xref: /openbmc/u-boot/drivers/mtd/spi/spi-nor-core.c (revision 97989e54)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  *
9  * Synced from Linux v4.19
10  */
11 
12 #include <common.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/log2.h>
16 #include <linux/math64.h>
17 #include <linux/sizes.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/spi-nor.h>
21 #include <spi-mem.h>
22 #include <spi.h>
23 
24 #include "sf_internal.h"
25 
26 /* Define max times to check status register before we give up. */
27 
28 /*
29  * For everything but full-chip erase; probably could be much smaller, but kept
30  * around for safety for now
31  */
32 
33 #define HZ					CONFIG_SYS_HZ
34 
35 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
36 
37 static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
38 		*op, void *buf)
39 {
40 	if (op->data.dir == SPI_MEM_DATA_IN)
41 		op->data.buf.in = buf;
42 	else
43 		op->data.buf.out = buf;
44 	return spi_mem_exec_op(nor->spi, op);
45 }
46 
47 static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
48 {
49 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1),
50 					  SPI_MEM_OP_NO_ADDR,
51 					  SPI_MEM_OP_NO_DUMMY,
52 					  SPI_MEM_OP_DATA_IN(len, NULL, 1));
53 	int ret;
54 
55 	ret = spi_nor_read_write_reg(nor, &op, val);
56 	if (ret < 0)
57 		dev_dbg(&flash->spimem->spi->dev, "error %d reading %x\n", ret,
58 			code);
59 
60 	return ret;
61 }
62 
63 static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
64 {
65 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1),
66 					  SPI_MEM_OP_NO_ADDR,
67 					  SPI_MEM_OP_NO_DUMMY,
68 					  SPI_MEM_OP_DATA_OUT(len, NULL, 1));
69 
70 	return spi_nor_read_write_reg(nor, &op, buf);
71 }
72 
73 static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
74 				 u_char *buf)
75 {
76 	struct spi_mem_op op =
77 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
78 				   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
79 				   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
80 				   SPI_MEM_OP_DATA_IN(len, buf, 1));
81 	size_t remaining = len;
82 	int ret;
83 
84 	/* get transfer protocols. */
85 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
86 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
87 	op.dummy.buswidth = op.addr.buswidth;
88 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
89 
90 	/* convert the dummy cycles to the number of bytes */
91 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
92 
93 	while (remaining) {
94 		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
95 		ret = spi_mem_adjust_op_size(nor->spi, &op);
96 		if (ret)
97 			return ret;
98 
99 		ret = spi_mem_exec_op(nor->spi, &op);
100 		if (ret)
101 			return ret;
102 
103 		op.addr.val += op.data.nbytes;
104 		remaining -= op.data.nbytes;
105 		op.data.buf.in += op.data.nbytes;
106 	}
107 
108 	return len;
109 }
110 
111 static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
112 				  const u_char *buf)
113 {
114 	struct spi_mem_op op =
115 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
116 				   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
117 				   SPI_MEM_OP_NO_DUMMY,
118 				   SPI_MEM_OP_DATA_OUT(len, buf, 1));
119 	size_t remaining = len;
120 	int ret;
121 
122 	/* get transfer protocols. */
123 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
124 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
125 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
126 
127 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
128 		op.addr.nbytes = 0;
129 
130 	while (remaining) {
131 		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
132 		ret = spi_mem_adjust_op_size(nor->spi, &op);
133 		if (ret)
134 			return ret;
135 
136 		ret = spi_mem_exec_op(nor->spi, &op);
137 		if (ret)
138 			return ret;
139 
140 		op.addr.val += op.data.nbytes;
141 		remaining -= op.data.nbytes;
142 		op.data.buf.out += op.data.nbytes;
143 	}
144 
145 	return len;
146 }
147 
148 /*
149  * Read the status register, returning its value in the location
150  * Return the status register value.
151  * Returns negative if error occurred.
152  */
153 static int read_sr(struct spi_nor *nor)
154 {
155 	int ret;
156 	u8 val;
157 
158 	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
159 	if (ret < 0) {
160 		pr_debug("error %d reading SR\n", (int)ret);
161 		return ret;
162 	}
163 
164 	return val;
165 }
166 
167 /*
168  * Read the flag status register, returning its value in the location
169  * Return the status register value.
170  * Returns negative if error occurred.
171  */
172 static int read_fsr(struct spi_nor *nor)
173 {
174 	int ret;
175 	u8 val;
176 
177 	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
178 	if (ret < 0) {
179 		pr_debug("error %d reading FSR\n", ret);
180 		return ret;
181 	}
182 
183 	return val;
184 }
185 
186 /*
187  * Read configuration register, returning its value in the
188  * location. Return the configuration register value.
189  * Returns negative if error occurred.
190  */
191 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
192 static int read_cr(struct spi_nor *nor)
193 {
194 	int ret;
195 	u8 val;
196 
197 	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
198 	if (ret < 0) {
199 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
200 		return ret;
201 	}
202 
203 	return val;
204 }
205 #endif
206 
207 /*
208  * Write status register 1 byte
209  * Returns negative if error occurred.
210  */
211 static int write_sr(struct spi_nor *nor, u8 val)
212 {
213 	nor->cmd_buf[0] = val;
214 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
215 }
216 
217 /*
218  * Set write enable latch with Write Enable command.
219  * Returns negative if error occurred.
220  */
221 static int write_enable(struct spi_nor *nor)
222 {
223 	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
224 }
225 
226 /*
227  * Send write disable instruction to the chip.
228  */
229 static int write_disable(struct spi_nor *nor)
230 {
231 	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
232 }
233 
234 static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
235 {
236 	return mtd->priv;
237 }
238 
239 #ifndef CONFIG_SPI_FLASH_BAR
240 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
241 {
242 	size_t i;
243 
244 	for (i = 0; i < size; i++)
245 		if (table[i][0] == opcode)
246 			return table[i][1];
247 
248 	/* No conversion found, keep input op code. */
249 	return opcode;
250 }
251 
252 static u8 spi_nor_convert_3to4_read(u8 opcode)
253 {
254 	static const u8 spi_nor_3to4_read[][2] = {
255 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
256 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
257 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
258 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
259 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
260 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
261 
262 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
263 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
264 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
265 	};
266 
267 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
268 				      ARRAY_SIZE(spi_nor_3to4_read));
269 }
270 
271 static u8 spi_nor_convert_3to4_program(u8 opcode)
272 {
273 	static const u8 spi_nor_3to4_program[][2] = {
274 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
275 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
276 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
277 	};
278 
279 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
280 				      ARRAY_SIZE(spi_nor_3to4_program));
281 }
282 
283 static u8 spi_nor_convert_3to4_erase(u8 opcode)
284 {
285 	static const u8 spi_nor_3to4_erase[][2] = {
286 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
287 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
288 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
289 	};
290 
291 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
292 				      ARRAY_SIZE(spi_nor_3to4_erase));
293 }
294 
295 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
296 				      const struct flash_info *info)
297 {
298 	/* Do some manufacturer fixups first */
299 	switch (JEDEC_MFR(info)) {
300 	case SNOR_MFR_SPANSION:
301 		/* No small sector erase for 4-byte command set */
302 		nor->erase_opcode = SPINOR_OP_SE;
303 		nor->mtd.erasesize = info->sector_size;
304 		break;
305 
306 	default:
307 		break;
308 	}
309 
310 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
311 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
312 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
313 }
314 #endif /* !CONFIG_SPI_FLASH_BAR */
315 
316 /* Enable/disable 4-byte addressing mode. */
317 static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
318 		     int enable)
319 {
320 	int status;
321 	bool need_wren = false;
322 	u8 cmd;
323 
324 	switch (JEDEC_MFR(info)) {
325 	case SNOR_MFR_ST:
326 	case SNOR_MFR_MICRON:
327 		/* Some Micron need WREN command; all will accept it */
328 		need_wren = true;
329 	case SNOR_MFR_MACRONIX:
330 	case SNOR_MFR_WINBOND:
331 	case SNOR_MFR_GIGADEVICE:
332 		if (need_wren)
333 			write_enable(nor);
334 
335 		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
336 		status = nor->write_reg(nor, cmd, NULL, 0);
337 		if (need_wren)
338 			write_disable(nor);
339 
340 		if (!status && !enable &&
341 		    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
342 			/*
343 			 * On Winbond W25Q256FV, leaving 4byte mode causes
344 			 * the Extended Address Register to be set to 1, so all
345 			 * 3-byte-address reads come from the second 16M.
346 			 * We must clear the register to enable normal behavior.
347 			 */
348 			write_enable(nor);
349 			nor->cmd_buf[0] = 0;
350 			nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
351 			write_disable(nor);
352 		}
353 
354 		return status;
355 	default:
356 		/* Spansion style */
357 		nor->cmd_buf[0] = enable << 7;
358 		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
359 	}
360 }
361 
362 static int spi_nor_sr_ready(struct spi_nor *nor)
363 {
364 	int sr = read_sr(nor);
365 
366 	if (sr < 0)
367 		return sr;
368 
369 	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
370 		if (sr & SR_E_ERR)
371 			dev_dbg(nor->dev, "Erase Error occurred\n");
372 		else
373 			dev_dbg(nor->dev, "Programming Error occurred\n");
374 
375 		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
376 		return -EIO;
377 	}
378 
379 	return !(sr & SR_WIP);
380 }
381 
382 static int spi_nor_fsr_ready(struct spi_nor *nor)
383 {
384 	int fsr = read_fsr(nor);
385 
386 	if (fsr < 0)
387 		return fsr;
388 
389 	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
390 		if (fsr & FSR_E_ERR)
391 			dev_dbg(nor->dev, "Erase operation failed.\n");
392 		else
393 			dev_dbg(nor->dev, "Program operation failed.\n");
394 
395 		if (fsr & FSR_PT_ERR)
396 			dev_dbg(nor->dev,
397 				"Attempted to modify a protected sector.\n");
398 
399 		nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
400 		return -EIO;
401 	}
402 
403 	return fsr & FSR_READY;
404 }
405 
406 static int spi_nor_ready(struct spi_nor *nor)
407 {
408 	int sr, fsr;
409 
410 	sr = spi_nor_sr_ready(nor);
411 	if (sr < 0)
412 		return sr;
413 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
414 	if (fsr < 0)
415 		return fsr;
416 	return sr && fsr;
417 }
418 
419 /*
420  * Service routine to read status register until ready, or timeout occurs.
421  * Returns non-zero if error.
422  */
423 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
424 						unsigned long timeout)
425 {
426 	unsigned long timebase;
427 	int ret;
428 
429 	timebase = get_timer(0);
430 
431 	while (get_timer(timebase) < timeout) {
432 		ret = spi_nor_ready(nor);
433 		if (ret < 0)
434 			return ret;
435 		if (ret)
436 			return 0;
437 	}
438 
439 	dev_err(nor->dev, "flash operation timed out\n");
440 
441 	return -ETIMEDOUT;
442 }
443 
444 static int spi_nor_wait_till_ready(struct spi_nor *nor)
445 {
446 	return spi_nor_wait_till_ready_with_timeout(nor,
447 						    DEFAULT_READY_WAIT_JIFFIES);
448 }
449 
450 #ifdef CONFIG_SPI_FLASH_BAR
451 /*
452  * This "clean_bar" is necessary in a situation when one was accessing
453  * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
454  *
455  * After it the BA24 bit shall be cleared to allow access to correct
456  * memory region after SW reset (by calling "reset" command).
457  *
458  * Otherwise, the BA24 bit may be left set and then after reset, the
459  * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
460  */
461 static int clean_bar(struct spi_nor *nor)
462 {
463 	u8 cmd, bank_sel = 0;
464 
465 	if (nor->bank_curr == 0)
466 		return 0;
467 	cmd = nor->bank_write_cmd;
468 	nor->bank_curr = 0;
469 	write_enable(nor);
470 
471 	return nor->write_reg(nor, cmd, &bank_sel, 1);
472 }
473 
474 static int write_bar(struct spi_nor *nor, u32 offset)
475 {
476 	u8 cmd, bank_sel;
477 	int ret;
478 
479 	bank_sel = offset / SZ_16M;
480 	if (bank_sel == nor->bank_curr)
481 		goto bar_end;
482 
483 	cmd = nor->bank_write_cmd;
484 	write_enable(nor);
485 	ret = nor->write_reg(nor, cmd, &bank_sel, 1);
486 	if (ret < 0) {
487 		debug("SF: fail to write bank register\n");
488 		return ret;
489 	}
490 
491 bar_end:
492 	nor->bank_curr = bank_sel;
493 	return nor->bank_curr;
494 }
495 
496 static int read_bar(struct spi_nor *nor, const struct flash_info *info)
497 {
498 	u8 curr_bank = 0;
499 	int ret;
500 
501 	switch (JEDEC_MFR(info)) {
502 	case SNOR_MFR_SPANSION:
503 		nor->bank_read_cmd = SPINOR_OP_BRRD;
504 		nor->bank_write_cmd = SPINOR_OP_BRWR;
505 		break;
506 	default:
507 		nor->bank_read_cmd = SPINOR_OP_RDEAR;
508 		nor->bank_write_cmd = SPINOR_OP_WREAR;
509 	}
510 
511 	ret = nor->read_reg(nor, nor->bank_read_cmd,
512 				    &curr_bank, 1);
513 	if (ret) {
514 		debug("SF: fail to read bank addr register\n");
515 		return ret;
516 	}
517 	nor->bank_curr = curr_bank;
518 
519 	return 0;
520 }
521 #endif
522 
523 /*
524  * Initiate the erasure of a single sector
525  */
526 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
527 {
528 	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
529 	int i;
530 
531 	if (nor->erase)
532 		return nor->erase(nor, addr);
533 
534 	/*
535 	 * Default implementation, if driver doesn't have a specialized HW
536 	 * control
537 	 */
538 	for (i = nor->addr_width - 1; i >= 0; i--) {
539 		buf[i] = addr & 0xff;
540 		addr >>= 8;
541 	}
542 
543 	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
544 }
545 
546 /*
547  * Erase an address range on the nor chip.  The address range may extend
548  * one or more erase sectors.  Return an error is there is a problem erasing.
549  */
550 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
551 {
552 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
553 	u32 addr, len, rem;
554 	int ret;
555 
556 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
557 		(long long)instr->len);
558 
559 	div_u64_rem(instr->len, mtd->erasesize, &rem);
560 	if (rem)
561 		return -EINVAL;
562 
563 	addr = instr->addr;
564 	len = instr->len;
565 
566 	while (len) {
567 #ifdef CONFIG_SPI_FLASH_BAR
568 		ret = write_bar(nor, addr);
569 		if (ret < 0)
570 			return ret;
571 #endif
572 		write_enable(nor);
573 
574 		ret = spi_nor_erase_sector(nor, addr);
575 		if (ret)
576 			goto erase_err;
577 
578 		addr += mtd->erasesize;
579 		len -= mtd->erasesize;
580 
581 		ret = spi_nor_wait_till_ready(nor);
582 		if (ret)
583 			goto erase_err;
584 	}
585 
586 erase_err:
587 #ifdef CONFIG_SPI_FLASH_BAR
588 	ret = clean_bar(nor);
589 #endif
590 	write_disable(nor);
591 
592 	return ret;
593 }
594 
595 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
596 /* Write status register and ensure bits in mask match written values */
597 static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
598 {
599 	int ret;
600 
601 	write_enable(nor);
602 	ret = write_sr(nor, status_new);
603 	if (ret)
604 		return ret;
605 
606 	ret = spi_nor_wait_till_ready(nor);
607 	if (ret)
608 		return ret;
609 
610 	ret = read_sr(nor);
611 	if (ret < 0)
612 		return ret;
613 
614 	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
615 }
616 
617 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
618 				 uint64_t *len)
619 {
620 	struct mtd_info *mtd = &nor->mtd;
621 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
622 	int shift = ffs(mask) - 1;
623 	int pow;
624 
625 	if (!(sr & mask)) {
626 		/* No protection */
627 		*ofs = 0;
628 		*len = 0;
629 	} else {
630 		pow = ((sr & mask) ^ mask) >> shift;
631 		*len = mtd->size >> pow;
632 		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
633 			*ofs = 0;
634 		else
635 			*ofs = mtd->size - *len;
636 	}
637 }
638 
639 /*
640  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
641  * @locked is false); 0 otherwise
642  */
643 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
644 				    u8 sr, bool locked)
645 {
646 	loff_t lock_offs;
647 	uint64_t lock_len;
648 
649 	if (!len)
650 		return 1;
651 
652 	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
653 
654 	if (locked)
655 		/* Requested range is a sub-range of locked range */
656 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
657 	else
658 		/* Requested range does not overlap with locked range */
659 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
660 }
661 
662 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
663 			    u8 sr)
664 {
665 	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
666 }
667 
668 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
669 			      u8 sr)
670 {
671 	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
672 }
673 
674 /*
675  * Lock a region of the flash. Compatible with ST Micro and similar flash.
676  * Supports the block protection bits BP{0,1,2} in the status register
677  * (SR). Does not support these features found in newer SR bitfields:
678  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
679  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
680  *
681  * Support for the following is provided conditionally for some flash:
682  *   - TB: top/bottom protect
683  *
684  * Sample table portion for 8MB flash (Winbond w25q64fw):
685  *
686  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
687  *  --------------------------------------------------------------------------
688  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
689  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
690  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
691  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
692  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
693  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
694  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
695  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
696  *  ------|-------|-------|-------|-------|---------------|-------------------
697  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
698  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
699  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
700  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
701  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
702  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
703  *
704  * Returns negative on errors, 0 on success.
705  */
706 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
707 {
708 	struct mtd_info *mtd = &nor->mtd;
709 	int status_old, status_new;
710 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
711 	u8 shift = ffs(mask) - 1, pow, val;
712 	loff_t lock_len;
713 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
714 	bool use_top;
715 
716 	status_old = read_sr(nor);
717 	if (status_old < 0)
718 		return status_old;
719 
720 	/* If nothing in our range is unlocked, we don't need to do anything */
721 	if (stm_is_locked_sr(nor, ofs, len, status_old))
722 		return 0;
723 
724 	/* If anything below us is unlocked, we can't use 'bottom' protection */
725 	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
726 		can_be_bottom = false;
727 
728 	/* If anything above us is unlocked, we can't use 'top' protection */
729 	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
730 			      status_old))
731 		can_be_top = false;
732 
733 	if (!can_be_bottom && !can_be_top)
734 		return -EINVAL;
735 
736 	/* Prefer top, if both are valid */
737 	use_top = can_be_top;
738 
739 	/* lock_len: length of region that should end up locked */
740 	if (use_top)
741 		lock_len = mtd->size - ofs;
742 	else
743 		lock_len = ofs + len;
744 
745 	/*
746 	 * Need smallest pow such that:
747 	 *
748 	 *   1 / (2^pow) <= (len / size)
749 	 *
750 	 * so (assuming power-of-2 size) we do:
751 	 *
752 	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
753 	 */
754 	pow = ilog2(mtd->size) - ilog2(lock_len);
755 	val = mask - (pow << shift);
756 	if (val & ~mask)
757 		return -EINVAL;
758 	/* Don't "lock" with no region! */
759 	if (!(val & mask))
760 		return -EINVAL;
761 
762 	status_new = (status_old & ~mask & ~SR_TB) | val;
763 
764 	/* Disallow further writes if WP pin is asserted */
765 	status_new |= SR_SRWD;
766 
767 	if (!use_top)
768 		status_new |= SR_TB;
769 
770 	/* Don't bother if they're the same */
771 	if (status_new == status_old)
772 		return 0;
773 
774 	/* Only modify protection if it will not unlock other areas */
775 	if ((status_new & mask) < (status_old & mask))
776 		return -EINVAL;
777 
778 	return write_sr_and_check(nor, status_new, mask);
779 }
780 
781 /*
782  * Unlock a region of the flash. See stm_lock() for more info
783  *
784  * Returns negative on errors, 0 on success.
785  */
786 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
787 {
788 	struct mtd_info *mtd = &nor->mtd;
789 	int status_old, status_new;
790 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
791 	u8 shift = ffs(mask) - 1, pow, val;
792 	loff_t lock_len;
793 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
794 	bool use_top;
795 
796 	status_old = read_sr(nor);
797 	if (status_old < 0)
798 		return status_old;
799 
800 	/* If nothing in our range is locked, we don't need to do anything */
801 	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
802 		return 0;
803 
804 	/* If anything below us is locked, we can't use 'top' protection */
805 	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
806 		can_be_top = false;
807 
808 	/* If anything above us is locked, we can't use 'bottom' protection */
809 	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
810 				status_old))
811 		can_be_bottom = false;
812 
813 	if (!can_be_bottom && !can_be_top)
814 		return -EINVAL;
815 
816 	/* Prefer top, if both are valid */
817 	use_top = can_be_top;
818 
819 	/* lock_len: length of region that should remain locked */
820 	if (use_top)
821 		lock_len = mtd->size - (ofs + len);
822 	else
823 		lock_len = ofs;
824 
825 	/*
826 	 * Need largest pow such that:
827 	 *
828 	 *   1 / (2^pow) >= (len / size)
829 	 *
830 	 * so (assuming power-of-2 size) we do:
831 	 *
832 	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
833 	 */
834 	pow = ilog2(mtd->size) - order_base_2(lock_len);
835 	if (lock_len == 0) {
836 		val = 0; /* fully unlocked */
837 	} else {
838 		val = mask - (pow << shift);
839 		/* Some power-of-two sizes are not supported */
840 		if (val & ~mask)
841 			return -EINVAL;
842 	}
843 
844 	status_new = (status_old & ~mask & ~SR_TB) | val;
845 
846 	/* Don't protect status register if we're fully unlocked */
847 	if (lock_len == 0)
848 		status_new &= ~SR_SRWD;
849 
850 	if (!use_top)
851 		status_new |= SR_TB;
852 
853 	/* Don't bother if they're the same */
854 	if (status_new == status_old)
855 		return 0;
856 
857 	/* Only modify protection if it will not lock other areas */
858 	if ((status_new & mask) > (status_old & mask))
859 		return -EINVAL;
860 
861 	return write_sr_and_check(nor, status_new, mask);
862 }
863 
864 /*
865  * Check if a region of the flash is (completely) locked. See stm_lock() for
866  * more info.
867  *
868  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
869  * negative on errors.
870  */
871 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
872 {
873 	int status;
874 
875 	status = read_sr(nor);
876 	if (status < 0)
877 		return status;
878 
879 	return stm_is_locked_sr(nor, ofs, len, status);
880 }
881 #endif /* CONFIG_SPI_FLASH_STMICRO */
882 
883 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
884 {
885 	int			tmp;
886 	u8			id[SPI_NOR_MAX_ID_LEN];
887 	const struct flash_info	*info;
888 
889 	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
890 	if (tmp < 0) {
891 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
892 		return ERR_PTR(tmp);
893 	}
894 
895 	info = spi_nor_ids;
896 	for (; info->name; info++) {
897 		if (info->id_len) {
898 			if (!memcmp(info->id, id, info->id_len))
899 				return info;
900 		}
901 	}
902 
903 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
904 		id[0], id[1], id[2]);
905 	return ERR_PTR(-ENODEV);
906 }
907 
908 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
909 			size_t *retlen, u_char *buf)
910 {
911 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
912 	int ret;
913 
914 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
915 
916 	while (len) {
917 		loff_t addr = from;
918 		size_t read_len = len;
919 
920 #ifdef CONFIG_SPI_FLASH_BAR
921 		u32 remain_len;
922 
923 		ret = write_bar(nor, addr);
924 		if (ret < 0)
925 			return log_ret(ret);
926 		remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
927 
928 		if (len < remain_len)
929 			read_len = len;
930 		else
931 			read_len = remain_len;
932 #endif
933 
934 		ret = nor->read(nor, addr, read_len, buf);
935 		if (ret == 0) {
936 			/* We shouldn't see 0-length reads */
937 			ret = -EIO;
938 			goto read_err;
939 		}
940 		if (ret < 0)
941 			goto read_err;
942 
943 		*retlen += ret;
944 		buf += ret;
945 		from += ret;
946 		len -= ret;
947 	}
948 	ret = 0;
949 
950 read_err:
951 #ifdef CONFIG_SPI_FLASH_BAR
952 	ret = clean_bar(nor);
953 #endif
954 	return ret;
955 }
956 
957 #ifdef CONFIG_SPI_FLASH_SST
958 static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
959 				 size_t *retlen, const u_char *buf)
960 {
961 	size_t actual;
962 	int ret = 0;
963 
964 	for (actual = 0; actual < len; actual++) {
965 		nor->program_opcode = SPINOR_OP_BP;
966 
967 		write_enable(nor);
968 		/* write one byte. */
969 		ret = nor->write(nor, to, 1, buf + actual);
970 		if (ret < 0)
971 			goto sst_write_err;
972 		ret = spi_nor_wait_till_ready(nor);
973 		if (ret)
974 			goto sst_write_err;
975 		to++;
976 	}
977 
978 sst_write_err:
979 	write_disable(nor);
980 	return ret;
981 }
982 
983 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
984 		     size_t *retlen, const u_char *buf)
985 {
986 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
987 	struct spi_slave *spi = nor->spi;
988 	size_t actual;
989 	int ret;
990 
991 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
992 	if (spi->mode & SPI_TX_BYTE)
993 		return sst_write_byteprogram(nor, to, len, retlen, buf);
994 
995 	write_enable(nor);
996 
997 	nor->sst_write_second = false;
998 
999 	actual = to % 2;
1000 	/* Start write from odd address. */
1001 	if (actual) {
1002 		nor->program_opcode = SPINOR_OP_BP;
1003 
1004 		/* write one byte. */
1005 		ret = nor->write(nor, to, 1, buf);
1006 		if (ret < 0)
1007 			goto sst_write_err;
1008 		ret = spi_nor_wait_till_ready(nor);
1009 		if (ret)
1010 			goto sst_write_err;
1011 	}
1012 	to += actual;
1013 
1014 	/* Write out most of the data here. */
1015 	for (; actual < len - 1; actual += 2) {
1016 		nor->program_opcode = SPINOR_OP_AAI_WP;
1017 
1018 		/* write two bytes. */
1019 		ret = nor->write(nor, to, 2, buf + actual);
1020 		if (ret < 0)
1021 			goto sst_write_err;
1022 		ret = spi_nor_wait_till_ready(nor);
1023 		if (ret)
1024 			goto sst_write_err;
1025 		to += 2;
1026 		nor->sst_write_second = true;
1027 	}
1028 	nor->sst_write_second = false;
1029 
1030 	write_disable(nor);
1031 	ret = spi_nor_wait_till_ready(nor);
1032 	if (ret)
1033 		goto sst_write_err;
1034 
1035 	/* Write out trailing byte if it exists. */
1036 	if (actual != len) {
1037 		write_enable(nor);
1038 
1039 		nor->program_opcode = SPINOR_OP_BP;
1040 		ret = nor->write(nor, to, 1, buf + actual);
1041 		if (ret < 0)
1042 			goto sst_write_err;
1043 		ret = spi_nor_wait_till_ready(nor);
1044 		if (ret)
1045 			goto sst_write_err;
1046 		write_disable(nor);
1047 		actual += 1;
1048 	}
1049 sst_write_err:
1050 	*retlen += actual;
1051 	return ret;
1052 }
1053 #endif
1054 /*
1055  * Write an address range to the nor chip.  Data must be written in
1056  * FLASH_PAGESIZE chunks.  The address range may be any size provided
1057  * it is within the physical boundaries.
1058  */
1059 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1060 	size_t *retlen, const u_char *buf)
1061 {
1062 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1063 	size_t page_offset, page_remain, i;
1064 	ssize_t ret;
1065 
1066 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1067 
1068 	for (i = 0; i < len; ) {
1069 		ssize_t written;
1070 		loff_t addr = to + i;
1071 
1072 		/*
1073 		 * If page_size is a power of two, the offset can be quickly
1074 		 * calculated with an AND operation. On the other cases we
1075 		 * need to do a modulus operation (more expensive).
1076 		 * Power of two numbers have only one bit set and we can use
1077 		 * the instruction hweight32 to detect if we need to do a
1078 		 * modulus (do_div()) or not.
1079 		 */
1080 		if (hweight32(nor->page_size) == 1) {
1081 			page_offset = addr & (nor->page_size - 1);
1082 		} else {
1083 			u64 aux = addr;
1084 
1085 			page_offset = do_div(aux, nor->page_size);
1086 		}
1087 		/* the size of data remaining on the first page */
1088 		page_remain = min_t(size_t,
1089 				    nor->page_size - page_offset, len - i);
1090 
1091 #ifdef CONFIG_SPI_FLASH_BAR
1092 		ret = write_bar(nor, addr);
1093 		if (ret < 0)
1094 			return ret;
1095 #endif
1096 		write_enable(nor);
1097 		ret = nor->write(nor, addr, page_remain, buf + i);
1098 		if (ret < 0)
1099 			goto write_err;
1100 		written = ret;
1101 
1102 		ret = spi_nor_wait_till_ready(nor);
1103 		if (ret)
1104 			goto write_err;
1105 		*retlen += written;
1106 		i += written;
1107 		if (written != page_remain) {
1108 			ret = -EIO;
1109 			goto write_err;
1110 		}
1111 	}
1112 
1113 write_err:
1114 #ifdef CONFIG_SPI_FLASH_BAR
1115 	ret = clean_bar(nor);
1116 #endif
1117 	return ret;
1118 }
1119 
1120 #ifdef CONFIG_SPI_FLASH_MACRONIX
1121 /**
1122  * macronix_quad_enable() - set QE bit in Status Register.
1123  * @nor:	pointer to a 'struct spi_nor'
1124  *
1125  * Set the Quad Enable (QE) bit in the Status Register.
1126  *
1127  * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1128  *
1129  * Return: 0 on success, -errno otherwise.
1130  */
1131 static int macronix_quad_enable(struct spi_nor *nor)
1132 {
1133 	int ret, val;
1134 
1135 	val = read_sr(nor);
1136 	if (val < 0)
1137 		return val;
1138 	if (val & SR_QUAD_EN_MX)
1139 		return 0;
1140 
1141 	write_enable(nor);
1142 
1143 	write_sr(nor, val | SR_QUAD_EN_MX);
1144 
1145 	ret = spi_nor_wait_till_ready(nor);
1146 	if (ret)
1147 		return ret;
1148 
1149 	ret = read_sr(nor);
1150 	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1151 		dev_err(nor->dev, "Macronix Quad bit not set\n");
1152 		return -EINVAL;
1153 	}
1154 
1155 	return 0;
1156 }
1157 #endif
1158 
1159 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1160 /*
1161  * Write status Register and configuration register with 2 bytes
1162  * The first byte will be written to the status register, while the
1163  * second byte will be written to the configuration register.
1164  * Return negative if error occurred.
1165  */
1166 static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1167 {
1168 	int ret;
1169 
1170 	write_enable(nor);
1171 
1172 	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1173 	if (ret < 0) {
1174 		dev_dbg(nor->dev,
1175 			"error while writing configuration register\n");
1176 		return -EINVAL;
1177 	}
1178 
1179 	ret = spi_nor_wait_till_ready(nor);
1180 	if (ret) {
1181 		dev_dbg(nor->dev,
1182 			"timeout while writing configuration register\n");
1183 		return ret;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 /**
1190  * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1191  * @nor:	pointer to a 'struct spi_nor'
1192  *
1193  * Set the Quad Enable (QE) bit in the Configuration Register.
1194  * This function should be used with QSPI memories supporting the Read
1195  * Configuration Register (35h) instruction.
1196  *
1197  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1198  * memories.
1199  *
1200  * Return: 0 on success, -errno otherwise.
1201  */
1202 static int spansion_read_cr_quad_enable(struct spi_nor *nor)
1203 {
1204 	u8 sr_cr[2];
1205 	int ret;
1206 
1207 	/* Check current Quad Enable bit value. */
1208 	ret = read_cr(nor);
1209 	if (ret < 0) {
1210 		dev_dbg(dev, "error while reading configuration register\n");
1211 		return -EINVAL;
1212 	}
1213 
1214 	if (ret & CR_QUAD_EN_SPAN)
1215 		return 0;
1216 
1217 	sr_cr[1] = ret | CR_QUAD_EN_SPAN;
1218 
1219 	/* Keep the current value of the Status Register. */
1220 	ret = read_sr(nor);
1221 	if (ret < 0) {
1222 		dev_dbg(dev, "error while reading status register\n");
1223 		return -EINVAL;
1224 	}
1225 	sr_cr[0] = ret;
1226 
1227 	ret = write_sr_cr(nor, sr_cr);
1228 	if (ret)
1229 		return ret;
1230 
1231 	/* Read back and check it. */
1232 	ret = read_cr(nor);
1233 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1234 		dev_dbg(nor->dev, "Spansion Quad bit not set\n");
1235 		return -EINVAL;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1242 /**
1243  * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1244  * @nor:	pointer to a 'struct spi_nor'
1245  *
1246  * Set the Quad Enable (QE) bit in the Configuration Register.
1247  * This function should be used with QSPI memories not supporting the Read
1248  * Configuration Register (35h) instruction.
1249  *
1250  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1251  * memories.
1252  *
1253  * Return: 0 on success, -errno otherwise.
1254  */
1255 static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
1256 {
1257 	u8 sr_cr[2];
1258 	int ret;
1259 
1260 	/* Keep the current value of the Status Register. */
1261 	ret = read_sr(nor);
1262 	if (ret < 0) {
1263 		dev_dbg(nor->dev, "error while reading status register\n");
1264 		return -EINVAL;
1265 	}
1266 	sr_cr[0] = ret;
1267 	sr_cr[1] = CR_QUAD_EN_SPAN;
1268 
1269 	return write_sr_cr(nor, sr_cr);
1270 }
1271 
1272 #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
1273 #endif /* CONFIG_SPI_FLASH_SPANSION */
1274 
1275 struct spi_nor_read_command {
1276 	u8			num_mode_clocks;
1277 	u8			num_wait_states;
1278 	u8			opcode;
1279 	enum spi_nor_protocol	proto;
1280 };
1281 
1282 struct spi_nor_pp_command {
1283 	u8			opcode;
1284 	enum spi_nor_protocol	proto;
1285 };
1286 
1287 enum spi_nor_read_command_index {
1288 	SNOR_CMD_READ,
1289 	SNOR_CMD_READ_FAST,
1290 	SNOR_CMD_READ_1_1_1_DTR,
1291 
1292 	/* Dual SPI */
1293 	SNOR_CMD_READ_1_1_2,
1294 	SNOR_CMD_READ_1_2_2,
1295 	SNOR_CMD_READ_2_2_2,
1296 	SNOR_CMD_READ_1_2_2_DTR,
1297 
1298 	/* Quad SPI */
1299 	SNOR_CMD_READ_1_1_4,
1300 	SNOR_CMD_READ_1_4_4,
1301 	SNOR_CMD_READ_4_4_4,
1302 	SNOR_CMD_READ_1_4_4_DTR,
1303 
1304 	/* Octo SPI */
1305 	SNOR_CMD_READ_1_1_8,
1306 	SNOR_CMD_READ_1_8_8,
1307 	SNOR_CMD_READ_8_8_8,
1308 	SNOR_CMD_READ_1_8_8_DTR,
1309 
1310 	SNOR_CMD_READ_MAX
1311 };
1312 
1313 enum spi_nor_pp_command_index {
1314 	SNOR_CMD_PP,
1315 
1316 	/* Quad SPI */
1317 	SNOR_CMD_PP_1_1_4,
1318 	SNOR_CMD_PP_1_4_4,
1319 	SNOR_CMD_PP_4_4_4,
1320 
1321 	/* Octo SPI */
1322 	SNOR_CMD_PP_1_1_8,
1323 	SNOR_CMD_PP_1_8_8,
1324 	SNOR_CMD_PP_8_8_8,
1325 
1326 	SNOR_CMD_PP_MAX
1327 };
1328 
1329 struct spi_nor_flash_parameter {
1330 	u64				size;
1331 	u32				page_size;
1332 
1333 	struct spi_nor_hwcaps		hwcaps;
1334 	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
1335 	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];
1336 
1337 	int (*quad_enable)(struct spi_nor *nor);
1338 };
1339 
1340 static void
1341 spi_nor_set_read_settings(struct spi_nor_read_command *read,
1342 			  u8 num_mode_clocks,
1343 			  u8 num_wait_states,
1344 			  u8 opcode,
1345 			  enum spi_nor_protocol proto)
1346 {
1347 	read->num_mode_clocks = num_mode_clocks;
1348 	read->num_wait_states = num_wait_states;
1349 	read->opcode = opcode;
1350 	read->proto = proto;
1351 }
1352 
1353 static void
1354 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
1355 			u8 opcode,
1356 			enum spi_nor_protocol proto)
1357 {
1358 	pp->opcode = opcode;
1359 	pp->proto = proto;
1360 }
1361 
1362 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1363 /*
1364  * Serial Flash Discoverable Parameters (SFDP) parsing.
1365  */
1366 
1367 /**
1368  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
1369  * @nor:	pointer to a 'struct spi_nor'
1370  * @addr:	offset in the SFDP area to start reading data from
1371  * @len:	number of bytes to read
1372  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
1373  *
1374  * Whatever the actual numbers of bytes for address and dummy cycles are
1375  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
1376  * followed by a 3-byte address and 8 dummy clock cycles.
1377  *
1378  * Return: 0 on success, -errno otherwise.
1379  */
1380 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
1381 			     size_t len, void *buf)
1382 {
1383 	u8 addr_width, read_opcode, read_dummy;
1384 	int ret;
1385 
1386 	read_opcode = nor->read_opcode;
1387 	addr_width = nor->addr_width;
1388 	read_dummy = nor->read_dummy;
1389 
1390 	nor->read_opcode = SPINOR_OP_RDSFDP;
1391 	nor->addr_width = 3;
1392 	nor->read_dummy = 8;
1393 
1394 	while (len) {
1395 		ret = nor->read(nor, addr, len, (u8 *)buf);
1396 		if (!ret || ret > len) {
1397 			ret = -EIO;
1398 			goto read_err;
1399 		}
1400 		if (ret < 0)
1401 			goto read_err;
1402 
1403 		buf += ret;
1404 		addr += ret;
1405 		len -= ret;
1406 	}
1407 	ret = 0;
1408 
1409 read_err:
1410 	nor->read_opcode = read_opcode;
1411 	nor->addr_width = addr_width;
1412 	nor->read_dummy = read_dummy;
1413 
1414 	return ret;
1415 }
1416 
1417 struct sfdp_parameter_header {
1418 	u8		id_lsb;
1419 	u8		minor;
1420 	u8		major;
1421 	u8		length; /* in double words */
1422 	u8		parameter_table_pointer[3]; /* byte address */
1423 	u8		id_msb;
1424 };
1425 
1426 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
1427 #define SFDP_PARAM_HEADER_PTP(p) \
1428 	(((p)->parameter_table_pointer[2] << 16) | \
1429 	 ((p)->parameter_table_pointer[1] <<  8) | \
1430 	 ((p)->parameter_table_pointer[0] <<  0))
1431 
1432 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
1433 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
1434 
1435 #define SFDP_SIGNATURE		0x50444653U
1436 #define SFDP_JESD216_MAJOR	1
1437 #define SFDP_JESD216_MINOR	0
1438 #define SFDP_JESD216A_MINOR	5
1439 #define SFDP_JESD216B_MINOR	6
1440 
1441 struct sfdp_header {
1442 	u32		signature; /* Ox50444653U <=> "SFDP" */
1443 	u8		minor;
1444 	u8		major;
1445 	u8		nph; /* 0-base number of parameter headers */
1446 	u8		unused;
1447 
1448 	/* Basic Flash Parameter Table. */
1449 	struct sfdp_parameter_header	bfpt_header;
1450 };
1451 
1452 /* Basic Flash Parameter Table */
1453 
1454 /*
1455  * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
1456  * They are indexed from 1 but C arrays are indexed from 0.
1457  */
1458 #define BFPT_DWORD(i)		((i) - 1)
1459 #define BFPT_DWORD_MAX		16
1460 
1461 /* The first version of JESB216 defined only 9 DWORDs. */
1462 #define BFPT_DWORD_MAX_JESD216			9
1463 
1464 /* 1st DWORD. */
1465 #define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
1466 #define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
1467 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
1468 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
1469 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
1470 #define BFPT_DWORD1_DTR				BIT(19)
1471 #define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
1472 #define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
1473 #define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)
1474 
1475 /* 5th DWORD. */
1476 #define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
1477 #define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)
1478 
1479 /* 11th DWORD. */
1480 #define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
1481 #define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)
1482 
1483 /* 15th DWORD. */
1484 
1485 /*
1486  * (from JESD216 rev B)
1487  * Quad Enable Requirements (QER):
1488  * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
1489  *         reads based on instruction. DQ3/HOLD# functions are hold during
1490  *         instruction phase.
1491  * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
1492  *         two data bytes where bit 1 of the second byte is one.
1493  *         [...]
1494  *         Writing only one byte to the status register has the side-effect of
1495  *         clearing status register 2, including the QE bit. The 100b code is
1496  *         used if writing one byte to the status register does not modify
1497  *         status register 2.
1498  * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
1499  *         one data byte where bit 6 is one.
1500  *         [...]
1501  * - 011b: QE is bit 7 of status register 2. It is set via Write status
1502  *         register 2 instruction 3Eh with one data byte where bit 7 is one.
1503  *         [...]
1504  *         The status register 2 is read using instruction 3Fh.
1505  * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
1506  *         two data bytes where bit 1 of the second byte is one.
1507  *         [...]
1508  *         In contrast to the 001b code, writing one byte to the status
1509  *         register does not modify status register 2.
1510  * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
1511  *         Read Status instruction 05h. Status register2 is read using
1512  *         instruction 35h. QE is set via Writ Status instruction 01h with
1513  *         two data bytes where bit 1 of the second byte is one.
1514  *         [...]
1515  */
1516 #define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
1517 #define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
1518 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
1519 #define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
1520 #define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
1521 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
1522 #define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */
1523 
1524 struct sfdp_bfpt {
1525 	u32	dwords[BFPT_DWORD_MAX];
1526 };
1527 
1528 /* Fast Read settings. */
1529 
1530 static void
1531 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
1532 				    u16 half,
1533 				    enum spi_nor_protocol proto)
1534 {
1535 	read->num_mode_clocks = (half >> 5) & 0x07;
1536 	read->num_wait_states = (half >> 0) & 0x1f;
1537 	read->opcode = (half >> 8) & 0xff;
1538 	read->proto = proto;
1539 }
1540 
1541 struct sfdp_bfpt_read {
1542 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
1543 	u32			hwcaps;
1544 
1545 	/*
1546 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
1547 	 * whether the Fast Read x-y-z command is supported.
1548 	 */
1549 	u32			supported_dword;
1550 	u32			supported_bit;
1551 
1552 	/*
1553 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
1554 	 * encodes the op code, the number of mode clocks and the number of wait
1555 	 * states to be used by Fast Read x-y-z command.
1556 	 */
1557 	u32			settings_dword;
1558 	u32			settings_shift;
1559 
1560 	/* The SPI protocol for this Fast Read x-y-z command. */
1561 	enum spi_nor_protocol	proto;
1562 };
1563 
1564 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
1565 	/* Fast Read 1-1-2 */
1566 	{
1567 		SNOR_HWCAPS_READ_1_1_2,
1568 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
1569 		BFPT_DWORD(4), 0,	/* Settings */
1570 		SNOR_PROTO_1_1_2,
1571 	},
1572 
1573 	/* Fast Read 1-2-2 */
1574 	{
1575 		SNOR_HWCAPS_READ_1_2_2,
1576 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
1577 		BFPT_DWORD(4), 16,	/* Settings */
1578 		SNOR_PROTO_1_2_2,
1579 	},
1580 
1581 	/* Fast Read 2-2-2 */
1582 	{
1583 		SNOR_HWCAPS_READ_2_2_2,
1584 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
1585 		BFPT_DWORD(6), 16,	/* Settings */
1586 		SNOR_PROTO_2_2_2,
1587 	},
1588 
1589 	/* Fast Read 1-1-4 */
1590 	{
1591 		SNOR_HWCAPS_READ_1_1_4,
1592 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
1593 		BFPT_DWORD(3), 16,	/* Settings */
1594 		SNOR_PROTO_1_1_4,
1595 	},
1596 
1597 	/* Fast Read 1-4-4 */
1598 	{
1599 		SNOR_HWCAPS_READ_1_4_4,
1600 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
1601 		BFPT_DWORD(3), 0,	/* Settings */
1602 		SNOR_PROTO_1_4_4,
1603 	},
1604 
1605 	/* Fast Read 4-4-4 */
1606 	{
1607 		SNOR_HWCAPS_READ_4_4_4,
1608 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
1609 		BFPT_DWORD(7), 16,	/* Settings */
1610 		SNOR_PROTO_4_4_4,
1611 	},
1612 };
1613 
1614 struct sfdp_bfpt_erase {
1615 	/*
1616 	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
1617 	 * op code and erase sector size to be used by Sector Erase commands.
1618 	 */
1619 	u32			dword;
1620 	u32			shift;
1621 };
1622 
1623 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
1624 	/* Erase Type 1 in DWORD8 bits[15:0] */
1625 	{BFPT_DWORD(8), 0},
1626 
1627 	/* Erase Type 2 in DWORD8 bits[31:16] */
1628 	{BFPT_DWORD(8), 16},
1629 
1630 	/* Erase Type 3 in DWORD9 bits[15:0] */
1631 	{BFPT_DWORD(9), 0},
1632 
1633 	/* Erase Type 4 in DWORD9 bits[31:16] */
1634 	{BFPT_DWORD(9), 16},
1635 };
1636 
1637 static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
1638 
1639 /**
1640  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
1641  * @nor:		pointer to a 'struct spi_nor'
1642  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
1643  *			the Basic Flash Parameter Table length and version
1644  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1645  *			filled
1646  *
1647  * The Basic Flash Parameter Table is the main and only mandatory table as
1648  * defined by the SFDP (JESD216) specification.
1649  * It provides us with the total size (memory density) of the data array and
1650  * the number of address bytes for Fast Read, Page Program and Sector Erase
1651  * commands.
1652  * For Fast READ commands, it also gives the number of mode clock cycles and
1653  * wait states (regrouped in the number of dummy clock cycles) for each
1654  * supported instruction op code.
1655  * For Page Program, the page size is now available since JESD216 rev A, however
1656  * the supported instruction op codes are still not provided.
1657  * For Sector Erase commands, this table stores the supported instruction op
1658  * codes and the associated sector sizes.
1659  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
1660  * rev A. The QER bits encode the manufacturer dependent procedure to be
1661  * executed to set the Quad Enable (QE) bit in some internal register of the
1662  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
1663  * sending any Quad SPI command to the memory. Actually, setting the QE bit
1664  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
1665  * and IO3 hence enabling 4 (Quad) I/O lines.
1666  *
1667  * Return: 0 on success, -errno otherwise.
1668  */
1669 static int spi_nor_parse_bfpt(struct spi_nor *nor,
1670 			      const struct sfdp_parameter_header *bfpt_header,
1671 			      struct spi_nor_flash_parameter *params)
1672 {
1673 	struct mtd_info *mtd = &nor->mtd;
1674 	struct sfdp_bfpt bfpt;
1675 	size_t len;
1676 	int i, cmd, err;
1677 	u32 addr;
1678 	u16 half;
1679 
1680 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
1681 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
1682 		return -EINVAL;
1683 
1684 	/* Read the Basic Flash Parameter Table. */
1685 	len = min_t(size_t, sizeof(bfpt),
1686 		    bfpt_header->length * sizeof(u32));
1687 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
1688 	memset(&bfpt, 0, sizeof(bfpt));
1689 	err = spi_nor_read_sfdp(nor,  addr, len, &bfpt);
1690 	if (err < 0)
1691 		return err;
1692 
1693 	/* Fix endianness of the BFPT DWORDs. */
1694 	for (i = 0; i < BFPT_DWORD_MAX; i++)
1695 		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
1696 
1697 	/* Number of address bytes. */
1698 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
1699 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
1700 		nor->addr_width = 3;
1701 		break;
1702 
1703 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
1704 		nor->addr_width = 4;
1705 		break;
1706 
1707 	default:
1708 		break;
1709 	}
1710 
1711 	/* Flash Memory Density (in bits). */
1712 	params->size = bfpt.dwords[BFPT_DWORD(2)];
1713 	if (params->size & BIT(31)) {
1714 		params->size &= ~BIT(31);
1715 
1716 		/*
1717 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
1718 		 * bits is unlikely to exist so this error probably means
1719 		 * the BFPT we are reading is corrupted/wrong.
1720 		 */
1721 		if (params->size > 63)
1722 			return -EINVAL;
1723 
1724 		params->size = 1ULL << params->size;
1725 	} else {
1726 		params->size++;
1727 	}
1728 	params->size >>= 3; /* Convert to bytes. */
1729 
1730 	/* Fast Read settings. */
1731 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
1732 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
1733 		struct spi_nor_read_command *read;
1734 
1735 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
1736 			params->hwcaps.mask &= ~rd->hwcaps;
1737 			continue;
1738 		}
1739 
1740 		params->hwcaps.mask |= rd->hwcaps;
1741 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
1742 		read = &params->reads[cmd];
1743 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
1744 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
1745 	}
1746 
1747 	/* Sector Erase settings. */
1748 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
1749 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
1750 		u32 erasesize;
1751 		u8 opcode;
1752 
1753 		half = bfpt.dwords[er->dword] >> er->shift;
1754 		erasesize = half & 0xff;
1755 
1756 		/* erasesize == 0 means this Erase Type is not supported. */
1757 		if (!erasesize)
1758 			continue;
1759 
1760 		erasesize = 1U << erasesize;
1761 		opcode = (half >> 8) & 0xff;
1762 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1763 		if (erasesize == SZ_4K) {
1764 			nor->erase_opcode = opcode;
1765 			mtd->erasesize = erasesize;
1766 			break;
1767 		}
1768 #endif
1769 		if (!mtd->erasesize || mtd->erasesize < erasesize) {
1770 			nor->erase_opcode = opcode;
1771 			mtd->erasesize = erasesize;
1772 		}
1773 	}
1774 
1775 	/* Stop here if not JESD216 rev A or later. */
1776 	if (bfpt_header->length < BFPT_DWORD_MAX)
1777 		return 0;
1778 
1779 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
1780 	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
1781 	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
1782 	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
1783 	params->page_size = 1U << params->page_size;
1784 
1785 	/* Quad Enable Requirements. */
1786 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
1787 	case BFPT_DWORD15_QER_NONE:
1788 		params->quad_enable = NULL;
1789 		break;
1790 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1791 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
1792 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
1793 		params->quad_enable = spansion_no_read_cr_quad_enable;
1794 		break;
1795 #endif
1796 #ifdef CONFIG_SPI_FLASH_MACRONIX
1797 	case BFPT_DWORD15_QER_SR1_BIT6:
1798 		params->quad_enable = macronix_quad_enable;
1799 		break;
1800 #endif
1801 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1802 	case BFPT_DWORD15_QER_SR2_BIT1:
1803 		params->quad_enable = spansion_read_cr_quad_enable;
1804 		break;
1805 #endif
1806 	default:
1807 		return -EINVAL;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 /**
1814  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1815  * @nor:		pointer to a 'struct spi_nor'
1816  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1817  *			filled
1818  *
1819  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1820  * specification. This is a standard which tends to supported by almost all
1821  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1822  * runtime the main parameters needed to perform basic SPI flash operations such
1823  * as Fast Read, Page Program or Sector Erase commands.
1824  *
1825  * Return: 0 on success, -errno otherwise.
1826  */
1827 static int spi_nor_parse_sfdp(struct spi_nor *nor,
1828 			      struct spi_nor_flash_parameter *params)
1829 {
1830 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1831 	struct sfdp_parameter_header *param_headers = NULL;
1832 	struct sfdp_header header;
1833 	size_t psize;
1834 	int i, err;
1835 
1836 	/* Get the SFDP header. */
1837 	err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
1838 	if (err < 0)
1839 		return err;
1840 
1841 	/* Check the SFDP header version. */
1842 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1843 	    header.major != SFDP_JESD216_MAJOR)
1844 		return -EINVAL;
1845 
1846 	/*
1847 	 * Verify that the first and only mandatory parameter header is a
1848 	 * Basic Flash Parameter Table header as specified in JESD216.
1849 	 */
1850 	bfpt_header = &header.bfpt_header;
1851 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1852 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1853 		return -EINVAL;
1854 
1855 	/*
1856 	 * Allocate memory then read all parameter headers with a single
1857 	 * Read SFDP command. These parameter headers will actually be parsed
1858 	 * twice: a first time to get the latest revision of the basic flash
1859 	 * parameter table, then a second time to handle the supported optional
1860 	 * tables.
1861 	 * Hence we read the parameter headers once for all to reduce the
1862 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1863 	 * because we don't need to keep these parameter headers: the allocated
1864 	 * memory is always released with kfree() before exiting this function.
1865 	 */
1866 	if (header.nph) {
1867 		psize = header.nph * sizeof(*param_headers);
1868 
1869 		param_headers = kmalloc(psize, GFP_KERNEL);
1870 		if (!param_headers)
1871 			return -ENOMEM;
1872 
1873 		err = spi_nor_read_sfdp(nor, sizeof(header),
1874 					psize, param_headers);
1875 		if (err < 0) {
1876 			dev_err(dev, "failed to read SFDP parameter headers\n");
1877 			goto exit;
1878 		}
1879 	}
1880 
1881 	/*
1882 	 * Check other parameter headers to get the latest revision of
1883 	 * the basic flash parameter table.
1884 	 */
1885 	for (i = 0; i < header.nph; i++) {
1886 		param_header = &param_headers[i];
1887 
1888 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1889 		    param_header->major == SFDP_JESD216_MAJOR &&
1890 		    (param_header->minor > bfpt_header->minor ||
1891 		     (param_header->minor == bfpt_header->minor &&
1892 		      param_header->length > bfpt_header->length)))
1893 			bfpt_header = param_header;
1894 	}
1895 
1896 	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
1897 	if (err)
1898 		goto exit;
1899 
1900 	/* Parse other parameter headers. */
1901 	for (i = 0; i < header.nph; i++) {
1902 		param_header = &param_headers[i];
1903 
1904 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1905 		case SFDP_SECTOR_MAP_ID:
1906 			dev_info(dev, "non-uniform erase sector maps are not supported yet.\n");
1907 			break;
1908 
1909 		default:
1910 			break;
1911 		}
1912 
1913 		if (err)
1914 			goto exit;
1915 	}
1916 
1917 exit:
1918 	kfree(param_headers);
1919 	return err;
1920 }
1921 #else
1922 static int spi_nor_parse_sfdp(struct spi_nor *nor,
1923 			      struct spi_nor_flash_parameter *params)
1924 {
1925 	return -EINVAL;
1926 }
1927 #endif /* SPI_FLASH_SFDP_SUPPORT */
1928 
1929 static int spi_nor_init_params(struct spi_nor *nor,
1930 			       const struct flash_info *info,
1931 			       struct spi_nor_flash_parameter *params)
1932 {
1933 	/* Set legacy flash parameters as default. */
1934 	memset(params, 0, sizeof(*params));
1935 
1936 	/* Set SPI NOR sizes. */
1937 	params->size = info->sector_size * info->n_sectors;
1938 	params->page_size = info->page_size;
1939 
1940 	/* (Fast) Read settings. */
1941 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
1942 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
1943 				  0, 0, SPINOR_OP_READ,
1944 				  SNOR_PROTO_1_1_1);
1945 
1946 	if (!(info->flags & SPI_NOR_NO_FR)) {
1947 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
1948 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
1949 					  0, 8, SPINOR_OP_READ_FAST,
1950 					  SNOR_PROTO_1_1_1);
1951 	}
1952 
1953 	if (info->flags & SPI_NOR_DUAL_READ) {
1954 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
1955 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
1956 					  0, 8, SPINOR_OP_READ_1_1_2,
1957 					  SNOR_PROTO_1_1_2);
1958 	}
1959 
1960 	if (info->flags & SPI_NOR_QUAD_READ) {
1961 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
1962 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
1963 					  0, 8, SPINOR_OP_READ_1_1_4,
1964 					  SNOR_PROTO_1_1_4);
1965 	}
1966 
1967 	/* Page Program settings. */
1968 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
1969 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
1970 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
1971 
1972 	if (info->flags & SPI_NOR_QUAD_READ) {
1973 		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
1974 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
1975 					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
1976 	}
1977 
1978 	/* Select the procedure to set the Quad Enable bit. */
1979 	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
1980 				   SNOR_HWCAPS_PP_QUAD)) {
1981 		switch (JEDEC_MFR(info)) {
1982 #ifdef CONFIG_SPI_FLASH_MACRONIX
1983 		case SNOR_MFR_MACRONIX:
1984 			params->quad_enable = macronix_quad_enable;
1985 			break;
1986 #endif
1987 		case SNOR_MFR_ST:
1988 		case SNOR_MFR_MICRON:
1989 			break;
1990 
1991 		default:
1992 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1993 			/* Kept only for backward compatibility purpose. */
1994 			params->quad_enable = spansion_read_cr_quad_enable;
1995 #endif
1996 			break;
1997 		}
1998 	}
1999 
2000 	/* Override the parameters with data read from SFDP tables. */
2001 	nor->addr_width = 0;
2002 	nor->mtd.erasesize = 0;
2003 	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2004 	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
2005 		struct spi_nor_flash_parameter sfdp_params;
2006 
2007 		memcpy(&sfdp_params, params, sizeof(sfdp_params));
2008 		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
2009 			nor->addr_width = 0;
2010 			nor->mtd.erasesize = 0;
2011 		} else {
2012 			memcpy(params, &sfdp_params, sizeof(*params));
2013 		}
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2020 {
2021 	size_t i;
2022 
2023 	for (i = 0; i < size; i++)
2024 		if (table[i][0] == (int)hwcaps)
2025 			return table[i][1];
2026 
2027 	return -EINVAL;
2028 }
2029 
2030 static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2031 {
2032 	static const int hwcaps_read2cmd[][2] = {
2033 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2034 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2035 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2036 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2037 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2038 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2039 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2040 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2041 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2042 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2043 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2044 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2045 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2046 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2047 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2048 	};
2049 
2050 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2051 				  ARRAY_SIZE(hwcaps_read2cmd));
2052 }
2053 
2054 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2055 {
2056 	static const int hwcaps_pp2cmd[][2] = {
2057 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2058 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2059 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2060 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2061 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2062 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2063 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2064 	};
2065 
2066 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2067 				  ARRAY_SIZE(hwcaps_pp2cmd));
2068 }
2069 
2070 static int spi_nor_select_read(struct spi_nor *nor,
2071 			       const struct spi_nor_flash_parameter *params,
2072 			       u32 shared_hwcaps)
2073 {
2074 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2075 	const struct spi_nor_read_command *read;
2076 
2077 	if (best_match < 0)
2078 		return -EINVAL;
2079 
2080 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2081 	if (cmd < 0)
2082 		return -EINVAL;
2083 
2084 	read = &params->reads[cmd];
2085 	nor->read_opcode = read->opcode;
2086 	nor->read_proto = read->proto;
2087 
2088 	/*
2089 	 * In the spi-nor framework, we don't need to make the difference
2090 	 * between mode clock cycles and wait state clock cycles.
2091 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2092 	 * flash memory to know whether it should enter or leave its 0-4-4
2093 	 * (Continuous Read / XIP) mode.
2094 	 * eXecution In Place is out of the scope of the mtd sub-system.
2095 	 * Hence we choose to merge both mode and wait state clock cycles
2096 	 * into the so called dummy clock cycles.
2097 	 */
2098 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2099 	return 0;
2100 }
2101 
2102 static int spi_nor_select_pp(struct spi_nor *nor,
2103 			     const struct spi_nor_flash_parameter *params,
2104 			     u32 shared_hwcaps)
2105 {
2106 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2107 	const struct spi_nor_pp_command *pp;
2108 
2109 	if (best_match < 0)
2110 		return -EINVAL;
2111 
2112 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2113 	if (cmd < 0)
2114 		return -EINVAL;
2115 
2116 	pp = &params->page_programs[cmd];
2117 	nor->program_opcode = pp->opcode;
2118 	nor->write_proto = pp->proto;
2119 	return 0;
2120 }
2121 
2122 static int spi_nor_select_erase(struct spi_nor *nor,
2123 				const struct flash_info *info)
2124 {
2125 	struct mtd_info *mtd = &nor->mtd;
2126 
2127 	/* Do nothing if already configured from SFDP. */
2128 	if (mtd->erasesize)
2129 		return 0;
2130 
2131 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
2132 	/* prefer "small sector" erase if possible */
2133 	if (info->flags & SECT_4K) {
2134 		nor->erase_opcode = SPINOR_OP_BE_4K;
2135 		mtd->erasesize = 4096;
2136 	} else if (info->flags & SECT_4K_PMC) {
2137 		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
2138 		mtd->erasesize = 4096;
2139 	} else
2140 #endif
2141 	{
2142 		nor->erase_opcode = SPINOR_OP_SE;
2143 		mtd->erasesize = info->sector_size;
2144 	}
2145 	return 0;
2146 }
2147 
2148 static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
2149 			 const struct spi_nor_flash_parameter *params,
2150 			 const struct spi_nor_hwcaps *hwcaps)
2151 {
2152 	u32 ignored_mask, shared_mask;
2153 	bool enable_quad_io;
2154 	int err;
2155 
2156 	/*
2157 	 * Keep only the hardware capabilities supported by both the SPI
2158 	 * controller and the SPI flash memory.
2159 	 */
2160 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2161 
2162 	/* SPI n-n-n protocols are not supported yet. */
2163 	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
2164 			SNOR_HWCAPS_READ_4_4_4 |
2165 			SNOR_HWCAPS_READ_8_8_8 |
2166 			SNOR_HWCAPS_PP_4_4_4 |
2167 			SNOR_HWCAPS_PP_8_8_8);
2168 	if (shared_mask & ignored_mask) {
2169 		dev_dbg(nor->dev,
2170 			"SPI n-n-n protocols are not supported yet.\n");
2171 		shared_mask &= ~ignored_mask;
2172 	}
2173 
2174 	/* Select the (Fast) Read command. */
2175 	err = spi_nor_select_read(nor, params, shared_mask);
2176 	if (err) {
2177 		dev_dbg(nor->dev,
2178 			"can't select read settings supported by both the SPI controller and memory.\n");
2179 		return err;
2180 	}
2181 
2182 	/* Select the Page Program command. */
2183 	err = spi_nor_select_pp(nor, params, shared_mask);
2184 	if (err) {
2185 		dev_dbg(nor->dev,
2186 			"can't select write settings supported by both the SPI controller and memory.\n");
2187 		return err;
2188 	}
2189 
2190 	/* Select the Sector Erase command. */
2191 	err = spi_nor_select_erase(nor, info);
2192 	if (err) {
2193 		dev_dbg(nor->dev,
2194 			"can't select erase settings supported by both the SPI controller and memory.\n");
2195 		return err;
2196 	}
2197 
2198 	/* Enable Quad I/O if needed. */
2199 	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2200 			  spi_nor_get_protocol_width(nor->write_proto) == 4);
2201 	if (enable_quad_io && params->quad_enable)
2202 		nor->quad_enable = params->quad_enable;
2203 	else
2204 		nor->quad_enable = NULL;
2205 
2206 	return 0;
2207 }
2208 
2209 static int spi_nor_init(struct spi_nor *nor)
2210 {
2211 	int err;
2212 
2213 	/*
2214 	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
2215 	 * with the software protection bits set
2216 	 */
2217 	if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
2218 	    JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
2219 	    JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
2220 	    nor->info->flags & SPI_NOR_HAS_LOCK) {
2221 		write_enable(nor);
2222 		write_sr(nor, 0);
2223 		spi_nor_wait_till_ready(nor);
2224 	}
2225 
2226 	if (nor->quad_enable) {
2227 		err = nor->quad_enable(nor);
2228 		if (err) {
2229 			dev_dbg(nor->dev, "quad mode not supported\n");
2230 			return err;
2231 		}
2232 	}
2233 
2234 	if (nor->addr_width == 4 &&
2235 	    (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION)) {
2236 		/*
2237 		 * If the RESET# pin isn't hooked up properly, or the system
2238 		 * otherwise doesn't perform a reset command in the boot
2239 		 * sequence, it's impossible to 100% protect against unexpected
2240 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
2241 		 * designer) that this is bad.
2242 		 */
2243 		if (nor->flags & SNOR_F_BROKEN_RESET)
2244 			printf("enabling reset hack; may not recover from unexpected reboots\n");
2245 		set_4byte(nor, nor->info, 1);
2246 	}
2247 
2248 	return 0;
2249 }
2250 
2251 int spi_nor_scan(struct spi_nor *nor)
2252 {
2253 	struct spi_nor_flash_parameter params;
2254 	const struct flash_info *info = NULL;
2255 	struct mtd_info *mtd = &nor->mtd;
2256 	struct spi_nor_hwcaps hwcaps = {
2257 		.mask = SNOR_HWCAPS_READ |
2258 			SNOR_HWCAPS_READ_FAST |
2259 			SNOR_HWCAPS_PP,
2260 	};
2261 	struct spi_slave *spi = nor->spi;
2262 	int ret;
2263 
2264 	/* Reset SPI protocol for all commands. */
2265 	nor->reg_proto = SNOR_PROTO_1_1_1;
2266 	nor->read_proto = SNOR_PROTO_1_1_1;
2267 	nor->write_proto = SNOR_PROTO_1_1_1;
2268 	nor->read = spi_nor_read_data;
2269 	nor->write = spi_nor_write_data;
2270 	nor->read_reg = spi_nor_read_reg;
2271 	nor->write_reg = spi_nor_write_reg;
2272 
2273 	if (spi->mode & SPI_RX_QUAD) {
2274 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2275 
2276 		if (spi->mode & SPI_TX_QUAD)
2277 			hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
2278 					SNOR_HWCAPS_PP_1_1_4 |
2279 					SNOR_HWCAPS_PP_1_4_4);
2280 	} else if (spi->mode & SPI_RX_DUAL) {
2281 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2282 
2283 		if (spi->mode & SPI_TX_DUAL)
2284 			hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
2285 	}
2286 
2287 	info = spi_nor_read_id(nor);
2288 	if (IS_ERR_OR_NULL(info))
2289 		return -ENOENT;
2290 	/* Parse the Serial Flash Discoverable Parameters table. */
2291 	ret = spi_nor_init_params(nor, info, &params);
2292 	if (ret)
2293 		return ret;
2294 
2295 	if (!mtd->name)
2296 		mtd->name = info->name;
2297 	mtd->priv = nor;
2298 	mtd->type = MTD_NORFLASH;
2299 	mtd->writesize = 1;
2300 	mtd->flags = MTD_CAP_NORFLASH;
2301 	mtd->size = params.size;
2302 	mtd->_erase = spi_nor_erase;
2303 	mtd->_read = spi_nor_read;
2304 
2305 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
2306 	/* NOR protection support for STmicro/Micron chips and similar */
2307 	if (JEDEC_MFR(info) == SNOR_MFR_ST ||
2308 	    JEDEC_MFR(info) == SNOR_MFR_MICRON ||
2309 	    JEDEC_MFR(info) == SNOR_MFR_SST ||
2310 			info->flags & SPI_NOR_HAS_LOCK) {
2311 		nor->flash_lock = stm_lock;
2312 		nor->flash_unlock = stm_unlock;
2313 		nor->flash_is_locked = stm_is_locked;
2314 	}
2315 #endif
2316 
2317 #ifdef CONFIG_SPI_FLASH_SST
2318 	/* sst nor chips use AAI word program */
2319 	if (info->flags & SST_WRITE)
2320 		mtd->_write = sst_write;
2321 	else
2322 #endif
2323 		mtd->_write = spi_nor_write;
2324 
2325 	if (info->flags & USE_FSR)
2326 		nor->flags |= SNOR_F_USE_FSR;
2327 	if (info->flags & SPI_NOR_HAS_TB)
2328 		nor->flags |= SNOR_F_HAS_SR_TB;
2329 	if (info->flags & NO_CHIP_ERASE)
2330 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2331 	if (info->flags & USE_CLSR)
2332 		nor->flags |= SNOR_F_USE_CLSR;
2333 
2334 	if (info->flags & SPI_NOR_NO_ERASE)
2335 		mtd->flags |= MTD_NO_ERASE;
2336 
2337 	nor->page_size = params.page_size;
2338 	mtd->writebufsize = nor->page_size;
2339 
2340 	/* Some devices cannot do fast-read, no matter what DT tells us */
2341 	if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
2342 		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2343 
2344 	/*
2345 	 * Configure the SPI memory:
2346 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
2347 	 * - set the number of dummy cycles (mode cycles + wait states).
2348 	 * - set the SPI protocols for register and memory accesses.
2349 	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
2350 	 */
2351 	ret = spi_nor_setup(nor, info, &params, &hwcaps);
2352 	if (ret)
2353 		return ret;
2354 
2355 	if (nor->addr_width) {
2356 		/* already configured from SFDP */
2357 	} else if (info->addr_width) {
2358 		nor->addr_width = info->addr_width;
2359 	} else if (mtd->size > SZ_16M) {
2360 #ifndef CONFIG_SPI_FLASH_BAR
2361 		/* enable 4-byte addressing if the device exceeds 16MiB */
2362 		nor->addr_width = 4;
2363 		spi_nor_set_4byte_opcodes(nor, info);
2364 #else
2365 		/* Configure the BAR - discover bank cmds and read current bank */
2366 		nor->addr_width = 3;
2367 		ret = read_bar(nor, info);
2368 		if (ret < 0)
2369 			return ret;
2370 #endif
2371 	} else {
2372 		nor->addr_width = 3;
2373 	}
2374 
2375 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
2376 		dev_dbg(dev, "address width is too large: %u\n",
2377 			nor->addr_width);
2378 		return -EINVAL;
2379 	}
2380 
2381 	/* Send all the required SPI flash commands to initialize device */
2382 	nor->info = info;
2383 	ret = spi_nor_init(nor);
2384 	if (ret)
2385 		return ret;
2386 
2387 	nor->name = mtd->name;
2388 	nor->size = mtd->size;
2389 	nor->erase_size = mtd->erasesize;
2390 	nor->sector_size = mtd->erasesize;
2391 
2392 #ifndef CONFIG_SPL_BUILD
2393 	printf("SF: Detected %s with page size ", nor->name);
2394 	print_size(nor->page_size, ", erase size ");
2395 	print_size(nor->erase_size, ", total ");
2396 	print_size(nor->size, "");
2397 	puts("\n");
2398 #endif
2399 
2400 	return 0;
2401 }
2402 
2403 /* U-Boot specific functions, need to extend MTD to support these */
2404 int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor)
2405 {
2406 	int sr = read_sr(nor);
2407 
2408 	if (sr < 0)
2409 		return sr;
2410 
2411 	return (sr >> 2) & 7;
2412 }
2413