 * @c: UBIFS file-system description object 672 * @lnum: the LEB number to fix up 673 * @len: number of used bytes in LEB (starting at offset 0) 674 * 675 * This function reads the contents of the given LEB number @lnum, then fixes 676 * it up, so that empty min. I/O units in the end of LEB are actually erased on 677 * flash (rather than being just all-0xff real data). If the LEB is completely 678 * empty, it is simply unmapped. 679 */ 680 static int fixup_leb(struct ubifs_info *c, int lnum, int len) 681 { 682 int err; 683 684 ubifs_assert(len >= 0); 685 ubifs_assert(len % c->min_io_size == 0); 686 ubifs_assert(len < c->leb_size); 687 688 if (len == 0) { 689 dbg_mnt("unmap empty LEB %d", lnum); 690 return ubifs_leb_unmap(c, lnum); 691 } 692 693 dbg_mnt("fixup LEB %d, data len %d", lnum, len); 694 err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1); 695 if (err) 696 return err; 697 698 return ubifs_leb_change(c, lnum, c->sbuf, len); 699 } 700 701 /** 702 * fixup_free_space - find & remap all LEBs containing free space. 703 * @c: UBIFS file-system description object 704 * 705 * This function walks through all LEBs in the filesystem and fiexes up those 706 * containing free/empty space. 707 */ 708 static int fixup_free_space(struct ubifs_info *c) 709 { 710 int lnum, err = 0; 711 struct ubifs_lprops *lprops; 712 713 ubifs_get_lprops(c); 714 715 /* Fixup LEBs in the master area */ 716 for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) { 717 err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz); 718 if (err) 719 goto out; 720 } 721 722 /* Unmap unused log LEBs */ 723 lnum = ubifs_next_log_lnum(c, c->lhead_lnum); 724 while (lnum != c->ltail_lnum) { 725 err = fixup_leb(c, lnum, 0); 726 if (err) 727 goto out; 728 lnum = ubifs_next_log_lnum(c, lnum); 729 } 730 731 /* 732 * Fixup the log head which contains the only a CS node at the 733 * beginning. 734 */ 735 err = fixup_leb(c, c->lhead_lnum, 736 ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size)); 737 if (err) 738 goto out; 739 740 /* Fixup LEBs in the LPT area */ 741 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { 742 int free = c->ltab[lnum - c->lpt_first].free; 743 744 if (free > 0) { 745 err = fixup_leb(c, lnum, c->leb_size - free); 746 if (err) 747 goto out; 748 } 749 } 750 751 /* Unmap LEBs in the orphans area */ 752 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 753 err = fixup_leb(c, lnum, 0); 754 if (err) 755 goto out; 756 } 757 758 /* Fixup LEBs in the main area */ 759 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 760 lprops = ubifs_lpt_lookup(c, lnum); 761 if (IS_ERR(lprops)) { 762 err = PTR_ERR(lprops); 763 goto out; 764 } 765 766 if (lprops->free > 0) { 767 err = fixup_leb(c, lnum, c->leb_size - lprops->free); 768 if (err) 769 goto out; 770 } 771 } 772 773 out: 774 ubifs_release_lprops(c); 775 return err; 776 } 777 778 /** 779 * ubifs_fixup_free_space - find & fix all LEBs with free space. 780 * @c: UBIFS file-system description object 781 * 782 * This function fixes up LEBs containing free space on first mount, if the 783 * appropriate flag was set when the FS was created. Each LEB with one or more 784 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure 785 * the free space is actually erased. E.g., this is necessary for some NAND 786 * chips, since the free space may have been programmed like real "0xff" data 787 * (generating a non-0xff ECC), causing future writes to the not-really-erased 788 * NAND pages to behave badly. After the space is fixed up, the superblock flag 789 * is cleared, so that this is skipped for all future mounts. 790 */ 791 int ubifs_fixup_free_space(struct ubifs_info *c) 792 { 793 int err; 794 struct ubifs_sb_node *sup; 795 796 ubifs_assert(c->space_fixup); 797 ubifs_assert(!c->ro_mount); 798 799 ubifs_msg(c, "start fixing up free space"); 800 801 err = fixup_free_space(c); 802 if (err) 803 return err; 804 805 sup = ubifs_read_sb_node(c); 806 if (IS_ERR(sup)) 807 return PTR_ERR(sup); 808 809 /* Free-space fixup is no longer required */ 810 c->space_fixup = 0; 811 sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP); 812 813 err = ubifs_write_sb_node(c, sup); 814 kfree(sup); 815 if (err) 816 return err; 817 818 ubifs_msg(c, "free space fixup complete"); 819 return err; 820 } 821