xref: /openbmc/u-boot/drivers/mtd/spi/spi-nor-core.c (revision e31caa5a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  *
9  * Synced from Linux v4.19
10  */
11 
12 #include <common.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/log2.h>
16 #include <linux/math64.h>
17 #include <linux/sizes.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/spi-nor.h>
21 #include <spi-mem.h>
22 #include <spi.h>
23 
24 #include "sf_internal.h"
25 
26 /* Define max times to check status register before we give up. */
27 
28 /*
29  * For everything but full-chip erase; probably could be much smaller, but kept
30  * around for safety for now
31  */
32 
33 #define HZ					CONFIG_SYS_HZ
34 
35 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
36 
37 static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
38 		*op, void *buf)
39 {
40 	if (op->data.dir == SPI_MEM_DATA_IN)
41 		op->data.buf.in = buf;
42 	else
43 		op->data.buf.out = buf;
44 	return spi_mem_exec_op(nor->spi, op);
45 }
46 
47 static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
48 {
49 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1),
50 					  SPI_MEM_OP_NO_ADDR,
51 					  SPI_MEM_OP_NO_DUMMY,
52 					  SPI_MEM_OP_DATA_IN(len, NULL, 1));
53 	int ret;
54 
55 	ret = spi_nor_read_write_reg(nor, &op, val);
56 	if (ret < 0)
57 		dev_dbg(&flash->spimem->spi->dev, "error %d reading %x\n", ret,
58 			code);
59 
60 	return ret;
61 }
62 
63 static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
64 {
65 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1),
66 					  SPI_MEM_OP_NO_ADDR,
67 					  SPI_MEM_OP_NO_DUMMY,
68 					  SPI_MEM_OP_DATA_OUT(len, NULL, 1));
69 
70 	return spi_nor_read_write_reg(nor, &op, buf);
71 }
72 
73 static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
74 				 u_char *buf)
75 {
76 	struct spi_mem_op op =
77 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
78 				   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
79 				   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
80 				   SPI_MEM_OP_DATA_IN(len, buf, 1));
81 	size_t remaining = len;
82 	int ret;
83 
84 	/* get transfer protocols. */
85 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
86 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
87 	op.dummy.buswidth = op.addr.buswidth;
88 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
89 
90 	/* convert the dummy cycles to the number of bytes */
91 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
92 
93 	while (remaining) {
94 		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
95 		ret = spi_mem_adjust_op_size(nor->spi, &op);
96 		if (ret)
97 			return ret;
98 
99 		ret = spi_mem_exec_op(nor->spi, &op);
100 		if (ret)
101 			return ret;
102 
103 		op.addr.val += op.data.nbytes;
104 		remaining -= op.data.nbytes;
105 		op.data.buf.in += op.data.nbytes;
106 	}
107 
108 	return len;
109 }
110 
111 static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
112 				  const u_char *buf)
113 {
114 	struct spi_mem_op op =
115 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
116 				   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
117 				   SPI_MEM_OP_NO_DUMMY,
118 				   SPI_MEM_OP_DATA_OUT(len, buf, 1));
119 	size_t remaining = len;
120 	int ret;
121 
122 	/* get transfer protocols. */
123 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
124 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
125 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
126 
127 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
128 		op.addr.nbytes = 0;
129 
130 	while (remaining) {
131 		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
132 		ret = spi_mem_adjust_op_size(nor->spi, &op);
133 		if (ret)
134 			return ret;
135 
136 		ret = spi_mem_exec_op(nor->spi, &op);
137 		if (ret)
138 			return ret;
139 
140 		op.addr.val += op.data.nbytes;
141 		remaining -= op.data.nbytes;
142 		op.data.buf.out += op.data.nbytes;
143 	}
144 
145 	return len;
146 }
147 
148 /*
149  * Read the status register, returning its value in the location
150  * Return the status register value.
151  * Returns negative if error occurred.
152  */
153 static int read_sr(struct spi_nor *nor)
154 {
155 	int ret;
156 	u8 val;
157 
158 	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
159 	if (ret < 0) {
160 		pr_debug("error %d reading SR\n", (int)ret);
161 		return ret;
162 	}
163 
164 	return val;
165 }
166 
167 /*
168  * Read the flag status register, returning its value in the location
169  * Return the status register value.
170  * Returns negative if error occurred.
171  */
172 static int read_fsr(struct spi_nor *nor)
173 {
174 	int ret;
175 	u8 val;
176 
177 	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
178 	if (ret < 0) {
179 		pr_debug("error %d reading FSR\n", ret);
180 		return ret;
181 	}
182 
183 	return val;
184 }
185 
186 /*
187  * Read configuration register, returning its value in the
188  * location. Return the configuration register value.
189  * Returns negative if error occurred.
190  */
191 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
192 static int read_cr(struct spi_nor *nor)
193 {
194 	int ret;
195 	u8 val;
196 
197 	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
198 	if (ret < 0) {
199 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
200 		return ret;
201 	}
202 
203 	return val;
204 }
205 #endif
206 
207 /*
208  * Write status register 1 byte
209  * Returns negative if error occurred.
210  */
211 static int write_sr(struct spi_nor *nor, u8 val)
212 {
213 	nor->cmd_buf[0] = val;
214 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
215 }
216 
217 /*
218  * Set write enable latch with Write Enable command.
219  * Returns negative if error occurred.
220  */
221 static int write_enable(struct spi_nor *nor)
222 {
223 	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
224 }
225 
226 /*
227  * Send write disable instruction to the chip.
228  */
229 static int write_disable(struct spi_nor *nor)
230 {
231 	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
232 }
233 
234 static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
235 {
236 	return mtd->priv;
237 }
238 
239 #ifndef CONFIG_SPI_FLASH_BAR
240 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
241 {
242 	size_t i;
243 
244 	for (i = 0; i < size; i++)
245 		if (table[i][0] == opcode)
246 			return table[i][1];
247 
248 	/* No conversion found, keep input op code. */
249 	return opcode;
250 }
251 
252 static u8 spi_nor_convert_3to4_read(u8 opcode)
253 {
254 	static const u8 spi_nor_3to4_read[][2] = {
255 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
256 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
257 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
258 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
259 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
260 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
261 
262 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
263 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
264 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
265 	};
266 
267 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
268 				      ARRAY_SIZE(spi_nor_3to4_read));
269 }
270 
271 static u8 spi_nor_convert_3to4_program(u8 opcode)
272 {
273 	static const u8 spi_nor_3to4_program[][2] = {
274 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
275 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
276 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
277 	};
278 
279 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
280 				      ARRAY_SIZE(spi_nor_3to4_program));
281 }
282 
283 static u8 spi_nor_convert_3to4_erase(u8 opcode)
284 {
285 	static const u8 spi_nor_3to4_erase[][2] = {
286 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
287 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
288 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
289 	};
290 
291 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
292 				      ARRAY_SIZE(spi_nor_3to4_erase));
293 }
294 
295 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
296 				      const struct flash_info *info)
297 {
298 	/* Do some manufacturer fixups first */
299 	switch (JEDEC_MFR(info)) {
300 	case SNOR_MFR_SPANSION:
301 	case SNOR_MFR_CYPRESS:
302 		/* No small sector erase for 4-byte command set */
303 		nor->erase_opcode = SPINOR_OP_SE;
304 		nor->mtd.erasesize = info->sector_size;
305 		break;
306 
307 	default:
308 		break;
309 	}
310 
311 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
312 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
313 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
314 }
315 #endif /* !CONFIG_SPI_FLASH_BAR */
316 
317 /* Enable/disable 4-byte addressing mode. */
318 static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
319 		     int enable)
320 {
321 	int status;
322 	bool need_wren = false;
323 	u8 cmd;
324 
325 	switch (JEDEC_MFR(info)) {
326 	case SNOR_MFR_ST:
327 	case SNOR_MFR_MICRON:
328 		/* Some Micron need WREN command; all will accept it */
329 		need_wren = true;
330 	case SNOR_MFR_MACRONIX:
331 	case SNOR_MFR_WINBOND:
332 	case SNOR_MFR_GIGADEVICE:
333 	case SNOR_MFR_ISSI:
334 	case SNOR_MFR_CYPRESS:
335 		if (need_wren)
336 			write_enable(nor);
337 
338 		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
339 		status = nor->write_reg(nor, cmd, NULL, 0);
340 		if (need_wren)
341 			write_disable(nor);
342 
343 		if (!status && !enable &&
344 		    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
345 			/*
346 			 * On Winbond W25Q256FV, leaving 4byte mode causes
347 			 * the Extended Address Register to be set to 1, so all
348 			 * 3-byte-address reads come from the second 16M.
349 			 * We must clear the register to enable normal behavior.
350 			 */
351 			write_enable(nor);
352 			nor->cmd_buf[0] = 0;
353 			nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
354 			write_disable(nor);
355 		}
356 
357 		return status;
358 	default:
359 		/* Spansion style */
360 		nor->cmd_buf[0] = enable << 7;
361 		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
362 	}
363 }
364 
365 static int spi_nor_sr_ready(struct spi_nor *nor)
366 {
367 	int sr = read_sr(nor);
368 
369 	if (sr < 0)
370 		return sr;
371 
372 	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
373 		if (sr & SR_E_ERR)
374 			dev_dbg(nor->dev, "Erase Error occurred\n");
375 		else
376 			dev_dbg(nor->dev, "Programming Error occurred\n");
377 
378 		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
379 		return -EIO;
380 	}
381 
382 	return !(sr & SR_WIP);
383 }
384 
385 static int spi_nor_fsr_ready(struct spi_nor *nor)
386 {
387 	int fsr = read_fsr(nor);
388 
389 	if (fsr < 0)
390 		return fsr;
391 
392 	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
393 		if (fsr & FSR_E_ERR)
394 			dev_dbg(nor->dev, "Erase operation failed.\n");
395 		else
396 			dev_dbg(nor->dev, "Program operation failed.\n");
397 
398 		if (fsr & FSR_PT_ERR)
399 			dev_dbg(nor->dev,
400 				"Attempted to modify a protected sector.\n");
401 
402 		nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
403 		return -EIO;
404 	}
405 
406 	return fsr & FSR_READY;
407 }
408 
409 static int spi_nor_ready(struct spi_nor *nor)
410 {
411 	int sr, fsr;
412 
413 	sr = spi_nor_sr_ready(nor);
414 	if (sr < 0)
415 		return sr;
416 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
417 	if (fsr < 0)
418 		return fsr;
419 	return sr && fsr;
420 }
421 
422 /*
423  * Service routine to read status register until ready, or timeout occurs.
424  * Returns non-zero if error.
425  */
426 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
427 						unsigned long timeout)
428 {
429 	unsigned long timebase;
430 	int ret;
431 
432 	timebase = get_timer(0);
433 
434 	while (get_timer(timebase) < timeout) {
435 		ret = spi_nor_ready(nor);
436 		if (ret < 0)
437 			return ret;
438 		if (ret)
439 			return 0;
440 	}
441 
442 	dev_err(nor->dev, "flash operation timed out\n");
443 
444 	return -ETIMEDOUT;
445 }
446 
447 static int spi_nor_wait_till_ready(struct spi_nor *nor)
448 {
449 	return spi_nor_wait_till_ready_with_timeout(nor,
450 						    DEFAULT_READY_WAIT_JIFFIES);
451 }
452 
453 #ifdef CONFIG_SPI_FLASH_BAR
454 /*
455  * This "clean_bar" is necessary in a situation when one was accessing
456  * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
457  *
458  * After it the BA24 bit shall be cleared to allow access to correct
459  * memory region after SW reset (by calling "reset" command).
460  *
461  * Otherwise, the BA24 bit may be left set and then after reset, the
462  * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
463  */
464 static int clean_bar(struct spi_nor *nor)
465 {
466 	u8 cmd, bank_sel = 0;
467 
468 	if (nor->bank_curr == 0)
469 		return 0;
470 	cmd = nor->bank_write_cmd;
471 	nor->bank_curr = 0;
472 	write_enable(nor);
473 
474 	return nor->write_reg(nor, cmd, &bank_sel, 1);
475 }
476 
477 static int write_bar(struct spi_nor *nor, u32 offset)
478 {
479 	u8 cmd, bank_sel;
480 	int ret;
481 
482 	bank_sel = offset / SZ_16M;
483 	if (bank_sel == nor->bank_curr)
484 		goto bar_end;
485 
486 	cmd = nor->bank_write_cmd;
487 	write_enable(nor);
488 	ret = nor->write_reg(nor, cmd, &bank_sel, 1);
489 	if (ret < 0) {
490 		debug("SF: fail to write bank register\n");
491 		return ret;
492 	}
493 
494 bar_end:
495 	nor->bank_curr = bank_sel;
496 	return nor->bank_curr;
497 }
498 
499 static int read_bar(struct spi_nor *nor, const struct flash_info *info)
500 {
501 	u8 curr_bank = 0;
502 	int ret;
503 
504 	switch (JEDEC_MFR(info)) {
505 	case SNOR_MFR_SPANSION:
506 		nor->bank_read_cmd = SPINOR_OP_BRRD;
507 		nor->bank_write_cmd = SPINOR_OP_BRWR;
508 		break;
509 	default:
510 		nor->bank_read_cmd = SPINOR_OP_RDEAR;
511 		nor->bank_write_cmd = SPINOR_OP_WREAR;
512 	}
513 
514 	ret = nor->read_reg(nor, nor->bank_read_cmd,
515 				    &curr_bank, 1);
516 	if (ret) {
517 		debug("SF: fail to read bank addr register\n");
518 		return ret;
519 	}
520 	nor->bank_curr = curr_bank;
521 
522 	return 0;
523 }
524 #endif
525 
526 /*
527  * Initiate the erasure of a single sector
528  */
529 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
530 {
531 	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
532 	int i;
533 
534 	if (nor->erase)
535 		return nor->erase(nor, addr);
536 
537 	/*
538 	 * Default implementation, if driver doesn't have a specialized HW
539 	 * control
540 	 */
541 	for (i = nor->addr_width - 1; i >= 0; i--) {
542 		buf[i] = addr & 0xff;
543 		addr >>= 8;
544 	}
545 
546 	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
547 }
548 
549 /*
550  * Erase an address range on the nor chip.  The address range may extend
551  * one or more erase sectors.  Return an error is there is a problem erasing.
552  */
553 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
554 {
555 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
556 	u32 addr, len, rem;
557 	int ret;
558 
559 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
560 		(long long)instr->len);
561 
562 	div_u64_rem(instr->len, mtd->erasesize, &rem);
563 	if (rem)
564 		return -EINVAL;
565 
566 	addr = instr->addr;
567 	len = instr->len;
568 
569 	while (len) {
570 #ifdef CONFIG_SPI_FLASH_BAR
571 		ret = write_bar(nor, addr);
572 		if (ret < 0)
573 			return ret;
574 #endif
575 		write_enable(nor);
576 
577 		ret = spi_nor_erase_sector(nor, addr);
578 		if (ret)
579 			goto erase_err;
580 
581 		addr += mtd->erasesize;
582 		len -= mtd->erasesize;
583 
584 		ret = spi_nor_wait_till_ready(nor);
585 		if (ret)
586 			goto erase_err;
587 	}
588 
589 erase_err:
590 #ifdef CONFIG_SPI_FLASH_BAR
591 	ret = clean_bar(nor);
592 #endif
593 	write_disable(nor);
594 
595 	return ret;
596 }
597 
598 static int micron_read_nvcr(struct spi_nor *nor)
599 {
600 	int ret;
601 	int val;
602 
603 	ret = nor->read_reg(nor, SPINOR_OP_MICRON_RDNVCR, (u8 *)&val, 2);
604 	if (ret < 0) {
605 		dev_err(nor->dev, "[Micron] error %d reading NVCR\n", ret);
606 		return ret;
607 	}
608 
609 	return val;
610 }
611 
612 static int micron_write_nvcr(struct spi_nor *nor, int val)
613 {
614 	int ret;
615 
616 	write_enable(nor);
617 
618 	nor->cmd_buf[0] = val & 0xff;
619 	nor->cmd_buf[1] = (val >> 8) & 0xff;
620 
621 	ret = nor->write_reg(nor, SPINOR_OP_MICRON_WRNVCR, nor->cmd_buf, 2);
622 	if (ret < 0) {
623 		dev_err(nor->dev,
624 			"[Micron] error while writing configuration register\n");
625 		return -EINVAL;
626 	}
627 
628 	ret = spi_nor_wait_till_ready(nor);
629 	if (ret) {
630 		dev_err(nor->dev,
631 			"[Micron] timeout while writing configuration register\n");
632 		return ret;
633 	}
634 
635 	return 0;
636 }
637 
638 static int micron_read_cr_quad_enable(struct spi_nor *nor)
639 {
640 	int ret;
641 
642 	/* Check current Quad Enable bit value. */
643 	ret = micron_read_nvcr(nor);
644 	if (ret < 0) {
645 		dev_err(dev, "[Micron] error while reading nonvolatile configuration register\n");
646 		return -EINVAL;
647 	}
648 
649 	if ((ret & MICRON_RST_HOLD_CTRL) == 0)
650 		return 0;
651 
652 	ret &= ~MICRON_RST_HOLD_CTRL;
653 
654 	/* Keep the current value of the Status Register. */
655 	ret = micron_write_nvcr(nor, ret);
656 	if (ret < 0) {
657 		dev_err(dev, "[Micron] error while writing nonvolatile configuration register\n");
658 		return -EINVAL;
659 	}
660 
661 	ret = micron_read_nvcr(nor);
662 	if (ret > 0 && (ret & MICRON_RST_HOLD_CTRL)) {
663 		dev_err(nor->dev, "[Micron] Quad bit not set\n");
664 		return -EINVAL;
665 	}
666 
667 	return 0;
668 }
669 
670 #ifdef CONFIG_SPI_FLASH_SPANSION
671 /*
672  * Erase for Spansion/Cypress Flash devices that has overlaid 4KB sectors at
673  * the top and/or bottom.
674  */
675 static int spansion_overlaid_erase(struct mtd_info *mtd,
676 				   struct erase_info *instr)
677 {
678 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
679 	struct erase_info instr_4k;
680 	u8 opcode;
681 	u32 erasesize;
682 	int ret;
683 
684 	/* Perform default erase operation (non-overlaid portion is erased) */
685 	ret = spi_nor_erase(mtd, instr);
686 	if (ret)
687 		return ret;
688 
689 	/* Backup default erase opcode and size */
690 	opcode = nor->erase_opcode;
691 	erasesize = mtd->erasesize;
692 
693 	/*
694 	 * Erase 4KB sectors. Use the possible max length of 4KB sector region.
695 	 * The Flash just ignores the command if the address is not configured
696 	 * as 4KB sector and reports ready status immediately.
697 	 */
698 	instr_4k.len = SZ_128K;
699 	nor->erase_opcode = SPINOR_OP_BE_4K_4B;
700 	mtd->erasesize = SZ_4K;
701 	if (instr->addr == 0) {
702 		instr_4k.addr = 0;
703 		ret = spi_nor_erase(mtd, &instr_4k);
704 	}
705 	if (!ret && instr->addr + instr->len == mtd->size) {
706 		instr_4k.addr = mtd->size - instr_4k.len;
707 		ret = spi_nor_erase(mtd, &instr_4k);
708 	}
709 
710 	/* Restore erase opcode and size */
711 	nor->erase_opcode = opcode;
712 	mtd->erasesize = erasesize;
713 
714 	return ret;
715 }
716 #endif
717 
718 static bool cypress_s25hx_t(const struct flash_info *info)
719 {
720 	if (JEDEC_MFR(info) == SNOR_MFR_CYPRESS) {
721 		switch (info->id[1]) {
722 		case 0x2a: /* S25HL (QSPI, 3.3V) */
723 		case 0x2b: /* S25HS (QSPI, 1.8V) */
724 			return true;
725 			break;
726 
727 		default:
728 			break;
729 		}
730 	}
731 
732 	return false;
733 }
734 
735 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
736 /* Write status register and ensure bits in mask match written values */
737 static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
738 {
739 	int ret;
740 
741 	write_enable(nor);
742 	ret = write_sr(nor, status_new);
743 	if (ret)
744 		return ret;
745 
746 	ret = spi_nor_wait_till_ready(nor);
747 	if (ret)
748 		return ret;
749 
750 	ret = read_sr(nor);
751 	if (ret < 0)
752 		return ret;
753 
754 	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
755 }
756 
757 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
758 				 uint64_t *len)
759 {
760 	struct mtd_info *mtd = &nor->mtd;
761 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
762 	int shift = ffs(mask) - 1;
763 	int pow;
764 
765 	if (!(sr & mask)) {
766 		/* No protection */
767 		*ofs = 0;
768 		*len = 0;
769 	} else {
770 		pow = ((sr & mask) ^ mask) >> shift;
771 		*len = mtd->size >> pow;
772 		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
773 			*ofs = 0;
774 		else
775 			*ofs = mtd->size - *len;
776 	}
777 }
778 
779 /*
780  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
781  * @locked is false); 0 otherwise
782  */
783 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
784 				    u8 sr, bool locked)
785 {
786 	loff_t lock_offs;
787 	uint64_t lock_len;
788 
789 	if (!len)
790 		return 1;
791 
792 	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
793 
794 	if (locked)
795 		/* Requested range is a sub-range of locked range */
796 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
797 	else
798 		/* Requested range does not overlap with locked range */
799 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
800 }
801 
802 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
803 			    u8 sr)
804 {
805 	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
806 }
807 
808 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
809 			      u8 sr)
810 {
811 	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
812 }
813 
814 /*
815  * Lock a region of the flash. Compatible with ST Micro and similar flash.
816  * Supports the block protection bits BP{0,1,2} in the status register
817  * (SR). Does not support these features found in newer SR bitfields:
818  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
819  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
820  *
821  * Support for the following is provided conditionally for some flash:
822  *   - TB: top/bottom protect
823  *
824  * Sample table portion for 8MB flash (Winbond w25q64fw):
825  *
826  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
827  *  --------------------------------------------------------------------------
828  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
829  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
830  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
831  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
832  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
833  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
834  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
835  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
836  *  ------|-------|-------|-------|-------|---------------|-------------------
837  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
838  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
839  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
840  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
841  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
842  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
843  *
844  * Returns negative on errors, 0 on success.
845  */
846 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
847 {
848 	struct mtd_info *mtd = &nor->mtd;
849 	int status_old, status_new;
850 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
851 	u8 shift = ffs(mask) - 1, pow, val;
852 	loff_t lock_len;
853 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
854 	bool use_top;
855 
856 	status_old = read_sr(nor);
857 	if (status_old < 0)
858 		return status_old;
859 
860 	/* If nothing in our range is unlocked, we don't need to do anything */
861 	if (stm_is_locked_sr(nor, ofs, len, status_old))
862 		return 0;
863 
864 	/* If anything below us is unlocked, we can't use 'bottom' protection */
865 	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
866 		can_be_bottom = false;
867 
868 	/* If anything above us is unlocked, we can't use 'top' protection */
869 	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
870 			      status_old))
871 		can_be_top = false;
872 
873 	if (!can_be_bottom && !can_be_top)
874 		return -EINVAL;
875 
876 	/* Prefer top, if both are valid */
877 	use_top = can_be_top;
878 
879 	/* lock_len: length of region that should end up locked */
880 	if (use_top)
881 		lock_len = mtd->size - ofs;
882 	else
883 		lock_len = ofs + len;
884 
885 	/*
886 	 * Need smallest pow such that:
887 	 *
888 	 *   1 / (2^pow) <= (len / size)
889 	 *
890 	 * so (assuming power-of-2 size) we do:
891 	 *
892 	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
893 	 */
894 	pow = ilog2(mtd->size) - ilog2(lock_len);
895 	val = mask - (pow << shift);
896 	if (val & ~mask)
897 		return -EINVAL;
898 	/* Don't "lock" with no region! */
899 	if (!(val & mask))
900 		return -EINVAL;
901 
902 	status_new = (status_old & ~mask & ~SR_TB) | val;
903 
904 	/* Disallow further writes if WP pin is asserted */
905 	status_new |= SR_SRWD;
906 
907 	if (!use_top)
908 		status_new |= SR_TB;
909 
910 	/* Don't bother if they're the same */
911 	if (status_new == status_old)
912 		return 0;
913 
914 	/* Only modify protection if it will not unlock other areas */
915 	if ((status_new & mask) < (status_old & mask))
916 		return -EINVAL;
917 
918 	return write_sr_and_check(nor, status_new, mask);
919 }
920 
921 /*
922  * Unlock a region of the flash. See stm_lock() for more info
923  *
924  * Returns negative on errors, 0 on success.
925  */
926 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
927 {
928 	struct mtd_info *mtd = &nor->mtd;
929 	int status_old, status_new;
930 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
931 	u8 shift = ffs(mask) - 1, pow, val;
932 	loff_t lock_len;
933 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
934 	bool use_top;
935 
936 	status_old = read_sr(nor);
937 	if (status_old < 0)
938 		return status_old;
939 
940 	/* If nothing in our range is locked, we don't need to do anything */
941 	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
942 		return 0;
943 
944 	/* If anything below us is locked, we can't use 'top' protection */
945 	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
946 		can_be_top = false;
947 
948 	/* If anything above us is locked, we can't use 'bottom' protection */
949 	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
950 				status_old))
951 		can_be_bottom = false;
952 
953 	if (!can_be_bottom && !can_be_top)
954 		return -EINVAL;
955 
956 	/* Prefer top, if both are valid */
957 	use_top = can_be_top;
958 
959 	/* lock_len: length of region that should remain locked */
960 	if (use_top)
961 		lock_len = mtd->size - (ofs + len);
962 	else
963 		lock_len = ofs;
964 
965 	/*
966 	 * Need largest pow such that:
967 	 *
968 	 *   1 / (2^pow) >= (len / size)
969 	 *
970 	 * so (assuming power-of-2 size) we do:
971 	 *
972 	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
973 	 */
974 	pow = ilog2(mtd->size) - order_base_2(lock_len);
975 	if (lock_len == 0) {
976 		val = 0; /* fully unlocked */
977 	} else {
978 		val = mask - (pow << shift);
979 		/* Some power-of-two sizes are not supported */
980 		if (val & ~mask)
981 			return -EINVAL;
982 	}
983 
984 	status_new = (status_old & ~mask & ~SR_TB) | val;
985 
986 	/* Don't protect status register if we're fully unlocked */
987 	if (lock_len == 0)
988 		status_new &= ~SR_SRWD;
989 
990 	if (!use_top)
991 		status_new |= SR_TB;
992 
993 	/* Don't bother if they're the same */
994 	if (status_new == status_old)
995 		return 0;
996 
997 	/* Only modify protection if it will not lock other areas */
998 	if ((status_new & mask) > (status_old & mask))
999 		return -EINVAL;
1000 
1001 	return write_sr_and_check(nor, status_new, mask);
1002 }
1003 
1004 /*
1005  * Check if a region of the flash is (completely) locked. See stm_lock() for
1006  * more info.
1007  *
1008  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1009  * negative on errors.
1010  */
1011 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1012 {
1013 	int status;
1014 
1015 	status = read_sr(nor);
1016 	if (status < 0)
1017 		return status;
1018 
1019 	return stm_is_locked_sr(nor, ofs, len, status);
1020 }
1021 #endif /* CONFIG_SPI_FLASH_STMICRO */
1022 
1023 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1024 {
1025 	int			tmp;
1026 	u8			id[SPI_NOR_MAX_ID_LEN];
1027 	const struct flash_info	*info;
1028 
1029 	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
1030 	if (tmp < 0) {
1031 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
1032 		return ERR_PTR(tmp);
1033 	}
1034 
1035 	info = spi_nor_ids;
1036 	for (; info->name; info++) {
1037 		if (info->id_len) {
1038 			if (!memcmp(info->id, id, info->id_len))
1039 				return info;
1040 		}
1041 	}
1042 
1043 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
1044 		id[0], id[1], id[2]);
1045 	return ERR_PTR(-ENODEV);
1046 }
1047 
1048 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1049 			size_t *retlen, u_char *buf)
1050 {
1051 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1052 	int ret;
1053 
1054 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1055 
1056 	while (len) {
1057 		loff_t addr = from;
1058 		size_t read_len = len;
1059 
1060 #ifdef CONFIG_SPI_FLASH_BAR
1061 		u32 remain_len;
1062 
1063 		ret = write_bar(nor, addr);
1064 		if (ret < 0)
1065 			return log_ret(ret);
1066 		remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
1067 
1068 		if (len < remain_len)
1069 			read_len = len;
1070 		else
1071 			read_len = remain_len;
1072 #endif
1073 
1074 		ret = nor->read(nor, addr, read_len, buf);
1075 		if (ret == 0) {
1076 			/* We shouldn't see 0-length reads */
1077 			ret = -EIO;
1078 			goto read_err;
1079 		}
1080 		if (ret < 0)
1081 			goto read_err;
1082 
1083 		*retlen += ret;
1084 		buf += ret;
1085 		from += ret;
1086 		len -= ret;
1087 	}
1088 	ret = 0;
1089 
1090 read_err:
1091 #ifdef CONFIG_SPI_FLASH_BAR
1092 	ret = clean_bar(nor);
1093 #endif
1094 	return ret;
1095 }
1096 
1097 #ifdef CONFIG_SPI_FLASH_SST
1098 static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
1099 				 size_t *retlen, const u_char *buf)
1100 {
1101 	size_t actual;
1102 	int ret = 0;
1103 
1104 	for (actual = 0; actual < len; actual++) {
1105 		nor->program_opcode = SPINOR_OP_BP;
1106 
1107 		write_enable(nor);
1108 		/* write one byte. */
1109 		ret = nor->write(nor, to, 1, buf + actual);
1110 		if (ret < 0)
1111 			goto sst_write_err;
1112 		ret = spi_nor_wait_till_ready(nor);
1113 		if (ret)
1114 			goto sst_write_err;
1115 		to++;
1116 	}
1117 
1118 sst_write_err:
1119 	write_disable(nor);
1120 	return ret;
1121 }
1122 
1123 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
1124 		     size_t *retlen, const u_char *buf)
1125 {
1126 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1127 	struct spi_slave *spi = nor->spi;
1128 	size_t actual;
1129 	int ret;
1130 
1131 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1132 	if (spi->mode & SPI_TX_BYTE)
1133 		return sst_write_byteprogram(nor, to, len, retlen, buf);
1134 
1135 	write_enable(nor);
1136 
1137 	nor->sst_write_second = false;
1138 
1139 	actual = to % 2;
1140 	/* Start write from odd address. */
1141 	if (actual) {
1142 		nor->program_opcode = SPINOR_OP_BP;
1143 
1144 		/* write one byte. */
1145 		ret = nor->write(nor, to, 1, buf);
1146 		if (ret < 0)
1147 			goto sst_write_err;
1148 		ret = spi_nor_wait_till_ready(nor);
1149 		if (ret)
1150 			goto sst_write_err;
1151 	}
1152 	to += actual;
1153 
1154 	/* Write out most of the data here. */
1155 	for (; actual < len - 1; actual += 2) {
1156 		nor->program_opcode = SPINOR_OP_AAI_WP;
1157 
1158 		/* write two bytes. */
1159 		ret = nor->write(nor, to, 2, buf + actual);
1160 		if (ret < 0)
1161 			goto sst_write_err;
1162 		ret = spi_nor_wait_till_ready(nor);
1163 		if (ret)
1164 			goto sst_write_err;
1165 		to += 2;
1166 		nor->sst_write_second = true;
1167 	}
1168 	nor->sst_write_second = false;
1169 
1170 	write_disable(nor);
1171 	ret = spi_nor_wait_till_ready(nor);
1172 	if (ret)
1173 		goto sst_write_err;
1174 
1175 	/* Write out trailing byte if it exists. */
1176 	if (actual != len) {
1177 		write_enable(nor);
1178 
1179 		nor->program_opcode = SPINOR_OP_BP;
1180 		ret = nor->write(nor, to, 1, buf + actual);
1181 		if (ret < 0)
1182 			goto sst_write_err;
1183 		ret = spi_nor_wait_till_ready(nor);
1184 		if (ret)
1185 			goto sst_write_err;
1186 		write_disable(nor);
1187 		actual += 1;
1188 	}
1189 sst_write_err:
1190 	*retlen += actual;
1191 	return ret;
1192 }
1193 #endif
1194 /*
1195  * Write an address range to the nor chip.  Data must be written in
1196  * FLASH_PAGESIZE chunks.  The address range may be any size provided
1197  * it is within the physical boundaries.
1198  */
1199 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1200 	size_t *retlen, const u_char *buf)
1201 {
1202 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1203 	size_t page_offset, page_remain, i;
1204 	ssize_t ret;
1205 
1206 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1207 
1208 	for (i = 0; i < len; ) {
1209 		ssize_t written;
1210 		loff_t addr = to + i;
1211 
1212 		/*
1213 		 * If page_size is a power of two, the offset can be quickly
1214 		 * calculated with an AND operation. On the other cases we
1215 		 * need to do a modulus operation (more expensive).
1216 		 * Power of two numbers have only one bit set and we can use
1217 		 * the instruction hweight32 to detect if we need to do a
1218 		 * modulus (do_div()) or not.
1219 		 */
1220 		if (hweight32(nor->page_size) == 1) {
1221 			page_offset = addr & (nor->page_size - 1);
1222 		} else {
1223 			u64 aux = addr;
1224 
1225 			page_offset = do_div(aux, nor->page_size);
1226 		}
1227 		/* the size of data remaining on the first page */
1228 		page_remain = min_t(size_t,
1229 				    nor->page_size - page_offset, len - i);
1230 
1231 #ifdef CONFIG_SPI_FLASH_BAR
1232 		ret = write_bar(nor, addr);
1233 		if (ret < 0)
1234 			return ret;
1235 #endif
1236 		write_enable(nor);
1237 		ret = nor->write(nor, addr, page_remain, buf + i);
1238 		if (ret < 0)
1239 			goto write_err;
1240 		written = ret;
1241 
1242 		ret = spi_nor_wait_till_ready(nor);
1243 		if (ret)
1244 			goto write_err;
1245 		*retlen += written;
1246 		i += written;
1247 		if (written != page_remain) {
1248 			ret = -EIO;
1249 			goto write_err;
1250 		}
1251 	}
1252 
1253 write_err:
1254 #ifdef CONFIG_SPI_FLASH_BAR
1255 	ret = clean_bar(nor);
1256 #endif
1257 	return ret;
1258 }
1259 
1260 #ifdef CONFIG_SPI_FLASH_MACRONIX
1261 /**
1262  * macronix_quad_enable() - set QE bit in Status Register.
1263  * @nor:	pointer to a 'struct spi_nor'
1264  *
1265  * Set the Quad Enable (QE) bit in the Status Register.
1266  *
1267  * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1268  *
1269  * Return: 0 on success, -errno otherwise.
1270  */
1271 static int macronix_quad_enable(struct spi_nor *nor)
1272 {
1273 	int ret, val;
1274 
1275 	val = read_sr(nor);
1276 	if (val < 0)
1277 		return val;
1278 	if (val & SR_QUAD_EN_MX)
1279 		return 0;
1280 
1281 	write_enable(nor);
1282 
1283 	write_sr(nor, val | SR_QUAD_EN_MX);
1284 
1285 	ret = spi_nor_wait_till_ready(nor);
1286 	if (ret)
1287 		return ret;
1288 
1289 	ret = read_sr(nor);
1290 	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1291 		dev_err(nor->dev, "Macronix Quad bit not set\n");
1292 		return -EINVAL;
1293 	}
1294 
1295 	return 0;
1296 }
1297 #endif
1298 
1299 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1300 /*
1301  * Write status Register and configuration register with 2 bytes
1302  * The first byte will be written to the status register, while the
1303  * second byte will be written to the configuration register.
1304  * Return negative if error occurred.
1305  */
1306 static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1307 {
1308 	int ret;
1309 
1310 	write_enable(nor);
1311 
1312 	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1313 	if (ret < 0) {
1314 		dev_dbg(nor->dev,
1315 			"error while writing configuration register\n");
1316 		return -EINVAL;
1317 	}
1318 
1319 	ret = spi_nor_wait_till_ready(nor);
1320 	if (ret) {
1321 		dev_dbg(nor->dev,
1322 			"timeout while writing configuration register\n");
1323 		return ret;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1331  * @nor:	pointer to a 'struct spi_nor'
1332  *
1333  * Set the Quad Enable (QE) bit in the Configuration Register.
1334  * This function should be used with QSPI memories supporting the Read
1335  * Configuration Register (35h) instruction.
1336  *
1337  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1338  * memories.
1339  *
1340  * Return: 0 on success, -errno otherwise.
1341  */
1342 static int spansion_read_cr_quad_enable(struct spi_nor *nor)
1343 {
1344 	u8 sr_cr[2];
1345 	int ret;
1346 
1347 	/* Check current Quad Enable bit value. */
1348 	ret = read_cr(nor);
1349 	if (ret < 0) {
1350 		dev_dbg(dev, "error while reading configuration register\n");
1351 		return -EINVAL;
1352 	}
1353 
1354 	if (ret & CR_QUAD_EN_SPAN)
1355 		return 0;
1356 
1357 	sr_cr[1] = ret | CR_QUAD_EN_SPAN;
1358 
1359 	/* Keep the current value of the Status Register. */
1360 	ret = read_sr(nor);
1361 	if (ret < 0) {
1362 		dev_dbg(dev, "error while reading status register\n");
1363 		return -EINVAL;
1364 	}
1365 	sr_cr[0] = ret;
1366 
1367 	ret = write_sr_cr(nor, sr_cr);
1368 	if (ret)
1369 		return ret;
1370 
1371 	/* Read back and check it. */
1372 	ret = read_cr(nor);
1373 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1374 		dev_dbg(nor->dev, "Spansion Quad bit not set\n");
1375 		return -EINVAL;
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1382 /**
1383  * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1384  * @nor:	pointer to a 'struct spi_nor'
1385  *
1386  * Set the Quad Enable (QE) bit in the Configuration Register.
1387  * This function should be used with QSPI memories not supporting the Read
1388  * Configuration Register (35h) instruction.
1389  *
1390  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1391  * memories.
1392  *
1393  * Return: 0 on success, -errno otherwise.
1394  */
1395 static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
1396 {
1397 	u8 sr_cr[2];
1398 	int ret;
1399 
1400 	/* Keep the current value of the Status Register. */
1401 	ret = read_sr(nor);
1402 	if (ret < 0) {
1403 		dev_dbg(nor->dev, "error while reading status register\n");
1404 		return -EINVAL;
1405 	}
1406 	sr_cr[0] = ret;
1407 	sr_cr[1] = CR_QUAD_EN_SPAN;
1408 
1409 	return write_sr_cr(nor, sr_cr);
1410 }
1411 
1412 #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
1413 #endif /* CONFIG_SPI_FLASH_SPANSION */
1414 
1415 struct spi_nor_read_command {
1416 	u8			num_mode_clocks;
1417 	u8			num_wait_states;
1418 	u8			opcode;
1419 	enum spi_nor_protocol	proto;
1420 };
1421 
1422 struct spi_nor_pp_command {
1423 	u8			opcode;
1424 	enum spi_nor_protocol	proto;
1425 };
1426 
1427 enum spi_nor_read_command_index {
1428 	SNOR_CMD_READ,
1429 	SNOR_CMD_READ_FAST,
1430 	SNOR_CMD_READ_1_1_1_DTR,
1431 
1432 	/* Dual SPI */
1433 	SNOR_CMD_READ_1_1_2,
1434 	SNOR_CMD_READ_1_2_2,
1435 	SNOR_CMD_READ_2_2_2,
1436 	SNOR_CMD_READ_1_2_2_DTR,
1437 
1438 	/* Quad SPI */
1439 	SNOR_CMD_READ_1_1_4,
1440 	SNOR_CMD_READ_1_4_4,
1441 	SNOR_CMD_READ_4_4_4,
1442 	SNOR_CMD_READ_1_4_4_DTR,
1443 
1444 	/* Octo SPI */
1445 	SNOR_CMD_READ_1_1_8,
1446 	SNOR_CMD_READ_1_8_8,
1447 	SNOR_CMD_READ_8_8_8,
1448 	SNOR_CMD_READ_1_8_8_DTR,
1449 
1450 	SNOR_CMD_READ_MAX
1451 };
1452 
1453 enum spi_nor_pp_command_index {
1454 	SNOR_CMD_PP,
1455 
1456 	/* Quad SPI */
1457 	SNOR_CMD_PP_1_1_4,
1458 	SNOR_CMD_PP_1_4_4,
1459 	SNOR_CMD_PP_4_4_4,
1460 
1461 	/* Octo SPI */
1462 	SNOR_CMD_PP_1_1_8,
1463 	SNOR_CMD_PP_1_8_8,
1464 	SNOR_CMD_PP_8_8_8,
1465 
1466 	SNOR_CMD_PP_MAX
1467 };
1468 
1469 struct spi_nor_flash_parameter {
1470 	u64				size;
1471 	u32				page_size;
1472 
1473 	struct spi_nor_hwcaps		hwcaps;
1474 	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
1475 	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];
1476 
1477 	int (*quad_enable)(struct spi_nor *nor);
1478 };
1479 
1480 #ifdef CONFIG_SPI_FLASH_SPANSION
1481 /**
1482  * spansion_quad_enable_volatile() - enable Quad I/O mode in volatile register.
1483  * @nor:	pointer to a 'struct spi_nor'
1484  *
1485  * It is recommended to update volatile registers in the field application due
1486  * to a risk of the non-volatile registers corruption by power interrupt. This
1487  * function sets Quad Enable bit in CFR1 volatile.
1488  *
1489  * Return: 0 on success, -errno otherwise.
1490  */
1491 static int spansion_quad_enable_volatile(struct spi_nor *nor)
1492 {
1493 	struct spi_mem_op op =
1494 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRAR, 1),
1495 				   SPI_MEM_OP_ADDR(nor->addr_width,
1496 						   SPINOR_REG_ADDR_CFR1V, 1),
1497 				   SPI_MEM_OP_NO_DUMMY,
1498 				   SPI_MEM_OP_DATA_OUT(1, NULL, 1));
1499 	u8 cr;
1500 	int ret;
1501 
1502 	/* Check current Quad Enable bit value. */
1503 	ret = read_cr(nor);
1504 	if (ret < 0) {
1505 		dev_dbg(nor->dev,
1506 			"error while reading configuration register\n");
1507 		return -EINVAL;
1508 	}
1509 
1510 	if (ret & CR_QUAD_EN_SPAN)
1511 		return 0;
1512 
1513 	cr = ret | CR_QUAD_EN_SPAN;
1514 
1515 	write_enable(nor);
1516 
1517 	ret = spi_nor_read_write_reg(nor, &op, &cr);
1518 
1519 	if (ret < 0) {
1520 		dev_dbg(nor->dev,
1521 			"error while writing configuration register\n");
1522 		return -EINVAL;
1523 	}
1524 
1525 	/* Read back and check it. */
1526 	ret = read_cr(nor);
1527 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1528 		dev_dbg(nor->dev, "Spansion Quad bit not set\n");
1529 		return -EINVAL;
1530 	}
1531 
1532 	return 0;
1533 }
1534 #endif
1535 
1536 static void
1537 spi_nor_set_read_settings(struct spi_nor_read_command *read,
1538 			  u8 num_mode_clocks,
1539 			  u8 num_wait_states,
1540 			  u8 opcode,
1541 			  enum spi_nor_protocol proto)
1542 {
1543 	read->num_mode_clocks = num_mode_clocks;
1544 	read->num_wait_states = num_wait_states;
1545 	read->opcode = opcode;
1546 	read->proto = proto;
1547 }
1548 
1549 static void
1550 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
1551 			u8 opcode,
1552 			enum spi_nor_protocol proto)
1553 {
1554 	pp->opcode = opcode;
1555 	pp->proto = proto;
1556 }
1557 
1558 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1559 /*
1560  * Serial Flash Discoverable Parameters (SFDP) parsing.
1561  */
1562 
1563 /**
1564  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
1565  * @nor:	pointer to a 'struct spi_nor'
1566  * @addr:	offset in the SFDP area to start reading data from
1567  * @len:	number of bytes to read
1568  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
1569  *
1570  * Whatever the actual numbers of bytes for address and dummy cycles are
1571  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
1572  * followed by a 3-byte address and 8 dummy clock cycles.
1573  *
1574  * Return: 0 on success, -errno otherwise.
1575  */
1576 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
1577 			     size_t len, void *buf)
1578 {
1579 	u8 addr_width, read_opcode, read_dummy;
1580 	enum spi_nor_protocol	read_proto;
1581 	int ret;
1582 
1583 	read_opcode = nor->read_opcode;
1584 	addr_width = nor->addr_width;
1585 	read_dummy = nor->read_dummy;
1586 	read_proto = nor->read_proto;
1587 
1588 	nor->read_opcode = SPINOR_OP_RDSFDP;
1589 	nor->read_proto = SNOR_PROTO_1_1_1;
1590 	nor->addr_width = 3;
1591 	nor->read_dummy = 8;
1592 
1593 	while (len) {
1594 		ret = nor->read(nor, addr, len, (u8 *)buf);
1595 		if (!ret || ret > len) {
1596 			ret = -EIO;
1597 			goto read_err;
1598 		}
1599 		if (ret < 0)
1600 			goto read_err;
1601 
1602 		buf += ret;
1603 		addr += ret;
1604 		len -= ret;
1605 	}
1606 	ret = 0;
1607 
1608 read_err:
1609 	nor->read_opcode = read_opcode;
1610 	nor->addr_width = addr_width;
1611 	nor->read_dummy = read_dummy;
1612 	nor->read_proto = read_proto;
1613 
1614 	return ret;
1615 }
1616 
1617 struct sfdp_parameter_header {
1618 	u8		id_lsb;
1619 	u8		minor;
1620 	u8		major;
1621 	u8		length; /* in double words */
1622 	u8		parameter_table_pointer[3]; /* byte address */
1623 	u8		id_msb;
1624 };
1625 
1626 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
1627 #define SFDP_PARAM_HEADER_PTP(p) \
1628 	(((p)->parameter_table_pointer[2] << 16) | \
1629 	 ((p)->parameter_table_pointer[1] <<  8) | \
1630 	 ((p)->parameter_table_pointer[0] <<  0))
1631 
1632 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
1633 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
1634 
1635 #define SFDP_SIGNATURE		0x50444653U
1636 #define SFDP_JESD216_MAJOR	1
1637 #define SFDP_JESD216_MINOR	0
1638 #define SFDP_JESD216A_MINOR	5
1639 #define SFDP_JESD216B_MINOR	6
1640 
1641 struct sfdp_header {
1642 	u32		signature; /* Ox50444653U <=> "SFDP" */
1643 	u8		minor;
1644 	u8		major;
1645 	u8		nph; /* 0-base number of parameter headers */
1646 	u8		unused;
1647 
1648 	/* Basic Flash Parameter Table. */
1649 	struct sfdp_parameter_header	bfpt_header;
1650 };
1651 
1652 /* Basic Flash Parameter Table */
1653 
1654 /*
1655  * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
1656  * They are indexed from 1 but C arrays are indexed from 0.
1657  */
1658 #define BFPT_DWORD(i)		((i) - 1)
1659 #define BFPT_DWORD_MAX		16
1660 
1661 /* The first version of JESB216 defined only 9 DWORDs. */
1662 #define BFPT_DWORD_MAX_JESD216			9
1663 
1664 /* 1st DWORD. */
1665 #define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
1666 #define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
1667 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
1668 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
1669 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
1670 #define BFPT_DWORD1_DTR				BIT(19)
1671 #define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
1672 #define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
1673 #define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)
1674 
1675 /* 5th DWORD. */
1676 #define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
1677 #define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)
1678 
1679 /* 11th DWORD. */
1680 #define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
1681 #define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)
1682 
1683 /* 15th DWORD. */
1684 
1685 /*
1686  * (from JESD216 rev B)
1687  * Quad Enable Requirements (QER):
1688  * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
1689  *         reads based on instruction. DQ3/HOLD# functions are hold during
1690  *         instruction phase.
1691  * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
1692  *         two data bytes where bit 1 of the second byte is one.
1693  *         [...]
1694  *         Writing only one byte to the status register has the side-effect of
1695  *         clearing status register 2, including the QE bit. The 100b code is
1696  *         used if writing one byte to the status register does not modify
1697  *         status register 2.
1698  * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
1699  *         one data byte where bit 6 is one.
1700  *         [...]
1701  * - 011b: QE is bit 7 of status register 2. It is set via Write status
1702  *         register 2 instruction 3Eh with one data byte where bit 7 is one.
1703  *         [...]
1704  *         The status register 2 is read using instruction 3Fh.
1705  * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
1706  *         two data bytes where bit 1 of the second byte is one.
1707  *         [...]
1708  *         In contrast to the 001b code, writing one byte to the status
1709  *         register does not modify status register 2.
1710  * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
1711  *         Read Status instruction 05h. Status register2 is read using
1712  *         instruction 35h. QE is set via Writ Status instruction 01h with
1713  *         two data bytes where bit 1 of the second byte is one.
1714  *         [...]
1715  */
1716 #define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
1717 #define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
1718 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
1719 #define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
1720 #define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
1721 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
1722 #define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */
1723 
1724 struct sfdp_bfpt {
1725 	u32	dwords[BFPT_DWORD_MAX];
1726 };
1727 
1728 /* Fast Read settings. */
1729 
1730 static void
1731 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
1732 				    u16 half,
1733 				    enum spi_nor_protocol proto)
1734 {
1735 	read->num_mode_clocks = (half >> 5) & 0x07;
1736 	read->num_wait_states = (half >> 0) & 0x1f;
1737 	read->opcode = (half >> 8) & 0xff;
1738 	read->proto = proto;
1739 }
1740 
1741 struct sfdp_bfpt_read {
1742 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
1743 	u32			hwcaps;
1744 
1745 	/*
1746 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
1747 	 * whether the Fast Read x-y-z command is supported.
1748 	 */
1749 	u32			supported_dword;
1750 	u32			supported_bit;
1751 
1752 	/*
1753 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
1754 	 * encodes the op code, the number of mode clocks and the number of wait
1755 	 * states to be used by Fast Read x-y-z command.
1756 	 */
1757 	u32			settings_dword;
1758 	u32			settings_shift;
1759 
1760 	/* The SPI protocol for this Fast Read x-y-z command. */
1761 	enum spi_nor_protocol	proto;
1762 };
1763 
1764 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
1765 	/* Fast Read 1-1-2 */
1766 	{
1767 		SNOR_HWCAPS_READ_1_1_2,
1768 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
1769 		BFPT_DWORD(4), 0,	/* Settings */
1770 		SNOR_PROTO_1_1_2,
1771 	},
1772 
1773 	/* Fast Read 1-2-2 */
1774 	{
1775 		SNOR_HWCAPS_READ_1_2_2,
1776 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
1777 		BFPT_DWORD(4), 16,	/* Settings */
1778 		SNOR_PROTO_1_2_2,
1779 	},
1780 
1781 	/* Fast Read 2-2-2 */
1782 	{
1783 		SNOR_HWCAPS_READ_2_2_2,
1784 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
1785 		BFPT_DWORD(6), 16,	/* Settings */
1786 		SNOR_PROTO_2_2_2,
1787 	},
1788 
1789 	/* Fast Read 1-1-4 */
1790 	{
1791 		SNOR_HWCAPS_READ_1_1_4,
1792 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
1793 		BFPT_DWORD(3), 16,	/* Settings */
1794 		SNOR_PROTO_1_1_4,
1795 	},
1796 
1797 	/* Fast Read 1-4-4 */
1798 	{
1799 		SNOR_HWCAPS_READ_1_4_4,
1800 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
1801 		BFPT_DWORD(3), 0,	/* Settings */
1802 		SNOR_PROTO_1_4_4,
1803 	},
1804 
1805 	/* Fast Read 4-4-4 */
1806 	{
1807 		SNOR_HWCAPS_READ_4_4_4,
1808 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
1809 		BFPT_DWORD(7), 16,	/* Settings */
1810 		SNOR_PROTO_4_4_4,
1811 	},
1812 };
1813 
1814 struct sfdp_bfpt_erase {
1815 	/*
1816 	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
1817 	 * op code and erase sector size to be used by Sector Erase commands.
1818 	 */
1819 	u32			dword;
1820 	u32			shift;
1821 };
1822 
1823 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
1824 	/* Erase Type 1 in DWORD8 bits[15:0] */
1825 	{BFPT_DWORD(8), 0},
1826 
1827 	/* Erase Type 2 in DWORD8 bits[31:16] */
1828 	{BFPT_DWORD(8), 16},
1829 
1830 	/* Erase Type 3 in DWORD9 bits[15:0] */
1831 	{BFPT_DWORD(9), 0},
1832 
1833 	/* Erase Type 4 in DWORD9 bits[31:16] */
1834 	{BFPT_DWORD(9), 16},
1835 };
1836 
1837 static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
1838 
1839 /**
1840  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
1841  * @nor:		pointer to a 'struct spi_nor'
1842  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
1843  *			the Basic Flash Parameter Table length and version
1844  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1845  *			filled
1846  *
1847  * The Basic Flash Parameter Table is the main and only mandatory table as
1848  * defined by the SFDP (JESD216) specification.
1849  * It provides us with the total size (memory density) of the data array and
1850  * the number of address bytes for Fast Read, Page Program and Sector Erase
1851  * commands.
1852  * For Fast READ commands, it also gives the number of mode clock cycles and
1853  * wait states (regrouped in the number of dummy clock cycles) for each
1854  * supported instruction op code.
1855  * For Page Program, the page size is now available since JESD216 rev A, however
1856  * the supported instruction op codes are still not provided.
1857  * For Sector Erase commands, this table stores the supported instruction op
1858  * codes and the associated sector sizes.
1859  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
1860  * rev A. The QER bits encode the manufacturer dependent procedure to be
1861  * executed to set the Quad Enable (QE) bit in some internal register of the
1862  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
1863  * sending any Quad SPI command to the memory. Actually, setting the QE bit
1864  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
1865  * and IO3 hence enabling 4 (Quad) I/O lines.
1866  *
1867  * Return: 0 on success, -errno otherwise.
1868  */
1869 static int spi_nor_parse_bfpt(struct spi_nor *nor,
1870 			      const struct sfdp_parameter_header *bfpt_header,
1871 			      struct spi_nor_flash_parameter *params)
1872 {
1873 	struct mtd_info *mtd = &nor->mtd;
1874 	struct sfdp_bfpt bfpt;
1875 	size_t len;
1876 	int i, cmd, err;
1877 	u32 addr;
1878 	u16 half;
1879 
1880 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
1881 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
1882 		return -EINVAL;
1883 
1884 	/* Read the Basic Flash Parameter Table. */
1885 	len = min_t(size_t, sizeof(bfpt),
1886 		    bfpt_header->length * sizeof(u32));
1887 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
1888 	memset(&bfpt, 0, sizeof(bfpt));
1889 	err = spi_nor_read_sfdp(nor,  addr, len, &bfpt);
1890 	if (err < 0)
1891 		return err;
1892 
1893 	/* Fix endianness of the BFPT DWORDs. */
1894 	for (i = 0; i < BFPT_DWORD_MAX; i++)
1895 		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
1896 
1897 	/* Number of address bytes. */
1898 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
1899 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
1900 		nor->addr_width = 3;
1901 		break;
1902 
1903 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
1904 		nor->addr_width = 4;
1905 		break;
1906 
1907 	default:
1908 		break;
1909 	}
1910 
1911 	/* Flash Memory Density (in bits). */
1912 	params->size = bfpt.dwords[BFPT_DWORD(2)];
1913 	if (params->size & BIT(31)) {
1914 		params->size &= ~BIT(31);
1915 
1916 		/*
1917 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
1918 		 * bits is unlikely to exist so this error probably means
1919 		 * the BFPT we are reading is corrupted/wrong.
1920 		 */
1921 		if (params->size > 63)
1922 			return -EINVAL;
1923 
1924 		params->size = 1ULL << params->size;
1925 	} else {
1926 		params->size++;
1927 	}
1928 	params->size >>= 3; /* Convert to bytes. */
1929 
1930 	/* Fast Read settings. */
1931 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
1932 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
1933 		struct spi_nor_read_command *read;
1934 
1935 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
1936 			params->hwcaps.mask &= ~rd->hwcaps;
1937 			continue;
1938 		}
1939 
1940 		params->hwcaps.mask |= rd->hwcaps;
1941 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
1942 		read = &params->reads[cmd];
1943 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
1944 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
1945 	}
1946 
1947 	/* Sector Erase settings. */
1948 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
1949 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
1950 		u32 erasesize;
1951 		u8 opcode;
1952 
1953 		half = bfpt.dwords[er->dword] >> er->shift;
1954 		erasesize = half & 0xff;
1955 
1956 		/* erasesize == 0 means this Erase Type is not supported. */
1957 		if (!erasesize)
1958 			continue;
1959 
1960 		erasesize = 1U << erasesize;
1961 		opcode = (half >> 8) & 0xff;
1962 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1963 		if (erasesize == SZ_4K) {
1964 			nor->erase_opcode = opcode;
1965 			mtd->erasesize = erasesize;
1966 			break;
1967 		}
1968 #endif
1969 		if (!mtd->erasesize || mtd->erasesize < erasesize) {
1970 			nor->erase_opcode = opcode;
1971 			mtd->erasesize = erasesize;
1972 		}
1973 	}
1974 
1975 	/* Stop here if not JESD216 rev A or later. */
1976 	if (bfpt_header->length < BFPT_DWORD_MAX)
1977 		return 0;
1978 
1979 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
1980 	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
1981 	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
1982 	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
1983 	params->page_size = 1U << params->page_size;
1984 
1985 	/* Quad Enable Requirements. */
1986 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
1987 	case BFPT_DWORD15_QER_NONE:
1988 		params->quad_enable = NULL;
1989 		break;
1990 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1991 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
1992 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
1993 		params->quad_enable = spansion_no_read_cr_quad_enable;
1994 		break;
1995 #endif
1996 #ifdef CONFIG_SPI_FLASH_MACRONIX
1997 	case BFPT_DWORD15_QER_SR1_BIT6:
1998 		params->quad_enable = macronix_quad_enable;
1999 		break;
2000 #endif
2001 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
2002 	case BFPT_DWORD15_QER_SR2_BIT1:
2003 		params->quad_enable = spansion_read_cr_quad_enable;
2004 		break;
2005 #endif
2006 	default:
2007 		return -EINVAL;
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 /**
2014  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
2015  * @nor:		pointer to a 'struct spi_nor'
2016  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
2017  *			filled
2018  *
2019  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
2020  * specification. This is a standard which tends to supported by almost all
2021  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
2022  * runtime the main parameters needed to perform basic SPI flash operations such
2023  * as Fast Read, Page Program or Sector Erase commands.
2024  *
2025  * Return: 0 on success, -errno otherwise.
2026  */
2027 static int spi_nor_parse_sfdp(struct spi_nor *nor,
2028 			      struct spi_nor_flash_parameter *params)
2029 {
2030 	const struct sfdp_parameter_header *param_header, *bfpt_header;
2031 	struct sfdp_parameter_header *param_headers = NULL;
2032 	struct sfdp_header header;
2033 	size_t psize;
2034 	int i, err;
2035 
2036 	/* Get the SFDP header. */
2037 	err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
2038 	if (err < 0)
2039 		return err;
2040 
2041 	/* Check the SFDP header version. */
2042 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
2043 	    header.major != SFDP_JESD216_MAJOR)
2044 		return -EINVAL;
2045 
2046 	/*
2047 	 * Verify that the first and only mandatory parameter header is a
2048 	 * Basic Flash Parameter Table header as specified in JESD216.
2049 	 */
2050 	bfpt_header = &header.bfpt_header;
2051 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
2052 	    bfpt_header->major != SFDP_JESD216_MAJOR)
2053 		return -EINVAL;
2054 
2055 	/*
2056 	 * Allocate memory then read all parameter headers with a single
2057 	 * Read SFDP command. These parameter headers will actually be parsed
2058 	 * twice: a first time to get the latest revision of the basic flash
2059 	 * parameter table, then a second time to handle the supported optional
2060 	 * tables.
2061 	 * Hence we read the parameter headers once for all to reduce the
2062 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
2063 	 * because we don't need to keep these parameter headers: the allocated
2064 	 * memory is always released with kfree() before exiting this function.
2065 	 */
2066 	if (header.nph) {
2067 		psize = header.nph * sizeof(*param_headers);
2068 
2069 		param_headers = kmalloc(psize, GFP_KERNEL);
2070 		if (!param_headers)
2071 			return -ENOMEM;
2072 
2073 		err = spi_nor_read_sfdp(nor, sizeof(header),
2074 					psize, param_headers);
2075 		if (err < 0) {
2076 			dev_err(dev, "failed to read SFDP parameter headers\n");
2077 			goto exit;
2078 		}
2079 	}
2080 
2081 	/*
2082 	 * Check other parameter headers to get the latest revision of
2083 	 * the basic flash parameter table.
2084 	 */
2085 	for (i = 0; i < header.nph; i++) {
2086 		param_header = &param_headers[i];
2087 
2088 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
2089 		    param_header->major == SFDP_JESD216_MAJOR &&
2090 		    (param_header->minor > bfpt_header->minor ||
2091 		     (param_header->minor == bfpt_header->minor &&
2092 		      param_header->length > bfpt_header->length)))
2093 			bfpt_header = param_header;
2094 	}
2095 
2096 	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
2097 	if (err)
2098 		goto exit;
2099 
2100 	/* Parse other parameter headers. */
2101 	for (i = 0; i < header.nph; i++) {
2102 		param_header = &param_headers[i];
2103 
2104 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
2105 		case SFDP_SECTOR_MAP_ID:
2106 			dev_info(dev, "non-uniform erase sector maps are not supported yet.\n");
2107 			break;
2108 
2109 		default:
2110 			break;
2111 		}
2112 
2113 		if (err)
2114 			goto exit;
2115 	}
2116 
2117 exit:
2118 	kfree(param_headers);
2119 	return err;
2120 }
2121 #else
2122 static int spi_nor_parse_sfdp(struct spi_nor *nor,
2123 			      struct spi_nor_flash_parameter *params)
2124 {
2125 	return -EINVAL;
2126 }
2127 #endif /* SPI_FLASH_SFDP_SUPPORT */
2128 
2129 static int spi_nor_init_params(struct spi_nor *nor,
2130 			       const struct flash_info *info,
2131 			       struct spi_nor_flash_parameter *params)
2132 {
2133 	/* Set legacy flash parameters as default. */
2134 	memset(params, 0, sizeof(*params));
2135 
2136 	/* Set SPI NOR sizes. */
2137 	params->size = info->sector_size * info->n_sectors;
2138 	params->page_size = info->page_size;
2139 
2140 	/* (Fast) Read settings. */
2141 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2142 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2143 				  0, 0, SPINOR_OP_READ,
2144 				  SNOR_PROTO_1_1_1);
2145 
2146 	if (!(info->flags & SPI_NOR_NO_FR)) {
2147 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2148 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2149 					  0, 8, SPINOR_OP_READ_FAST,
2150 					  SNOR_PROTO_1_1_1);
2151 #ifdef CONFIG_SPI_FLASH_SPANSION
2152 		if (cypress_s25hx_t(info))
2153 			params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
2154 #endif
2155 	}
2156 
2157 	if (info->flags & SPI_NOR_DUAL_READ) {
2158 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2159 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2160 					  0, 8, SPINOR_OP_READ_1_1_2,
2161 					  SNOR_PROTO_1_1_2);
2162 	}
2163 
2164 	if (info->flags & SPI_NOR_QUAD_READ) {
2165 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2166 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2167 					  0, 8, SPINOR_OP_READ_1_1_4,
2168 					  SNOR_PROTO_1_1_4);
2169 	}
2170 
2171 	/* Page Program settings. */
2172 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2173 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2174 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2175 
2176 	if (info->flags & SPI_NOR_QUAD_READ) {
2177 		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
2178 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
2179 					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
2180 	}
2181 
2182 	/* Select the procedure to set the Quad Enable bit. */
2183 	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
2184 				   SNOR_HWCAPS_PP_QUAD)) {
2185 		switch (JEDEC_MFR(info)) {
2186 #ifdef CONFIG_SPI_FLASH_MACRONIX
2187 		case SNOR_MFR_MACRONIX:
2188 			params->quad_enable = macronix_quad_enable;
2189 			break;
2190 #endif
2191 		case SNOR_MFR_ST:
2192 		case SNOR_MFR_MICRON:
2193 		case SNOR_MFR_ISSI:
2194 			break;
2195 #ifdef CONFIG_SPI_FLASH_SPANSION
2196 		case SNOR_MFR_CYPRESS:
2197 			if (info->id[1] == 0x2a || info->id[1] == 0x2b) {
2198 				params->quad_enable = spansion_quad_enable_volatile;
2199 			}
2200 			break;
2201 #endif
2202 
2203 		default:
2204 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
2205 			/* Kept only for backward compatibility purpose. */
2206 			params->quad_enable = spansion_read_cr_quad_enable;
2207 #endif
2208 			break;
2209 		}
2210 	}
2211 
2212 	/* Override the parameters with data read from SFDP tables. */
2213 	nor->addr_width = 0;
2214 	nor->mtd.erasesize = 0;
2215 	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2216 	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
2217 		struct spi_nor_flash_parameter sfdp_params;
2218 
2219 		memcpy(&sfdp_params, params, sizeof(sfdp_params));
2220 		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
2221 			nor->addr_width = 0;
2222 			nor->mtd.erasesize = 0;
2223 		} else {
2224 			memcpy(params, &sfdp_params, sizeof(*params));
2225 #ifdef CONFIG_SPI_FLASH_SPANSION
2226 			if (cypress_s25hx_t(info)) {
2227 				/* Default page size is 256-byte, but BFPT reports 512-byte */
2228 				params->page_size = 256;
2229 				/* Reset erase size in case it is set to 4K from BFPT */
2230 				nor->mtd.erasesize = info->sector_size ;
2231 				/* READ_FAST_4B (0Ch) requires mode cycles*/
2232 				params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
2233 				/* PP_1_1_4 is not supported */
2234 				params->hwcaps.mask &= ~SNOR_HWCAPS_PP_1_1_4;
2235 				/* Use volatile register to enable quad */
2236 				params->quad_enable = spansion_quad_enable_volatile;
2237 			}
2238 #endif
2239 		}
2240 
2241 		/* need to disable hold/reset pin feature */
2242 		if (JEDEC_MFR(info) == SNOR_MFR_ST)
2243 			params->quad_enable = micron_read_cr_quad_enable;
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2250 {
2251 	size_t i;
2252 
2253 	for (i = 0; i < size; i++)
2254 		if (table[i][0] == (int)hwcaps)
2255 			return table[i][1];
2256 
2257 	return -EINVAL;
2258 }
2259 
2260 static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2261 {
2262 	static const int hwcaps_read2cmd[][2] = {
2263 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2264 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2265 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2266 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2267 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2268 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2269 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2270 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2271 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2272 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2273 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2274 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2275 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2276 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2277 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2278 	};
2279 
2280 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2281 				  ARRAY_SIZE(hwcaps_read2cmd));
2282 }
2283 
2284 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2285 {
2286 	static const int hwcaps_pp2cmd[][2] = {
2287 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2288 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2289 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2290 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2291 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2292 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2293 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2294 	};
2295 
2296 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2297 				  ARRAY_SIZE(hwcaps_pp2cmd));
2298 }
2299 
2300 static int spi_nor_select_read(struct spi_nor *nor,
2301 			       const struct spi_nor_flash_parameter *params,
2302 			       u32 shared_hwcaps)
2303 {
2304 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2305 	const struct spi_nor_read_command *read;
2306 
2307 	if (best_match < 0)
2308 		return -EINVAL;
2309 
2310 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2311 	if (cmd < 0)
2312 		return -EINVAL;
2313 
2314 	read = &params->reads[cmd];
2315 	nor->read_opcode = read->opcode;
2316 	nor->read_proto = read->proto;
2317 
2318 	/*
2319 	 * In the spi-nor framework, we don't need to make the difference
2320 	 * between mode clock cycles and wait state clock cycles.
2321 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2322 	 * flash memory to know whether it should enter or leave its 0-4-4
2323 	 * (Continuous Read / XIP) mode.
2324 	 * eXecution In Place is out of the scope of the mtd sub-system.
2325 	 * Hence we choose to merge both mode and wait state clock cycles
2326 	 * into the so called dummy clock cycles.
2327 	 */
2328 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2329 	return 0;
2330 }
2331 
2332 static int spi_nor_select_pp(struct spi_nor *nor,
2333 			     const struct spi_nor_flash_parameter *params,
2334 			     u32 shared_hwcaps)
2335 {
2336 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2337 	const struct spi_nor_pp_command *pp;
2338 
2339 	if (best_match < 0)
2340 		return -EINVAL;
2341 
2342 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2343 	if (cmd < 0)
2344 		return -EINVAL;
2345 
2346 	pp = &params->page_programs[cmd];
2347 	nor->program_opcode = pp->opcode;
2348 	nor->write_proto = pp->proto;
2349 	return 0;
2350 }
2351 
2352 static int spi_nor_select_erase(struct spi_nor *nor,
2353 				const struct flash_info *info)
2354 {
2355 	struct mtd_info *mtd = &nor->mtd;
2356 
2357 	/* Do nothing if already configured from SFDP. */
2358 	if (mtd->erasesize)
2359 		return 0;
2360 
2361 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
2362 	/* prefer "small sector" erase if possible */
2363 	if (info->flags & SECT_4K) {
2364 		nor->erase_opcode = SPINOR_OP_BE_4K;
2365 		mtd->erasesize = 4096;
2366 	} else if (info->flags & SECT_4K_PMC) {
2367 		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
2368 		mtd->erasesize = 4096;
2369 	} else
2370 #endif
2371 	{
2372 		nor->erase_opcode = SPINOR_OP_SE;
2373 		mtd->erasesize = info->sector_size;
2374 	}
2375 	return 0;
2376 }
2377 
2378 static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
2379 			 const struct spi_nor_flash_parameter *params,
2380 			 const struct spi_nor_hwcaps *hwcaps)
2381 {
2382 	u32 ignored_mask, shared_mask;
2383 	bool enable_quad_io;
2384 	int err;
2385 
2386 	/*
2387 	 * Keep only the hardware capabilities supported by both the SPI
2388 	 * controller and the SPI flash memory.
2389 	 */
2390 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2391 
2392 	/* SPI n-n-n protocols are not supported yet. */
2393 	ignored_mask = (SNOR_HWCAPS_READ_1_1_1_DTR |
2394 			SNOR_HWCAPS_READ_1_2_2 |
2395 			SNOR_HWCAPS_READ_1_2_2_DTR |
2396 			SNOR_HWCAPS_READ_2_2_2 |
2397 			SNOR_HWCAPS_READ_1_4_4 |
2398 			SNOR_HWCAPS_READ_1_4_4_DTR |
2399 			SNOR_HWCAPS_READ_4_4_4 |
2400 			SNOR_HWCAPS_READ_8_8_8 |
2401 			SNOR_HWCAPS_PP_1_4_4 |
2402 			SNOR_HWCAPS_PP_4_4_4 |
2403 			SNOR_HWCAPS_PP_8_8_8);
2404 	if (shared_mask & ignored_mask) {
2405 		dev_dbg(nor->dev,
2406 			"SPI n-n-n protocols are not supported yet.\n");
2407 		shared_mask &= ~ignored_mask;
2408 	}
2409 
2410 	/* Select the (Fast) Read command. */
2411 	err = spi_nor_select_read(nor, params, shared_mask);
2412 	if (err) {
2413 		dev_dbg(nor->dev,
2414 			"can't select read settings supported by both the SPI controller and memory.\n");
2415 		return err;
2416 	}
2417 
2418 	/* Select the Page Program command. */
2419 	err = spi_nor_select_pp(nor, params, shared_mask);
2420 	if (err) {
2421 		dev_dbg(nor->dev,
2422 			"can't select write settings supported by both the SPI controller and memory.\n");
2423 		return err;
2424 	}
2425 
2426 	/* Select the Sector Erase command. */
2427 	err = spi_nor_select_erase(nor, info);
2428 	if (err) {
2429 		dev_dbg(nor->dev,
2430 			"can't select erase settings supported by both the SPI controller and memory.\n");
2431 		return err;
2432 	}
2433 
2434 	/* Enable Quad I/O if needed. */
2435 	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2436 			  spi_nor_get_protocol_width(nor->write_proto) == 4);
2437 	if (enable_quad_io && params->quad_enable)
2438 		nor->quad_enable = params->quad_enable;
2439 	else
2440 		nor->quad_enable = NULL;
2441 
2442 	return 0;
2443 }
2444 
2445 static int spi_nor_init(struct spi_nor *nor)
2446 {
2447 	int err;
2448 
2449 	/*
2450 	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
2451 	 * with the software protection bits set
2452 	 */
2453 	if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
2454 	    JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
2455 	    JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
2456 	    nor->info->flags & SPI_NOR_HAS_LOCK) {
2457 		write_enable(nor);
2458 		write_sr(nor, 0);
2459 		spi_nor_wait_till_ready(nor);
2460 	}
2461 
2462 	if (nor->quad_enable) {
2463 		err = nor->quad_enable(nor);
2464 		if (err) {
2465 			dev_dbg(nor->dev, "quad mode not supported\n");
2466 			return err;
2467 		}
2468 	}
2469 
2470 	if (nor->addr_width == 4 &&
2471 	    (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION)) {
2472 
2473 		/*
2474 		 * If the RESET# pin isn't hooked up properly, or the system
2475 		 * otherwise doesn't perform a reset command in the boot
2476 		 * sequence, it's impossible to 100% protect against unexpected
2477 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
2478 		 * designer) that this is bad.
2479 		 */
2480 		if (nor->flags & SNOR_F_BROKEN_RESET)
2481 			printf("enabling reset hack; may not recover from unexpected reboots\n");
2482 		set_4byte(nor, nor->info, 1);
2483 	}
2484 
2485 	return 0;
2486 }
2487 
2488 int spi_nor_scan(struct spi_nor *nor)
2489 {
2490 	struct spi_nor_flash_parameter params;
2491 	const struct flash_info *info = NULL;
2492 	struct mtd_info *mtd = &nor->mtd;
2493 	struct spi_nor_hwcaps hwcaps = {
2494 		.mask = SNOR_HWCAPS_READ |
2495 			SNOR_HWCAPS_READ_FAST |
2496 			SNOR_HWCAPS_PP,
2497 	};
2498 	struct spi_slave *spi = nor->spi;
2499 	int ret;
2500 
2501 	/* Reset SPI protocol for all commands. */
2502 	nor->reg_proto = SNOR_PROTO_1_1_1;
2503 	nor->read_proto = SNOR_PROTO_1_1_1;
2504 	nor->write_proto = SNOR_PROTO_1_1_1;
2505 	nor->read = spi_nor_read_data;
2506 	nor->write = spi_nor_write_data;
2507 	nor->read_reg = spi_nor_read_reg;
2508 	nor->write_reg = spi_nor_write_reg;
2509 
2510 	if (spi->mode & SPI_RX_QUAD) {
2511 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2512 
2513 		if (spi->mode & SPI_TX_QUAD)
2514 			hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
2515 					SNOR_HWCAPS_PP_1_1_4 |
2516 					SNOR_HWCAPS_PP_1_4_4);
2517 	} else if (spi->mode & SPI_RX_DUAL) {
2518 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2519 
2520 		if (spi->mode & SPI_TX_DUAL)
2521 			hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
2522 	}
2523 
2524 	info = spi_nor_read_id(nor);
2525 	if (IS_ERR_OR_NULL(info))
2526 		return -ENOENT;
2527 	/* Parse the Serial Flash Discoverable Parameters table. */
2528 	ret = spi_nor_init_params(nor, info, &params);
2529 	if (ret)
2530 		return ret;
2531 
2532 	if (!mtd->name)
2533 		mtd->name = info->name;
2534 	mtd->priv = nor;
2535 	mtd->type = MTD_NORFLASH;
2536 	mtd->writesize = 1;
2537 	mtd->flags = MTD_CAP_NORFLASH;
2538 	mtd->size = params.size;
2539 	mtd->_erase = spi_nor_erase;
2540 	mtd->_read = spi_nor_read;
2541 
2542 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
2543 	/* NOR protection support for STmicro/Micron chips and similar */
2544 	if (JEDEC_MFR(info) == SNOR_MFR_ST ||
2545 	    JEDEC_MFR(info) == SNOR_MFR_MICRON ||
2546 	    JEDEC_MFR(info) == SNOR_MFR_SST ||
2547 			info->flags & SPI_NOR_HAS_LOCK) {
2548 		nor->flash_lock = stm_lock;
2549 		nor->flash_unlock = stm_unlock;
2550 		nor->flash_is_locked = stm_is_locked;
2551 	}
2552 #endif
2553 
2554 #ifdef CONFIG_SPI_FLASH_SST
2555 	/* sst nor chips use AAI word program */
2556 	if (info->flags & SST_WRITE)
2557 		mtd->_write = sst_write;
2558 	else
2559 #endif
2560 		mtd->_write = spi_nor_write;
2561 
2562 	if (info->flags & USE_FSR)
2563 		nor->flags |= SNOR_F_USE_FSR;
2564 	if (info->flags & SPI_NOR_HAS_TB)
2565 		nor->flags |= SNOR_F_HAS_SR_TB;
2566 	if (info->flags & NO_CHIP_ERASE)
2567 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2568 	if (info->flags & USE_CLSR)
2569 		nor->flags |= SNOR_F_USE_CLSR;
2570 
2571 	if (info->flags & SPI_NOR_NO_ERASE)
2572 		mtd->flags |= MTD_NO_ERASE;
2573 
2574 	nor->page_size = params.page_size;
2575 	mtd->writebufsize = nor->page_size;
2576 
2577 #ifdef CONFIG_SPI_FLASH_SPANSION
2578 	if (cypress_s25hx_t(info)) {
2579 		/*
2580 		 * The Cypress Semper family has transparent ECC. To preserve
2581 		 * ECC enabled, multi-pass programming within the same 16-byte
2582 		 * ECC data unit needs to be avoided. Set writesize to the page
2583 		 * size and remove the MTD_BIT_WRITEABLE flag in mtd_info to
2584 		 * prevent multi-pass programming.
2585 		 */
2586 		nor->mtd.writesize = params.page_size;
2587 		nor->mtd.flags &= ~MTD_BIT_WRITEABLE;
2588 
2589 		/* Emulate uniform sector architecure by this erase hook*/
2590 		nor->mtd._erase = spansion_overlaid_erase;
2591 		set_4byte(nor, info, true);
2592 	}
2593 #endif
2594 
2595 	/* Some devices cannot do fast-read, no matter what DT tells us */
2596 	if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
2597 		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2598 
2599 	/*
2600 	 * Configure the SPI memory:
2601 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
2602 	 * - set the number of dummy cycles (mode cycles + wait states).
2603 	 * - set the SPI protocols for register and memory accesses.
2604 	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
2605 	 */
2606 	ret = spi_nor_setup(nor, info, &params, &hwcaps);
2607 	if (ret)
2608 		return ret;
2609 
2610 	if (nor->addr_width) {
2611 		/* already configured from SFDP */
2612 	} else if (info->addr_width) {
2613 		nor->addr_width = info->addr_width;
2614 	} else if (mtd->size > SZ_16M) {
2615 #ifndef CONFIG_SPI_FLASH_BAR
2616 		/* enable 4-byte addressing if the device exceeds 16MiB */
2617 		nor->addr_width = 4;
2618 		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
2619 		    info->flags & SPI_NOR_4B_OPCODES)
2620 			spi_nor_set_4byte_opcodes(nor, info);
2621 #else
2622 		/* Configure the BAR - discover bank cmds and read current bank */
2623 		nor->addr_width = 3;
2624 		ret = read_bar(nor, info);
2625 		if (ret < 0)
2626 			return ret;
2627 #endif
2628 	} else {
2629 		nor->addr_width = 3;
2630 	}
2631 
2632 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
2633 		dev_dbg(dev, "address width is too large: %u\n",
2634 			nor->addr_width);
2635 		return -EINVAL;
2636 	}
2637 
2638 	/* Send all the required SPI flash commands to initialize device */
2639 	nor->info = info;
2640 	ret = spi_nor_init(nor);
2641 	if (ret)
2642 		return ret;
2643 
2644 	nor->name = mtd->name;
2645 	nor->size = mtd->size;
2646 	nor->erase_size = mtd->erasesize;
2647 	nor->sector_size = mtd->erasesize;
2648 
2649 #ifndef CONFIG_SPL_BUILD
2650 	printf("SF: Detected %s with page size ", nor->name);
2651 	print_size(nor->page_size, ", erase size ");
2652 	print_size(nor->erase_size, ", total ");
2653 	print_size(nor->size, "");
2654 	puts("\n");
2655 #endif
2656 
2657 	return 0;
2658 }
2659 
2660 /* U-Boot specific functions, need to extend MTD to support these */
2661 int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor)
2662 {
2663 	int sr = read_sr(nor);
2664 
2665 	if (sr < 0)
2666 		return sr;
2667 
2668 	return (sr >> 2) & 7;
2669 }
2670