1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with 4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c 5 * 6 * Copyright (C) 2005, Intec Automation Inc. 7 * Copyright (C) 2014, Freescale Semiconductor, Inc. 8 * 9 * Synced from Linux v4.19 10 */ 11 12 #include <common.h> 13 #include <linux/err.h> 14 #include <linux/errno.h> 15 #include <linux/log2.h> 16 #include <linux/math64.h> 17 #include <linux/sizes.h> 18 19 #include <linux/mtd/mtd.h> 20 #include <linux/mtd/spi-nor.h> 21 #include <spi-mem.h> 22 #include <spi.h> 23 24 #include "sf_internal.h" 25 26 /* Define max times to check status register before we give up. */ 27 28 /* 29 * For everything but full-chip erase; probably could be much smaller, but kept 30 * around for safety for now 31 */ 32 33 #define HZ CONFIG_SYS_HZ 34 35 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) 36 37 static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op 38 *op, void *buf) 39 { 40 if (op->data.dir == SPI_MEM_DATA_IN) 41 op->data.buf.in = buf; 42 else 43 op->data.buf.out = buf; 44 return spi_mem_exec_op(nor->spi, op); 45 } 46 47 static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len) 48 { 49 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1), 50 SPI_MEM_OP_NO_ADDR, 51 SPI_MEM_OP_NO_DUMMY, 52 SPI_MEM_OP_DATA_IN(len, NULL, 1)); 53 int ret; 54 55 ret = spi_nor_read_write_reg(nor, &op, val); 56 if (ret < 0) 57 dev_dbg(&flash->spimem->spi->dev, "error %d reading %x\n", ret, 58 code); 59 60 return ret; 61 } 62 63 static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) 64 { 65 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1), 66 SPI_MEM_OP_NO_ADDR, 67 SPI_MEM_OP_NO_DUMMY, 68 SPI_MEM_OP_DATA_OUT(len, NULL, 1)); 69 70 return spi_nor_read_write_reg(nor, &op, buf); 71 } 72 73 static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, 74 u_char *buf) 75 { 76 struct spi_mem_op op = 77 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1), 78 SPI_MEM_OP_ADDR(nor->addr_width, from, 1), 79 SPI_MEM_OP_DUMMY(nor->read_dummy, 1), 80 SPI_MEM_OP_DATA_IN(len, buf, 1)); 81 size_t remaining = len; 82 int ret; 83 84 /* get transfer protocols. */ 85 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto); 86 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto); 87 op.dummy.buswidth = op.addr.buswidth; 88 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto); 89 90 /* convert the dummy cycles to the number of bytes */ 91 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8; 92 93 while (remaining) { 94 op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX; 95 ret = spi_mem_adjust_op_size(nor->spi, &op); 96 if (ret) 97 return ret; 98 99 ret = spi_mem_exec_op(nor->spi, &op); 100 if (ret) 101 return ret; 102 103 op.addr.val += op.data.nbytes; 104 remaining -= op.data.nbytes; 105 op.data.buf.in += op.data.nbytes; 106 } 107 108 return len; 109 } 110 111 static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, 112 const u_char *buf) 113 { 114 struct spi_mem_op op = 115 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1), 116 SPI_MEM_OP_ADDR(nor->addr_width, to, 1), 117 SPI_MEM_OP_NO_DUMMY, 118 SPI_MEM_OP_DATA_OUT(len, buf, 1)); 119 size_t remaining = len; 120 int ret; 121 122 /* get transfer protocols. */ 123 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto); 124 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto); 125 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto); 126 127 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) 128 op.addr.nbytes = 0; 129 130 while (remaining) { 131 op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX; 132 ret = spi_mem_adjust_op_size(nor->spi, &op); 133 if (ret) 134 return ret; 135 136 ret = spi_mem_exec_op(nor->spi, &op); 137 if (ret) 138 return ret; 139 140 op.addr.val += op.data.nbytes; 141 remaining -= op.data.nbytes; 142 op.data.buf.out += op.data.nbytes; 143 } 144 145 return len; 146 } 147 148 /* 149 * Read the status register, returning its value in the location 150 * Return the status register value. 151 * Returns negative if error occurred. 152 */ 153 static int read_sr(struct spi_nor *nor) 154 { 155 int ret; 156 u8 val; 157 158 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); 159 if (ret < 0) { 160 pr_debug("error %d reading SR\n", (int)ret); 161 return ret; 162 } 163 164 return val; 165 } 166 167 /* 168 * Read the flag status register, returning its value in the location 169 * Return the status register value. 170 * Returns negative if error occurred. 171 */ 172 static int read_fsr(struct spi_nor *nor) 173 { 174 int ret; 175 u8 val; 176 177 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1); 178 if (ret < 0) { 179 pr_debug("error %d reading FSR\n", ret); 180 return ret; 181 } 182 183 return val; 184 } 185 186 /* 187 * Read configuration register, returning its value in the 188 * location. Return the configuration register value. 189 * Returns negative if error occurred. 190 */ 191 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) 192 static int read_cr(struct spi_nor *nor) 193 { 194 int ret; 195 u8 val; 196 197 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); 198 if (ret < 0) { 199 dev_dbg(nor->dev, "error %d reading CR\n", ret); 200 return ret; 201 } 202 203 return val; 204 } 205 #endif 206 207 /* 208 * Write status register 1 byte 209 * Returns negative if error occurred. 210 */ 211 static int write_sr(struct spi_nor *nor, u8 val) 212 { 213 nor->cmd_buf[0] = val; 214 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1); 215 } 216 217 /* 218 * Set write enable latch with Write Enable command. 219 * Returns negative if error occurred. 220 */ 221 static int write_enable(struct spi_nor *nor) 222 { 223 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0); 224 } 225 226 /* 227 * Send write disable instruction to the chip. 228 */ 229 static int write_disable(struct spi_nor *nor) 230 { 231 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0); 232 } 233 234 static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) 235 { 236 return mtd->priv; 237 } 238 239 #ifndef CONFIG_SPI_FLASH_BAR 240 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) 241 { 242 size_t i; 243 244 for (i = 0; i < size; i++) 245 if (table[i][0] == opcode) 246 return table[i][1]; 247 248 /* No conversion found, keep input op code. */ 249 return opcode; 250 } 251 252 static u8 spi_nor_convert_3to4_read(u8 opcode) 253 { 254 static const u8 spi_nor_3to4_read[][2] = { 255 { SPINOR_OP_READ, SPINOR_OP_READ_4B }, 256 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, 257 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, 258 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, 259 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, 260 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, 261 262 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, 263 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, 264 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, 265 }; 266 267 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, 268 ARRAY_SIZE(spi_nor_3to4_read)); 269 } 270 271 static u8 spi_nor_convert_3to4_program(u8 opcode) 272 { 273 static const u8 spi_nor_3to4_program[][2] = { 274 { SPINOR_OP_PP, SPINOR_OP_PP_4B }, 275 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, 276 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, 277 }; 278 279 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, 280 ARRAY_SIZE(spi_nor_3to4_program)); 281 } 282 283 static u8 spi_nor_convert_3to4_erase(u8 opcode) 284 { 285 static const u8 spi_nor_3to4_erase[][2] = { 286 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, 287 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, 288 { SPINOR_OP_SE, SPINOR_OP_SE_4B }, 289 }; 290 291 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, 292 ARRAY_SIZE(spi_nor_3to4_erase)); 293 } 294 295 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor, 296 const struct flash_info *info) 297 { 298 /* Do some manufacturer fixups first */ 299 switch (JEDEC_MFR(info)) { 300 case SNOR_MFR_SPANSION: 301 case SNOR_MFR_CYPRESS: 302 /* No small sector erase for 4-byte command set */ 303 nor->erase_opcode = SPINOR_OP_SE; 304 nor->mtd.erasesize = info->sector_size; 305 break; 306 307 default: 308 break; 309 } 310 311 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); 312 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); 313 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); 314 } 315 #endif /* !CONFIG_SPI_FLASH_BAR */ 316 317 /* Enable/disable 4-byte addressing mode. */ 318 static int set_4byte(struct spi_nor *nor, const struct flash_info *info, 319 int enable) 320 { 321 int status; 322 bool need_wren = false; 323 u8 cmd; 324 325 switch (JEDEC_MFR(info)) { 326 case SNOR_MFR_ST: 327 case SNOR_MFR_MICRON: 328 /* Some Micron need WREN command; all will accept it */ 329 need_wren = true; 330 case SNOR_MFR_MACRONIX: 331 case SNOR_MFR_WINBOND: 332 case SNOR_MFR_GIGADEVICE: 333 case SNOR_MFR_ISSI: 334 case SNOR_MFR_CYPRESS: 335 if (need_wren) 336 write_enable(nor); 337 338 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; 339 status = nor->write_reg(nor, cmd, NULL, 0); 340 if (need_wren) 341 write_disable(nor); 342 343 if (!status && !enable && 344 JEDEC_MFR(info) == SNOR_MFR_WINBOND) { 345 /* 346 * On Winbond W25Q256FV, leaving 4byte mode causes 347 * the Extended Address Register to be set to 1, so all 348 * 3-byte-address reads come from the second 16M. 349 * We must clear the register to enable normal behavior. 350 */ 351 write_enable(nor); 352 nor->cmd_buf[0] = 0; 353 nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1); 354 write_disable(nor); 355 } 356 357 return status; 358 default: 359 /* Spansion style */ 360 nor->cmd_buf[0] = enable << 7; 361 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1); 362 } 363 } 364 365 static int spi_nor_sr_ready(struct spi_nor *nor) 366 { 367 int sr = read_sr(nor); 368 369 if (sr < 0) 370 return sr; 371 372 if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) { 373 if (sr & SR_E_ERR) 374 dev_dbg(nor->dev, "Erase Error occurred\n"); 375 else 376 dev_dbg(nor->dev, "Programming Error occurred\n"); 377 378 nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0); 379 return -EIO; 380 } 381 382 return !(sr & SR_WIP); 383 } 384 385 static int spi_nor_fsr_ready(struct spi_nor *nor) 386 { 387 int fsr = read_fsr(nor); 388 389 if (fsr < 0) 390 return fsr; 391 392 if (fsr & (FSR_E_ERR | FSR_P_ERR)) { 393 if (fsr & FSR_E_ERR) 394 dev_dbg(nor->dev, "Erase operation failed.\n"); 395 else 396 dev_dbg(nor->dev, "Program operation failed.\n"); 397 398 if (fsr & FSR_PT_ERR) 399 dev_dbg(nor->dev, 400 "Attempted to modify a protected sector.\n"); 401 402 nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0); 403 return -EIO; 404 } 405 406 return fsr & FSR_READY; 407 } 408 409 static int spi_nor_ready(struct spi_nor *nor) 410 { 411 int sr, fsr; 412 413 sr = spi_nor_sr_ready(nor); 414 if (sr < 0) 415 return sr; 416 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1; 417 if (fsr < 0) 418 return fsr; 419 return sr && fsr; 420 } 421 422 /* 423 * Service routine to read status register until ready, or timeout occurs. 424 * Returns non-zero if error. 425 */ 426 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, 427 unsigned long timeout) 428 { 429 unsigned long timebase; 430 int ret; 431 432 timebase = get_timer(0); 433 434 while (get_timer(timebase) < timeout) { 435 ret = spi_nor_ready(nor); 436 if (ret < 0) 437 return ret; 438 if (ret) 439 return 0; 440 } 441 442 dev_err(nor->dev, "flash operation timed out\n"); 443 444 return -ETIMEDOUT; 445 } 446 447 static int spi_nor_wait_till_ready(struct spi_nor *nor) 448 { 449 return spi_nor_wait_till_ready_with_timeout(nor, 450 DEFAULT_READY_WAIT_JIFFIES); 451 } 452 453 #ifdef CONFIG_SPI_FLASH_BAR 454 /* 455 * This "clean_bar" is necessary in a situation when one was accessing 456 * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit. 457 * 458 * After it the BA24 bit shall be cleared to allow access to correct 459 * memory region after SW reset (by calling "reset" command). 460 * 461 * Otherwise, the BA24 bit may be left set and then after reset, the 462 * ROM would read/write/erase SPL from 16 MiB * bank_sel address. 463 */ 464 static int clean_bar(struct spi_nor *nor) 465 { 466 u8 cmd, bank_sel = 0; 467 468 if (nor->bank_curr == 0) 469 return 0; 470 cmd = nor->bank_write_cmd; 471 nor->bank_curr = 0; 472 write_enable(nor); 473 474 return nor->write_reg(nor, cmd, &bank_sel, 1); 475 } 476 477 static int write_bar(struct spi_nor *nor, u32 offset) 478 { 479 u8 cmd, bank_sel; 480 int ret; 481 482 bank_sel = offset / SZ_16M; 483 if (bank_sel == nor->bank_curr) 484 goto bar_end; 485 486 cmd = nor->bank_write_cmd; 487 write_enable(nor); 488 ret = nor->write_reg(nor, cmd, &bank_sel, 1); 489 if (ret < 0) { 490 debug("SF: fail to write bank register\n"); 491 return ret; 492 } 493 494 bar_end: 495 nor->bank_curr = bank_sel; 496 return nor->bank_curr; 497 } 498 499 static int read_bar(struct spi_nor *nor, const struct flash_info *info) 500 { 501 u8 curr_bank = 0; 502 int ret; 503 504 switch (JEDEC_MFR(info)) { 505 case SNOR_MFR_SPANSION: 506 nor->bank_read_cmd = SPINOR_OP_BRRD; 507 nor->bank_write_cmd = SPINOR_OP_BRWR; 508 break; 509 default: 510 nor->bank_read_cmd = SPINOR_OP_RDEAR; 511 nor->bank_write_cmd = SPINOR_OP_WREAR; 512 } 513 514 ret = nor->read_reg(nor, nor->bank_read_cmd, 515 &curr_bank, 1); 516 if (ret) { 517 debug("SF: fail to read bank addr register\n"); 518 return ret; 519 } 520 nor->bank_curr = curr_bank; 521 522 return 0; 523 } 524 #endif 525 526 /* 527 * Initiate the erasure of a single sector 528 */ 529 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) 530 { 531 u8 buf[SPI_NOR_MAX_ADDR_WIDTH]; 532 int i; 533 534 if (nor->erase) 535 return nor->erase(nor, addr); 536 537 /* 538 * Default implementation, if driver doesn't have a specialized HW 539 * control 540 */ 541 for (i = nor->addr_width - 1; i >= 0; i--) { 542 buf[i] = addr & 0xff; 543 addr >>= 8; 544 } 545 546 return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width); 547 } 548 549 /* 550 * Erase an address range on the nor chip. The address range may extend 551 * one or more erase sectors. Return an error is there is a problem erasing. 552 */ 553 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) 554 { 555 struct spi_nor *nor = mtd_to_spi_nor(mtd); 556 u32 addr, len, rem; 557 int ret; 558 559 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, 560 (long long)instr->len); 561 562 div_u64_rem(instr->len, mtd->erasesize, &rem); 563 if (rem) 564 return -EINVAL; 565 566 addr = instr->addr; 567 len = instr->len; 568 569 while (len) { 570 #ifdef CONFIG_SPI_FLASH_BAR 571 ret = write_bar(nor, addr); 572 if (ret < 0) 573 return ret; 574 #endif 575 write_enable(nor); 576 577 ret = spi_nor_erase_sector(nor, addr); 578 if (ret) 579 goto erase_err; 580 581 addr += mtd->erasesize; 582 len -= mtd->erasesize; 583 584 ret = spi_nor_wait_till_ready(nor); 585 if (ret) 586 goto erase_err; 587 } 588 589 erase_err: 590 #ifdef CONFIG_SPI_FLASH_BAR 591 ret = clean_bar(nor); 592 #endif 593 write_disable(nor); 594 595 return ret; 596 } 597 598 #ifdef CONFIG_SPI_FLASH_SPANSION 599 /* 600 * Erase for Spansion/Cypress Flash devices that has overlaid 4KB sectors at 601 * the top and/or bottom. 602 */ 603 static int spansion_overlaid_erase(struct mtd_info *mtd, 604 struct erase_info *instr) 605 { 606 struct spi_nor *nor = mtd_to_spi_nor(mtd); 607 struct erase_info instr_4k; 608 u8 opcode; 609 u32 erasesize; 610 int ret; 611 612 /* Perform default erase operation (non-overlaid portion is erased) */ 613 ret = spi_nor_erase(mtd, instr); 614 if (ret) 615 return ret; 616 617 /* Backup default erase opcode and size */ 618 opcode = nor->erase_opcode; 619 erasesize = mtd->erasesize; 620 621 /* 622 * Erase 4KB sectors. Use the possible max length of 4KB sector region. 623 * The Flash just ignores the command if the address is not configured 624 * as 4KB sector and reports ready status immediately. 625 */ 626 instr_4k.len = SZ_128K; 627 nor->erase_opcode = SPINOR_OP_BE_4K_4B; 628 mtd->erasesize = SZ_4K; 629 if (instr->addr == 0) { 630 instr_4k.addr = 0; 631 ret = spi_nor_erase(mtd, &instr_4k); 632 } 633 if (!ret && instr->addr + instr->len == mtd->size) { 634 instr_4k.addr = mtd->size - instr_4k.len; 635 ret = spi_nor_erase(mtd, &instr_4k); 636 } 637 638 /* Restore erase opcode and size */ 639 nor->erase_opcode = opcode; 640 mtd->erasesize = erasesize; 641 642 return ret; 643 } 644 #endif 645 646 static bool cypress_s25hx_t(const struct flash_info *info) 647 { 648 if (JEDEC_MFR(info) == SNOR_MFR_CYPRESS) { 649 switch (info->id[1]) { 650 case 0x2a: /* S25HL (QSPI, 3.3V) */ 651 case 0x2b: /* S25HS (QSPI, 1.8V) */ 652 return true; 653 break; 654 655 default: 656 break; 657 } 658 } 659 660 return false; 661 } 662 663 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) 664 /* Write status register and ensure bits in mask match written values */ 665 static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask) 666 { 667 int ret; 668 669 write_enable(nor); 670 ret = write_sr(nor, status_new); 671 if (ret) 672 return ret; 673 674 ret = spi_nor_wait_till_ready(nor); 675 if (ret) 676 return ret; 677 678 ret = read_sr(nor); 679 if (ret < 0) 680 return ret; 681 682 return ((ret & mask) != (status_new & mask)) ? -EIO : 0; 683 } 684 685 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs, 686 uint64_t *len) 687 { 688 struct mtd_info *mtd = &nor->mtd; 689 u8 mask = SR_BP2 | SR_BP1 | SR_BP0; 690 int shift = ffs(mask) - 1; 691 int pow; 692 693 if (!(sr & mask)) { 694 /* No protection */ 695 *ofs = 0; 696 *len = 0; 697 } else { 698 pow = ((sr & mask) ^ mask) >> shift; 699 *len = mtd->size >> pow; 700 if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB) 701 *ofs = 0; 702 else 703 *ofs = mtd->size - *len; 704 } 705 } 706 707 /* 708 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if 709 * @locked is false); 0 otherwise 710 */ 711 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len, 712 u8 sr, bool locked) 713 { 714 loff_t lock_offs; 715 uint64_t lock_len; 716 717 if (!len) 718 return 1; 719 720 stm_get_locked_range(nor, sr, &lock_offs, &lock_len); 721 722 if (locked) 723 /* Requested range is a sub-range of locked range */ 724 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); 725 else 726 /* Requested range does not overlap with locked range */ 727 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs); 728 } 729 730 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, 731 u8 sr) 732 { 733 return stm_check_lock_status_sr(nor, ofs, len, sr, true); 734 } 735 736 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, 737 u8 sr) 738 { 739 return stm_check_lock_status_sr(nor, ofs, len, sr, false); 740 } 741 742 /* 743 * Lock a region of the flash. Compatible with ST Micro and similar flash. 744 * Supports the block protection bits BP{0,1,2} in the status register 745 * (SR). Does not support these features found in newer SR bitfields: 746 * - SEC: sector/block protect - only handle SEC=0 (block protect) 747 * - CMP: complement protect - only support CMP=0 (range is not complemented) 748 * 749 * Support for the following is provided conditionally for some flash: 750 * - TB: top/bottom protect 751 * 752 * Sample table portion for 8MB flash (Winbond w25q64fw): 753 * 754 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion 755 * -------------------------------------------------------------------------- 756 * X | X | 0 | 0 | 0 | NONE | NONE 757 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 758 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 759 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 760 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 761 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 762 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 763 * X | X | 1 | 1 | 1 | 8 MB | ALL 764 * ------|-------|-------|-------|-------|---------------|------------------- 765 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64 766 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32 767 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16 768 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8 769 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4 770 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2 771 * 772 * Returns negative on errors, 0 on success. 773 */ 774 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) 775 { 776 struct mtd_info *mtd = &nor->mtd; 777 int status_old, status_new; 778 u8 mask = SR_BP2 | SR_BP1 | SR_BP0; 779 u8 shift = ffs(mask) - 1, pow, val; 780 loff_t lock_len; 781 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; 782 bool use_top; 783 784 status_old = read_sr(nor); 785 if (status_old < 0) 786 return status_old; 787 788 /* If nothing in our range is unlocked, we don't need to do anything */ 789 if (stm_is_locked_sr(nor, ofs, len, status_old)) 790 return 0; 791 792 /* If anything below us is unlocked, we can't use 'bottom' protection */ 793 if (!stm_is_locked_sr(nor, 0, ofs, status_old)) 794 can_be_bottom = false; 795 796 /* If anything above us is unlocked, we can't use 'top' protection */ 797 if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len), 798 status_old)) 799 can_be_top = false; 800 801 if (!can_be_bottom && !can_be_top) 802 return -EINVAL; 803 804 /* Prefer top, if both are valid */ 805 use_top = can_be_top; 806 807 /* lock_len: length of region that should end up locked */ 808 if (use_top) 809 lock_len = mtd->size - ofs; 810 else 811 lock_len = ofs + len; 812 813 /* 814 * Need smallest pow such that: 815 * 816 * 1 / (2^pow) <= (len / size) 817 * 818 * so (assuming power-of-2 size) we do: 819 * 820 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) 821 */ 822 pow = ilog2(mtd->size) - ilog2(lock_len); 823 val = mask - (pow << shift); 824 if (val & ~mask) 825 return -EINVAL; 826 /* Don't "lock" with no region! */ 827 if (!(val & mask)) 828 return -EINVAL; 829 830 status_new = (status_old & ~mask & ~SR_TB) | val; 831 832 /* Disallow further writes if WP pin is asserted */ 833 status_new |= SR_SRWD; 834 835 if (!use_top) 836 status_new |= SR_TB; 837 838 /* Don't bother if they're the same */ 839 if (status_new == status_old) 840 return 0; 841 842 /* Only modify protection if it will not unlock other areas */ 843 if ((status_new & mask) < (status_old & mask)) 844 return -EINVAL; 845 846 return write_sr_and_check(nor, status_new, mask); 847 } 848 849 /* 850 * Unlock a region of the flash. See stm_lock() for more info 851 * 852 * Returns negative on errors, 0 on success. 853 */ 854 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) 855 { 856 struct mtd_info *mtd = &nor->mtd; 857 int status_old, status_new; 858 u8 mask = SR_BP2 | SR_BP1 | SR_BP0; 859 u8 shift = ffs(mask) - 1, pow, val; 860 loff_t lock_len; 861 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; 862 bool use_top; 863 864 status_old = read_sr(nor); 865 if (status_old < 0) 866 return status_old; 867 868 /* If nothing in our range is locked, we don't need to do anything */ 869 if (stm_is_unlocked_sr(nor, ofs, len, status_old)) 870 return 0; 871 872 /* If anything below us is locked, we can't use 'top' protection */ 873 if (!stm_is_unlocked_sr(nor, 0, ofs, status_old)) 874 can_be_top = false; 875 876 /* If anything above us is locked, we can't use 'bottom' protection */ 877 if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len), 878 status_old)) 879 can_be_bottom = false; 880 881 if (!can_be_bottom && !can_be_top) 882 return -EINVAL; 883 884 /* Prefer top, if both are valid */ 885 use_top = can_be_top; 886 887 /* lock_len: length of region that should remain locked */ 888 if (use_top) 889 lock_len = mtd->size - (ofs + len); 890 else 891 lock_len = ofs; 892 893 /* 894 * Need largest pow such that: 895 * 896 * 1 / (2^pow) >= (len / size) 897 * 898 * so (assuming power-of-2 size) we do: 899 * 900 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) 901 */ 902 pow = ilog2(mtd->size) - order_base_2(lock_len); 903 if (lock_len == 0) { 904 val = 0; /* fully unlocked */ 905 } else { 906 val = mask - (pow << shift); 907 /* Some power-of-two sizes are not supported */ 908 if (val & ~mask) 909 return -EINVAL; 910 } 911 912 status_new = (status_old & ~mask & ~SR_TB) | val; 913 914 /* Don't protect status register if we're fully unlocked */ 915 if (lock_len == 0) 916 status_new &= ~SR_SRWD; 917 918 if (!use_top) 919 status_new |= SR_TB; 920 921 /* Don't bother if they're the same */ 922 if (status_new == status_old) 923 return 0; 924 925 /* Only modify protection if it will not lock other areas */ 926 if ((status_new & mask) > (status_old & mask)) 927 return -EINVAL; 928 929 return write_sr_and_check(nor, status_new, mask); 930 } 931 932 /* 933 * Check if a region of the flash is (completely) locked. See stm_lock() for 934 * more info. 935 * 936 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and 937 * negative on errors. 938 */ 939 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) 940 { 941 int status; 942 943 status = read_sr(nor); 944 if (status < 0) 945 return status; 946 947 return stm_is_locked_sr(nor, ofs, len, status); 948 } 949 #endif /* CONFIG_SPI_FLASH_STMICRO */ 950 951 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) 952 { 953 int tmp; 954 u8 id[SPI_NOR_MAX_ID_LEN]; 955 const struct flash_info *info; 956 957 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); 958 if (tmp < 0) { 959 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp); 960 return ERR_PTR(tmp); 961 } 962 963 info = spi_nor_ids; 964 for (; info->name; info++) { 965 if (info->id_len) { 966 if (!memcmp(info->id, id, info->id_len)) 967 return info; 968 } 969 } 970 971 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n", 972 id[0], id[1], id[2]); 973 return ERR_PTR(-ENODEV); 974 } 975 976 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, 977 size_t *retlen, u_char *buf) 978 { 979 struct spi_nor *nor = mtd_to_spi_nor(mtd); 980 int ret; 981 982 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); 983 984 while (len) { 985 loff_t addr = from; 986 size_t read_len = len; 987 988 #ifdef CONFIG_SPI_FLASH_BAR 989 u32 remain_len; 990 991 ret = write_bar(nor, addr); 992 if (ret < 0) 993 return log_ret(ret); 994 remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr; 995 996 if (len < remain_len) 997 read_len = len; 998 else 999 read_len = remain_len; 1000 #endif 1001 1002 ret = nor->read(nor, addr, read_len, buf); 1003 if (ret == 0) { 1004 /* We shouldn't see 0-length reads */ 1005 ret = -EIO; 1006 goto read_err; 1007 } 1008 if (ret < 0) 1009 goto read_err; 1010 1011 *retlen += ret; 1012 buf += ret; 1013 from += ret; 1014 len -= ret; 1015 } 1016 ret = 0; 1017 1018 read_err: 1019 #ifdef CONFIG_SPI_FLASH_BAR 1020 ret = clean_bar(nor); 1021 #endif 1022 return ret; 1023 } 1024 1025 #ifdef CONFIG_SPI_FLASH_SST 1026 static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len, 1027 size_t *retlen, const u_char *buf) 1028 { 1029 size_t actual; 1030 int ret = 0; 1031 1032 for (actual = 0; actual < len; actual++) { 1033 nor->program_opcode = SPINOR_OP_BP; 1034 1035 write_enable(nor); 1036 /* write one byte. */ 1037 ret = nor->write(nor, to, 1, buf + actual); 1038 if (ret < 0) 1039 goto sst_write_err; 1040 ret = spi_nor_wait_till_ready(nor); 1041 if (ret) 1042 goto sst_write_err; 1043 to++; 1044 } 1045 1046 sst_write_err: 1047 write_disable(nor); 1048 return ret; 1049 } 1050 1051 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, 1052 size_t *retlen, const u_char *buf) 1053 { 1054 struct spi_nor *nor = mtd_to_spi_nor(mtd); 1055 struct spi_slave *spi = nor->spi; 1056 size_t actual; 1057 int ret; 1058 1059 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); 1060 if (spi->mode & SPI_TX_BYTE) 1061 return sst_write_byteprogram(nor, to, len, retlen, buf); 1062 1063 write_enable(nor); 1064 1065 nor->sst_write_second = false; 1066 1067 actual = to % 2; 1068 /* Start write from odd address. */ 1069 if (actual) { 1070 nor->program_opcode = SPINOR_OP_BP; 1071 1072 /* write one byte. */ 1073 ret = nor->write(nor, to, 1, buf); 1074 if (ret < 0) 1075 goto sst_write_err; 1076 ret = spi_nor_wait_till_ready(nor); 1077 if (ret) 1078 goto sst_write_err; 1079 } 1080 to += actual; 1081 1082 /* Write out most of the data here. */ 1083 for (; actual < len - 1; actual += 2) { 1084 nor->program_opcode = SPINOR_OP_AAI_WP; 1085 1086 /* write two bytes. */ 1087 ret = nor->write(nor, to, 2, buf + actual); 1088 if (ret < 0) 1089 goto sst_write_err; 1090 ret = spi_nor_wait_till_ready(nor); 1091 if (ret) 1092 goto sst_write_err; 1093 to += 2; 1094 nor->sst_write_second = true; 1095 } 1096 nor->sst_write_second = false; 1097 1098 write_disable(nor); 1099 ret = spi_nor_wait_till_ready(nor); 1100 if (ret) 1101 goto sst_write_err; 1102 1103 /* Write out trailing byte if it exists. */ 1104 if (actual != len) { 1105 write_enable(nor); 1106 1107 nor->program_opcode = SPINOR_OP_BP; 1108 ret = nor->write(nor, to, 1, buf + actual); 1109 if (ret < 0) 1110 goto sst_write_err; 1111 ret = spi_nor_wait_till_ready(nor); 1112 if (ret) 1113 goto sst_write_err; 1114 write_disable(nor); 1115 actual += 1; 1116 } 1117 sst_write_err: 1118 *retlen += actual; 1119 return ret; 1120 } 1121 #endif 1122 /* 1123 * Write an address range to the nor chip. Data must be written in 1124 * FLASH_PAGESIZE chunks. The address range may be any size provided 1125 * it is within the physical boundaries. 1126 */ 1127 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, 1128 size_t *retlen, const u_char *buf) 1129 { 1130 struct spi_nor *nor = mtd_to_spi_nor(mtd); 1131 size_t page_offset, page_remain, i; 1132 ssize_t ret; 1133 1134 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); 1135 1136 for (i = 0; i < len; ) { 1137 ssize_t written; 1138 loff_t addr = to + i; 1139 1140 /* 1141 * If page_size is a power of two, the offset can be quickly 1142 * calculated with an AND operation. On the other cases we 1143 * need to do a modulus operation (more expensive). 1144 * Power of two numbers have only one bit set and we can use 1145 * the instruction hweight32 to detect if we need to do a 1146 * modulus (do_div()) or not. 1147 */ 1148 if (hweight32(nor->page_size) == 1) { 1149 page_offset = addr & (nor->page_size - 1); 1150 } else { 1151 u64 aux = addr; 1152 1153 page_offset = do_div(aux, nor->page_size); 1154 } 1155 /* the size of data remaining on the first page */ 1156 page_remain = min_t(size_t, 1157 nor->page_size - page_offset, len - i); 1158 1159 #ifdef CONFIG_SPI_FLASH_BAR 1160 ret = write_bar(nor, addr); 1161 if (ret < 0) 1162 return ret; 1163 #endif 1164 write_enable(nor); 1165 ret = nor->write(nor, addr, page_remain, buf + i); 1166 if (ret < 0) 1167 goto write_err; 1168 written = ret; 1169 1170 ret = spi_nor_wait_till_ready(nor); 1171 if (ret) 1172 goto write_err; 1173 *retlen += written; 1174 i += written; 1175 if (written != page_remain) { 1176 ret = -EIO; 1177 goto write_err; 1178 } 1179 } 1180 1181 write_err: 1182 #ifdef CONFIG_SPI_FLASH_BAR 1183 ret = clean_bar(nor); 1184 #endif 1185 return ret; 1186 } 1187 1188 #ifdef CONFIG_SPI_FLASH_MACRONIX 1189 /** 1190 * macronix_quad_enable() - set QE bit in Status Register. 1191 * @nor: pointer to a 'struct spi_nor' 1192 * 1193 * Set the Quad Enable (QE) bit in the Status Register. 1194 * 1195 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories. 1196 * 1197 * Return: 0 on success, -errno otherwise. 1198 */ 1199 static int macronix_quad_enable(struct spi_nor *nor) 1200 { 1201 int ret, val; 1202 1203 val = read_sr(nor); 1204 if (val < 0) 1205 return val; 1206 if (val & SR_QUAD_EN_MX) 1207 return 0; 1208 1209 write_enable(nor); 1210 1211 write_sr(nor, val | SR_QUAD_EN_MX); 1212 1213 ret = spi_nor_wait_till_ready(nor); 1214 if (ret) 1215 return ret; 1216 1217 ret = read_sr(nor); 1218 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { 1219 dev_err(nor->dev, "Macronix Quad bit not set\n"); 1220 return -EINVAL; 1221 } 1222 1223 return 0; 1224 } 1225 #endif 1226 1227 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) 1228 /* 1229 * Write status Register and configuration register with 2 bytes 1230 * The first byte will be written to the status register, while the 1231 * second byte will be written to the configuration register. 1232 * Return negative if error occurred. 1233 */ 1234 static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr) 1235 { 1236 int ret; 1237 1238 write_enable(nor); 1239 1240 ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2); 1241 if (ret < 0) { 1242 dev_dbg(nor->dev, 1243 "error while writing configuration register\n"); 1244 return -EINVAL; 1245 } 1246 1247 ret = spi_nor_wait_till_ready(nor); 1248 if (ret) { 1249 dev_dbg(nor->dev, 1250 "timeout while writing configuration register\n"); 1251 return ret; 1252 } 1253 1254 return 0; 1255 } 1256 1257 /** 1258 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register. 1259 * @nor: pointer to a 'struct spi_nor' 1260 * 1261 * Set the Quad Enable (QE) bit in the Configuration Register. 1262 * This function should be used with QSPI memories supporting the Read 1263 * Configuration Register (35h) instruction. 1264 * 1265 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI 1266 * memories. 1267 * 1268 * Return: 0 on success, -errno otherwise. 1269 */ 1270 static int spansion_read_cr_quad_enable(struct spi_nor *nor) 1271 { 1272 u8 sr_cr[2]; 1273 int ret; 1274 1275 /* Check current Quad Enable bit value. */ 1276 ret = read_cr(nor); 1277 if (ret < 0) { 1278 dev_dbg(dev, "error while reading configuration register\n"); 1279 return -EINVAL; 1280 } 1281 1282 if (ret & CR_QUAD_EN_SPAN) 1283 return 0; 1284 1285 sr_cr[1] = ret | CR_QUAD_EN_SPAN; 1286 1287 /* Keep the current value of the Status Register. */ 1288 ret = read_sr(nor); 1289 if (ret < 0) { 1290 dev_dbg(dev, "error while reading status register\n"); 1291 return -EINVAL; 1292 } 1293 sr_cr[0] = ret; 1294 1295 ret = write_sr_cr(nor, sr_cr); 1296 if (ret) 1297 return ret; 1298 1299 /* Read back and check it. */ 1300 ret = read_cr(nor); 1301 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { 1302 dev_dbg(nor->dev, "Spansion Quad bit not set\n"); 1303 return -EINVAL; 1304 } 1305 1306 return 0; 1307 } 1308 1309 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT) 1310 /** 1311 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register. 1312 * @nor: pointer to a 'struct spi_nor' 1313 * 1314 * Set the Quad Enable (QE) bit in the Configuration Register. 1315 * This function should be used with QSPI memories not supporting the Read 1316 * Configuration Register (35h) instruction. 1317 * 1318 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI 1319 * memories. 1320 * 1321 * Return: 0 on success, -errno otherwise. 1322 */ 1323 static int spansion_no_read_cr_quad_enable(struct spi_nor *nor) 1324 { 1325 u8 sr_cr[2]; 1326 int ret; 1327 1328 /* Keep the current value of the Status Register. */ 1329 ret = read_sr(nor); 1330 if (ret < 0) { 1331 dev_dbg(nor->dev, "error while reading status register\n"); 1332 return -EINVAL; 1333 } 1334 sr_cr[0] = ret; 1335 sr_cr[1] = CR_QUAD_EN_SPAN; 1336 1337 return write_sr_cr(nor, sr_cr); 1338 } 1339 1340 #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */ 1341 #endif /* CONFIG_SPI_FLASH_SPANSION */ 1342 1343 struct spi_nor_read_command { 1344 u8 num_mode_clocks; 1345 u8 num_wait_states; 1346 u8 opcode; 1347 enum spi_nor_protocol proto; 1348 }; 1349 1350 struct spi_nor_pp_command { 1351 u8 opcode; 1352 enum spi_nor_protocol proto; 1353 }; 1354 1355 enum spi_nor_read_command_index { 1356 SNOR_CMD_READ, 1357 SNOR_CMD_READ_FAST, 1358 SNOR_CMD_READ_1_1_1_DTR, 1359 1360 /* Dual SPI */ 1361 SNOR_CMD_READ_1_1_2, 1362 SNOR_CMD_READ_1_2_2, 1363 SNOR_CMD_READ_2_2_2, 1364 SNOR_CMD_READ_1_2_2_DTR, 1365 1366 /* Quad SPI */ 1367 SNOR_CMD_READ_1_1_4, 1368 SNOR_CMD_READ_1_4_4, 1369 SNOR_CMD_READ_4_4_4, 1370 SNOR_CMD_READ_1_4_4_DTR, 1371 1372 /* Octo SPI */ 1373 SNOR_CMD_READ_1_1_8, 1374 SNOR_CMD_READ_1_8_8, 1375 SNOR_CMD_READ_8_8_8, 1376 SNOR_CMD_READ_1_8_8_DTR, 1377 1378 SNOR_CMD_READ_MAX 1379 }; 1380 1381 enum spi_nor_pp_command_index { 1382 SNOR_CMD_PP, 1383 1384 /* Quad SPI */ 1385 SNOR_CMD_PP_1_1_4, 1386 SNOR_CMD_PP_1_4_4, 1387 SNOR_CMD_PP_4_4_4, 1388 1389 /* Octo SPI */ 1390 SNOR_CMD_PP_1_1_8, 1391 SNOR_CMD_PP_1_8_8, 1392 SNOR_CMD_PP_8_8_8, 1393 1394 SNOR_CMD_PP_MAX 1395 }; 1396 1397 struct spi_nor_flash_parameter { 1398 u64 size; 1399 u32 page_size; 1400 1401 struct spi_nor_hwcaps hwcaps; 1402 struct spi_nor_read_command reads[SNOR_CMD_READ_MAX]; 1403 struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX]; 1404 1405 int (*quad_enable)(struct spi_nor *nor); 1406 }; 1407 1408 #ifdef CONFIG_SPI_FLASH_SPANSION 1409 /** 1410 * spansion_quad_enable_volatile() - enable Quad I/O mode in volatile register. 1411 * @nor: pointer to a 'struct spi_nor' 1412 * 1413 * It is recommended to update volatile registers in the field application due 1414 * to a risk of the non-volatile registers corruption by power interrupt. This 1415 * function sets Quad Enable bit in CFR1 volatile. 1416 * 1417 * Return: 0 on success, -errno otherwise. 1418 */ 1419 static int spansion_quad_enable_volatile(struct spi_nor *nor) 1420 { 1421 struct spi_mem_op op = 1422 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRAR, 1), 1423 SPI_MEM_OP_ADDR(nor->addr_width, 1424 SPINOR_REG_ADDR_CFR1V, 1), 1425 SPI_MEM_OP_NO_DUMMY, 1426 SPI_MEM_OP_DATA_OUT(1, NULL, 1)); 1427 u8 cr; 1428 int ret; 1429 1430 /* Check current Quad Enable bit value. */ 1431 ret = read_cr(nor); 1432 if (ret < 0) { 1433 dev_dbg(nor->dev, 1434 "error while reading configuration register\n"); 1435 return -EINVAL; 1436 } 1437 1438 if (ret & CR_QUAD_EN_SPAN) 1439 return 0; 1440 1441 cr = ret | CR_QUAD_EN_SPAN; 1442 1443 write_enable(nor); 1444 1445 ret = spi_nor_read_write_reg(nor, &op, &cr); 1446 1447 if (ret < 0) { 1448 dev_dbg(nor->dev, 1449 "error while writing configuration register\n"); 1450 return -EINVAL; 1451 } 1452 1453 /* Read back and check it. */ 1454 ret = read_cr(nor); 1455 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { 1456 dev_dbg(nor->dev, "Spansion Quad bit not set\n"); 1457 return -EINVAL; 1458 } 1459 1460 return 0; 1461 } 1462 #endif 1463 1464 static void 1465 spi_nor_set_read_settings(struct spi_nor_read_command *read, 1466 u8 num_mode_clocks, 1467 u8 num_wait_states, 1468 u8 opcode, 1469 enum spi_nor_protocol proto) 1470 { 1471 read->num_mode_clocks = num_mode_clocks; 1472 read->num_wait_states = num_wait_states; 1473 read->opcode = opcode; 1474 read->proto = proto; 1475 } 1476 1477 static void 1478 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, 1479 u8 opcode, 1480 enum spi_nor_protocol proto) 1481 { 1482 pp->opcode = opcode; 1483 pp->proto = proto; 1484 } 1485 1486 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT) 1487 /* 1488 * Serial Flash Discoverable Parameters (SFDP) parsing. 1489 */ 1490 1491 /** 1492 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. 1493 * @nor: pointer to a 'struct spi_nor' 1494 * @addr: offset in the SFDP area to start reading data from 1495 * @len: number of bytes to read 1496 * @buf: buffer where the SFDP data are copied into (dma-safe memory) 1497 * 1498 * Whatever the actual numbers of bytes for address and dummy cycles are 1499 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always 1500 * followed by a 3-byte address and 8 dummy clock cycles. 1501 * 1502 * Return: 0 on success, -errno otherwise. 1503 */ 1504 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, 1505 size_t len, void *buf) 1506 { 1507 u8 addr_width, read_opcode, read_dummy; 1508 enum spi_nor_protocol read_proto; 1509 int ret; 1510 1511 read_opcode = nor->read_opcode; 1512 addr_width = nor->addr_width; 1513 read_dummy = nor->read_dummy; 1514 read_proto = nor->read_proto; 1515 1516 nor->read_opcode = SPINOR_OP_RDSFDP; 1517 nor->read_proto = SNOR_PROTO_1_1_1; 1518 nor->addr_width = 3; 1519 nor->read_dummy = 8; 1520 1521 while (len) { 1522 ret = nor->read(nor, addr, len, (u8 *)buf); 1523 if (!ret || ret > len) { 1524 ret = -EIO; 1525 goto read_err; 1526 } 1527 if (ret < 0) 1528 goto read_err; 1529 1530 buf += ret; 1531 addr += ret; 1532 len -= ret; 1533 } 1534 ret = 0; 1535 1536 read_err: 1537 nor->read_opcode = read_opcode; 1538 nor->addr_width = addr_width; 1539 nor->read_dummy = read_dummy; 1540 nor->read_proto = read_proto; 1541 1542 return ret; 1543 } 1544 1545 struct sfdp_parameter_header { 1546 u8 id_lsb; 1547 u8 minor; 1548 u8 major; 1549 u8 length; /* in double words */ 1550 u8 parameter_table_pointer[3]; /* byte address */ 1551 u8 id_msb; 1552 }; 1553 1554 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) 1555 #define SFDP_PARAM_HEADER_PTP(p) \ 1556 (((p)->parameter_table_pointer[2] << 16) | \ 1557 ((p)->parameter_table_pointer[1] << 8) | \ 1558 ((p)->parameter_table_pointer[0] << 0)) 1559 1560 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ 1561 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ 1562 1563 #define SFDP_SIGNATURE 0x50444653U 1564 #define SFDP_JESD216_MAJOR 1 1565 #define SFDP_JESD216_MINOR 0 1566 #define SFDP_JESD216A_MINOR 5 1567 #define SFDP_JESD216B_MINOR 6 1568 1569 struct sfdp_header { 1570 u32 signature; /* Ox50444653U <=> "SFDP" */ 1571 u8 minor; 1572 u8 major; 1573 u8 nph; /* 0-base number of parameter headers */ 1574 u8 unused; 1575 1576 /* Basic Flash Parameter Table. */ 1577 struct sfdp_parameter_header bfpt_header; 1578 }; 1579 1580 /* Basic Flash Parameter Table */ 1581 1582 /* 1583 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs. 1584 * They are indexed from 1 but C arrays are indexed from 0. 1585 */ 1586 #define BFPT_DWORD(i) ((i) - 1) 1587 #define BFPT_DWORD_MAX 16 1588 1589 /* The first version of JESB216 defined only 9 DWORDs. */ 1590 #define BFPT_DWORD_MAX_JESD216 9 1591 1592 /* 1st DWORD. */ 1593 #define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16) 1594 #define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17) 1595 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17) 1596 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17) 1597 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17) 1598 #define BFPT_DWORD1_DTR BIT(19) 1599 #define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20) 1600 #define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21) 1601 #define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22) 1602 1603 /* 5th DWORD. */ 1604 #define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0) 1605 #define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4) 1606 1607 /* 11th DWORD. */ 1608 #define BFPT_DWORD11_PAGE_SIZE_SHIFT 4 1609 #define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4) 1610 1611 /* 15th DWORD. */ 1612 1613 /* 1614 * (from JESD216 rev B) 1615 * Quad Enable Requirements (QER): 1616 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4 1617 * reads based on instruction. DQ3/HOLD# functions are hold during 1618 * instruction phase. 1619 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with 1620 * two data bytes where bit 1 of the second byte is one. 1621 * [...] 1622 * Writing only one byte to the status register has the side-effect of 1623 * clearing status register 2, including the QE bit. The 100b code is 1624 * used if writing one byte to the status register does not modify 1625 * status register 2. 1626 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with 1627 * one data byte where bit 6 is one. 1628 * [...] 1629 * - 011b: QE is bit 7 of status register 2. It is set via Write status 1630 * register 2 instruction 3Eh with one data byte where bit 7 is one. 1631 * [...] 1632 * The status register 2 is read using instruction 3Fh. 1633 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with 1634 * two data bytes where bit 1 of the second byte is one. 1635 * [...] 1636 * In contrast to the 001b code, writing one byte to the status 1637 * register does not modify status register 2. 1638 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using 1639 * Read Status instruction 05h. Status register2 is read using 1640 * instruction 35h. QE is set via Writ Status instruction 01h with 1641 * two data bytes where bit 1 of the second byte is one. 1642 * [...] 1643 */ 1644 #define BFPT_DWORD15_QER_MASK GENMASK(22, 20) 1645 #define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */ 1646 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20) 1647 #define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */ 1648 #define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20) 1649 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20) 1650 #define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */ 1651 1652 struct sfdp_bfpt { 1653 u32 dwords[BFPT_DWORD_MAX]; 1654 }; 1655 1656 /* Fast Read settings. */ 1657 1658 static void 1659 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, 1660 u16 half, 1661 enum spi_nor_protocol proto) 1662 { 1663 read->num_mode_clocks = (half >> 5) & 0x07; 1664 read->num_wait_states = (half >> 0) & 0x1f; 1665 read->opcode = (half >> 8) & 0xff; 1666 read->proto = proto; 1667 } 1668 1669 struct sfdp_bfpt_read { 1670 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ 1671 u32 hwcaps; 1672 1673 /* 1674 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us 1675 * whether the Fast Read x-y-z command is supported. 1676 */ 1677 u32 supported_dword; 1678 u32 supported_bit; 1679 1680 /* 1681 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD 1682 * encodes the op code, the number of mode clocks and the number of wait 1683 * states to be used by Fast Read x-y-z command. 1684 */ 1685 u32 settings_dword; 1686 u32 settings_shift; 1687 1688 /* The SPI protocol for this Fast Read x-y-z command. */ 1689 enum spi_nor_protocol proto; 1690 }; 1691 1692 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { 1693 /* Fast Read 1-1-2 */ 1694 { 1695 SNOR_HWCAPS_READ_1_1_2, 1696 BFPT_DWORD(1), BIT(16), /* Supported bit */ 1697 BFPT_DWORD(4), 0, /* Settings */ 1698 SNOR_PROTO_1_1_2, 1699 }, 1700 1701 /* Fast Read 1-2-2 */ 1702 { 1703 SNOR_HWCAPS_READ_1_2_2, 1704 BFPT_DWORD(1), BIT(20), /* Supported bit */ 1705 BFPT_DWORD(4), 16, /* Settings */ 1706 SNOR_PROTO_1_2_2, 1707 }, 1708 1709 /* Fast Read 2-2-2 */ 1710 { 1711 SNOR_HWCAPS_READ_2_2_2, 1712 BFPT_DWORD(5), BIT(0), /* Supported bit */ 1713 BFPT_DWORD(6), 16, /* Settings */ 1714 SNOR_PROTO_2_2_2, 1715 }, 1716 1717 /* Fast Read 1-1-4 */ 1718 { 1719 SNOR_HWCAPS_READ_1_1_4, 1720 BFPT_DWORD(1), BIT(22), /* Supported bit */ 1721 BFPT_DWORD(3), 16, /* Settings */ 1722 SNOR_PROTO_1_1_4, 1723 }, 1724 1725 /* Fast Read 1-4-4 */ 1726 { 1727 SNOR_HWCAPS_READ_1_4_4, 1728 BFPT_DWORD(1), BIT(21), /* Supported bit */ 1729 BFPT_DWORD(3), 0, /* Settings */ 1730 SNOR_PROTO_1_4_4, 1731 }, 1732 1733 /* Fast Read 4-4-4 */ 1734 { 1735 SNOR_HWCAPS_READ_4_4_4, 1736 BFPT_DWORD(5), BIT(4), /* Supported bit */ 1737 BFPT_DWORD(7), 16, /* Settings */ 1738 SNOR_PROTO_4_4_4, 1739 }, 1740 }; 1741 1742 struct sfdp_bfpt_erase { 1743 /* 1744 * The half-word at offset <shift> in DWORD <dwoard> encodes the 1745 * op code and erase sector size to be used by Sector Erase commands. 1746 */ 1747 u32 dword; 1748 u32 shift; 1749 }; 1750 1751 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { 1752 /* Erase Type 1 in DWORD8 bits[15:0] */ 1753 {BFPT_DWORD(8), 0}, 1754 1755 /* Erase Type 2 in DWORD8 bits[31:16] */ 1756 {BFPT_DWORD(8), 16}, 1757 1758 /* Erase Type 3 in DWORD9 bits[15:0] */ 1759 {BFPT_DWORD(9), 0}, 1760 1761 /* Erase Type 4 in DWORD9 bits[31:16] */ 1762 {BFPT_DWORD(9), 16}, 1763 }; 1764 1765 static int spi_nor_hwcaps_read2cmd(u32 hwcaps); 1766 1767 /** 1768 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. 1769 * @nor: pointer to a 'struct spi_nor' 1770 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing 1771 * the Basic Flash Parameter Table length and version 1772 * @params: pointer to the 'struct spi_nor_flash_parameter' to be 1773 * filled 1774 * 1775 * The Basic Flash Parameter Table is the main and only mandatory table as 1776 * defined by the SFDP (JESD216) specification. 1777 * It provides us with the total size (memory density) of the data array and 1778 * the number of address bytes for Fast Read, Page Program and Sector Erase 1779 * commands. 1780 * For Fast READ commands, it also gives the number of mode clock cycles and 1781 * wait states (regrouped in the number of dummy clock cycles) for each 1782 * supported instruction op code. 1783 * For Page Program, the page size is now available since JESD216 rev A, however 1784 * the supported instruction op codes are still not provided. 1785 * For Sector Erase commands, this table stores the supported instruction op 1786 * codes and the associated sector sizes. 1787 * Finally, the Quad Enable Requirements (QER) are also available since JESD216 1788 * rev A. The QER bits encode the manufacturer dependent procedure to be 1789 * executed to set the Quad Enable (QE) bit in some internal register of the 1790 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before 1791 * sending any Quad SPI command to the memory. Actually, setting the QE bit 1792 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 1793 * and IO3 hence enabling 4 (Quad) I/O lines. 1794 * 1795 * Return: 0 on success, -errno otherwise. 1796 */ 1797 static int spi_nor_parse_bfpt(struct spi_nor *nor, 1798 const struct sfdp_parameter_header *bfpt_header, 1799 struct spi_nor_flash_parameter *params) 1800 { 1801 struct mtd_info *mtd = &nor->mtd; 1802 struct sfdp_bfpt bfpt; 1803 size_t len; 1804 int i, cmd, err; 1805 u32 addr; 1806 u16 half; 1807 1808 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ 1809 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) 1810 return -EINVAL; 1811 1812 /* Read the Basic Flash Parameter Table. */ 1813 len = min_t(size_t, sizeof(bfpt), 1814 bfpt_header->length * sizeof(u32)); 1815 addr = SFDP_PARAM_HEADER_PTP(bfpt_header); 1816 memset(&bfpt, 0, sizeof(bfpt)); 1817 err = spi_nor_read_sfdp(nor, addr, len, &bfpt); 1818 if (err < 0) 1819 return err; 1820 1821 /* Fix endianness of the BFPT DWORDs. */ 1822 for (i = 0; i < BFPT_DWORD_MAX; i++) 1823 bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]); 1824 1825 /* Number of address bytes. */ 1826 switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { 1827 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: 1828 nor->addr_width = 3; 1829 break; 1830 1831 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: 1832 nor->addr_width = 4; 1833 break; 1834 1835 default: 1836 break; 1837 } 1838 1839 /* Flash Memory Density (in bits). */ 1840 params->size = bfpt.dwords[BFPT_DWORD(2)]; 1841 if (params->size & BIT(31)) { 1842 params->size &= ~BIT(31); 1843 1844 /* 1845 * Prevent overflows on params->size. Anyway, a NOR of 2^64 1846 * bits is unlikely to exist so this error probably means 1847 * the BFPT we are reading is corrupted/wrong. 1848 */ 1849 if (params->size > 63) 1850 return -EINVAL; 1851 1852 params->size = 1ULL << params->size; 1853 } else { 1854 params->size++; 1855 } 1856 params->size >>= 3; /* Convert to bytes. */ 1857 1858 /* Fast Read settings. */ 1859 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { 1860 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; 1861 struct spi_nor_read_command *read; 1862 1863 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { 1864 params->hwcaps.mask &= ~rd->hwcaps; 1865 continue; 1866 } 1867 1868 params->hwcaps.mask |= rd->hwcaps; 1869 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); 1870 read = ¶ms->reads[cmd]; 1871 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; 1872 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); 1873 } 1874 1875 /* Sector Erase settings. */ 1876 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { 1877 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; 1878 u32 erasesize; 1879 u8 opcode; 1880 1881 half = bfpt.dwords[er->dword] >> er->shift; 1882 erasesize = half & 0xff; 1883 1884 /* erasesize == 0 means this Erase Type is not supported. */ 1885 if (!erasesize) 1886 continue; 1887 1888 erasesize = 1U << erasesize; 1889 opcode = (half >> 8) & 0xff; 1890 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS 1891 if (erasesize == SZ_4K) { 1892 nor->erase_opcode = opcode; 1893 mtd->erasesize = erasesize; 1894 break; 1895 } 1896 #endif 1897 if (!mtd->erasesize || mtd->erasesize < erasesize) { 1898 nor->erase_opcode = opcode; 1899 mtd->erasesize = erasesize; 1900 } 1901 } 1902 1903 /* Stop here if not JESD216 rev A or later. */ 1904 if (bfpt_header->length < BFPT_DWORD_MAX) 1905 return 0; 1906 1907 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ 1908 params->page_size = bfpt.dwords[BFPT_DWORD(11)]; 1909 params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK; 1910 params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; 1911 params->page_size = 1U << params->page_size; 1912 1913 /* Quad Enable Requirements. */ 1914 switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) { 1915 case BFPT_DWORD15_QER_NONE: 1916 params->quad_enable = NULL; 1917 break; 1918 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) 1919 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: 1920 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: 1921 params->quad_enable = spansion_no_read_cr_quad_enable; 1922 break; 1923 #endif 1924 #ifdef CONFIG_SPI_FLASH_MACRONIX 1925 case BFPT_DWORD15_QER_SR1_BIT6: 1926 params->quad_enable = macronix_quad_enable; 1927 break; 1928 #endif 1929 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) 1930 case BFPT_DWORD15_QER_SR2_BIT1: 1931 params->quad_enable = spansion_read_cr_quad_enable; 1932 break; 1933 #endif 1934 default: 1935 return -EINVAL; 1936 } 1937 1938 return 0; 1939 } 1940 1941 /** 1942 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. 1943 * @nor: pointer to a 'struct spi_nor' 1944 * @params: pointer to the 'struct spi_nor_flash_parameter' to be 1945 * filled 1946 * 1947 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 1948 * specification. This is a standard which tends to supported by almost all 1949 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at 1950 * runtime the main parameters needed to perform basic SPI flash operations such 1951 * as Fast Read, Page Program or Sector Erase commands. 1952 * 1953 * Return: 0 on success, -errno otherwise. 1954 */ 1955 static int spi_nor_parse_sfdp(struct spi_nor *nor, 1956 struct spi_nor_flash_parameter *params) 1957 { 1958 const struct sfdp_parameter_header *param_header, *bfpt_header; 1959 struct sfdp_parameter_header *param_headers = NULL; 1960 struct sfdp_header header; 1961 size_t psize; 1962 int i, err; 1963 1964 /* Get the SFDP header. */ 1965 err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header); 1966 if (err < 0) 1967 return err; 1968 1969 /* Check the SFDP header version. */ 1970 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || 1971 header.major != SFDP_JESD216_MAJOR) 1972 return -EINVAL; 1973 1974 /* 1975 * Verify that the first and only mandatory parameter header is a 1976 * Basic Flash Parameter Table header as specified in JESD216. 1977 */ 1978 bfpt_header = &header.bfpt_header; 1979 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || 1980 bfpt_header->major != SFDP_JESD216_MAJOR) 1981 return -EINVAL; 1982 1983 /* 1984 * Allocate memory then read all parameter headers with a single 1985 * Read SFDP command. These parameter headers will actually be parsed 1986 * twice: a first time to get the latest revision of the basic flash 1987 * parameter table, then a second time to handle the supported optional 1988 * tables. 1989 * Hence we read the parameter headers once for all to reduce the 1990 * processing time. Also we use kmalloc() instead of devm_kmalloc() 1991 * because we don't need to keep these parameter headers: the allocated 1992 * memory is always released with kfree() before exiting this function. 1993 */ 1994 if (header.nph) { 1995 psize = header.nph * sizeof(*param_headers); 1996 1997 param_headers = kmalloc(psize, GFP_KERNEL); 1998 if (!param_headers) 1999 return -ENOMEM; 2000 2001 err = spi_nor_read_sfdp(nor, sizeof(header), 2002 psize, param_headers); 2003 if (err < 0) { 2004 dev_err(dev, "failed to read SFDP parameter headers\n"); 2005 goto exit; 2006 } 2007 } 2008 2009 /* 2010 * Check other parameter headers to get the latest revision of 2011 * the basic flash parameter table. 2012 */ 2013 for (i = 0; i < header.nph; i++) { 2014 param_header = ¶m_headers[i]; 2015 2016 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && 2017 param_header->major == SFDP_JESD216_MAJOR && 2018 (param_header->minor > bfpt_header->minor || 2019 (param_header->minor == bfpt_header->minor && 2020 param_header->length > bfpt_header->length))) 2021 bfpt_header = param_header; 2022 } 2023 2024 err = spi_nor_parse_bfpt(nor, bfpt_header, params); 2025 if (err) 2026 goto exit; 2027 2028 /* Parse other parameter headers. */ 2029 for (i = 0; i < header.nph; i++) { 2030 param_header = ¶m_headers[i]; 2031 2032 switch (SFDP_PARAM_HEADER_ID(param_header)) { 2033 case SFDP_SECTOR_MAP_ID: 2034 dev_info(dev, "non-uniform erase sector maps are not supported yet.\n"); 2035 break; 2036 2037 default: 2038 break; 2039 } 2040 2041 if (err) 2042 goto exit; 2043 } 2044 2045 exit: 2046 kfree(param_headers); 2047 return err; 2048 } 2049 #else 2050 static int spi_nor_parse_sfdp(struct spi_nor *nor, 2051 struct spi_nor_flash_parameter *params) 2052 { 2053 return -EINVAL; 2054 } 2055 #endif /* SPI_FLASH_SFDP_SUPPORT */ 2056 2057 static int spi_nor_init_params(struct spi_nor *nor, 2058 const struct flash_info *info, 2059 struct spi_nor_flash_parameter *params) 2060 { 2061 /* Set legacy flash parameters as default. */ 2062 memset(params, 0, sizeof(*params)); 2063 2064 /* Set SPI NOR sizes. */ 2065 params->size = info->sector_size * info->n_sectors; 2066 params->page_size = info->page_size; 2067 2068 /* (Fast) Read settings. */ 2069 params->hwcaps.mask |= SNOR_HWCAPS_READ; 2070 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], 2071 0, 0, SPINOR_OP_READ, 2072 SNOR_PROTO_1_1_1); 2073 2074 if (!(info->flags & SPI_NOR_NO_FR)) { 2075 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; 2076 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], 2077 0, 8, SPINOR_OP_READ_FAST, 2078 SNOR_PROTO_1_1_1); 2079 #ifdef CONFIG_SPI_FLASH_SPANSION 2080 if (cypress_s25hx_t(info)) 2081 params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8; 2082 #endif 2083 } 2084 2085 if (info->flags & SPI_NOR_DUAL_READ) { 2086 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; 2087 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], 2088 0, 8, SPINOR_OP_READ_1_1_2, 2089 SNOR_PROTO_1_1_2); 2090 } 2091 2092 if (info->flags & SPI_NOR_QUAD_READ) { 2093 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; 2094 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], 2095 0, 8, SPINOR_OP_READ_1_1_4, 2096 SNOR_PROTO_1_1_4); 2097 } 2098 2099 /* Page Program settings. */ 2100 params->hwcaps.mask |= SNOR_HWCAPS_PP; 2101 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], 2102 SPINOR_OP_PP, SNOR_PROTO_1_1_1); 2103 2104 if (info->flags & SPI_NOR_QUAD_READ) { 2105 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; 2106 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], 2107 SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4); 2108 } 2109 2110 /* Select the procedure to set the Quad Enable bit. */ 2111 if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD | 2112 SNOR_HWCAPS_PP_QUAD)) { 2113 switch (JEDEC_MFR(info)) { 2114 #ifdef CONFIG_SPI_FLASH_MACRONIX 2115 case SNOR_MFR_MACRONIX: 2116 params->quad_enable = macronix_quad_enable; 2117 break; 2118 #endif 2119 case SNOR_MFR_ST: 2120 case SNOR_MFR_MICRON: 2121 case SNOR_MFR_ISSI: 2122 break; 2123 #ifdef CONFIG_SPI_FLASH_SPANSION 2124 case SNOR_MFR_CYPRESS: 2125 if (info->id[1] == 0x2a || info->id[1] == 0x2b) { 2126 params->quad_enable = spansion_quad_enable_volatile; 2127 } 2128 break; 2129 #endif 2130 2131 default: 2132 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) 2133 /* Kept only for backward compatibility purpose. */ 2134 params->quad_enable = spansion_read_cr_quad_enable; 2135 #endif 2136 break; 2137 } 2138 } 2139 2140 /* Override the parameters with data read from SFDP tables. */ 2141 nor->addr_width = 0; 2142 nor->mtd.erasesize = 0; 2143 if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) && 2144 !(info->flags & SPI_NOR_SKIP_SFDP)) { 2145 struct spi_nor_flash_parameter sfdp_params; 2146 2147 memcpy(&sfdp_params, params, sizeof(sfdp_params)); 2148 if (spi_nor_parse_sfdp(nor, &sfdp_params)) { 2149 nor->addr_width = 0; 2150 nor->mtd.erasesize = 0; 2151 } else { 2152 memcpy(params, &sfdp_params, sizeof(*params)); 2153 #ifdef CONFIG_SPI_FLASH_SPANSION 2154 if (cypress_s25hx_t(info)) { 2155 /* Default page size is 256-byte, but BFPT reports 512-byte */ 2156 params->page_size = 256; 2157 /* Reset erase size in case it is set to 4K from BFPT */ 2158 nor->mtd.erasesize = info->sector_size ; 2159 /* READ_FAST_4B (0Ch) requires mode cycles*/ 2160 params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8; 2161 /* PP_1_1_4 is not supported */ 2162 params->hwcaps.mask &= ~SNOR_HWCAPS_PP_1_1_4; 2163 /* Use volatile register to enable quad */ 2164 params->quad_enable = spansion_quad_enable_volatile; 2165 } 2166 #endif 2167 } 2168 } 2169 2170 return 0; 2171 } 2172 2173 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) 2174 { 2175 size_t i; 2176 2177 for (i = 0; i < size; i++) 2178 if (table[i][0] == (int)hwcaps) 2179 return table[i][1]; 2180 2181 return -EINVAL; 2182 } 2183 2184 static int spi_nor_hwcaps_read2cmd(u32 hwcaps) 2185 { 2186 static const int hwcaps_read2cmd[][2] = { 2187 { SNOR_HWCAPS_READ, SNOR_CMD_READ }, 2188 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, 2189 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, 2190 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, 2191 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, 2192 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, 2193 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, 2194 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, 2195 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, 2196 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, 2197 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, 2198 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, 2199 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, 2200 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, 2201 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, 2202 }; 2203 2204 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, 2205 ARRAY_SIZE(hwcaps_read2cmd)); 2206 } 2207 2208 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps) 2209 { 2210 static const int hwcaps_pp2cmd[][2] = { 2211 { SNOR_HWCAPS_PP, SNOR_CMD_PP }, 2212 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, 2213 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, 2214 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, 2215 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, 2216 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, 2217 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, 2218 }; 2219 2220 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, 2221 ARRAY_SIZE(hwcaps_pp2cmd)); 2222 } 2223 2224 static int spi_nor_select_read(struct spi_nor *nor, 2225 const struct spi_nor_flash_parameter *params, 2226 u32 shared_hwcaps) 2227 { 2228 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; 2229 const struct spi_nor_read_command *read; 2230 2231 if (best_match < 0) 2232 return -EINVAL; 2233 2234 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); 2235 if (cmd < 0) 2236 return -EINVAL; 2237 2238 read = ¶ms->reads[cmd]; 2239 nor->read_opcode = read->opcode; 2240 nor->read_proto = read->proto; 2241 2242 /* 2243 * In the spi-nor framework, we don't need to make the difference 2244 * between mode clock cycles and wait state clock cycles. 2245 * Indeed, the value of the mode clock cycles is used by a QSPI 2246 * flash memory to know whether it should enter or leave its 0-4-4 2247 * (Continuous Read / XIP) mode. 2248 * eXecution In Place is out of the scope of the mtd sub-system. 2249 * Hence we choose to merge both mode and wait state clock cycles 2250 * into the so called dummy clock cycles. 2251 */ 2252 nor->read_dummy = read->num_mode_clocks + read->num_wait_states; 2253 return 0; 2254 } 2255 2256 static int spi_nor_select_pp(struct spi_nor *nor, 2257 const struct spi_nor_flash_parameter *params, 2258 u32 shared_hwcaps) 2259 { 2260 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; 2261 const struct spi_nor_pp_command *pp; 2262 2263 if (best_match < 0) 2264 return -EINVAL; 2265 2266 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); 2267 if (cmd < 0) 2268 return -EINVAL; 2269 2270 pp = ¶ms->page_programs[cmd]; 2271 nor->program_opcode = pp->opcode; 2272 nor->write_proto = pp->proto; 2273 return 0; 2274 } 2275 2276 static int spi_nor_select_erase(struct spi_nor *nor, 2277 const struct flash_info *info) 2278 { 2279 struct mtd_info *mtd = &nor->mtd; 2280 2281 /* Do nothing if already configured from SFDP. */ 2282 if (mtd->erasesize) 2283 return 0; 2284 2285 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS 2286 /* prefer "small sector" erase if possible */ 2287 if (info->flags & SECT_4K) { 2288 nor->erase_opcode = SPINOR_OP_BE_4K; 2289 mtd->erasesize = 4096; 2290 } else if (info->flags & SECT_4K_PMC) { 2291 nor->erase_opcode = SPINOR_OP_BE_4K_PMC; 2292 mtd->erasesize = 4096; 2293 } else 2294 #endif 2295 { 2296 nor->erase_opcode = SPINOR_OP_SE; 2297 mtd->erasesize = info->sector_size; 2298 } 2299 return 0; 2300 } 2301 2302 static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info, 2303 const struct spi_nor_flash_parameter *params, 2304 const struct spi_nor_hwcaps *hwcaps) 2305 { 2306 u32 ignored_mask, shared_mask; 2307 bool enable_quad_io; 2308 int err; 2309 2310 /* 2311 * Keep only the hardware capabilities supported by both the SPI 2312 * controller and the SPI flash memory. 2313 */ 2314 shared_mask = hwcaps->mask & params->hwcaps.mask; 2315 2316 /* SPI n-n-n protocols are not supported yet. */ 2317 ignored_mask = (SNOR_HWCAPS_READ_1_1_1_DTR | 2318 SNOR_HWCAPS_READ_1_2_2 | 2319 SNOR_HWCAPS_READ_1_2_2_DTR | 2320 SNOR_HWCAPS_READ_2_2_2 | 2321 SNOR_HWCAPS_READ_1_4_4 | 2322 SNOR_HWCAPS_READ_1_4_4_DTR | 2323 SNOR_HWCAPS_READ_4_4_4 | 2324 SNOR_HWCAPS_READ_8_8_8 | 2325 SNOR_HWCAPS_PP_1_4_4 | 2326 SNOR_HWCAPS_PP_4_4_4 | 2327 SNOR_HWCAPS_PP_8_8_8); 2328 if (shared_mask & ignored_mask) { 2329 dev_dbg(nor->dev, 2330 "SPI n-n-n protocols are not supported yet.\n"); 2331 shared_mask &= ~ignored_mask; 2332 } 2333 2334 /* Select the (Fast) Read command. */ 2335 err = spi_nor_select_read(nor, params, shared_mask); 2336 if (err) { 2337 dev_dbg(nor->dev, 2338 "can't select read settings supported by both the SPI controller and memory.\n"); 2339 return err; 2340 } 2341 2342 /* Select the Page Program command. */ 2343 err = spi_nor_select_pp(nor, params, shared_mask); 2344 if (err) { 2345 dev_dbg(nor->dev, 2346 "can't select write settings supported by both the SPI controller and memory.\n"); 2347 return err; 2348 } 2349 2350 /* Select the Sector Erase command. */ 2351 err = spi_nor_select_erase(nor, info); 2352 if (err) { 2353 dev_dbg(nor->dev, 2354 "can't select erase settings supported by both the SPI controller and memory.\n"); 2355 return err; 2356 } 2357 2358 /* Enable Quad I/O if needed. */ 2359 enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 || 2360 spi_nor_get_protocol_width(nor->write_proto) == 4); 2361 if (enable_quad_io && params->quad_enable) 2362 nor->quad_enable = params->quad_enable; 2363 else 2364 nor->quad_enable = NULL; 2365 2366 return 0; 2367 } 2368 2369 static int spi_nor_init(struct spi_nor *nor) 2370 { 2371 int err; 2372 2373 /* 2374 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up 2375 * with the software protection bits set 2376 */ 2377 if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL || 2378 JEDEC_MFR(nor->info) == SNOR_MFR_INTEL || 2379 JEDEC_MFR(nor->info) == SNOR_MFR_SST || 2380 nor->info->flags & SPI_NOR_HAS_LOCK) { 2381 write_enable(nor); 2382 write_sr(nor, 0); 2383 spi_nor_wait_till_ready(nor); 2384 } 2385 2386 if (nor->quad_enable) { 2387 err = nor->quad_enable(nor); 2388 if (err) { 2389 dev_dbg(nor->dev, "quad mode not supported\n"); 2390 return err; 2391 } 2392 } 2393 2394 if (nor->addr_width == 4 && 2395 (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION)) { 2396 2397 /* 2398 * If the RESET# pin isn't hooked up properly, or the system 2399 * otherwise doesn't perform a reset command in the boot 2400 * sequence, it's impossible to 100% protect against unexpected 2401 * reboots (e.g., crashes). Warn the user (or hopefully, system 2402 * designer) that this is bad. 2403 */ 2404 if (nor->flags & SNOR_F_BROKEN_RESET) 2405 printf("enabling reset hack; may not recover from unexpected reboots\n"); 2406 set_4byte(nor, nor->info, 1); 2407 } 2408 2409 return 0; 2410 } 2411 2412 int spi_nor_scan(struct spi_nor *nor) 2413 { 2414 struct spi_nor_flash_parameter params; 2415 const struct flash_info *info = NULL; 2416 struct mtd_info *mtd = &nor->mtd; 2417 struct spi_nor_hwcaps hwcaps = { 2418 .mask = SNOR_HWCAPS_READ | 2419 SNOR_HWCAPS_READ_FAST | 2420 SNOR_HWCAPS_PP, 2421 }; 2422 struct spi_slave *spi = nor->spi; 2423 int ret; 2424 2425 /* Reset SPI protocol for all commands. */ 2426 nor->reg_proto = SNOR_PROTO_1_1_1; 2427 nor->read_proto = SNOR_PROTO_1_1_1; 2428 nor->write_proto = SNOR_PROTO_1_1_1; 2429 nor->read = spi_nor_read_data; 2430 nor->write = spi_nor_write_data; 2431 nor->read_reg = spi_nor_read_reg; 2432 nor->write_reg = spi_nor_write_reg; 2433 2434 if (spi->mode & SPI_RX_QUAD) { 2435 hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; 2436 2437 if (spi->mode & SPI_TX_QUAD) 2438 hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 | 2439 SNOR_HWCAPS_PP_1_1_4 | 2440 SNOR_HWCAPS_PP_1_4_4); 2441 } else if (spi->mode & SPI_RX_DUAL) { 2442 hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; 2443 2444 if (spi->mode & SPI_TX_DUAL) 2445 hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2; 2446 } 2447 2448 info = spi_nor_read_id(nor); 2449 if (IS_ERR_OR_NULL(info)) 2450 return -ENOENT; 2451 /* Parse the Serial Flash Discoverable Parameters table. */ 2452 ret = spi_nor_init_params(nor, info, ¶ms); 2453 if (ret) 2454 return ret; 2455 2456 if (!mtd->name) 2457 mtd->name = info->name; 2458 mtd->priv = nor; 2459 mtd->type = MTD_NORFLASH; 2460 mtd->writesize = 1; 2461 mtd->flags = MTD_CAP_NORFLASH; 2462 mtd->size = params.size; 2463 mtd->_erase = spi_nor_erase; 2464 mtd->_read = spi_nor_read; 2465 2466 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) 2467 /* NOR protection support for STmicro/Micron chips and similar */ 2468 if (JEDEC_MFR(info) == SNOR_MFR_ST || 2469 JEDEC_MFR(info) == SNOR_MFR_MICRON || 2470 JEDEC_MFR(info) == SNOR_MFR_SST || 2471 info->flags & SPI_NOR_HAS_LOCK) { 2472 nor->flash_lock = stm_lock; 2473 nor->flash_unlock = stm_unlock; 2474 nor->flash_is_locked = stm_is_locked; 2475 } 2476 #endif 2477 2478 #ifdef CONFIG_SPI_FLASH_SST 2479 /* sst nor chips use AAI word program */ 2480 if (info->flags & SST_WRITE) 2481 mtd->_write = sst_write; 2482 else 2483 #endif 2484 mtd->_write = spi_nor_write; 2485 2486 if (info->flags & USE_FSR) 2487 nor->flags |= SNOR_F_USE_FSR; 2488 if (info->flags & SPI_NOR_HAS_TB) 2489 nor->flags |= SNOR_F_HAS_SR_TB; 2490 if (info->flags & NO_CHIP_ERASE) 2491 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; 2492 if (info->flags & USE_CLSR) 2493 nor->flags |= SNOR_F_USE_CLSR; 2494 2495 if (info->flags & SPI_NOR_NO_ERASE) 2496 mtd->flags |= MTD_NO_ERASE; 2497 2498 nor->page_size = params.page_size; 2499 mtd->writebufsize = nor->page_size; 2500 2501 #ifdef CONFIG_SPI_FLASH_SPANSION 2502 if (cypress_s25hx_t(info)) { 2503 /* 2504 * The Cypress Semper family has transparent ECC. To preserve 2505 * ECC enabled, multi-pass programming within the same 16-byte 2506 * ECC data unit needs to be avoided. Set writesize to the page 2507 * size and remove the MTD_BIT_WRITEABLE flag in mtd_info to 2508 * prevent multi-pass programming. 2509 */ 2510 nor->mtd.writesize = params.page_size; 2511 nor->mtd.flags &= ~MTD_BIT_WRITEABLE; 2512 2513 /* Emulate uniform sector architecure by this erase hook*/ 2514 nor->mtd._erase = spansion_overlaid_erase; 2515 set_4byte(nor, info, true); 2516 } 2517 #endif 2518 2519 /* Some devices cannot do fast-read, no matter what DT tells us */ 2520 if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW)) 2521 params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; 2522 2523 /* 2524 * Configure the SPI memory: 2525 * - select op codes for (Fast) Read, Page Program and Sector Erase. 2526 * - set the number of dummy cycles (mode cycles + wait states). 2527 * - set the SPI protocols for register and memory accesses. 2528 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos). 2529 */ 2530 ret = spi_nor_setup(nor, info, ¶ms, &hwcaps); 2531 if (ret) 2532 return ret; 2533 2534 if (nor->addr_width) { 2535 /* already configured from SFDP */ 2536 } else if (info->addr_width) { 2537 nor->addr_width = info->addr_width; 2538 } else if (mtd->size > SZ_16M) { 2539 #ifndef CONFIG_SPI_FLASH_BAR 2540 /* enable 4-byte addressing if the device exceeds 16MiB */ 2541 nor->addr_width = 4; 2542 if (JEDEC_MFR(info) == SNOR_MFR_SPANSION || 2543 info->flags & SPI_NOR_4B_OPCODES) 2544 spi_nor_set_4byte_opcodes(nor, info); 2545 #else 2546 /* Configure the BAR - discover bank cmds and read current bank */ 2547 nor->addr_width = 3; 2548 ret = read_bar(nor, info); 2549 if (ret < 0) 2550 return ret; 2551 #endif 2552 } else { 2553 nor->addr_width = 3; 2554 } 2555 2556 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) { 2557 dev_dbg(dev, "address width is too large: %u\n", 2558 nor->addr_width); 2559 return -EINVAL; 2560 } 2561 2562 /* Send all the required SPI flash commands to initialize device */ 2563 nor->info = info; 2564 ret = spi_nor_init(nor); 2565 if (ret) 2566 return ret; 2567 2568 nor->name = mtd->name; 2569 nor->size = mtd->size; 2570 nor->erase_size = mtd->erasesize; 2571 nor->sector_size = mtd->erasesize; 2572 2573 #ifndef CONFIG_SPL_BUILD 2574 printf("SF: Detected %s with page size ", nor->name); 2575 print_size(nor->page_size, ", erase size "); 2576 print_size(nor->erase_size, ", total "); 2577 print_size(nor->size, ""); 2578 puts("\n"); 2579 #endif 2580 2581 return 0; 2582 } 2583 2584 /* U-Boot specific functions, need to extend MTD to support these */ 2585 int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor) 2586 { 2587 int sr = read_sr(nor); 2588 2589 if (sr < 0) 2590 return sr; 2591 2592 return (sr >> 2) & 7; 2593 } 2594