xref: /openbmc/u-boot/drivers/phy/marvell/comphy_a3700.c (revision 9ab403d0dd3c88370612c97f8c4cb88199302833)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2015-2016 Marvell International Ltd.
4  */
5 
6 #include <common.h>
7 #include <fdtdec.h>
8 #include <asm/io.h>
9 #include <asm/arch/cpu.h>
10 #include <asm/arch/soc.h>
11 
12 #include "comphy_a3700.h"
13 
14 DECLARE_GLOBAL_DATA_PTR;
15 
16 struct comphy_mux_data a3700_comphy_mux_data[] = {
17 /* Lane 0 */
18 	{
19 		4,
20 		{
21 			{ PHY_TYPE_UNCONNECTED,	0x0 },
22 			{ PHY_TYPE_SGMII1,	0x0 },
23 			{ PHY_TYPE_USB3_HOST0,	0x1 },
24 			{ PHY_TYPE_USB3_DEVICE,	0x1 }
25 		}
26 	},
27 /* Lane 1 */
28 	{
29 		3,
30 		{
31 			{ PHY_TYPE_UNCONNECTED,	0x0},
32 			{ PHY_TYPE_SGMII0,	0x0},
33 			{ PHY_TYPE_PEX0,	0x1}
34 		}
35 	},
36 /* Lane 2 */
37 	{
38 		4,
39 		{
40 			{ PHY_TYPE_UNCONNECTED,	0x0},
41 			{ PHY_TYPE_SATA0,	0x0},
42 			{ PHY_TYPE_USB3_HOST0,	0x1},
43 			{ PHY_TYPE_USB3_DEVICE,	0x1}
44 		}
45 	},
46 };
47 
48 struct sgmii_phy_init_data_fix {
49 	u16 addr;
50 	u16 value;
51 };
52 
53 /* Changes to 40M1G25 mode data required for running 40M3G125 init mode */
54 static struct sgmii_phy_init_data_fix sgmii_phy_init_fix[] = {
55 	{0x005, 0x07CC}, {0x015, 0x0000}, {0x01B, 0x0000}, {0x01D, 0x0000},
56 	{0x01E, 0x0000}, {0x01F, 0x0000}, {0x020, 0x0000}, {0x021, 0x0030},
57 	{0x026, 0x0888}, {0x04D, 0x0152}, {0x04F, 0xA020}, {0x050, 0x07CC},
58 	{0x053, 0xE9CA}, {0x055, 0xBD97}, {0x071, 0x3015}, {0x076, 0x03AA},
59 	{0x07C, 0x0FDF}, {0x0C2, 0x3030}, {0x0C3, 0x8000}, {0x0E2, 0x5550},
60 	{0x0E3, 0x12A4}, {0x0E4, 0x7D00}, {0x0E6, 0x0C83}, {0x101, 0xFCC0},
61 	{0x104, 0x0C10}
62 };
63 
64 /* 40M1G25 mode init data */
65 static u16 sgmii_phy_init[512] = {
66 	/* 0       1       2       3       4       5       6       7 */
67 	/*-----------------------------------------------------------*/
68 	/* 8       9       A       B       C       D       E       F */
69 	0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26,	/* 00 */
70 	0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52,	/* 08 */
71 	0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000,	/* 10 */
72 	0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF,	/* 18 */
73 	0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000,	/* 20 */
74 	0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,	/* 28 */
75 	0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
76 	0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100,	/* 38 */
77 	0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00,	/* 40 */
78 	0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A,	/* 48 */
79 	0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001,	/* 50 */
80 	0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF,	/* 58 */
81 	0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000,	/* 60 */
82 	0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002,	/* 68 */
83 	0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780,	/* 70 */
84 	0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000,	/* 78 */
85 	0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000,	/* 80 */
86 	0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210,	/* 88 */
87 	0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F,	/* 90 */
88 	0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651,	/* 98 */
89 	0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000,	/* A0 */
90 	0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* A8 */
91 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* B0 */
92 	0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000,	/* B8 */
93 	0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003,	/* C0 */
94 	0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000,	/* C8 */
95 	0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00,	/* D0 */
96 	0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000,	/* D8 */
97 	0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541,	/* E0 */
98 	0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200,	/* E8 */
99 	0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000,	/* F0 */
100 	0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000,	/* F8 */
101 	0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000,	/*100 */
102 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*108 */
103 	0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000,	/*110 */
104 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*118 */
105 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*120 */
106 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*128 */
107 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*130 */
108 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*138 */
109 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*140 */
110 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*148 */
111 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*150 */
112 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*158 */
113 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*160 */
114 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*168 */
115 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*170 */
116 	0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000,	/*178 */
117 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*180 */
118 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*188 */
119 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*190 */
120 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*198 */
121 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1A0 */
122 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1A8 */
123 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1B0 */
124 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1B8 */
125 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1C0 */
126 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1C8 */
127 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1D0 */
128 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1D8 */
129 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1E0 */
130 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1E8 */
131 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1F0 */
132 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000	/*1F8 */
133 };
134 
135 /*
136  * comphy_poll_reg
137  *
138  * return: 1 on success, 0 on timeout
139  */
140 static u32 comphy_poll_reg(void *addr, u32 val, u32 mask, u8 op_type)
141 {
142 	u32 rval = 0xDEAD, timeout;
143 
144 	for (timeout = PLL_LOCK_TIMEOUT; timeout > 0; timeout--) {
145 		if (op_type == POLL_16B_REG)
146 			rval = readw(addr);	/* 16 bit */
147 		else
148 			rval = readl(addr) ;	/* 32 bit */
149 
150 		if ((rval & mask) == val)
151 			return 1;
152 
153 		udelay(10000);
154 	}
155 
156 	debug("Time out waiting (%p = %#010x)\n", addr, rval);
157 	return 0;
158 }
159 
160 /*
161  * comphy_pcie_power_up
162  *
163  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
164  */
165 static int comphy_pcie_power_up(u32 speed, u32 invert)
166 {
167 	int ret;
168 
169 	debug_enter();
170 
171 	/*
172 	 * 1. Enable max PLL.
173 	 */
174 	reg_set16(phy_addr(PCIE, LANE_CFG1), bf_use_max_pll_rate, 0);
175 
176 	/*
177 	 * 2. Select 20 bit SERDES interface.
178 	 */
179 	reg_set16(phy_addr(PCIE, GLOB_CLK_SRC_LO), bf_cfg_sel_20b, 0);
180 
181 	/*
182 	 * 3. Force to use reg setting for PCIe mode
183 	 */
184 	reg_set16(phy_addr(PCIE, MISC_REG1), bf_sel_bits_pcie_force, 0);
185 
186 	/*
187 	 * 4. Change RX wait
188 	 */
189 	reg_set16(phy_addr(PCIE, PWR_MGM_TIM1), 0x10C, 0xFFFF);
190 
191 	/*
192 	 * 5. Enable idle sync
193 	 */
194 	reg_set16(phy_addr(PCIE, UNIT_CTRL), 0x60 | rb_idle_sync_en, 0xFFFF);
195 
196 	/*
197 	 * 6. Enable the output of 100M/125M/500M clock
198 	 */
199 	reg_set16(phy_addr(PCIE, MISC_REG0),
200 		  0xA00D | rb_clk500m_en | rb_clk100m_125m_en, 0xFFFF);
201 
202 	/*
203 	 * 7. Enable TX
204 	 */
205 	reg_set(PCIE_REF_CLK_ADDR, 0x1342, 0xFFFFFFFF);
206 
207 	/*
208 	 * 8. Check crystal jumper setting and program the Power and PLL
209 	 *    Control accordingly
210 	 */
211 	if (get_ref_clk() == 40) {
212 		/* 40 MHz */
213 		reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC63, 0xFFFF);
214 	} else {
215 		/* 25 MHz */
216 		reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC62, 0xFFFF);
217 	}
218 
219 	/*
220 	 * 9. Override Speed_PLL value and use MAC PLL
221 	 */
222 	reg_set16(phy_addr(PCIE, KVCO_CAL_CTRL), 0x0040 | rb_use_max_pll_rate,
223 		  0xFFFF);
224 
225 	/*
226 	 * 10. Check the Polarity invert bit
227 	 */
228 	if (invert & PHY_POLARITY_TXD_INVERT)
229 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_txd_inv, 0);
230 
231 	if (invert & PHY_POLARITY_RXD_INVERT)
232 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_rxd_inv, 0);
233 
234 	/*
235 	 * 11. Release SW reset
236 	 */
237 	reg_set16(phy_addr(PCIE, GLOB_PHY_CTRL0),
238 		  rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32,
239 		  bf_soft_rst | bf_mode_refdiv);
240 
241 	/* Wait for > 55 us to allow PCLK be enabled */
242 	udelay(PLL_SET_DELAY_US);
243 
244 	/* Assert PCLK enabled */
245 	ret = comphy_poll_reg(phy_addr(PCIE, LANE_STAT1),	/* address */
246 			      rb_txdclk_pclk_en,		/* value */
247 			      rb_txdclk_pclk_en,		/* mask */
248 			      POLL_16B_REG);			/* 16bit */
249 	if (!ret)
250 		printf("Failed to lock PCIe PLL\n");
251 
252 	debug_exit();
253 
254 	/* Return the status of the PLL */
255 	return ret;
256 }
257 
258 /*
259  * reg_set_indirect
260  *
261  * return: void
262  */
263 static void reg_set_indirect(u32 reg, u16 data, u16 mask)
264 {
265 	reg_set(rh_vsreg_addr, reg, 0xFFFFFFFF);
266 	reg_set(rh_vsreg_data, data, mask);
267 }
268 
269 /*
270  * comphy_sata_power_up
271  *
272  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
273  */
274 static int comphy_sata_power_up(void)
275 {
276 	int ret;
277 
278 	debug_enter();
279 
280 	/*
281 	 * 0. Swap SATA TX lines
282 	 */
283 	reg_set_indirect(vphy_sync_pattern_reg, bs_txd_inv, bs_txd_inv);
284 
285 	/*
286 	 * 1. Select 40-bit data width width
287 	 */
288 	reg_set_indirect(vphy_loopback_reg0, 0x800, bs_phyintf_40bit);
289 
290 	/*
291 	 * 2. Select reference clock and PHY mode (SATA)
292 	 */
293 	if (get_ref_clk() == 40) {
294 		/* 40 MHz */
295 		reg_set_indirect(vphy_power_reg0, 0x3, 0x00FF);
296 	} else {
297 		/* 20 MHz */
298 		reg_set_indirect(vphy_power_reg0, 0x1, 0x00FF);
299 	}
300 
301 	/*
302 	 * 3. Use maximum PLL rate (no power save)
303 	 */
304 	reg_set_indirect(vphy_calctl_reg, bs_max_pll_rate, bs_max_pll_rate);
305 
306 	/*
307 	 * 4. Reset reserved bit (??)
308 	 */
309 	reg_set_indirect(vphy_reserve_reg, 0, bs_phyctrl_frm_pin);
310 
311 	/*
312 	 * 5. Set vendor-specific configuration (??)
313 	 */
314 	reg_set(rh_vs0_a, vsata_ctrl_reg, 0xFFFFFFFF);
315 	reg_set(rh_vs0_d, bs_phy_pu_pll, bs_phy_pu_pll);
316 
317 	/* Wait for > 55 us to allow PLL be enabled */
318 	udelay(PLL_SET_DELAY_US);
319 
320 	/* Assert SATA PLL enabled */
321 	reg_set(rh_vsreg_addr, vphy_loopback_reg0, 0xFFFFFFFF);
322 	ret = comphy_poll_reg(rh_vsreg_data,	/* address */
323 			      bs_pll_ready_tx,	/* value */
324 			      bs_pll_ready_tx,	/* mask */
325 			      POLL_32B_REG);	/* 32bit */
326 	if (!ret)
327 		printf("Failed to lock SATA PLL\n");
328 
329 	debug_exit();
330 
331 	return ret;
332 }
333 
334 /*
335  * usb3_reg_set16
336  *
337  * return: void
338  */
339 static void usb3_reg_set16(u32 reg, u16 data, u16 mask, u32 lane)
340 {
341 	/*
342 	 * When Lane 2 PHY is for USB3, access the PHY registers
343 	 * through indirect Address and Data registers INDIR_ACC_PHY_ADDR
344 	 * (RD00E0178h [31:0]) and INDIR_ACC_PHY_DATA (RD00E017Ch [31:0])
345 	 * within the SATA Host Controller registers, Lane 2 base register
346 	 * offset is 0x200
347 	 */
348 
349 	if (lane == 2)
350 		reg_set_indirect(USB3PHY_LANE2_REG_BASE_OFFSET + reg, data,
351 				 mask);
352 	else
353 		reg_set16(phy_addr(USB3, reg), data, mask);
354 }
355 
356 /*
357  * comphy_usb3_power_up
358  *
359  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
360  */
361 static int comphy_usb3_power_up(u32 lane, u32 type, u32 speed, u32 invert)
362 {
363 	int ret;
364 
365 	debug_enter();
366 
367 	/*
368 	 * 1. Power up OTG module
369 	 */
370 	reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
371 
372 	/*
373 	 * 2. Set counter for 100us pulse in USB3 Host and Device
374 	 * restore default burst size limit (Reference Clock 31:24)
375 	 */
376 	reg_set(USB3_CTRPUL_VAL_REG, 0x8 << 24, rb_usb3_ctr_100ns);
377 
378 
379 	/* 0xd005c300 = 0x1001 */
380 	/* set PRD_TXDEEMPH (3.5db de-emph) */
381 	usb3_reg_set16(LANE_CFG0, 0x1, 0xFF, lane);
382 
383 	/*
384 	 * Set BIT0: enable transmitter in high impedance mode
385 	 * Set BIT[3:4]: delay 2 clock cycles for HiZ off latency
386 	 * Set BIT6: Tx detect Rx at HiZ mode
387 	 * Unset BIT15: set to 0 to set USB3 De-emphasize level to -3.5db
388 	 *              together with bit 0 of COMPHY_REG_LANE_CFG0_ADDR
389 	 *              register
390 	 */
391 	usb3_reg_set16(LANE_CFG1,
392 		       tx_det_rx_mode | gen2_tx_data_dly_deft
393 		       | tx_elec_idle_mode_en,
394 		       prd_txdeemph1_mask | tx_det_rx_mode
395 		       | gen2_tx_data_dly_mask | tx_elec_idle_mode_en, lane);
396 
397 	/* 0xd005c310 = 0x93: set Spread Spectrum Clock Enabled */
398 	usb3_reg_set16(LANE_CFG4, bf_spread_spectrum_clock_en, 0x80, lane);
399 
400 	/*
401 	 * set Override Margining Controls From the MAC: Use margining signals
402 	 * from lane configuration
403 	 */
404 	usb3_reg_set16(TEST_MODE_CTRL, rb_mode_margin_override, 0xFFFF, lane);
405 
406 	/* set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles */
407 	/* set Mode Clock Source = PCLK is generated from REFCLK */
408 	usb3_reg_set16(GLOB_CLK_SRC_LO, 0x0, 0xFF, lane);
409 
410 	/* set G2 Spread Spectrum Clock Amplitude at 4K */
411 	usb3_reg_set16(GEN2_SETTINGS_2, g2_tx_ssc_amp, 0xF000, lane);
412 
413 	/*
414 	 * unset G3 Spread Spectrum Clock Amplitude & set G3 TX and RX Register
415 	 * Master Current Select
416 	 */
417 	usb3_reg_set16(GEN2_SETTINGS_3, 0x0, 0xFFFF, lane);
418 
419 	/*
420 	 * 3. Check crystal jumper setting and program the Power and PLL
421 	 * Control accordingly
422 	 * 4. Change RX wait
423 	 */
424 	if (get_ref_clk() == 40) {
425 		/* 40 MHz */
426 		usb3_reg_set16(PWR_PLL_CTRL, 0xFCA3, 0xFFFF, lane);
427 		usb3_reg_set16(PWR_MGM_TIM1, 0x10C, 0xFFFF, lane);
428 	} else {
429 		/* 25 MHz */
430 		usb3_reg_set16(PWR_PLL_CTRL, 0xFCA2, 0xFFFF, lane);
431 		usb3_reg_set16(PWR_MGM_TIM1, 0x107, 0xFFFF, lane);
432 	}
433 
434 	/*
435 	 * 5. Enable idle sync
436 	 */
437 	usb3_reg_set16(UNIT_CTRL, 0x60 | rb_idle_sync_en, 0xFFFF, lane);
438 
439 	/*
440 	 * 6. Enable the output of 500M clock
441 	 */
442 	usb3_reg_set16(MISC_REG0, 0xA00D | rb_clk500m_en, 0xFFFF, lane);
443 
444 	/*
445 	 * 7. Set 20-bit data width
446 	 */
447 	usb3_reg_set16(DIG_LB_EN, 0x0400, 0xFFFF, lane);
448 
449 	/*
450 	 * 8. Override Speed_PLL value and use MAC PLL
451 	 */
452 	usb3_reg_set16(KVCO_CAL_CTRL, 0x0040 | rb_use_max_pll_rate, 0xFFFF,
453 		       lane);
454 
455 	/*
456 	 * 9. Check the Polarity invert bit
457 	 */
458 	if (invert & PHY_POLARITY_TXD_INVERT)
459 		usb3_reg_set16(SYNC_PATTERN, phy_txd_inv, 0, lane);
460 
461 	if (invert & PHY_POLARITY_RXD_INVERT)
462 		usb3_reg_set16(SYNC_PATTERN, phy_rxd_inv, 0, lane);
463 
464 	/*
465 	 * 10. Set max speed generation to USB3.0 5Gbps
466 	 */
467 	usb3_reg_set16(SYNC_MASK_GEN, 0x0400, 0x0C00, lane);
468 
469 	/*
470 	 * 11. Set capacitor value for FFE gain peaking to 0xF
471 	 */
472 	usb3_reg_set16(GEN3_SETTINGS_3, 0xF, 0xF, lane);
473 
474 	/*
475 	 * 12. Release SW reset
476 	 */
477 	usb3_reg_set16(GLOB_PHY_CTRL0,
478 		       rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32
479 		       | 0x20, 0xFFFF, lane);
480 
481 	/* Wait for > 55 us to allow PCLK be enabled */
482 	udelay(PLL_SET_DELAY_US);
483 
484 	/* Assert PCLK enabled */
485 	if (lane == 2) {
486 		reg_set(rh_vsreg_addr,
487 			LANE_STAT1 + USB3PHY_LANE2_REG_BASE_OFFSET,
488 			0xFFFFFFFF);
489 		ret = comphy_poll_reg(rh_vsreg_data,		/* address */
490 				      rb_txdclk_pclk_en,	/* value */
491 				      rb_txdclk_pclk_en,	/* mask */
492 				      POLL_32B_REG);		/* 32bit */
493 	} else {
494 		ret = comphy_poll_reg(phy_addr(USB3, LANE_STAT1), /* address */
495 				      rb_txdclk_pclk_en,	  /* value */
496 				      rb_txdclk_pclk_en,	  /* mask */
497 				      POLL_16B_REG);		  /* 16bit */
498 	}
499 	if (!ret)
500 		printf("Failed to lock USB3 PLL\n");
501 
502 	/*
503 	 * Set Soft ID for Host mode (Device mode works with Hard ID
504 	 * detection)
505 	 */
506 	if (type == PHY_TYPE_USB3_HOST0) {
507 		/*
508 		 * set   BIT0: set ID_MODE of Host/Device = "Soft ID" (BIT1)
509 		 * clear BIT1: set SOFT_ID = Host
510 		 * set   BIT4: set INT_MODE = ID. Interrupt Mode: enable
511 		 *             interrupt by ID instead of using both interrupts
512 		 *             of HOST and Device ORed simultaneously
513 		 *             INT_MODE=ID in order to avoid unexpected
514 		 *             behaviour or both interrupts together
515 		 */
516 		reg_set(USB32_CTRL_BASE,
517 			usb32_ctrl_id_mode | usb32_ctrl_int_mode,
518 			usb32_ctrl_id_mode | usb32_ctrl_soft_id |
519 			usb32_ctrl_int_mode);
520 	}
521 
522 	debug_exit();
523 
524 	return ret;
525 }
526 
527 /*
528  * comphy_usb2_power_up
529  *
530  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
531  */
532 static int comphy_usb2_power_up(u8 usb32)
533 {
534 	int ret;
535 
536 	debug_enter();
537 
538 	if (usb32 != 0 && usb32 != 1) {
539 		printf("invalid usb32 value: (%d), should be either 0 or 1\n",
540 		       usb32);
541 		debug_exit();
542 		return 0;
543 	}
544 
545 	/*
546 	 * 0. Setup PLL. 40MHz clock uses defaults.
547 	 *    See "PLL Settings for Typical REFCLK" table
548 	 */
549 	if (get_ref_clk() == 25) {
550 		reg_set(USB2_PHY_BASE(usb32), 5 | (96 << 16),
551 			0x3F | (0xFF << 16) | (0x3 << 28));
552 	}
553 
554 	/*
555 	 * 1. PHY pull up and disable USB2 suspend
556 	 */
557 	reg_set(USB2_PHY_CTRL_ADDR(usb32),
558 		RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU(usb32), 0);
559 
560 	if (usb32 != 0) {
561 		/*
562 		 * 2. Power up OTG module
563 		 */
564 		reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
565 
566 		/*
567 		 * 3. Configure PHY charger detection
568 		 */
569 		reg_set(USB2_PHY_CHRGR_DET_ADDR, 0,
570 			rb_cdp_en | rb_dcp_en | rb_pd_en | rb_cdp_dm_auto |
571 			rb_enswitch_dp | rb_enswitch_dm | rb_pu_chrg_dtc);
572 	}
573 
574 	/* Assert PLL calibration done */
575 	ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
576 			      rb_usb2phy_pllcal_done,	/* value */
577 			      rb_usb2phy_pllcal_done,	/* mask */
578 			      POLL_32B_REG);		/* 32bit */
579 	if (!ret)
580 		printf("Failed to end USB2 PLL calibration\n");
581 
582 	/* Assert impedance calibration done */
583 	ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
584 			      rb_usb2phy_impcal_done,	/* value */
585 			      rb_usb2phy_impcal_done,	/* mask */
586 			      POLL_32B_REG);		/* 32bit */
587 	if (!ret)
588 		printf("Failed to end USB2 impedance calibration\n");
589 
590 	/* Assert squetch calibration done */
591 	ret = comphy_poll_reg(USB2_PHY_RX_CHAN_CTRL1_ADDR(usb32),
592 			      rb_usb2phy_sqcal_done,	/* value */
593 			      rb_usb2phy_sqcal_done,	/* mask */
594 			      POLL_32B_REG);		/* 32bit */
595 	if (!ret)
596 		printf("Failed to end USB2 unknown calibration\n");
597 
598 	/* Assert PLL is ready */
599 	ret = comphy_poll_reg(USB2_PHY_PLL_CTRL0_ADDR(usb32),
600 			      rb_usb2phy_pll_ready,		/* value */
601 			      rb_usb2phy_pll_ready,		/* mask */
602 			      POLL_32B_REG);		/* 32bit */
603 
604 	if (!ret)
605 		printf("Failed to lock USB2 PLL\n");
606 
607 	debug_exit();
608 
609 	return ret;
610 }
611 
612 /*
613  * comphy_emmc_power_up
614  *
615  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
616  */
617 static int comphy_emmc_power_up(void)
618 {
619 	debug_enter();
620 
621 	/*
622 	 * 1. Bus power ON, Bus voltage 1.8V
623 	 */
624 	reg_set(SDIO_HOST_CTRL1_ADDR, 0xB00, 0xF00);
625 
626 	/*
627 	 * 2. Set FIFO parameters
628 	 */
629 	reg_set(SDIO_SDHC_FIFO_ADDR, 0x315, 0xFFFFFFFF);
630 
631 	/*
632 	 * 3. Set Capabilities 1_2
633 	 */
634 	reg_set(SDIO_CAP_12_ADDR, 0x25FAC8B2, 0xFFFFFFFF);
635 
636 	/*
637 	 * 4. Set Endian
638 	 */
639 	reg_set(SDIO_ENDIAN_ADDR, 0x00c00000, 0);
640 
641 	/*
642 	 * 4. Init PHY
643 	 */
644 	reg_set(SDIO_PHY_TIMING_ADDR, 0x80000000, 0x80000000);
645 	reg_set(SDIO_PHY_PAD_CTRL0_ADDR, 0x50000000, 0xF0000000);
646 
647 	/*
648 	 * 5. DLL reset
649 	 */
650 	reg_set(SDIO_DLL_RST_ADDR, 0xFFFEFFFF, 0);
651 	reg_set(SDIO_DLL_RST_ADDR, 0x00010000, 0);
652 
653 	debug_exit();
654 
655 	return 1;
656 }
657 
658 /*
659  * comphy_sgmii_power_up
660  *
661  * return:
662  */
663 static void comphy_sgmii_phy_init(u32 lane, u32 speed)
664 {
665 	const int fix_arr_sz = ARRAY_SIZE(sgmii_phy_init_fix);
666 	int addr, fix_idx;
667 	u16 val;
668 
669 	fix_idx = 0;
670 	for (addr = 0; addr < 512; addr++) {
671 		/*
672 		 * All PHY register values are defined in full for 3.125Gbps
673 		 * SERDES speed. The values required for 1.25 Gbps are almost
674 		 * the same and only few registers should be "fixed" in
675 		 * comparison to 3.125 Gbps values. These register values are
676 		 * stored in "sgmii_phy_init_fix" array.
677 		 */
678 		if ((speed != PHY_SPEED_1_25G) &&
679 		    (sgmii_phy_init_fix[fix_idx].addr == addr)) {
680 			/* Use new value */
681 			val = sgmii_phy_init_fix[fix_idx].value;
682 			if (fix_idx < fix_arr_sz)
683 				fix_idx++;
684 		} else {
685 			val = sgmii_phy_init[addr];
686 		}
687 
688 		reg_set16(sgmiiphy_addr(lane, addr), val, 0xFFFF);
689 	}
690 }
691 
692 /*
693  * comphy_sgmii_power_up
694  *
695  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
696  */
697 static int comphy_sgmii_power_up(u32 lane, u32 speed, u32 invert)
698 {
699 	int ret;
700 	u32 saved_selector;
701 
702 	debug_enter();
703 
704 	/*
705 	 * 1. Configure PHY to SATA/SAS mode by setting pin PIN_PIPE_SEL=0
706 	 */
707 	saved_selector = readl(COMPHY_SEL_ADDR);
708 	reg_set(COMPHY_SEL_ADDR, 0, 0xFFFFFFFF);
709 
710 	/*
711 	 * 2. Reset PHY by setting PHY input port PIN_RESET=1.
712 	 * 3. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep
713 	 *    PHY TXP/TXN output to idle state during PHY initialization
714 	 * 4. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0.
715 	 */
716 	reg_set(COMPHY_PHY_CFG1_ADDR(lane),
717 		rb_pin_reset_comphy | rb_pin_tx_idle | rb_pin_pu_iveref,
718 		rb_pin_reset_core | rb_pin_pu_pll |
719 		rb_pin_pu_rx | rb_pin_pu_tx);
720 
721 	/*
722 	 * 5. Release reset to the PHY by setting PIN_RESET=0.
723 	 */
724 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0, rb_pin_reset_comphy);
725 
726 	/*
727 	 * 7. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide
728 	 *    COMPHY bit rate
729 	 */
730 	if (speed == PHY_SPEED_3_125G) { /* 3.125 GHz */
731 		reg_set(COMPHY_PHY_CFG1_ADDR(lane),
732 			(0x8 << rf_gen_rx_sel_shift) |
733 			(0x8 << rf_gen_tx_sel_shift),
734 			rf_gen_rx_select | rf_gen_tx_select);
735 
736 	} else if (speed == PHY_SPEED_1_25G) { /* 1.25 GHz */
737 		reg_set(COMPHY_PHY_CFG1_ADDR(lane),
738 			(0x6 << rf_gen_rx_sel_shift) |
739 			(0x6 << rf_gen_tx_sel_shift),
740 			rf_gen_rx_select | rf_gen_tx_select);
741 	} else {
742 		printf("Unsupported COMPHY speed!\n");
743 		return 0;
744 	}
745 
746 	/*
747 	 * 8. Wait 1mS for bandgap and reference clocks to stabilize;
748 	 *    then start SW programming.
749 	 */
750 	mdelay(10);
751 
752 	/* 9. Program COMPHY register PHY_MODE */
753 	reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
754 		  PHY_MODE_SGMII << rf_phy_mode_shift, rf_phy_mode_mask);
755 
756 	/*
757 	 * 10. Set COMPHY register REFCLK_SEL to select the correct REFCLK
758 	 *     source
759 	 */
760 	reg_set16(sgmiiphy_addr(lane, MISC_REG0), 0, rb_ref_clk_sel);
761 
762 	/*
763 	 * 11. Set correct reference clock frequency in COMPHY register
764 	 *     REF_FREF_SEL.
765 	 */
766 	if (get_ref_clk() == 40) {
767 		reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
768 			  0x4 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
769 	} else {
770 		/* 25MHz */
771 		reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
772 			  0x1 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
773 	}
774 
775 	/* 12. Program COMPHY register PHY_GEN_MAX[1:0] */
776 	/*
777 	 * This step is mentioned in the flow received from verification team.
778 	 * However the PHY_GEN_MAX value is only meaningful for other
779 	 * interfaces (not SGMII). For instance, it selects SATA speed
780 	 * 1.5/3/6 Gbps or PCIe speed  2.5/5 Gbps
781 	 */
782 
783 	/*
784 	 * 13. Program COMPHY register SEL_BITS to set correct parallel data
785 	 *     bus width
786 	 */
787 	/* 10bit */
788 	reg_set16(sgmiiphy_addr(lane, DIG_LB_EN), 0, rf_data_width_mask);
789 
790 	/*
791 	 * 14. As long as DFE function needs to be enabled in any mode,
792 	 *     COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F
793 	 *     for real chip during COMPHY power on.
794 	 */
795 	/*
796 	 * The step 14 exists (and empty) in the original initialization flow
797 	 * obtained from the verification team. According to the functional
798 	 * specification DFE_UPDATE_EN already has the default value 0x3F
799 	 */
800 
801 	/*
802 	 * 15. Program COMPHY GEN registers.
803 	 *     These registers should be programmed based on the lab testing
804 	 *     result to achieve optimal performance. Please contact the CEA
805 	 *     group to get the related GEN table during real chip bring-up.
806 	 *     We only requred to run though the entire registers programming
807 	 *     flow defined by "comphy_sgmii_phy_init" when the REF clock is
808 	 *     40 MHz. For REF clock 25 MHz the default values stored in PHY
809 	 *     registers are OK.
810 	 */
811 	debug("Running C-DPI phy init %s mode\n",
812 	      speed == PHY_SPEED_3_125G ? "2G5" : "1G");
813 	if (get_ref_clk() == 40)
814 		comphy_sgmii_phy_init(lane, speed);
815 
816 	/*
817 	 * 16. [Simulation Only] should not be used for real chip.
818 	 *     By pass power up calibration by programming EXT_FORCE_CAL_DONE
819 	 *     (R02h[9]) to 1 to shorten COMPHY simulation time.
820 	 */
821 	/*
822 	 * 17. [Simulation Only: should not be used for real chip]
823 	 *     Program COMPHY register FAST_DFE_TIMER_EN=1 to shorten RX
824 	 *     training simulation time.
825 	 */
826 
827 	/*
828 	 * 18. Check the PHY Polarity invert bit
829 	 */
830 	if (invert & PHY_POLARITY_TXD_INVERT)
831 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_txd_inv, 0);
832 
833 	if (invert & PHY_POLARITY_RXD_INVERT)
834 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_rxd_inv, 0);
835 
836 	/*
837 	 * 19. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1
838 	 *     to start PHY power up sequence. All the PHY register
839 	 *     programming should be done before PIN_PU_PLL=1. There should be
840 	 *     no register programming for normal PHY operation from this point.
841 	 */
842 	reg_set(COMPHY_PHY_CFG1_ADDR(lane),
843 		rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx,
844 		rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx);
845 
846 	/*
847 	 * 20. Wait for PHY power up sequence to finish by checking output ports
848 	 *     PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1.
849 	 */
850 	ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane),	/* address */
851 			      rb_pll_ready_tx | rb_pll_ready_rx, /* value */
852 			      rb_pll_ready_tx | rb_pll_ready_rx, /* mask */
853 			      POLL_32B_REG);			/* 32bit */
854 	if (!ret)
855 		printf("Failed to lock PLL for SGMII PHY %d\n", lane);
856 
857 	/*
858 	 * 21. Set COMPHY input port PIN_TX_IDLE=0
859 	 */
860 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0x0, rb_pin_tx_idle);
861 
862 	/*
863 	 * 22. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1.
864 	 *     to start RX initialization. PIN_RX_INIT_DONE will be cleared to
865 	 *     0 by the PHY. After RX initialization is done, PIN_RX_INIT_DONE
866 	 *     will be set to 1 by COMPHY. Set PIN_RX_INIT=0 after
867 	 *     PIN_RX_INIT_DONE= 1.
868 	 *     Please refer to RX initialization part for details.
869 	 */
870 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), rb_phy_rx_init, 0x0);
871 
872 	ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */
873 			      rb_rx_init_done,			/* value */
874 			      rb_rx_init_done,			/* mask */
875 			      POLL_32B_REG);			/* 32bit */
876 	if (!ret)
877 		printf("Failed to init RX of SGMII PHY %d\n", lane);
878 
879 	/*
880 	 * Restore saved selector.
881 	 */
882 	reg_set(COMPHY_SEL_ADDR, saved_selector, 0xFFFFFFFF);
883 
884 	debug_exit();
885 
886 	return ret;
887 }
888 
889 void comphy_dedicated_phys_init(void)
890 {
891 	int node, usb32, ret = 1;
892 	const void *blob = gd->fdt_blob;
893 
894 	debug_enter();
895 
896 	for (usb32 = 0; usb32 <= 1; usb32++) {
897 		/*
898 		 * There are 2 UTMI PHYs in this SOC.
899 		 * One is independendent and one is paired with USB3 port (OTG)
900 		 */
901 		if (usb32 == 0) {
902 			node = fdt_node_offset_by_compatible(
903 				blob, -1, "marvell,armada3700-ehci");
904 		} else {
905 			node = fdt_node_offset_by_compatible(
906 				blob, -1, "marvell,armada3700-xhci");
907 		}
908 
909 		if (node > 0) {
910 			if (fdtdec_get_is_enabled(blob, node)) {
911 				ret = comphy_usb2_power_up(usb32);
912 				if (!ret)
913 					printf("Failed to initialize UTMI PHY\n");
914 				else
915 					debug("UTMI PHY init succeed\n");
916 			} else {
917 				debug("USB%d node is disabled\n",
918 				      usb32 == 0 ? 2 : 3);
919 			}
920 		} else {
921 			debug("No USB%d node in DT\n", usb32 == 0 ? 2 : 3);
922 		}
923 	}
924 
925 	node = fdt_node_offset_by_compatible(blob, -1,
926 					     "marvell,armada-3700-ahci");
927 	if (node > 0) {
928 		if (fdtdec_get_is_enabled(blob, node)) {
929 			ret = comphy_sata_power_up();
930 			if (!ret)
931 				printf("Failed to initialize SATA PHY\n");
932 			else
933 				debug("SATA PHY init succeed\n");
934 		} else {
935 			debug("SATA node is disabled\n");
936 		}
937 	}  else {
938 		debug("No SATA node in DT\n");
939 	}
940 
941 	node = fdt_node_offset_by_compatible(blob, -1,
942 					     "marvell,armada-8k-sdhci");
943 	if (node <= 0) {
944 		node = fdt_node_offset_by_compatible(
945 			blob, -1, "marvell,armada-3700-sdhci");
946 	}
947 
948 	if (node > 0) {
949 		if (fdtdec_get_is_enabled(blob, node)) {
950 			ret = comphy_emmc_power_up();
951 			if (!ret)
952 				printf("Failed to initialize SDIO/eMMC PHY\n");
953 			else
954 				debug("SDIO/eMMC PHY init succeed\n");
955 		} else {
956 			debug("SDIO/eMMC node is disabled\n");
957 		}
958 	}  else {
959 		debug("No SDIO/eMMC node in DT\n");
960 	}
961 
962 	debug_exit();
963 }
964 
965 int comphy_a3700_init(struct chip_serdes_phy_config *chip_cfg,
966 		      struct comphy_map *serdes_map)
967 {
968 	struct comphy_map *comphy_map;
969 	u32 comphy_max_count = chip_cfg->comphy_lanes_count;
970 	u32 lane, ret = 0;
971 
972 	debug_enter();
973 
974 	/* Initialize PHY mux */
975 	chip_cfg->mux_data = a3700_comphy_mux_data;
976 	comphy_mux_init(chip_cfg, serdes_map, COMPHY_SEL_ADDR);
977 
978 	for (lane = 0, comphy_map = serdes_map; lane < comphy_max_count;
979 	     lane++, comphy_map++) {
980 		debug("Initialize serdes number %d\n", lane);
981 		debug("Serdes type = 0x%x invert=%d\n",
982 		      comphy_map->type, comphy_map->invert);
983 
984 		switch (comphy_map->type) {
985 		case PHY_TYPE_UNCONNECTED:
986 			continue;
987 			break;
988 
989 		case PHY_TYPE_PEX0:
990 			ret = comphy_pcie_power_up(comphy_map->speed,
991 						   comphy_map->invert);
992 			break;
993 
994 		case PHY_TYPE_USB3_HOST0:
995 		case PHY_TYPE_USB3_DEVICE:
996 			ret = comphy_usb3_power_up(lane,
997 						   comphy_map->type,
998 						   comphy_map->speed,
999 						   comphy_map->invert);
1000 			break;
1001 
1002 		case PHY_TYPE_SGMII0:
1003 		case PHY_TYPE_SGMII1:
1004 			ret = comphy_sgmii_power_up(lane, comphy_map->speed,
1005 						    comphy_map->invert);
1006 			break;
1007 
1008 		default:
1009 			debug("Unknown SerDes type, skip initialize SerDes %d\n",
1010 			      lane);
1011 			ret = 1;
1012 			break;
1013 		}
1014 		if (!ret)
1015 			printf("PLL is not locked - Failed to initialize lane %d\n",
1016 			       lane);
1017 	}
1018 
1019 	debug_exit();
1020 	return ret;
1021 }
1022