xref: /openbmc/u-boot/fs/ubifs/sb.c (revision e8f80a5a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS superblock. The superblock is stored at the first
13  * LEB of the volume and is never changed by UBIFS. Only user-space tools may
14  * change it. The superblock node mostly contains geometry information.
15  */
16 
17 #include "ubifs.h"
18 #ifndef __UBOOT__
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/math64.h>
22 #else
23 
24 #include <linux/compat.h>
25 #include <linux/err.h>
26 #include <ubi_uboot.h>
27 #include <linux/stat.h>
28 #endif
29 
30 /*
31  * Default journal size in logical eraseblocks as a percent of total
32  * flash size.
33  */
34 #define DEFAULT_JNL_PERCENT 5
35 
36 /* Default maximum journal size in bytes */
37 #define DEFAULT_MAX_JNL (32*1024*1024)
38 
39 /* Default indexing tree fanout */
40 #define DEFAULT_FANOUT 8
41 
42 /* Default number of data journal heads */
43 #define DEFAULT_JHEADS_CNT 1
44 
45 /* Default positions of different LEBs in the main area */
46 #define DEFAULT_IDX_LEB  0
47 #define DEFAULT_DATA_LEB 1
48 #define DEFAULT_GC_LEB   2
49 
50 /* Default number of LEB numbers in LPT's save table */
51 #define DEFAULT_LSAVE_CNT 256
52 
53 /* Default reserved pool size as a percent of maximum free space */
54 #define DEFAULT_RP_PERCENT 5
55 
56 /* The default maximum size of reserved pool in bytes */
57 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
58 
59 /* Default time granularity in nanoseconds */
60 #define DEFAULT_TIME_GRAN 1000000000
61 
62 #ifndef __UBOOT__
63 /**
64  * create_default_filesystem - format empty UBI volume.
65  * @c: UBIFS file-system description object
66  *
67  * This function creates default empty file-system. Returns zero in case of
68  * success and a negative error code in case of failure.
69  */
create_default_filesystem(struct ubifs_info * c)70 static int create_default_filesystem(struct ubifs_info *c)
71 {
72 	struct ubifs_sb_node *sup;
73 	struct ubifs_mst_node *mst;
74 	struct ubifs_idx_node *idx;
75 	struct ubifs_branch *br;
76 	struct ubifs_ino_node *ino;
77 	struct ubifs_cs_node *cs;
78 	union ubifs_key key;
79 	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
80 	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
81 	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
82 	long long tmp64, main_bytes;
83 	__le64 tmp_le64;
84 
85 	/* Some functions called from here depend on the @c->key_len filed */
86 	c->key_len = UBIFS_SK_LEN;
87 
88 	/*
89 	 * First of all, we have to calculate default file-system geometry -
90 	 * log size, journal size, etc.
91 	 */
92 	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
93 		/* We can first multiply then divide and have no overflow */
94 		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
95 	else
96 		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
97 
98 	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
99 		jnl_lebs = UBIFS_MIN_JNL_LEBS;
100 	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
101 		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
102 
103 	/*
104 	 * The log should be large enough to fit reference nodes for all bud
105 	 * LEBs. Because buds do not have to start from the beginning of LEBs
106 	 * (half of the LEB may contain committed data), the log should
107 	 * generally be larger, make it twice as large.
108 	 */
109 	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
110 	log_lebs = tmp / c->leb_size;
111 	/* Plus one LEB reserved for commit */
112 	log_lebs += 1;
113 	if (c->leb_cnt - min_leb_cnt > 8) {
114 		/* And some extra space to allow writes while committing */
115 		log_lebs += 1;
116 		min_leb_cnt += 1;
117 	}
118 
119 	max_buds = jnl_lebs - log_lebs;
120 	if (max_buds < UBIFS_MIN_BUD_LEBS)
121 		max_buds = UBIFS_MIN_BUD_LEBS;
122 
123 	/*
124 	 * Orphan nodes are stored in a separate area. One node can store a lot
125 	 * of orphan inode numbers, but when new orphan comes we just add a new
126 	 * orphan node. At some point the nodes are consolidated into one
127 	 * orphan node.
128 	 */
129 	orph_lebs = UBIFS_MIN_ORPH_LEBS;
130 	if (c->leb_cnt - min_leb_cnt > 1)
131 		/*
132 		 * For debugging purposes it is better to have at least 2
133 		 * orphan LEBs, because the orphan subsystem would need to do
134 		 * consolidations and would be stressed more.
135 		 */
136 		orph_lebs += 1;
137 
138 	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
139 	main_lebs -= orph_lebs;
140 
141 	lpt_first = UBIFS_LOG_LNUM + log_lebs;
142 	c->lsave_cnt = DEFAULT_LSAVE_CNT;
143 	c->max_leb_cnt = c->leb_cnt;
144 	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
145 				    &big_lpt);
146 	if (err)
147 		return err;
148 
149 	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
150 		lpt_first + lpt_lebs - 1);
151 
152 	main_first = c->leb_cnt - main_lebs;
153 
154 	/* Create default superblock */
155 	tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
156 	sup = kzalloc(tmp, GFP_KERNEL);
157 	if (!sup)
158 		return -ENOMEM;
159 
160 	tmp64 = (long long)max_buds * c->leb_size;
161 	if (big_lpt)
162 		sup_flags |= UBIFS_FLG_BIGLPT;
163 
164 	sup->ch.node_type  = UBIFS_SB_NODE;
165 	sup->key_hash      = UBIFS_KEY_HASH_R5;
166 	sup->flags         = cpu_to_le32(sup_flags);
167 	sup->min_io_size   = cpu_to_le32(c->min_io_size);
168 	sup->leb_size      = cpu_to_le32(c->leb_size);
169 	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
170 	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
171 	sup->max_bud_bytes = cpu_to_le64(tmp64);
172 	sup->log_lebs      = cpu_to_le32(log_lebs);
173 	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
174 	sup->orph_lebs     = cpu_to_le32(orph_lebs);
175 	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
176 	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
177 	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
178 	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
179 	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
180 	if (c->mount_opts.override_compr)
181 		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
182 	else
183 		sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
184 
185 	generate_random_uuid(sup->uuid);
186 
187 	main_bytes = (long long)main_lebs * c->leb_size;
188 	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
189 	if (tmp64 > DEFAULT_MAX_RP_SIZE)
190 		tmp64 = DEFAULT_MAX_RP_SIZE;
191 	sup->rp_size = cpu_to_le64(tmp64);
192 	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
193 
194 	err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
195 	kfree(sup);
196 	if (err)
197 		return err;
198 
199 	dbg_gen("default superblock created at LEB 0:0");
200 
201 	/* Create default master node */
202 	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
203 	if (!mst)
204 		return -ENOMEM;
205 
206 	mst->ch.node_type = UBIFS_MST_NODE;
207 	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
208 	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
209 	mst->cmt_no       = 0;
210 	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
211 	mst->root_offs    = 0;
212 	tmp = ubifs_idx_node_sz(c, 1);
213 	mst->root_len     = cpu_to_le32(tmp);
214 	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
215 	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
216 	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
217 	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
218 	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
219 	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
220 	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
221 	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
222 	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
223 	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
224 	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
225 	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
226 	mst->lscan_lnum   = cpu_to_le32(main_first);
227 	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
228 	mst->idx_lebs     = cpu_to_le32(1);
229 	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
230 
231 	/* Calculate lprops statistics */
232 	tmp64 = main_bytes;
233 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
234 	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
235 	mst->total_free = cpu_to_le64(tmp64);
236 
237 	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
238 	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
239 			  UBIFS_INO_NODE_SZ;
240 	tmp64 += ino_waste;
241 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
242 	mst->total_dirty = cpu_to_le64(tmp64);
243 
244 	/*  The indexing LEB does not contribute to dark space */
245 	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
246 	mst->total_dark = cpu_to_le64(tmp64);
247 
248 	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
249 
250 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
251 	if (err) {
252 		kfree(mst);
253 		return err;
254 	}
255 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
256 			       0);
257 	kfree(mst);
258 	if (err)
259 		return err;
260 
261 	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
262 
263 	/* Create the root indexing node */
264 	tmp = ubifs_idx_node_sz(c, 1);
265 	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
266 	if (!idx)
267 		return -ENOMEM;
268 
269 	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
270 	c->key_hash = key_r5_hash;
271 
272 	idx->ch.node_type = UBIFS_IDX_NODE;
273 	idx->child_cnt = cpu_to_le16(1);
274 	ino_key_init(c, &key, UBIFS_ROOT_INO);
275 	br = ubifs_idx_branch(c, idx, 0);
276 	key_write_idx(c, &key, &br->key);
277 	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
278 	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
279 	err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
280 	kfree(idx);
281 	if (err)
282 		return err;
283 
284 	dbg_gen("default root indexing node created LEB %d:0",
285 		main_first + DEFAULT_IDX_LEB);
286 
287 	/* Create default root inode */
288 	tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
289 	ino = kzalloc(tmp, GFP_KERNEL);
290 	if (!ino)
291 		return -ENOMEM;
292 
293 	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
294 	ino->ch.node_type = UBIFS_INO_NODE;
295 	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
296 	ino->nlink = cpu_to_le32(2);
297 	tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
298 	ino->atime_sec   = tmp_le64;
299 	ino->ctime_sec   = tmp_le64;
300 	ino->mtime_sec   = tmp_le64;
301 	ino->atime_nsec  = 0;
302 	ino->ctime_nsec  = 0;
303 	ino->mtime_nsec  = 0;
304 	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
305 	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
306 
307 	/* Set compression enabled by default */
308 	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
309 
310 	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
311 			       main_first + DEFAULT_DATA_LEB, 0);
312 	kfree(ino);
313 	if (err)
314 		return err;
315 
316 	dbg_gen("root inode created at LEB %d:0",
317 		main_first + DEFAULT_DATA_LEB);
318 
319 	/*
320 	 * The first node in the log has to be the commit start node. This is
321 	 * always the case during normal file-system operation. Write a fake
322 	 * commit start node to the log.
323 	 */
324 	tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
325 	cs = kzalloc(tmp, GFP_KERNEL);
326 	if (!cs)
327 		return -ENOMEM;
328 
329 	cs->ch.node_type = UBIFS_CS_NODE;
330 	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
331 	kfree(cs);
332 	if (err)
333 		return err;
334 
335 	ubifs_msg(c, "default file-system created");
336 	return 0;
337 }
338 #endif
339 
340 /**
341  * validate_sb - validate superblock node.
342  * @c: UBIFS file-system description object
343  * @sup: superblock node
344  *
345  * This function validates superblock node @sup. Since most of data was read
346  * from the superblock and stored in @c, the function validates fields in @c
347  * instead. Returns zero in case of success and %-EINVAL in case of validation
348  * failure.
349  */
validate_sb(struct ubifs_info * c,struct ubifs_sb_node * sup)350 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
351 {
352 	long long max_bytes;
353 	int err = 1, min_leb_cnt;
354 
355 	if (!c->key_hash) {
356 		err = 2;
357 		goto failed;
358 	}
359 
360 	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
361 		err = 3;
362 		goto failed;
363 	}
364 
365 	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
366 		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
367 			  le32_to_cpu(sup->min_io_size), c->min_io_size);
368 		goto failed;
369 	}
370 
371 	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
372 		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
373 			  le32_to_cpu(sup->leb_size), c->leb_size);
374 		goto failed;
375 	}
376 
377 	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
378 	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
379 	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
380 	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
381 		err = 4;
382 		goto failed;
383 	}
384 
385 	/*
386 	 * Calculate minimum allowed amount of main area LEBs. This is very
387 	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
388 	 * have just read from the superblock.
389 	 */
390 	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
391 	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
392 
393 	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
394 		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
395 			  c->leb_cnt, c->vi.size, min_leb_cnt);
396 		goto failed;
397 	}
398 
399 	if (c->max_leb_cnt < c->leb_cnt) {
400 		ubifs_err(c, "max. LEB count %d less than LEB count %d",
401 			  c->max_leb_cnt, c->leb_cnt);
402 		goto failed;
403 	}
404 
405 	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
406 		ubifs_err(c, "too few main LEBs count %d, must be at least %d",
407 			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
408 		goto failed;
409 	}
410 
411 	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
412 	if (c->max_bud_bytes < max_bytes) {
413 		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
414 			  c->max_bud_bytes, max_bytes);
415 		goto failed;
416 	}
417 
418 	max_bytes = (long long)c->leb_size * c->main_lebs;
419 	if (c->max_bud_bytes > max_bytes) {
420 		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
421 			  c->max_bud_bytes, max_bytes);
422 		goto failed;
423 	}
424 
425 	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
426 	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
427 		err = 9;
428 		goto failed;
429 	}
430 
431 	if (c->fanout < UBIFS_MIN_FANOUT ||
432 	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
433 		err = 10;
434 		goto failed;
435 	}
436 
437 	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
438 	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
439 	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
440 		err = 11;
441 		goto failed;
442 	}
443 
444 	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
445 	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
446 		err = 12;
447 		goto failed;
448 	}
449 
450 	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
451 		err = 13;
452 		goto failed;
453 	}
454 
455 	if (c->rp_size < 0 || max_bytes < c->rp_size) {
456 		err = 14;
457 		goto failed;
458 	}
459 
460 	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
461 	    le32_to_cpu(sup->time_gran) < 1) {
462 		err = 15;
463 		goto failed;
464 	}
465 
466 	return 0;
467 
468 failed:
469 	ubifs_err(c, "bad superblock, error %d", err);
470 	ubifs_dump_node(c, sup);
471 	return -EINVAL;
472 }
473 
474 /**
475  * ubifs_read_sb_node - read superblock node.
476  * @c: UBIFS file-system description object
477  *
478  * This function returns a pointer to the superblock node or a negative error
479  * code. Note, the user of this function is responsible of kfree()'ing the
480  * returned superblock buffer.
481  */
ubifs_read_sb_node(struct ubifs_info * c)482 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
483 {
484 	struct ubifs_sb_node *sup;
485 	int err;
486 
487 	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
488 	if (!sup)
489 		return ERR_PTR(-ENOMEM);
490 
491 	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
492 			      UBIFS_SB_LNUM, 0);
493 	if (err) {
494 		kfree(sup);
495 		return ERR_PTR(err);
496 	}
497 
498 	return sup;
499 }
500 
501 /**
502  * ubifs_write_sb_node - write superblock node.
503  * @c: UBIFS file-system description object
504  * @sup: superblock node read with 'ubifs_read_sb_node()'
505  *
506  * This function returns %0 on success and a negative error code on failure.
507  */
ubifs_write_sb_node(struct ubifs_info * c,struct ubifs_sb_node * sup)508 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
509 {
510 	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
511 
512 	ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
513 	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
514 }
515 
516 /**
517  * ubifs_read_superblock - read superblock.
518  * @c: UBIFS file-system description object
519  *
520  * This function finds, reads and checks the superblock. If an empty UBI volume
521  * is being mounted, this function creates default superblock. Returns zero in
522  * case of success, and a negative error code in case of failure.
523  */
ubifs_read_superblock(struct ubifs_info * c)524 int ubifs_read_superblock(struct ubifs_info *c)
525 {
526 	int err, sup_flags;
527 	struct ubifs_sb_node *sup;
528 
529 	if (c->empty) {
530 #ifndef __UBOOT__
531 		err = create_default_filesystem(c);
532 		if (err)
533 			return err;
534 #else
535 		printf("No UBIFS filesystem found!\n");
536 		return -1;
537 #endif
538 	}
539 
540 	sup = ubifs_read_sb_node(c);
541 	if (IS_ERR(sup))
542 		return PTR_ERR(sup);
543 
544 	c->fmt_version = le32_to_cpu(sup->fmt_version);
545 	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
546 
547 	/*
548 	 * The software supports all previous versions but not future versions,
549 	 * due to the unavailability of time-travelling equipment.
550 	 */
551 	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
552 		ubifs_assert(!c->ro_media || c->ro_mount);
553 		if (!c->ro_mount ||
554 		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
555 			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
556 				  c->fmt_version, c->ro_compat_version,
557 				  UBIFS_FORMAT_VERSION,
558 				  UBIFS_RO_COMPAT_VERSION);
559 			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
560 				ubifs_msg(c, "only R/O mounting is possible");
561 				err = -EROFS;
562 			} else
563 				err = -EINVAL;
564 			goto out;
565 		}
566 
567 		/*
568 		 * The FS is mounted R/O, and the media format is
569 		 * R/O-compatible with the UBIFS implementation, so we can
570 		 * mount.
571 		 */
572 		c->rw_incompat = 1;
573 	}
574 
575 	if (c->fmt_version < 3) {
576 		ubifs_err(c, "on-flash format version %d is not supported",
577 			  c->fmt_version);
578 		err = -EINVAL;
579 		goto out;
580 	}
581 
582 	switch (sup->key_hash) {
583 	case UBIFS_KEY_HASH_R5:
584 		c->key_hash = key_r5_hash;
585 		c->key_hash_type = UBIFS_KEY_HASH_R5;
586 		break;
587 
588 	case UBIFS_KEY_HASH_TEST:
589 		c->key_hash = key_test_hash;
590 		c->key_hash_type = UBIFS_KEY_HASH_TEST;
591 		break;
592 	};
593 
594 	c->key_fmt = sup->key_fmt;
595 
596 	switch (c->key_fmt) {
597 	case UBIFS_SIMPLE_KEY_FMT:
598 		c->key_len = UBIFS_SK_LEN;
599 		break;
600 	default:
601 		ubifs_err(c, "unsupported key format");
602 		err = -EINVAL;
603 		goto out;
604 	}
605 
606 	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
607 	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
608 	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
609 	c->log_lebs      = le32_to_cpu(sup->log_lebs);
610 	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
611 	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
612 	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
613 	c->fanout        = le32_to_cpu(sup->fanout);
614 	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
615 	c->rp_size       = le64_to_cpu(sup->rp_size);
616 #ifndef __UBOOT__
617 	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
618 	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
619 #else
620 	c->rp_uid.val    = le32_to_cpu(sup->rp_uid);
621 	c->rp_gid.val    = le32_to_cpu(sup->rp_gid);
622 #endif
623 	sup_flags        = le32_to_cpu(sup->flags);
624 	if (!c->mount_opts.override_compr)
625 		c->default_compr = le16_to_cpu(sup->default_compr);
626 
627 	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
628 	memcpy(&c->uuid, &sup->uuid, 16);
629 	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
630 	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
631 
632 	/* Automatically increase file system size to the maximum size */
633 	c->old_leb_cnt = c->leb_cnt;
634 	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
635 		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
636 		if (c->ro_mount)
637 			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
638 				c->old_leb_cnt,	c->leb_cnt);
639 #ifndef __UBOOT__
640 		else {
641 			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
642 				c->old_leb_cnt, c->leb_cnt);
643 			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
644 			err = ubifs_write_sb_node(c, sup);
645 			if (err)
646 				goto out;
647 			c->old_leb_cnt = c->leb_cnt;
648 		}
649 #endif
650 	}
651 
652 	c->log_bytes = (long long)c->log_lebs * c->leb_size;
653 	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
654 	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
655 	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
656 	c->orph_first = c->lpt_last + 1;
657 	c->orph_last = c->orph_first + c->orph_lebs - 1;
658 	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
659 	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
660 	c->main_first = c->leb_cnt - c->main_lebs;
661 
662 	err = validate_sb(c, sup);
663 out:
664 	kfree(sup);
665 	return err;
666 }
667 
668 /**
669  * fixup_leb - fixup/unmap an LEB containing free space.
670  * @c: UBIFS file-system description object
671  * @lnum: the LEB number to fix up
672  * @len: number of used bytes in LEB (starting at offset 0)
673  *
674  * This function reads the contents of the given LEB number @lnum, then fixes
675  * it up, so that empty min. I/O units in the end of LEB are actually erased on
676  * flash (rather than being just all-0xff real data). If the LEB is completely
677  * empty, it is simply unmapped.
678  */
fixup_leb(struct ubifs_info * c,int lnum,int len)679 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
680 {
681 	int err;
682 
683 	ubifs_assert(len >= 0);
684 	ubifs_assert(len % c->min_io_size == 0);
685 	ubifs_assert(len < c->leb_size);
686 
687 	if (len == 0) {
688 		dbg_mnt("unmap empty LEB %d", lnum);
689 		return ubifs_leb_unmap(c, lnum);
690 	}
691 
692 	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
693 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
694 	if (err)
695 		return err;
696 
697 	return ubifs_leb_change(c, lnum, c->sbuf, len);
698 }
699 
700 /**
701  * fixup_free_space - find & remap all LEBs containing free space.
702  * @c: UBIFS file-system description object
703  *
704  * This function walks through all LEBs in the filesystem and fiexes up those
705  * containing free/empty space.
706  */
fixup_free_space(struct ubifs_info * c)707 static int fixup_free_space(struct ubifs_info *c)
708 {
709 	int lnum, err = 0;
710 	struct ubifs_lprops *lprops;
711 
712 	ubifs_get_lprops(c);
713 
714 	/* Fixup LEBs in the master area */
715 	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
716 		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
717 		if (err)
718 			goto out;
719 	}
720 
721 	/* Unmap unused log LEBs */
722 	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
723 	while (lnum != c->ltail_lnum) {
724 		err = fixup_leb(c, lnum, 0);
725 		if (err)
726 			goto out;
727 		lnum = ubifs_next_log_lnum(c, lnum);
728 	}
729 
730 	/*
731 	 * Fixup the log head which contains the only a CS node at the
732 	 * beginning.
733 	 */
734 	err = fixup_leb(c, c->lhead_lnum,
735 			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
736 	if (err)
737 		goto out;
738 
739 	/* Fixup LEBs in the LPT area */
740 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
741 		int free = c->ltab[lnum - c->lpt_first].free;
742 
743 		if (free > 0) {
744 			err = fixup_leb(c, lnum, c->leb_size - free);
745 			if (err)
746 				goto out;
747 		}
748 	}
749 
750 	/* Unmap LEBs in the orphans area */
751 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
752 		err = fixup_leb(c, lnum, 0);
753 		if (err)
754 			goto out;
755 	}
756 
757 	/* Fixup LEBs in the main area */
758 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
759 		lprops = ubifs_lpt_lookup(c, lnum);
760 		if (IS_ERR(lprops)) {
761 			err = PTR_ERR(lprops);
762 			goto out;
763 		}
764 
765 		if (lprops->free > 0) {
766 			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
767 			if (err)
768 				goto out;
769 		}
770 	}
771 
772 out:
773 	ubifs_release_lprops(c);
774 	return err;
775 }
776 
777 /**
778  * ubifs_fixup_free_space - find & fix all LEBs with free space.
779  * @c: UBIFS file-system description object
780  *
781  * This function fixes up LEBs containing free space on first mount, if the
782  * appropriate flag was set when the FS was created. Each LEB with one or more
783  * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
784  * the free space is actually erased. E.g., this is necessary for some NAND
785  * chips, since the free space may have been programmed like real "0xff" data
786  * (generating a non-0xff ECC), causing future writes to the not-really-erased
787  * NAND pages to behave badly. After the space is fixed up, the superblock flag
788  * is cleared, so that this is skipped for all future mounts.
789  */
ubifs_fixup_free_space(struct ubifs_info * c)790 int ubifs_fixup_free_space(struct ubifs_info *c)
791 {
792 	int err;
793 	struct ubifs_sb_node *sup;
794 
795 	ubifs_assert(c->space_fixup);
796 	ubifs_assert(!c->ro_mount);
797 
798 	ubifs_msg(c, "start fixing up free space");
799 
800 	err = fixup_free_space(c);
801 	if (err)
802 		return err;
803 
804 	sup = ubifs_read_sb_node(c);
805 	if (IS_ERR(sup))
806 		return PTR_ERR(sup);
807 
808 	/* Free-space fixup is no longer required */
809 	c->space_fixup = 0;
810 	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
811 
812 	err = ubifs_write_sb_node(c, sup);
813 	kfree(sup);
814 	if (err)
815 		return err;
816 
817 	ubifs_msg(c, "free space fixup complete");
818 	return err;
819 }
820