1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 */ 11 12 /* 13 * This file implements UBIFS superblock. The superblock is stored at the first 14 * LEB of the volume and is never changed by UBIFS. Only user-space tools may 15 * change it. The superblock node mostly contains geometry information. 16 */ 17 18 #include "ubifs.h" 19 #ifndef __UBOOT__ 20 #include <linux/slab.h> 21 #include <linux/random.h> 22 #include <linux/math64.h> 23 #else 24 25 #include <linux/compat.h> 26 #include <linux/err.h> 27 #include <ubi_uboot.h> 28 #include <linux/stat.h> 29 #endif 30 31 /* 32 * Default journal size in logical eraseblocks as a percent of total 33 * flash size. 34 */ 35 #define DEFAULT_JNL_PERCENT 5 36 37 /* Default maximum journal size in bytes */ 38 #define DEFAULT_MAX_JNL (32*1024*1024) 39 40 /* Default indexing tree fanout */ 41 #define DEFAULT_FANOUT 8 42 43 /* Default number of data journal heads */ 44 #define DEFAULT_JHEADS_CNT 1 45 46 /* Default positions of different LEBs in the main area */ 47 #define DEFAULT_IDX_LEB 0 48 #define DEFAULT_DATA_LEB 1 49 #define DEFAULT_GC_LEB 2 50 51 /* Default number of LEB numbers in LPT's save table */ 52 #define DEFAULT_LSAVE_CNT 256 53 54 /* Default reserved pool size as a percent of maximum free space */ 55 #define DEFAULT_RP_PERCENT 5 56 57 /* The default maximum size of reserved pool in bytes */ 58 #define DEFAULT_MAX_RP_SIZE (5*1024*1024) 59 60 /* Default time granularity in nanoseconds */ 61 #define DEFAULT_TIME_GRAN 1000000000 62 63 #ifndef __UBOOT__ 64 /** 65 * create_default_filesystem - format empty UBI volume. 66 * @c: UBIFS file-system description object 67 * 68 * This function creates default empty file-system. Returns zero in case of 69 * success and a negative error code in case of failure. 70 */ 71 static int create_default_filesystem(struct ubifs_info *c) 72 { 73 struct ubifs_sb_node *sup; 74 struct ubifs_mst_node *mst; 75 struct ubifs_idx_node *idx; 76 struct ubifs_branch *br; 77 struct ubifs_ino_node *ino; 78 struct ubifs_cs_node *cs; 79 union ubifs_key key; 80 int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first; 81 int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0; 82 int min_leb_cnt = UBIFS_MIN_LEB_CNT; 83 long long tmp64, main_bytes; 84 __le64 tmp_le64; 85 86 /* Some functions called from here depend on the @c->key_len filed */ 87 c->key_len = UBIFS_SK_LEN; 88 89 /* 90 * First of all, we have to calculate default file-system geometry - 91 * log size, journal size, etc. 92 */ 93 if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT) 94 /* We can first multiply then divide and have no overflow */ 95 jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100; 96 else 97 jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT; 98 99 if (jnl_lebs < UBIFS_MIN_JNL_LEBS) 100 jnl_lebs = UBIFS_MIN_JNL_LEBS; 101 if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL) 102 jnl_lebs = DEFAULT_MAX_JNL / c->leb_size; 103 104 /* 105 * The log should be large enough to fit reference nodes for all bud 106 * LEBs. Because buds do not have to start from the beginning of LEBs 107 * (half of the LEB may contain committed data), the log should 108 * generally be larger, make it twice as large. 109 */ 110 tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1; 111 log_lebs = tmp / c->leb_size; 112 /* Plus one LEB reserved for commit */ 113 log_lebs += 1; 114 if (c->leb_cnt - min_leb_cnt > 8) { 115 /* And some extra space to allow writes while committing */ 116 log_lebs += 1; 117 min_leb_cnt += 1; 118 } 119 120 max_buds = jnl_lebs - log_lebs; 121 if (max_buds < UBIFS_MIN_BUD_LEBS) 122 max_buds = UBIFS_MIN_BUD_LEBS; 123 124 /* 125 * Orphan nodes are stored in a separate area. One node can store a lot 126 * of orphan inode numbers, but when new orphan comes we just add a new 127 * orphan node. At some point the nodes are consolidated into one 128 * orphan node. 129 */ 130 orph_lebs = UBIFS_MIN_ORPH_LEBS; 131 if (c->leb_cnt - min_leb_cnt > 1) 132 /* 133 * For debugging purposes it is better to have at least 2 134 * orphan LEBs, because the orphan subsystem would need to do 135 * consolidations and would be stressed more. 136 */ 137 orph_lebs += 1; 138 139 main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs; 140 main_lebs -= orph_lebs; 141 142 lpt_first = UBIFS_LOG_LNUM + log_lebs; 143 c->lsave_cnt = DEFAULT_LSAVE_CNT; 144 c->max_leb_cnt = c->leb_cnt; 145 err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs, 146 &big_lpt); 147 if (err) 148 return err; 149 150 dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first, 151 lpt_first + lpt_lebs - 1); 152 153 main_first = c->leb_cnt - main_lebs; 154 155 /* Create default superblock */ 156 tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); 157 sup = kzalloc(tmp, GFP_KERNEL); 158 if (!sup) 159 return -ENOMEM; 160 161 tmp64 = (long long)max_buds * c->leb_size; 162 if (big_lpt) 163 sup_flags |= UBIFS_FLG_BIGLPT; 164 165 sup->ch.node_type = UBIFS_SB_NODE; 166 sup->key_hash = UBIFS_KEY_HASH_R5; 167 sup->flags = cpu_to_le32(sup_flags); 168 sup->min_io_size = cpu_to_le32(c->min_io_size); 169 sup->leb_size = cpu_to_le32(c->leb_size); 170 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 171 sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt); 172 sup->max_bud_bytes = cpu_to_le64(tmp64); 173 sup->log_lebs = cpu_to_le32(log_lebs); 174 sup->lpt_lebs = cpu_to_le32(lpt_lebs); 175 sup->orph_lebs = cpu_to_le32(orph_lebs); 176 sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT); 177 sup->fanout = cpu_to_le32(DEFAULT_FANOUT); 178 sup->lsave_cnt = cpu_to_le32(c->lsave_cnt); 179 sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION); 180 sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN); 181 if (c->mount_opts.override_compr) 182 sup->default_compr = cpu_to_le16(c->mount_opts.compr_type); 183 else 184 sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO); 185 186 generate_random_uuid(sup->uuid); 187 188 main_bytes = (long long)main_lebs * c->leb_size; 189 tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100); 190 if (tmp64 > DEFAULT_MAX_RP_SIZE) 191 tmp64 = DEFAULT_MAX_RP_SIZE; 192 sup->rp_size = cpu_to_le64(tmp64); 193 sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION); 194 195 err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0); 196 kfree(sup); 197 if (err) 198 return err; 199 200 dbg_gen("default superblock created at LEB 0:0"); 201 202 /* Create default master node */ 203 mst = kzalloc(c->mst_node_alsz, GFP_KERNEL); 204 if (!mst) 205 return -ENOMEM; 206 207 mst->ch.node_type = UBIFS_MST_NODE; 208 mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM); 209 mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO); 210 mst->cmt_no = 0; 211 mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB); 212 mst->root_offs = 0; 213 tmp = ubifs_idx_node_sz(c, 1); 214 mst->root_len = cpu_to_le32(tmp); 215 mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB); 216 mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB); 217 mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size)); 218 mst->index_size = cpu_to_le64(ALIGN(tmp, 8)); 219 mst->lpt_lnum = cpu_to_le32(c->lpt_lnum); 220 mst->lpt_offs = cpu_to_le32(c->lpt_offs); 221 mst->nhead_lnum = cpu_to_le32(c->nhead_lnum); 222 mst->nhead_offs = cpu_to_le32(c->nhead_offs); 223 mst->ltab_lnum = cpu_to_le32(c->ltab_lnum); 224 mst->ltab_offs = cpu_to_le32(c->ltab_offs); 225 mst->lsave_lnum = cpu_to_le32(c->lsave_lnum); 226 mst->lsave_offs = cpu_to_le32(c->lsave_offs); 227 mst->lscan_lnum = cpu_to_le32(main_first); 228 mst->empty_lebs = cpu_to_le32(main_lebs - 2); 229 mst->idx_lebs = cpu_to_le32(1); 230 mst->leb_cnt = cpu_to_le32(c->leb_cnt); 231 232 /* Calculate lprops statistics */ 233 tmp64 = main_bytes; 234 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); 235 tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); 236 mst->total_free = cpu_to_le64(tmp64); 237 238 tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); 239 ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) - 240 UBIFS_INO_NODE_SZ; 241 tmp64 += ino_waste; 242 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8); 243 mst->total_dirty = cpu_to_le64(tmp64); 244 245 /* The indexing LEB does not contribute to dark space */ 246 tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm); 247 mst->total_dark = cpu_to_le64(tmp64); 248 249 mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ); 250 251 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0); 252 if (err) { 253 kfree(mst); 254 return err; 255 } 256 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, 257 0); 258 kfree(mst); 259 if (err) 260 return err; 261 262 dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM); 263 264 /* Create the root indexing node */ 265 tmp = ubifs_idx_node_sz(c, 1); 266 idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL); 267 if (!idx) 268 return -ENOMEM; 269 270 c->key_fmt = UBIFS_SIMPLE_KEY_FMT; 271 c->key_hash = key_r5_hash; 272 273 idx->ch.node_type = UBIFS_IDX_NODE; 274 idx->child_cnt = cpu_to_le16(1); 275 ino_key_init(c, &key, UBIFS_ROOT_INO); 276 br = ubifs_idx_branch(c, idx, 0); 277 key_write_idx(c, &key, &br->key); 278 br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB); 279 br->len = cpu_to_le32(UBIFS_INO_NODE_SZ); 280 err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0); 281 kfree(idx); 282 if (err) 283 return err; 284 285 dbg_gen("default root indexing node created LEB %d:0", 286 main_first + DEFAULT_IDX_LEB); 287 288 /* Create default root inode */ 289 tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); 290 ino = kzalloc(tmp, GFP_KERNEL); 291 if (!ino) 292 return -ENOMEM; 293 294 ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO); 295 ino->ch.node_type = UBIFS_INO_NODE; 296 ino->creat_sqnum = cpu_to_le64(++c->max_sqnum); 297 ino->nlink = cpu_to_le32(2); 298 tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec); 299 ino->atime_sec = tmp_le64; 300 ino->ctime_sec = tmp_le64; 301 ino->mtime_sec = tmp_le64; 302 ino->atime_nsec = 0; 303 ino->ctime_nsec = 0; 304 ino->mtime_nsec = 0; 305 ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO); 306 ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ); 307 308 /* Set compression enabled by default */ 309 ino->flags = cpu_to_le32(UBIFS_COMPR_FL); 310 311 err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ, 312 main_first + DEFAULT_DATA_LEB, 0); 313 kfree(ino); 314 if (err) 315 return err; 316 317 dbg_gen("root inode created at LEB %d:0", 318 main_first + DEFAULT_DATA_LEB); 319 320 /* 321 * The first node in the log has to be the commit start node. This is 322 * always the case during normal file-system operation. Write a fake 323 * commit start node to the log. 324 */ 325 tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size); 326 cs = kzalloc(tmp, GFP_KERNEL); 327 if (!cs) 328 return -ENOMEM; 329 330 cs->ch.node_type = UBIFS_CS_NODE; 331 err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0); 332 kfree(cs); 333 334 ubifs_msg("default file-system created"); 335 return 0; 336 } 337 #endif 338 339 /** 340 * validate_sb - validate superblock node. 341 * @c: UBIFS file-system description object 342 * @sup: superblock node 343 * 344 * This function validates superblock node @sup. Since most of data was read 345 * from the superblock and stored in @c, the function validates fields in @c 346 * instead. Returns zero in case of success and %-EINVAL in case of validation 347 * failure. 348 */ 349 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup) 350 { 351 long long max_bytes; 352 int err = 1, min_leb_cnt; 353 354 if (!c->key_hash) { 355 err = 2; 356 goto failed; 357 } 358 359 if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) { 360 err = 3; 361 goto failed; 362 } 363 364 if (le32_to_cpu(sup->min_io_size) != c->min_io_size) { 365 ubifs_err("min. I/O unit mismatch: %d in superblock, %d real", 366 le32_to_cpu(sup->min_io_size), c->min_io_size); 367 goto failed; 368 } 369 370 if (le32_to_cpu(sup->leb_size) != c->leb_size) { 371 ubifs_err("LEB size mismatch: %d in superblock, %d real", 372 le32_to_cpu(sup->leb_size), c->leb_size); 373 goto failed; 374 } 375 376 if (c->log_lebs < UBIFS_MIN_LOG_LEBS || 377 c->lpt_lebs < UBIFS_MIN_LPT_LEBS || 378 c->orph_lebs < UBIFS_MIN_ORPH_LEBS || 379 c->main_lebs < UBIFS_MIN_MAIN_LEBS) { 380 err = 4; 381 goto failed; 382 } 383 384 /* 385 * Calculate minimum allowed amount of main area LEBs. This is very 386 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we 387 * have just read from the superblock. 388 */ 389 min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs; 390 min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6; 391 392 if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) { 393 ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, %d minimum required", 394 c->leb_cnt, c->vi.size, min_leb_cnt); 395 goto failed; 396 } 397 398 if (c->max_leb_cnt < c->leb_cnt) { 399 ubifs_err("max. LEB count %d less than LEB count %d", 400 c->max_leb_cnt, c->leb_cnt); 401 goto failed; 402 } 403 404 if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) { 405 ubifs_err("too few main LEBs count %d, must be at least %d", 406 c->main_lebs, UBIFS_MIN_MAIN_LEBS); 407 goto failed; 408 } 409 410 max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS; 411 if (c->max_bud_bytes < max_bytes) { 412 ubifs_err("too small journal (%lld bytes), must be at least %lld bytes", 413 c->max_bud_bytes, max_bytes); 414 goto failed; 415 } 416 417 max_bytes = (long long)c->leb_size * c->main_lebs; 418 if (c->max_bud_bytes > max_bytes) { 419 ubifs_err("too large journal size (%lld bytes), only %lld bytes available in the main area", 420 c->max_bud_bytes, max_bytes); 421 goto failed; 422 } 423 424 if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 || 425 c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) { 426 err = 9; 427 goto failed; 428 } 429 430 if (c->fanout < UBIFS_MIN_FANOUT || 431 ubifs_idx_node_sz(c, c->fanout) > c->leb_size) { 432 err = 10; 433 goto failed; 434 } 435 436 if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT && 437 c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - 438 c->log_lebs - c->lpt_lebs - c->orph_lebs)) { 439 err = 11; 440 goto failed; 441 } 442 443 if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs + 444 c->orph_lebs + c->main_lebs != c->leb_cnt) { 445 err = 12; 446 goto failed; 447 } 448 449 if (c->default_compr < 0 || c->default_compr >= UBIFS_COMPR_TYPES_CNT) { 450 err = 13; 451 goto failed; 452 } 453 454 if (c->rp_size < 0 || max_bytes < c->rp_size) { 455 err = 14; 456 goto failed; 457 } 458 459 if (le32_to_cpu(sup->time_gran) > 1000000000 || 460 le32_to_cpu(sup->time_gran) < 1) { 461 err = 15; 462 goto failed; 463 } 464 465 return 0; 466 467 failed: 468 ubifs_err("bad superblock, error %d", err); 469 ubifs_dump_node(c, sup); 470 return -EINVAL; 471 } 472 473 /** 474 * ubifs_read_sb_node - read superblock node. 475 * @c: UBIFS file-system description object 476 * 477 * This function returns a pointer to the superblock node or a negative error 478 * code. Note, the user of this function is responsible of kfree()'ing the 479 * returned superblock buffer. 480 */ 481 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c) 482 { 483 struct ubifs_sb_node *sup; 484 int err; 485 486 sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS); 487 if (!sup) 488 return ERR_PTR(-ENOMEM); 489 490 err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ, 491 UBIFS_SB_LNUM, 0); 492 if (err) { 493 kfree(sup); 494 return ERR_PTR(err); 495 } 496 497 return sup; 498 } 499 500 /** 501 * ubifs_write_sb_node - write superblock node. 502 * @c: UBIFS file-system description object 503 * @sup: superblock node read with 'ubifs_read_sb_node()' 504 * 505 * This function returns %0 on success and a negative error code on failure. 506 */ 507 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup) 508 { 509 int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); 510 511 ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1); 512 return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len); 513 } 514 515 /** 516 * ubifs_read_superblock - read superblock. 517 * @c: UBIFS file-system description object 518 * 519 * This function finds, reads and checks the superblock. If an empty UBI volume 520 * is being mounted, this function creates default superblock. Returns zero in 521 * case of success, and a negative error code in case of failure. 522 */ 523 int ubifs_read_superblock(struct ubifs_info *c) 524 { 525 int err, sup_flags; 526 struct ubifs_sb_node *sup; 527 528 if (c->empty) { 529 #ifndef __UBOOT__ 530 err = create_default_filesystem(c); 531 if (err) 532 return err; 533 #else 534 printf("No UBIFS filesystem found!\n"); 535 return -1; 536 #endif 537 } 538 539 sup = ubifs_read_sb_node(c); 540 if (IS_ERR(sup)) 541 return PTR_ERR(sup); 542 543 c->fmt_version = le32_to_cpu(sup->fmt_version); 544 c->ro_compat_version = le32_to_cpu(sup->ro_compat_version); 545 546 /* 547 * The software supports all previous versions but not future versions, 548 * due to the unavailability of time-travelling equipment. 549 */ 550 if (c->fmt_version > UBIFS_FORMAT_VERSION) { 551 ubifs_assert(!c->ro_media || c->ro_mount); 552 if (!c->ro_mount || 553 c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) { 554 ubifs_err("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 555 c->fmt_version, c->ro_compat_version, 556 UBIFS_FORMAT_VERSION, 557 UBIFS_RO_COMPAT_VERSION); 558 if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) { 559 ubifs_msg("only R/O mounting is possible"); 560 err = -EROFS; 561 } else 562 err = -EINVAL; 563 goto out; 564 } 565 566 /* 567 * The FS is mounted R/O, and the media format is 568 * R/O-compatible with the UBIFS implementation, so we can 569 * mount. 570 */ 571 c->rw_incompat = 1; 572 } 573 574 if (c->fmt_version < 3) { 575 ubifs_err("on-flash format version %d is not supported", 576 c->fmt_version); 577 err = -EINVAL; 578 goto out; 579 } 580 581 switch (sup->key_hash) { 582 case UBIFS_KEY_HASH_R5: 583 c->key_hash = key_r5_hash; 584 c->key_hash_type = UBIFS_KEY_HASH_R5; 585 break; 586 587 case UBIFS_KEY_HASH_TEST: 588 c->key_hash = key_test_hash; 589 c->key_hash_type = UBIFS_KEY_HASH_TEST; 590 break; 591 }; 592 593 c->key_fmt = sup->key_fmt; 594 595 switch (c->key_fmt) { 596 case UBIFS_SIMPLE_KEY_FMT: 597 c->key_len = UBIFS_SK_LEN; 598 break; 599 default: 600 ubifs_err("unsupported key format"); 601 err = -EINVAL; 602 goto out; 603 } 604 605 c->leb_cnt = le32_to_cpu(sup->leb_cnt); 606 c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt); 607 c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes); 608 c->log_lebs = le32_to_cpu(sup->log_lebs); 609 c->lpt_lebs = le32_to_cpu(sup->lpt_lebs); 610 c->orph_lebs = le32_to_cpu(sup->orph_lebs); 611 c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT; 612 c->fanout = le32_to_cpu(sup->fanout); 613 c->lsave_cnt = le32_to_cpu(sup->lsave_cnt); 614 c->rp_size = le64_to_cpu(sup->rp_size); 615 #ifndef __UBOOT__ 616 c->rp_uid = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid)); 617 c->rp_gid = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid)); 618 #else 619 c->rp_uid.val = le32_to_cpu(sup->rp_uid); 620 c->rp_gid.val = le32_to_cpu(sup->rp_gid); 621 #endif 622 sup_flags = le32_to_cpu(sup->flags); 623 if (!c->mount_opts.override_compr) 624 c->default_compr = le16_to_cpu(sup->default_compr); 625 626 c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran); 627 memcpy(&c->uuid, &sup->uuid, 16); 628 c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT); 629 c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP); 630 631 /* Automatically increase file system size to the maximum size */ 632 c->old_leb_cnt = c->leb_cnt; 633 if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) { 634 c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size); 635 if (c->ro_mount) 636 dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs", 637 c->old_leb_cnt, c->leb_cnt); 638 #ifndef __UBOOT__ 639 else { 640 dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs", 641 c->old_leb_cnt, c->leb_cnt); 642 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 643 err = ubifs_write_sb_node(c, sup); 644 if (err) 645 goto out; 646 c->old_leb_cnt = c->leb_cnt; 647 } 648 #endif 649 } 650 651 c->log_bytes = (long long)c->log_lebs * c->leb_size; 652 c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1; 653 c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs; 654 c->lpt_last = c->lpt_first + c->lpt_lebs - 1; 655 c->orph_first = c->lpt_last + 1; 656 c->orph_last = c->orph_first + c->orph_lebs - 1; 657 c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS; 658 c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs; 659 c->main_first = c->leb_cnt - c->main_lebs; 660 661 err = validate_sb(c, sup); 662 out: 663 kfree(sup); 664 return err; 665 } 666 667 /** 668 * fixup_leb - fixup/unmap an LEB containing free space. 669 * @c: UBIFS file-system description object 670 * @lnum: the LEB number to fix up 671 * @len: number of used bytes in LEB (starting at offset 0) 672 * 673 * This function reads the contents of the given LEB number @lnum, then fixes 674 * it up, so that empty min. I/O units in the end of LEB are actually erased on 675 * flash (rather than being just all-0xff real data). If the LEB is completely 676 * empty, it is simply unmapped. 677 */ 678 static int fixup_leb(struct ubifs_info *c, int lnum, int len) 679 { 680 int err; 681 682 ubifs_assert(len >= 0); 683 ubifs_assert(len % c->min_io_size == 0); 684 ubifs_assert(len < c->leb_size); 685 686 if (len == 0) { 687 dbg_mnt("unmap empty LEB %d", lnum); 688 return ubifs_leb_unmap(c, lnum); 689 } 690 691 dbg_mnt("fixup LEB %d, data len %d", lnum, len); 692 err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1); 693 if (err) 694 return err; 695 696 return ubifs_leb_change(c, lnum, c->sbuf, len); 697 } 698 699 /** 700 * fixup_free_space - find & remap all LEBs containing free space. 701 * @c: UBIFS file-system description object 702 * 703 * This function walks through all LEBs in the filesystem and fiexes up those 704 * containing free/empty space. 705 */ 706 static int fixup_free_space(struct ubifs_info *c) 707 { 708 int lnum, err = 0; 709 struct ubifs_lprops *lprops; 710 711 ubifs_get_lprops(c); 712 713 /* Fixup LEBs in the master area */ 714 for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) { 715 err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz); 716 if (err) 717 goto out; 718 } 719 720 /* Unmap unused log LEBs */ 721 lnum = ubifs_next_log_lnum(c, c->lhead_lnum); 722 while (lnum != c->ltail_lnum) { 723 err = fixup_leb(c, lnum, 0); 724 if (err) 725 goto out; 726 lnum = ubifs_next_log_lnum(c, lnum); 727 } 728 729 /* 730 * Fixup the log head which contains the only a CS node at the 731 * beginning. 732 */ 733 err = fixup_leb(c, c->lhead_lnum, 734 ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size)); 735 if (err) 736 goto out; 737 738 /* Fixup LEBs in the LPT area */ 739 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { 740 int free = c->ltab[lnum - c->lpt_first].free; 741 742 if (free > 0) { 743 err = fixup_leb(c, lnum, c->leb_size - free); 744 if (err) 745 goto out; 746 } 747 } 748 749 /* Unmap LEBs in the orphans area */ 750 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 751 err = fixup_leb(c, lnum, 0); 752 if (err) 753 goto out; 754 } 755 756 /* Fixup LEBs in the main area */ 757 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 758 lprops = ubifs_lpt_lookup(c, lnum); 759 if (IS_ERR(lprops)) { 760 err = PTR_ERR(lprops); 761 goto out; 762 } 763 764 if (lprops->free > 0) { 765 err = fixup_leb(c, lnum, c->leb_size - lprops->free); 766 if (err) 767 goto out; 768 } 769 } 770 771 out: 772 ubifs_release_lprops(c); 773 return err; 774 } 775 776 /** 777 * ubifs_fixup_free_space - find & fix all LEBs with free space. 778 * @c: UBIFS file-system description object 779 * 780 * This function fixes up LEBs containing free space on first mount, if the 781 * appropriate flag was set when the FS was created. Each LEB with one or more 782 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure 783 * the free space is actually erased. E.g., this is necessary for some NAND 784 * chips, since the free space may have been programmed like real "0xff" data 785 * (generating a non-0xff ECC), causing future writes to the not-really-erased 786 * NAND pages to behave badly. After the space is fixed up, the superblock flag 787 * is cleared, so that this is skipped for all future mounts. 788 */ 789 int ubifs_fixup_free_space(struct ubifs_info *c) 790 { 791 int err; 792 struct ubifs_sb_node *sup; 793 794 ubifs_assert(c->space_fixup); 795 ubifs_assert(!c->ro_mount); 796 797 ubifs_msg("start fixing up free space"); 798 799 err = fixup_free_space(c); 800 if (err) 801 return err; 802 803 sup = ubifs_read_sb_node(c); 804 if (IS_ERR(sup)) 805 return PTR_ERR(sup); 806 807 /* Free-space fixup is no longer required */ 808 c->space_fixup = 0; 809 sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP); 810 811 err = ubifs_write_sb_node(c, sup); 812 kfree(sup); 813 if (err) 814 return err; 815 816 ubifs_msg("free space fixup complete"); 817 return err; 818 } 819