xref: /openbmc/u-boot/drivers/mtd/spi/spi-nor-core.c (revision 872cfa20)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  *
9  * Synced from Linux v4.19
10  */
11 
12 #include <common.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/log2.h>
16 #include <linux/math64.h>
17 #include <linux/sizes.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/spi-nor.h>
21 #include <spi-mem.h>
22 #include <spi.h>
23 
24 #include "sf_internal.h"
25 
26 /* Define max times to check status register before we give up. */
27 
28 /*
29  * For everything but full-chip erase; probably could be much smaller, but kept
30  * around for safety for now
31  */
32 
33 #define HZ					CONFIG_SYS_HZ
34 
35 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
36 
37 static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
38 		*op, void *buf)
39 {
40 	if (op->data.dir == SPI_MEM_DATA_IN)
41 		op->data.buf.in = buf;
42 	else
43 		op->data.buf.out = buf;
44 	return spi_mem_exec_op(nor->spi, op);
45 }
46 
47 static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
48 {
49 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1),
50 					  SPI_MEM_OP_NO_ADDR,
51 					  SPI_MEM_OP_NO_DUMMY,
52 					  SPI_MEM_OP_DATA_IN(len, NULL, 1));
53 	int ret;
54 
55 	ret = spi_nor_read_write_reg(nor, &op, val);
56 	if (ret < 0)
57 		dev_dbg(&flash->spimem->spi->dev, "error %d reading %x\n", ret,
58 			code);
59 
60 	return ret;
61 }
62 
63 static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
64 {
65 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1),
66 					  SPI_MEM_OP_NO_ADDR,
67 					  SPI_MEM_OP_NO_DUMMY,
68 					  SPI_MEM_OP_DATA_OUT(len, NULL, 1));
69 
70 	return spi_nor_read_write_reg(nor, &op, buf);
71 }
72 
73 static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
74 				 u_char *buf)
75 {
76 	struct spi_mem_op op =
77 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
78 				   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
79 				   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
80 				   SPI_MEM_OP_DATA_IN(len, buf, 1));
81 	size_t remaining = len;
82 	int ret;
83 
84 	/* get transfer protocols. */
85 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
86 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
87 	op.dummy.buswidth = op.addr.buswidth;
88 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
89 
90 	/* convert the dummy cycles to the number of bytes */
91 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
92 
93 	while (remaining) {
94 		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
95 		ret = spi_mem_adjust_op_size(nor->spi, &op);
96 		if (ret)
97 			return ret;
98 
99 		ret = spi_mem_exec_op(nor->spi, &op);
100 		if (ret)
101 			return ret;
102 
103 		op.addr.val += op.data.nbytes;
104 		remaining -= op.data.nbytes;
105 		op.data.buf.in += op.data.nbytes;
106 	}
107 
108 	return len;
109 }
110 
111 static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
112 				  const u_char *buf)
113 {
114 	struct spi_mem_op op =
115 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
116 				   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
117 				   SPI_MEM_OP_NO_DUMMY,
118 				   SPI_MEM_OP_DATA_OUT(len, buf, 1));
119 	size_t remaining = len;
120 	int ret;
121 
122 	/* get transfer protocols. */
123 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
124 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
125 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
126 
127 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
128 		op.addr.nbytes = 0;
129 
130 	while (remaining) {
131 		op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
132 		ret = spi_mem_adjust_op_size(nor->spi, &op);
133 		if (ret)
134 			return ret;
135 
136 		ret = spi_mem_exec_op(nor->spi, &op);
137 		if (ret)
138 			return ret;
139 
140 		op.addr.val += op.data.nbytes;
141 		remaining -= op.data.nbytes;
142 		op.data.buf.out += op.data.nbytes;
143 	}
144 
145 	return len;
146 }
147 
148 /*
149  * Read the status register, returning its value in the location
150  * Return the status register value.
151  * Returns negative if error occurred.
152  */
153 static int read_sr(struct spi_nor *nor)
154 {
155 	int ret;
156 	u8 val;
157 
158 	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
159 	if (ret < 0) {
160 		pr_debug("error %d reading SR\n", (int)ret);
161 		return ret;
162 	}
163 
164 	return val;
165 }
166 
167 /*
168  * Read the flag status register, returning its value in the location
169  * Return the status register value.
170  * Returns negative if error occurred.
171  */
172 static int read_fsr(struct spi_nor *nor)
173 {
174 	int ret;
175 	u8 val;
176 
177 	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
178 	if (ret < 0) {
179 		pr_debug("error %d reading FSR\n", ret);
180 		return ret;
181 	}
182 
183 	return val;
184 }
185 
186 /*
187  * Read configuration register, returning its value in the
188  * location. Return the configuration register value.
189  * Returns negative if error occurred.
190  */
191 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
192 static int read_cr(struct spi_nor *nor)
193 {
194 	int ret;
195 	u8 val;
196 
197 	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
198 	if (ret < 0) {
199 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
200 		return ret;
201 	}
202 
203 	return val;
204 }
205 #endif
206 
207 /*
208  * Write status register 1 byte
209  * Returns negative if error occurred.
210  */
211 static int write_sr(struct spi_nor *nor, u8 val)
212 {
213 	nor->cmd_buf[0] = val;
214 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
215 }
216 
217 /*
218  * Set write enable latch with Write Enable command.
219  * Returns negative if error occurred.
220  */
221 static int write_enable(struct spi_nor *nor)
222 {
223 	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
224 }
225 
226 /*
227  * Send write disable instruction to the chip.
228  */
229 static int write_disable(struct spi_nor *nor)
230 {
231 	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
232 }
233 
234 static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
235 {
236 	return mtd->priv;
237 }
238 
239 #ifndef CONFIG_SPI_FLASH_BAR
240 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
241 {
242 	size_t i;
243 
244 	for (i = 0; i < size; i++)
245 		if (table[i][0] == opcode)
246 			return table[i][1];
247 
248 	/* No conversion found, keep input op code. */
249 	return opcode;
250 }
251 
252 static u8 spi_nor_convert_3to4_read(u8 opcode)
253 {
254 	static const u8 spi_nor_3to4_read[][2] = {
255 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
256 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
257 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
258 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
259 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
260 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
261 
262 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
263 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
264 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
265 	};
266 
267 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
268 				      ARRAY_SIZE(spi_nor_3to4_read));
269 }
270 
271 static u8 spi_nor_convert_3to4_program(u8 opcode)
272 {
273 	static const u8 spi_nor_3to4_program[][2] = {
274 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
275 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
276 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
277 	};
278 
279 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
280 				      ARRAY_SIZE(spi_nor_3to4_program));
281 }
282 
283 static u8 spi_nor_convert_3to4_erase(u8 opcode)
284 {
285 	static const u8 spi_nor_3to4_erase[][2] = {
286 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
287 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
288 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
289 	};
290 
291 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
292 				      ARRAY_SIZE(spi_nor_3to4_erase));
293 }
294 
295 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
296 				      const struct flash_info *info)
297 {
298 	/* Do some manufacturer fixups first */
299 	switch (JEDEC_MFR(info)) {
300 	case SNOR_MFR_SPANSION:
301 		/* No small sector erase for 4-byte command set */
302 		nor->erase_opcode = SPINOR_OP_SE;
303 		nor->mtd.erasesize = info->sector_size;
304 		break;
305 
306 	default:
307 		break;
308 	}
309 
310 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
311 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
312 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
313 }
314 #endif /* !CONFIG_SPI_FLASH_BAR */
315 
316 /* Enable/disable 4-byte addressing mode. */
317 static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
318 		     int enable)
319 {
320 	int status;
321 	bool need_wren = false;
322 	u8 cmd;
323 
324 	switch (JEDEC_MFR(info)) {
325 	case SNOR_MFR_ST:
326 	case SNOR_MFR_MICRON:
327 		/* Some Micron need WREN command; all will accept it */
328 		need_wren = true;
329 	case SNOR_MFR_MACRONIX:
330 	case SNOR_MFR_WINBOND:
331 		if (need_wren)
332 			write_enable(nor);
333 
334 		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
335 		status = nor->write_reg(nor, cmd, NULL, 0);
336 		if (need_wren)
337 			write_disable(nor);
338 
339 		if (!status && !enable &&
340 		    JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
341 			/*
342 			 * On Winbond W25Q256FV, leaving 4byte mode causes
343 			 * the Extended Address Register to be set to 1, so all
344 			 * 3-byte-address reads come from the second 16M.
345 			 * We must clear the register to enable normal behavior.
346 			 */
347 			write_enable(nor);
348 			nor->cmd_buf[0] = 0;
349 			nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
350 			write_disable(nor);
351 		}
352 
353 		return status;
354 	default:
355 		/* Spansion style */
356 		nor->cmd_buf[0] = enable << 7;
357 		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
358 	}
359 }
360 
361 static int spi_nor_sr_ready(struct spi_nor *nor)
362 {
363 	int sr = read_sr(nor);
364 
365 	if (sr < 0)
366 		return sr;
367 
368 	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
369 		if (sr & SR_E_ERR)
370 			dev_dbg(nor->dev, "Erase Error occurred\n");
371 		else
372 			dev_dbg(nor->dev, "Programming Error occurred\n");
373 
374 		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
375 		return -EIO;
376 	}
377 
378 	return !(sr & SR_WIP);
379 }
380 
381 static int spi_nor_fsr_ready(struct spi_nor *nor)
382 {
383 	int fsr = read_fsr(nor);
384 
385 	if (fsr < 0)
386 		return fsr;
387 
388 	if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
389 		if (fsr & FSR_E_ERR)
390 			dev_dbg(nor->dev, "Erase operation failed.\n");
391 		else
392 			dev_dbg(nor->dev, "Program operation failed.\n");
393 
394 		if (fsr & FSR_PT_ERR)
395 			dev_dbg(nor->dev,
396 				"Attempted to modify a protected sector.\n");
397 
398 		nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
399 		return -EIO;
400 	}
401 
402 	return fsr & FSR_READY;
403 }
404 
405 static int spi_nor_ready(struct spi_nor *nor)
406 {
407 	int sr, fsr;
408 
409 	sr = spi_nor_sr_ready(nor);
410 	if (sr < 0)
411 		return sr;
412 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
413 	if (fsr < 0)
414 		return fsr;
415 	return sr && fsr;
416 }
417 
418 /*
419  * Service routine to read status register until ready, or timeout occurs.
420  * Returns non-zero if error.
421  */
422 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
423 						unsigned long timeout)
424 {
425 	unsigned long timebase;
426 	int ret;
427 
428 	timebase = get_timer(0);
429 
430 	while (get_timer(timebase) < timeout) {
431 		ret = spi_nor_ready(nor);
432 		if (ret < 0)
433 			return ret;
434 		if (ret)
435 			return 0;
436 	}
437 
438 	dev_err(nor->dev, "flash operation timed out\n");
439 
440 	return -ETIMEDOUT;
441 }
442 
443 static int spi_nor_wait_till_ready(struct spi_nor *nor)
444 {
445 	return spi_nor_wait_till_ready_with_timeout(nor,
446 						    DEFAULT_READY_WAIT_JIFFIES);
447 }
448 
449 #ifdef CONFIG_SPI_FLASH_BAR
450 /*
451  * This "clean_bar" is necessary in a situation when one was accessing
452  * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
453  *
454  * After it the BA24 bit shall be cleared to allow access to correct
455  * memory region after SW reset (by calling "reset" command).
456  *
457  * Otherwise, the BA24 bit may be left set and then after reset, the
458  * ROM would read/write/erase SPL from 16 MiB * bank_sel address.
459  */
460 static int clean_bar(struct spi_nor *nor)
461 {
462 	u8 cmd, bank_sel = 0;
463 
464 	if (nor->bank_curr == 0)
465 		return 0;
466 	cmd = nor->bank_write_cmd;
467 	nor->bank_curr = 0;
468 	write_enable(nor);
469 
470 	return nor->write_reg(nor, cmd, &bank_sel, 1);
471 }
472 
473 static int write_bar(struct spi_nor *nor, u32 offset)
474 {
475 	u8 cmd, bank_sel;
476 	int ret;
477 
478 	bank_sel = offset / SZ_16M;
479 	if (bank_sel == nor->bank_curr)
480 		goto bar_end;
481 
482 	cmd = nor->bank_write_cmd;
483 	write_enable(nor);
484 	ret = nor->write_reg(nor, cmd, &bank_sel, 1);
485 	if (ret < 0) {
486 		debug("SF: fail to write bank register\n");
487 		return ret;
488 	}
489 
490 bar_end:
491 	nor->bank_curr = bank_sel;
492 	return nor->bank_curr;
493 }
494 
495 static int read_bar(struct spi_nor *nor, const struct flash_info *info)
496 {
497 	u8 curr_bank = 0;
498 	int ret;
499 
500 	switch (JEDEC_MFR(info)) {
501 	case SNOR_MFR_SPANSION:
502 		nor->bank_read_cmd = SPINOR_OP_BRRD;
503 		nor->bank_write_cmd = SPINOR_OP_BRWR;
504 		break;
505 	default:
506 		nor->bank_read_cmd = SPINOR_OP_RDEAR;
507 		nor->bank_write_cmd = SPINOR_OP_WREAR;
508 	}
509 
510 	ret = nor->read_reg(nor, nor->bank_read_cmd,
511 				    &curr_bank, 1);
512 	if (ret) {
513 		debug("SF: fail to read bank addr register\n");
514 		return ret;
515 	}
516 	nor->bank_curr = curr_bank;
517 
518 	return 0;
519 }
520 #endif
521 
522 /*
523  * Initiate the erasure of a single sector
524  */
525 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
526 {
527 	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
528 	int i;
529 
530 	if (nor->erase)
531 		return nor->erase(nor, addr);
532 
533 	/*
534 	 * Default implementation, if driver doesn't have a specialized HW
535 	 * control
536 	 */
537 	for (i = nor->addr_width - 1; i >= 0; i--) {
538 		buf[i] = addr & 0xff;
539 		addr >>= 8;
540 	}
541 
542 	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
543 }
544 
545 /*
546  * Erase an address range on the nor chip.  The address range may extend
547  * one or more erase sectors.  Return an error is there is a problem erasing.
548  */
549 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
550 {
551 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
552 	u32 addr, len, rem;
553 	int ret;
554 
555 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
556 		(long long)instr->len);
557 
558 	div_u64_rem(instr->len, mtd->erasesize, &rem);
559 	if (rem)
560 		return -EINVAL;
561 
562 	addr = instr->addr;
563 	len = instr->len;
564 
565 	while (len) {
566 #ifdef CONFIG_SPI_FLASH_BAR
567 		ret = write_bar(nor, addr);
568 		if (ret < 0)
569 			return ret;
570 #endif
571 		write_enable(nor);
572 
573 		ret = spi_nor_erase_sector(nor, addr);
574 		if (ret)
575 			goto erase_err;
576 
577 		addr += mtd->erasesize;
578 		len -= mtd->erasesize;
579 
580 		ret = spi_nor_wait_till_ready(nor);
581 		if (ret)
582 			goto erase_err;
583 	}
584 
585 erase_err:
586 #ifdef CONFIG_SPI_FLASH_BAR
587 	ret = clean_bar(nor);
588 #endif
589 	write_disable(nor);
590 
591 	return ret;
592 }
593 
594 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
595 /* Write status register and ensure bits in mask match written values */
596 static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
597 {
598 	int ret;
599 
600 	write_enable(nor);
601 	ret = write_sr(nor, status_new);
602 	if (ret)
603 		return ret;
604 
605 	ret = spi_nor_wait_till_ready(nor);
606 	if (ret)
607 		return ret;
608 
609 	ret = read_sr(nor);
610 	if (ret < 0)
611 		return ret;
612 
613 	return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
614 }
615 
616 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
617 				 uint64_t *len)
618 {
619 	struct mtd_info *mtd = &nor->mtd;
620 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
621 	int shift = ffs(mask) - 1;
622 	int pow;
623 
624 	if (!(sr & mask)) {
625 		/* No protection */
626 		*ofs = 0;
627 		*len = 0;
628 	} else {
629 		pow = ((sr & mask) ^ mask) >> shift;
630 		*len = mtd->size >> pow;
631 		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
632 			*ofs = 0;
633 		else
634 			*ofs = mtd->size - *len;
635 	}
636 }
637 
638 /*
639  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
640  * @locked is false); 0 otherwise
641  */
642 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
643 				    u8 sr, bool locked)
644 {
645 	loff_t lock_offs;
646 	uint64_t lock_len;
647 
648 	if (!len)
649 		return 1;
650 
651 	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
652 
653 	if (locked)
654 		/* Requested range is a sub-range of locked range */
655 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
656 	else
657 		/* Requested range does not overlap with locked range */
658 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
659 }
660 
661 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
662 			    u8 sr)
663 {
664 	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
665 }
666 
667 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
668 			      u8 sr)
669 {
670 	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
671 }
672 
673 /*
674  * Lock a region of the flash. Compatible with ST Micro and similar flash.
675  * Supports the block protection bits BP{0,1,2} in the status register
676  * (SR). Does not support these features found in newer SR bitfields:
677  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
678  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
679  *
680  * Support for the following is provided conditionally for some flash:
681  *   - TB: top/bottom protect
682  *
683  * Sample table portion for 8MB flash (Winbond w25q64fw):
684  *
685  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
686  *  --------------------------------------------------------------------------
687  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
688  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
689  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
690  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
691  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
692  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
693  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
694  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
695  *  ------|-------|-------|-------|-------|---------------|-------------------
696  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
697  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
698  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
699  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
700  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
701  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
702  *
703  * Returns negative on errors, 0 on success.
704  */
705 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
706 {
707 	struct mtd_info *mtd = &nor->mtd;
708 	int status_old, status_new;
709 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
710 	u8 shift = ffs(mask) - 1, pow, val;
711 	loff_t lock_len;
712 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
713 	bool use_top;
714 
715 	status_old = read_sr(nor);
716 	if (status_old < 0)
717 		return status_old;
718 
719 	/* If nothing in our range is unlocked, we don't need to do anything */
720 	if (stm_is_locked_sr(nor, ofs, len, status_old))
721 		return 0;
722 
723 	/* If anything below us is unlocked, we can't use 'bottom' protection */
724 	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
725 		can_be_bottom = false;
726 
727 	/* If anything above us is unlocked, we can't use 'top' protection */
728 	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
729 			      status_old))
730 		can_be_top = false;
731 
732 	if (!can_be_bottom && !can_be_top)
733 		return -EINVAL;
734 
735 	/* Prefer top, if both are valid */
736 	use_top = can_be_top;
737 
738 	/* lock_len: length of region that should end up locked */
739 	if (use_top)
740 		lock_len = mtd->size - ofs;
741 	else
742 		lock_len = ofs + len;
743 
744 	/*
745 	 * Need smallest pow such that:
746 	 *
747 	 *   1 / (2^pow) <= (len / size)
748 	 *
749 	 * so (assuming power-of-2 size) we do:
750 	 *
751 	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
752 	 */
753 	pow = ilog2(mtd->size) - ilog2(lock_len);
754 	val = mask - (pow << shift);
755 	if (val & ~mask)
756 		return -EINVAL;
757 	/* Don't "lock" with no region! */
758 	if (!(val & mask))
759 		return -EINVAL;
760 
761 	status_new = (status_old & ~mask & ~SR_TB) | val;
762 
763 	/* Disallow further writes if WP pin is asserted */
764 	status_new |= SR_SRWD;
765 
766 	if (!use_top)
767 		status_new |= SR_TB;
768 
769 	/* Don't bother if they're the same */
770 	if (status_new == status_old)
771 		return 0;
772 
773 	/* Only modify protection if it will not unlock other areas */
774 	if ((status_new & mask) < (status_old & mask))
775 		return -EINVAL;
776 
777 	return write_sr_and_check(nor, status_new, mask);
778 }
779 
780 /*
781  * Unlock a region of the flash. See stm_lock() for more info
782  *
783  * Returns negative on errors, 0 on success.
784  */
785 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
786 {
787 	struct mtd_info *mtd = &nor->mtd;
788 	int status_old, status_new;
789 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
790 	u8 shift = ffs(mask) - 1, pow, val;
791 	loff_t lock_len;
792 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
793 	bool use_top;
794 
795 	status_old = read_sr(nor);
796 	if (status_old < 0)
797 		return status_old;
798 
799 	/* If nothing in our range is locked, we don't need to do anything */
800 	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
801 		return 0;
802 
803 	/* If anything below us is locked, we can't use 'top' protection */
804 	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
805 		can_be_top = false;
806 
807 	/* If anything above us is locked, we can't use 'bottom' protection */
808 	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
809 				status_old))
810 		can_be_bottom = false;
811 
812 	if (!can_be_bottom && !can_be_top)
813 		return -EINVAL;
814 
815 	/* Prefer top, if both are valid */
816 	use_top = can_be_top;
817 
818 	/* lock_len: length of region that should remain locked */
819 	if (use_top)
820 		lock_len = mtd->size - (ofs + len);
821 	else
822 		lock_len = ofs;
823 
824 	/*
825 	 * Need largest pow such that:
826 	 *
827 	 *   1 / (2^pow) >= (len / size)
828 	 *
829 	 * so (assuming power-of-2 size) we do:
830 	 *
831 	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
832 	 */
833 	pow = ilog2(mtd->size) - order_base_2(lock_len);
834 	if (lock_len == 0) {
835 		val = 0; /* fully unlocked */
836 	} else {
837 		val = mask - (pow << shift);
838 		/* Some power-of-two sizes are not supported */
839 		if (val & ~mask)
840 			return -EINVAL;
841 	}
842 
843 	status_new = (status_old & ~mask & ~SR_TB) | val;
844 
845 	/* Don't protect status register if we're fully unlocked */
846 	if (lock_len == 0)
847 		status_new &= ~SR_SRWD;
848 
849 	if (!use_top)
850 		status_new |= SR_TB;
851 
852 	/* Don't bother if they're the same */
853 	if (status_new == status_old)
854 		return 0;
855 
856 	/* Only modify protection if it will not lock other areas */
857 	if ((status_new & mask) > (status_old & mask))
858 		return -EINVAL;
859 
860 	return write_sr_and_check(nor, status_new, mask);
861 }
862 
863 /*
864  * Check if a region of the flash is (completely) locked. See stm_lock() for
865  * more info.
866  *
867  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
868  * negative on errors.
869  */
870 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
871 {
872 	int status;
873 
874 	status = read_sr(nor);
875 	if (status < 0)
876 		return status;
877 
878 	return stm_is_locked_sr(nor, ofs, len, status);
879 }
880 #endif /* CONFIG_SPI_FLASH_STMICRO */
881 
882 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
883 {
884 	int			tmp;
885 	u8			id[SPI_NOR_MAX_ID_LEN];
886 	const struct flash_info	*info;
887 
888 	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
889 	if (tmp < 0) {
890 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
891 		return ERR_PTR(tmp);
892 	}
893 
894 	info = spi_nor_ids;
895 	for (; info->name; info++) {
896 		if (info->id_len) {
897 			if (!memcmp(info->id, id, info->id_len))
898 				return info;
899 		}
900 	}
901 
902 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
903 		id[0], id[1], id[2]);
904 	return ERR_PTR(-ENODEV);
905 }
906 
907 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
908 			size_t *retlen, u_char *buf)
909 {
910 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
911 	int ret;
912 
913 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
914 
915 	while (len) {
916 		loff_t addr = from;
917 		size_t read_len = len;
918 
919 #ifdef CONFIG_SPI_FLASH_BAR
920 		u32 remain_len;
921 
922 		ret = write_bar(nor, addr);
923 		if (ret < 0)
924 			return log_ret(ret);
925 		remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
926 
927 		if (len < remain_len)
928 			read_len = len;
929 		else
930 			read_len = remain_len;
931 #endif
932 
933 		ret = nor->read(nor, addr, read_len, buf);
934 		if (ret == 0) {
935 			/* We shouldn't see 0-length reads */
936 			ret = -EIO;
937 			goto read_err;
938 		}
939 		if (ret < 0)
940 			goto read_err;
941 
942 		*retlen += ret;
943 		buf += ret;
944 		from += ret;
945 		len -= ret;
946 	}
947 	ret = 0;
948 
949 read_err:
950 #ifdef CONFIG_SPI_FLASH_BAR
951 	ret = clean_bar(nor);
952 #endif
953 	return ret;
954 }
955 
956 #ifdef CONFIG_SPI_FLASH_SST
957 static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
958 				 size_t *retlen, const u_char *buf)
959 {
960 	size_t actual;
961 	int ret = 0;
962 
963 	for (actual = 0; actual < len; actual++) {
964 		nor->program_opcode = SPINOR_OP_BP;
965 
966 		write_enable(nor);
967 		/* write one byte. */
968 		ret = nor->write(nor, to, 1, buf + actual);
969 		if (ret < 0)
970 			goto sst_write_err;
971 		ret = spi_nor_wait_till_ready(nor);
972 		if (ret)
973 			goto sst_write_err;
974 		to++;
975 	}
976 
977 sst_write_err:
978 	write_disable(nor);
979 	return ret;
980 }
981 
982 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
983 		     size_t *retlen, const u_char *buf)
984 {
985 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
986 	struct spi_slave *spi = nor->spi;
987 	size_t actual;
988 	int ret;
989 
990 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
991 	if (spi->mode & SPI_TX_BYTE)
992 		return sst_write_byteprogram(nor, to, len, retlen, buf);
993 
994 	write_enable(nor);
995 
996 	nor->sst_write_second = false;
997 
998 	actual = to % 2;
999 	/* Start write from odd address. */
1000 	if (actual) {
1001 		nor->program_opcode = SPINOR_OP_BP;
1002 
1003 		/* write one byte. */
1004 		ret = nor->write(nor, to, 1, buf);
1005 		if (ret < 0)
1006 			goto sst_write_err;
1007 		ret = spi_nor_wait_till_ready(nor);
1008 		if (ret)
1009 			goto sst_write_err;
1010 	}
1011 	to += actual;
1012 
1013 	/* Write out most of the data here. */
1014 	for (; actual < len - 1; actual += 2) {
1015 		nor->program_opcode = SPINOR_OP_AAI_WP;
1016 
1017 		/* write two bytes. */
1018 		ret = nor->write(nor, to, 2, buf + actual);
1019 		if (ret < 0)
1020 			goto sst_write_err;
1021 		ret = spi_nor_wait_till_ready(nor);
1022 		if (ret)
1023 			goto sst_write_err;
1024 		to += 2;
1025 		nor->sst_write_second = true;
1026 	}
1027 	nor->sst_write_second = false;
1028 
1029 	write_disable(nor);
1030 	ret = spi_nor_wait_till_ready(nor);
1031 	if (ret)
1032 		goto sst_write_err;
1033 
1034 	/* Write out trailing byte if it exists. */
1035 	if (actual != len) {
1036 		write_enable(nor);
1037 
1038 		nor->program_opcode = SPINOR_OP_BP;
1039 		ret = nor->write(nor, to, 1, buf + actual);
1040 		if (ret < 0)
1041 			goto sst_write_err;
1042 		ret = spi_nor_wait_till_ready(nor);
1043 		if (ret)
1044 			goto sst_write_err;
1045 		write_disable(nor);
1046 		actual += 1;
1047 	}
1048 sst_write_err:
1049 	*retlen += actual;
1050 	return ret;
1051 }
1052 #endif
1053 /*
1054  * Write an address range to the nor chip.  Data must be written in
1055  * FLASH_PAGESIZE chunks.  The address range may be any size provided
1056  * it is within the physical boundaries.
1057  */
1058 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1059 	size_t *retlen, const u_char *buf)
1060 {
1061 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1062 	size_t page_offset, page_remain, i;
1063 	ssize_t ret;
1064 
1065 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1066 
1067 	for (i = 0; i < len; ) {
1068 		ssize_t written;
1069 		loff_t addr = to + i;
1070 
1071 		/*
1072 		 * If page_size is a power of two, the offset can be quickly
1073 		 * calculated with an AND operation. On the other cases we
1074 		 * need to do a modulus operation (more expensive).
1075 		 * Power of two numbers have only one bit set and we can use
1076 		 * the instruction hweight32 to detect if we need to do a
1077 		 * modulus (do_div()) or not.
1078 		 */
1079 		if (hweight32(nor->page_size) == 1) {
1080 			page_offset = addr & (nor->page_size - 1);
1081 		} else {
1082 			u64 aux = addr;
1083 
1084 			page_offset = do_div(aux, nor->page_size);
1085 		}
1086 		/* the size of data remaining on the first page */
1087 		page_remain = min_t(size_t,
1088 				    nor->page_size - page_offset, len - i);
1089 
1090 #ifdef CONFIG_SPI_FLASH_BAR
1091 		ret = write_bar(nor, addr);
1092 		if (ret < 0)
1093 			return ret;
1094 #endif
1095 		write_enable(nor);
1096 		ret = nor->write(nor, addr, page_remain, buf + i);
1097 		if (ret < 0)
1098 			goto write_err;
1099 		written = ret;
1100 
1101 		ret = spi_nor_wait_till_ready(nor);
1102 		if (ret)
1103 			goto write_err;
1104 		*retlen += written;
1105 		i += written;
1106 		if (written != page_remain) {
1107 			ret = -EIO;
1108 			goto write_err;
1109 		}
1110 	}
1111 
1112 write_err:
1113 #ifdef CONFIG_SPI_FLASH_BAR
1114 	ret = clean_bar(nor);
1115 #endif
1116 	return ret;
1117 }
1118 
1119 #ifdef CONFIG_SPI_FLASH_MACRONIX
1120 /**
1121  * macronix_quad_enable() - set QE bit in Status Register.
1122  * @nor:	pointer to a 'struct spi_nor'
1123  *
1124  * Set the Quad Enable (QE) bit in the Status Register.
1125  *
1126  * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
1127  *
1128  * Return: 0 on success, -errno otherwise.
1129  */
1130 static int macronix_quad_enable(struct spi_nor *nor)
1131 {
1132 	int ret, val;
1133 
1134 	val = read_sr(nor);
1135 	if (val < 0)
1136 		return val;
1137 	if (val & SR_QUAD_EN_MX)
1138 		return 0;
1139 
1140 	write_enable(nor);
1141 
1142 	write_sr(nor, val | SR_QUAD_EN_MX);
1143 
1144 	ret = spi_nor_wait_till_ready(nor);
1145 	if (ret)
1146 		return ret;
1147 
1148 	ret = read_sr(nor);
1149 	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1150 		dev_err(nor->dev, "Macronix Quad bit not set\n");
1151 		return -EINVAL;
1152 	}
1153 
1154 	return 0;
1155 }
1156 #endif
1157 
1158 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1159 /*
1160  * Write status Register and configuration register with 2 bytes
1161  * The first byte will be written to the status register, while the
1162  * second byte will be written to the configuration register.
1163  * Return negative if error occurred.
1164  */
1165 static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
1166 {
1167 	int ret;
1168 
1169 	write_enable(nor);
1170 
1171 	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
1172 	if (ret < 0) {
1173 		dev_dbg(nor->dev,
1174 			"error while writing configuration register\n");
1175 		return -EINVAL;
1176 	}
1177 
1178 	ret = spi_nor_wait_till_ready(nor);
1179 	if (ret) {
1180 		dev_dbg(nor->dev,
1181 			"timeout while writing configuration register\n");
1182 		return ret;
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 /**
1189  * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
1190  * @nor:	pointer to a 'struct spi_nor'
1191  *
1192  * Set the Quad Enable (QE) bit in the Configuration Register.
1193  * This function should be used with QSPI memories supporting the Read
1194  * Configuration Register (35h) instruction.
1195  *
1196  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1197  * memories.
1198  *
1199  * Return: 0 on success, -errno otherwise.
1200  */
1201 static int spansion_read_cr_quad_enable(struct spi_nor *nor)
1202 {
1203 	u8 sr_cr[2];
1204 	int ret;
1205 
1206 	/* Check current Quad Enable bit value. */
1207 	ret = read_cr(nor);
1208 	if (ret < 0) {
1209 		dev_dbg(dev, "error while reading configuration register\n");
1210 		return -EINVAL;
1211 	}
1212 
1213 	if (ret & CR_QUAD_EN_SPAN)
1214 		return 0;
1215 
1216 	sr_cr[1] = ret | CR_QUAD_EN_SPAN;
1217 
1218 	/* Keep the current value of the Status Register. */
1219 	ret = read_sr(nor);
1220 	if (ret < 0) {
1221 		dev_dbg(dev, "error while reading status register\n");
1222 		return -EINVAL;
1223 	}
1224 	sr_cr[0] = ret;
1225 
1226 	ret = write_sr_cr(nor, sr_cr);
1227 	if (ret)
1228 		return ret;
1229 
1230 	/* Read back and check it. */
1231 	ret = read_cr(nor);
1232 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1233 		dev_dbg(nor->dev, "Spansion Quad bit not set\n");
1234 		return -EINVAL;
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1241 /**
1242  * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
1243  * @nor:	pointer to a 'struct spi_nor'
1244  *
1245  * Set the Quad Enable (QE) bit in the Configuration Register.
1246  * This function should be used with QSPI memories not supporting the Read
1247  * Configuration Register (35h) instruction.
1248  *
1249  * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
1250  * memories.
1251  *
1252  * Return: 0 on success, -errno otherwise.
1253  */
1254 static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
1255 {
1256 	u8 sr_cr[2];
1257 	int ret;
1258 
1259 	/* Keep the current value of the Status Register. */
1260 	ret = read_sr(nor);
1261 	if (ret < 0) {
1262 		dev_dbg(nor->dev, "error while reading status register\n");
1263 		return -EINVAL;
1264 	}
1265 	sr_cr[0] = ret;
1266 	sr_cr[1] = CR_QUAD_EN_SPAN;
1267 
1268 	return write_sr_cr(nor, sr_cr);
1269 }
1270 
1271 #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
1272 #endif /* CONFIG_SPI_FLASH_SPANSION */
1273 
1274 struct spi_nor_read_command {
1275 	u8			num_mode_clocks;
1276 	u8			num_wait_states;
1277 	u8			opcode;
1278 	enum spi_nor_protocol	proto;
1279 };
1280 
1281 struct spi_nor_pp_command {
1282 	u8			opcode;
1283 	enum spi_nor_protocol	proto;
1284 };
1285 
1286 enum spi_nor_read_command_index {
1287 	SNOR_CMD_READ,
1288 	SNOR_CMD_READ_FAST,
1289 	SNOR_CMD_READ_1_1_1_DTR,
1290 
1291 	/* Dual SPI */
1292 	SNOR_CMD_READ_1_1_2,
1293 	SNOR_CMD_READ_1_2_2,
1294 	SNOR_CMD_READ_2_2_2,
1295 	SNOR_CMD_READ_1_2_2_DTR,
1296 
1297 	/* Quad SPI */
1298 	SNOR_CMD_READ_1_1_4,
1299 	SNOR_CMD_READ_1_4_4,
1300 	SNOR_CMD_READ_4_4_4,
1301 	SNOR_CMD_READ_1_4_4_DTR,
1302 
1303 	/* Octo SPI */
1304 	SNOR_CMD_READ_1_1_8,
1305 	SNOR_CMD_READ_1_8_8,
1306 	SNOR_CMD_READ_8_8_8,
1307 	SNOR_CMD_READ_1_8_8_DTR,
1308 
1309 	SNOR_CMD_READ_MAX
1310 };
1311 
1312 enum spi_nor_pp_command_index {
1313 	SNOR_CMD_PP,
1314 
1315 	/* Quad SPI */
1316 	SNOR_CMD_PP_1_1_4,
1317 	SNOR_CMD_PP_1_4_4,
1318 	SNOR_CMD_PP_4_4_4,
1319 
1320 	/* Octo SPI */
1321 	SNOR_CMD_PP_1_1_8,
1322 	SNOR_CMD_PP_1_8_8,
1323 	SNOR_CMD_PP_8_8_8,
1324 
1325 	SNOR_CMD_PP_MAX
1326 };
1327 
1328 struct spi_nor_flash_parameter {
1329 	u64				size;
1330 	u32				page_size;
1331 
1332 	struct spi_nor_hwcaps		hwcaps;
1333 	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
1334 	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];
1335 
1336 	int (*quad_enable)(struct spi_nor *nor);
1337 };
1338 
1339 static void
1340 spi_nor_set_read_settings(struct spi_nor_read_command *read,
1341 			  u8 num_mode_clocks,
1342 			  u8 num_wait_states,
1343 			  u8 opcode,
1344 			  enum spi_nor_protocol proto)
1345 {
1346 	read->num_mode_clocks = num_mode_clocks;
1347 	read->num_wait_states = num_wait_states;
1348 	read->opcode = opcode;
1349 	read->proto = proto;
1350 }
1351 
1352 static void
1353 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
1354 			u8 opcode,
1355 			enum spi_nor_protocol proto)
1356 {
1357 	pp->opcode = opcode;
1358 	pp->proto = proto;
1359 }
1360 
1361 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
1362 /*
1363  * Serial Flash Discoverable Parameters (SFDP) parsing.
1364  */
1365 
1366 /**
1367  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
1368  * @nor:	pointer to a 'struct spi_nor'
1369  * @addr:	offset in the SFDP area to start reading data from
1370  * @len:	number of bytes to read
1371  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
1372  *
1373  * Whatever the actual numbers of bytes for address and dummy cycles are
1374  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
1375  * followed by a 3-byte address and 8 dummy clock cycles.
1376  *
1377  * Return: 0 on success, -errno otherwise.
1378  */
1379 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
1380 			     size_t len, void *buf)
1381 {
1382 	u8 addr_width, read_opcode, read_dummy;
1383 	int ret;
1384 
1385 	read_opcode = nor->read_opcode;
1386 	addr_width = nor->addr_width;
1387 	read_dummy = nor->read_dummy;
1388 
1389 	nor->read_opcode = SPINOR_OP_RDSFDP;
1390 	nor->addr_width = 3;
1391 	nor->read_dummy = 8;
1392 
1393 	while (len) {
1394 		ret = nor->read(nor, addr, len, (u8 *)buf);
1395 		if (!ret || ret > len) {
1396 			ret = -EIO;
1397 			goto read_err;
1398 		}
1399 		if (ret < 0)
1400 			goto read_err;
1401 
1402 		buf += ret;
1403 		addr += ret;
1404 		len -= ret;
1405 	}
1406 	ret = 0;
1407 
1408 read_err:
1409 	nor->read_opcode = read_opcode;
1410 	nor->addr_width = addr_width;
1411 	nor->read_dummy = read_dummy;
1412 
1413 	return ret;
1414 }
1415 
1416 struct sfdp_parameter_header {
1417 	u8		id_lsb;
1418 	u8		minor;
1419 	u8		major;
1420 	u8		length; /* in double words */
1421 	u8		parameter_table_pointer[3]; /* byte address */
1422 	u8		id_msb;
1423 };
1424 
1425 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
1426 #define SFDP_PARAM_HEADER_PTP(p) \
1427 	(((p)->parameter_table_pointer[2] << 16) | \
1428 	 ((p)->parameter_table_pointer[1] <<  8) | \
1429 	 ((p)->parameter_table_pointer[0] <<  0))
1430 
1431 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
1432 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
1433 
1434 #define SFDP_SIGNATURE		0x50444653U
1435 #define SFDP_JESD216_MAJOR	1
1436 #define SFDP_JESD216_MINOR	0
1437 #define SFDP_JESD216A_MINOR	5
1438 #define SFDP_JESD216B_MINOR	6
1439 
1440 struct sfdp_header {
1441 	u32		signature; /* Ox50444653U <=> "SFDP" */
1442 	u8		minor;
1443 	u8		major;
1444 	u8		nph; /* 0-base number of parameter headers */
1445 	u8		unused;
1446 
1447 	/* Basic Flash Parameter Table. */
1448 	struct sfdp_parameter_header	bfpt_header;
1449 };
1450 
1451 /* Basic Flash Parameter Table */
1452 
1453 /*
1454  * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
1455  * They are indexed from 1 but C arrays are indexed from 0.
1456  */
1457 #define BFPT_DWORD(i)		((i) - 1)
1458 #define BFPT_DWORD_MAX		16
1459 
1460 /* The first version of JESB216 defined only 9 DWORDs. */
1461 #define BFPT_DWORD_MAX_JESD216			9
1462 
1463 /* 1st DWORD. */
1464 #define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
1465 #define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
1466 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
1467 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
1468 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
1469 #define BFPT_DWORD1_DTR				BIT(19)
1470 #define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
1471 #define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
1472 #define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)
1473 
1474 /* 5th DWORD. */
1475 #define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
1476 #define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)
1477 
1478 /* 11th DWORD. */
1479 #define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
1480 #define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)
1481 
1482 /* 15th DWORD. */
1483 
1484 /*
1485  * (from JESD216 rev B)
1486  * Quad Enable Requirements (QER):
1487  * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
1488  *         reads based on instruction. DQ3/HOLD# functions are hold during
1489  *         instruction phase.
1490  * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
1491  *         two data bytes where bit 1 of the second byte is one.
1492  *         [...]
1493  *         Writing only one byte to the status register has the side-effect of
1494  *         clearing status register 2, including the QE bit. The 100b code is
1495  *         used if writing one byte to the status register does not modify
1496  *         status register 2.
1497  * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
1498  *         one data byte where bit 6 is one.
1499  *         [...]
1500  * - 011b: QE is bit 7 of status register 2. It is set via Write status
1501  *         register 2 instruction 3Eh with one data byte where bit 7 is one.
1502  *         [...]
1503  *         The status register 2 is read using instruction 3Fh.
1504  * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
1505  *         two data bytes where bit 1 of the second byte is one.
1506  *         [...]
1507  *         In contrast to the 001b code, writing one byte to the status
1508  *         register does not modify status register 2.
1509  * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
1510  *         Read Status instruction 05h. Status register2 is read using
1511  *         instruction 35h. QE is set via Writ Status instruction 01h with
1512  *         two data bytes where bit 1 of the second byte is one.
1513  *         [...]
1514  */
1515 #define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
1516 #define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
1517 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
1518 #define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
1519 #define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
1520 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
1521 #define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */
1522 
1523 struct sfdp_bfpt {
1524 	u32	dwords[BFPT_DWORD_MAX];
1525 };
1526 
1527 /* Fast Read settings. */
1528 
1529 static void
1530 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
1531 				    u16 half,
1532 				    enum spi_nor_protocol proto)
1533 {
1534 	read->num_mode_clocks = (half >> 5) & 0x07;
1535 	read->num_wait_states = (half >> 0) & 0x1f;
1536 	read->opcode = (half >> 8) & 0xff;
1537 	read->proto = proto;
1538 }
1539 
1540 struct sfdp_bfpt_read {
1541 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
1542 	u32			hwcaps;
1543 
1544 	/*
1545 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
1546 	 * whether the Fast Read x-y-z command is supported.
1547 	 */
1548 	u32			supported_dword;
1549 	u32			supported_bit;
1550 
1551 	/*
1552 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
1553 	 * encodes the op code, the number of mode clocks and the number of wait
1554 	 * states to be used by Fast Read x-y-z command.
1555 	 */
1556 	u32			settings_dword;
1557 	u32			settings_shift;
1558 
1559 	/* The SPI protocol for this Fast Read x-y-z command. */
1560 	enum spi_nor_protocol	proto;
1561 };
1562 
1563 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
1564 	/* Fast Read 1-1-2 */
1565 	{
1566 		SNOR_HWCAPS_READ_1_1_2,
1567 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
1568 		BFPT_DWORD(4), 0,	/* Settings */
1569 		SNOR_PROTO_1_1_2,
1570 	},
1571 
1572 	/* Fast Read 1-2-2 */
1573 	{
1574 		SNOR_HWCAPS_READ_1_2_2,
1575 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
1576 		BFPT_DWORD(4), 16,	/* Settings */
1577 		SNOR_PROTO_1_2_2,
1578 	},
1579 
1580 	/* Fast Read 2-2-2 */
1581 	{
1582 		SNOR_HWCAPS_READ_2_2_2,
1583 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
1584 		BFPT_DWORD(6), 16,	/* Settings */
1585 		SNOR_PROTO_2_2_2,
1586 	},
1587 
1588 	/* Fast Read 1-1-4 */
1589 	{
1590 		SNOR_HWCAPS_READ_1_1_4,
1591 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
1592 		BFPT_DWORD(3), 16,	/* Settings */
1593 		SNOR_PROTO_1_1_4,
1594 	},
1595 
1596 	/* Fast Read 1-4-4 */
1597 	{
1598 		SNOR_HWCAPS_READ_1_4_4,
1599 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
1600 		BFPT_DWORD(3), 0,	/* Settings */
1601 		SNOR_PROTO_1_4_4,
1602 	},
1603 
1604 	/* Fast Read 4-4-4 */
1605 	{
1606 		SNOR_HWCAPS_READ_4_4_4,
1607 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
1608 		BFPT_DWORD(7), 16,	/* Settings */
1609 		SNOR_PROTO_4_4_4,
1610 	},
1611 };
1612 
1613 struct sfdp_bfpt_erase {
1614 	/*
1615 	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
1616 	 * op code and erase sector size to be used by Sector Erase commands.
1617 	 */
1618 	u32			dword;
1619 	u32			shift;
1620 };
1621 
1622 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
1623 	/* Erase Type 1 in DWORD8 bits[15:0] */
1624 	{BFPT_DWORD(8), 0},
1625 
1626 	/* Erase Type 2 in DWORD8 bits[31:16] */
1627 	{BFPT_DWORD(8), 16},
1628 
1629 	/* Erase Type 3 in DWORD9 bits[15:0] */
1630 	{BFPT_DWORD(9), 0},
1631 
1632 	/* Erase Type 4 in DWORD9 bits[31:16] */
1633 	{BFPT_DWORD(9), 16},
1634 };
1635 
1636 static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
1637 
1638 /**
1639  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
1640  * @nor:		pointer to a 'struct spi_nor'
1641  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
1642  *			the Basic Flash Parameter Table length and version
1643  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1644  *			filled
1645  *
1646  * The Basic Flash Parameter Table is the main and only mandatory table as
1647  * defined by the SFDP (JESD216) specification.
1648  * It provides us with the total size (memory density) of the data array and
1649  * the number of address bytes for Fast Read, Page Program and Sector Erase
1650  * commands.
1651  * For Fast READ commands, it also gives the number of mode clock cycles and
1652  * wait states (regrouped in the number of dummy clock cycles) for each
1653  * supported instruction op code.
1654  * For Page Program, the page size is now available since JESD216 rev A, however
1655  * the supported instruction op codes are still not provided.
1656  * For Sector Erase commands, this table stores the supported instruction op
1657  * codes and the associated sector sizes.
1658  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
1659  * rev A. The QER bits encode the manufacturer dependent procedure to be
1660  * executed to set the Quad Enable (QE) bit in some internal register of the
1661  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
1662  * sending any Quad SPI command to the memory. Actually, setting the QE bit
1663  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
1664  * and IO3 hence enabling 4 (Quad) I/O lines.
1665  *
1666  * Return: 0 on success, -errno otherwise.
1667  */
1668 static int spi_nor_parse_bfpt(struct spi_nor *nor,
1669 			      const struct sfdp_parameter_header *bfpt_header,
1670 			      struct spi_nor_flash_parameter *params)
1671 {
1672 	struct mtd_info *mtd = &nor->mtd;
1673 	struct sfdp_bfpt bfpt;
1674 	size_t len;
1675 	int i, cmd, err;
1676 	u32 addr;
1677 	u16 half;
1678 
1679 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
1680 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
1681 		return -EINVAL;
1682 
1683 	/* Read the Basic Flash Parameter Table. */
1684 	len = min_t(size_t, sizeof(bfpt),
1685 		    bfpt_header->length * sizeof(u32));
1686 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
1687 	memset(&bfpt, 0, sizeof(bfpt));
1688 	err = spi_nor_read_sfdp(nor,  addr, len, &bfpt);
1689 	if (err < 0)
1690 		return err;
1691 
1692 	/* Fix endianness of the BFPT DWORDs. */
1693 	for (i = 0; i < BFPT_DWORD_MAX; i++)
1694 		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
1695 
1696 	/* Number of address bytes. */
1697 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
1698 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
1699 		nor->addr_width = 3;
1700 		break;
1701 
1702 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
1703 		nor->addr_width = 4;
1704 		break;
1705 
1706 	default:
1707 		break;
1708 	}
1709 
1710 	/* Flash Memory Density (in bits). */
1711 	params->size = bfpt.dwords[BFPT_DWORD(2)];
1712 	if (params->size & BIT(31)) {
1713 		params->size &= ~BIT(31);
1714 
1715 		/*
1716 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
1717 		 * bits is unlikely to exist so this error probably means
1718 		 * the BFPT we are reading is corrupted/wrong.
1719 		 */
1720 		if (params->size > 63)
1721 			return -EINVAL;
1722 
1723 		params->size = 1ULL << params->size;
1724 	} else {
1725 		params->size++;
1726 	}
1727 	params->size >>= 3; /* Convert to bytes. */
1728 
1729 	/* Fast Read settings. */
1730 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
1731 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
1732 		struct spi_nor_read_command *read;
1733 
1734 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
1735 			params->hwcaps.mask &= ~rd->hwcaps;
1736 			continue;
1737 		}
1738 
1739 		params->hwcaps.mask |= rd->hwcaps;
1740 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
1741 		read = &params->reads[cmd];
1742 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
1743 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
1744 	}
1745 
1746 	/* Sector Erase settings. */
1747 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
1748 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
1749 		u32 erasesize;
1750 		u8 opcode;
1751 
1752 		half = bfpt.dwords[er->dword] >> er->shift;
1753 		erasesize = half & 0xff;
1754 
1755 		/* erasesize == 0 means this Erase Type is not supported. */
1756 		if (!erasesize)
1757 			continue;
1758 
1759 		erasesize = 1U << erasesize;
1760 		opcode = (half >> 8) & 0xff;
1761 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1762 		if (erasesize == SZ_4K) {
1763 			nor->erase_opcode = opcode;
1764 			mtd->erasesize = erasesize;
1765 			break;
1766 		}
1767 #endif
1768 		if (!mtd->erasesize || mtd->erasesize < erasesize) {
1769 			nor->erase_opcode = opcode;
1770 			mtd->erasesize = erasesize;
1771 		}
1772 	}
1773 
1774 	/* Stop here if not JESD216 rev A or later. */
1775 	if (bfpt_header->length < BFPT_DWORD_MAX)
1776 		return 0;
1777 
1778 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
1779 	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
1780 	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
1781 	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
1782 	params->page_size = 1U << params->page_size;
1783 
1784 	/* Quad Enable Requirements. */
1785 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
1786 	case BFPT_DWORD15_QER_NONE:
1787 		params->quad_enable = NULL;
1788 		break;
1789 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1790 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
1791 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
1792 		params->quad_enable = spansion_no_read_cr_quad_enable;
1793 		break;
1794 #endif
1795 #ifdef CONFIG_SPI_FLASH_MACRONIX
1796 	case BFPT_DWORD15_QER_SR1_BIT6:
1797 		params->quad_enable = macronix_quad_enable;
1798 		break;
1799 #endif
1800 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1801 	case BFPT_DWORD15_QER_SR2_BIT1:
1802 		params->quad_enable = spansion_read_cr_quad_enable;
1803 		break;
1804 #endif
1805 	default:
1806 		return -EINVAL;
1807 	}
1808 
1809 	return 0;
1810 }
1811 
1812 /**
1813  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1814  * @nor:		pointer to a 'struct spi_nor'
1815  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1816  *			filled
1817  *
1818  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1819  * specification. This is a standard which tends to supported by almost all
1820  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1821  * runtime the main parameters needed to perform basic SPI flash operations such
1822  * as Fast Read, Page Program or Sector Erase commands.
1823  *
1824  * Return: 0 on success, -errno otherwise.
1825  */
1826 static int spi_nor_parse_sfdp(struct spi_nor *nor,
1827 			      struct spi_nor_flash_parameter *params)
1828 {
1829 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1830 	struct sfdp_parameter_header *param_headers = NULL;
1831 	struct sfdp_header header;
1832 	size_t psize;
1833 	int i, err;
1834 
1835 	/* Get the SFDP header. */
1836 	err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
1837 	if (err < 0)
1838 		return err;
1839 
1840 	/* Check the SFDP header version. */
1841 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1842 	    header.major != SFDP_JESD216_MAJOR)
1843 		return -EINVAL;
1844 
1845 	/*
1846 	 * Verify that the first and only mandatory parameter header is a
1847 	 * Basic Flash Parameter Table header as specified in JESD216.
1848 	 */
1849 	bfpt_header = &header.bfpt_header;
1850 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1851 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1852 		return -EINVAL;
1853 
1854 	/*
1855 	 * Allocate memory then read all parameter headers with a single
1856 	 * Read SFDP command. These parameter headers will actually be parsed
1857 	 * twice: a first time to get the latest revision of the basic flash
1858 	 * parameter table, then a second time to handle the supported optional
1859 	 * tables.
1860 	 * Hence we read the parameter headers once for all to reduce the
1861 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1862 	 * because we don't need to keep these parameter headers: the allocated
1863 	 * memory is always released with kfree() before exiting this function.
1864 	 */
1865 	if (header.nph) {
1866 		psize = header.nph * sizeof(*param_headers);
1867 
1868 		param_headers = kmalloc(psize, GFP_KERNEL);
1869 		if (!param_headers)
1870 			return -ENOMEM;
1871 
1872 		err = spi_nor_read_sfdp(nor, sizeof(header),
1873 					psize, param_headers);
1874 		if (err < 0) {
1875 			dev_err(dev, "failed to read SFDP parameter headers\n");
1876 			goto exit;
1877 		}
1878 	}
1879 
1880 	/*
1881 	 * Check other parameter headers to get the latest revision of
1882 	 * the basic flash parameter table.
1883 	 */
1884 	for (i = 0; i < header.nph; i++) {
1885 		param_header = &param_headers[i];
1886 
1887 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1888 		    param_header->major == SFDP_JESD216_MAJOR &&
1889 		    (param_header->minor > bfpt_header->minor ||
1890 		     (param_header->minor == bfpt_header->minor &&
1891 		      param_header->length > bfpt_header->length)))
1892 			bfpt_header = param_header;
1893 	}
1894 
1895 	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
1896 	if (err)
1897 		goto exit;
1898 
1899 	/* Parse other parameter headers. */
1900 	for (i = 0; i < header.nph; i++) {
1901 		param_header = &param_headers[i];
1902 
1903 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1904 		case SFDP_SECTOR_MAP_ID:
1905 			dev_info(dev, "non-uniform erase sector maps are not supported yet.\n");
1906 			break;
1907 
1908 		default:
1909 			break;
1910 		}
1911 
1912 		if (err)
1913 			goto exit;
1914 	}
1915 
1916 exit:
1917 	kfree(param_headers);
1918 	return err;
1919 }
1920 #else
1921 static int spi_nor_parse_sfdp(struct spi_nor *nor,
1922 			      struct spi_nor_flash_parameter *params)
1923 {
1924 	return -EINVAL;
1925 }
1926 #endif /* SPI_FLASH_SFDP_SUPPORT */
1927 
1928 static int spi_nor_init_params(struct spi_nor *nor,
1929 			       const struct flash_info *info,
1930 			       struct spi_nor_flash_parameter *params)
1931 {
1932 	/* Set legacy flash parameters as default. */
1933 	memset(params, 0, sizeof(*params));
1934 
1935 	/* Set SPI NOR sizes. */
1936 	params->size = info->sector_size * info->n_sectors;
1937 	params->page_size = info->page_size;
1938 
1939 	/* (Fast) Read settings. */
1940 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
1941 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
1942 				  0, 0, SPINOR_OP_READ,
1943 				  SNOR_PROTO_1_1_1);
1944 
1945 	if (!(info->flags & SPI_NOR_NO_FR)) {
1946 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
1947 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
1948 					  0, 8, SPINOR_OP_READ_FAST,
1949 					  SNOR_PROTO_1_1_1);
1950 	}
1951 
1952 	if (info->flags & SPI_NOR_DUAL_READ) {
1953 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
1954 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
1955 					  0, 8, SPINOR_OP_READ_1_1_2,
1956 					  SNOR_PROTO_1_1_2);
1957 	}
1958 
1959 	if (info->flags & SPI_NOR_QUAD_READ) {
1960 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
1961 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
1962 					  0, 8, SPINOR_OP_READ_1_1_4,
1963 					  SNOR_PROTO_1_1_4);
1964 	}
1965 
1966 	/* Page Program settings. */
1967 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
1968 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
1969 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
1970 
1971 	if (info->flags & SPI_NOR_QUAD_READ) {
1972 		params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
1973 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
1974 					SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
1975 	}
1976 
1977 	/* Select the procedure to set the Quad Enable bit. */
1978 	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
1979 				   SNOR_HWCAPS_PP_QUAD)) {
1980 		switch (JEDEC_MFR(info)) {
1981 #ifdef CONFIG_SPI_FLASH_MACRONIX
1982 		case SNOR_MFR_MACRONIX:
1983 			params->quad_enable = macronix_quad_enable;
1984 			break;
1985 #endif
1986 		case SNOR_MFR_ST:
1987 		case SNOR_MFR_MICRON:
1988 			break;
1989 
1990 		default:
1991 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
1992 			/* Kept only for backward compatibility purpose. */
1993 			params->quad_enable = spansion_read_cr_quad_enable;
1994 #endif
1995 			break;
1996 		}
1997 	}
1998 
1999 	/* Override the parameters with data read from SFDP tables. */
2000 	nor->addr_width = 0;
2001 	nor->mtd.erasesize = 0;
2002 	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2003 	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
2004 		struct spi_nor_flash_parameter sfdp_params;
2005 
2006 		memcpy(&sfdp_params, params, sizeof(sfdp_params));
2007 		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
2008 			nor->addr_width = 0;
2009 			nor->mtd.erasesize = 0;
2010 		} else {
2011 			memcpy(params, &sfdp_params, sizeof(*params));
2012 		}
2013 	}
2014 
2015 	return 0;
2016 }
2017 
2018 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2019 {
2020 	size_t i;
2021 
2022 	for (i = 0; i < size; i++)
2023 		if (table[i][0] == (int)hwcaps)
2024 			return table[i][1];
2025 
2026 	return -EINVAL;
2027 }
2028 
2029 static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2030 {
2031 	static const int hwcaps_read2cmd[][2] = {
2032 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2033 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2034 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2035 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2036 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2037 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2038 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2039 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2040 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2041 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2042 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2043 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2044 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2045 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2046 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2047 	};
2048 
2049 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2050 				  ARRAY_SIZE(hwcaps_read2cmd));
2051 }
2052 
2053 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2054 {
2055 	static const int hwcaps_pp2cmd[][2] = {
2056 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2057 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2058 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2059 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2060 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2061 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2062 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2063 	};
2064 
2065 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2066 				  ARRAY_SIZE(hwcaps_pp2cmd));
2067 }
2068 
2069 static int spi_nor_select_read(struct spi_nor *nor,
2070 			       const struct spi_nor_flash_parameter *params,
2071 			       u32 shared_hwcaps)
2072 {
2073 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2074 	const struct spi_nor_read_command *read;
2075 
2076 	if (best_match < 0)
2077 		return -EINVAL;
2078 
2079 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2080 	if (cmd < 0)
2081 		return -EINVAL;
2082 
2083 	read = &params->reads[cmd];
2084 	nor->read_opcode = read->opcode;
2085 	nor->read_proto = read->proto;
2086 
2087 	/*
2088 	 * In the spi-nor framework, we don't need to make the difference
2089 	 * between mode clock cycles and wait state clock cycles.
2090 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2091 	 * flash memory to know whether it should enter or leave its 0-4-4
2092 	 * (Continuous Read / XIP) mode.
2093 	 * eXecution In Place is out of the scope of the mtd sub-system.
2094 	 * Hence we choose to merge both mode and wait state clock cycles
2095 	 * into the so called dummy clock cycles.
2096 	 */
2097 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2098 	return 0;
2099 }
2100 
2101 static int spi_nor_select_pp(struct spi_nor *nor,
2102 			     const struct spi_nor_flash_parameter *params,
2103 			     u32 shared_hwcaps)
2104 {
2105 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2106 	const struct spi_nor_pp_command *pp;
2107 
2108 	if (best_match < 0)
2109 		return -EINVAL;
2110 
2111 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2112 	if (cmd < 0)
2113 		return -EINVAL;
2114 
2115 	pp = &params->page_programs[cmd];
2116 	nor->program_opcode = pp->opcode;
2117 	nor->write_proto = pp->proto;
2118 	return 0;
2119 }
2120 
2121 static int spi_nor_select_erase(struct spi_nor *nor,
2122 				const struct flash_info *info)
2123 {
2124 	struct mtd_info *mtd = &nor->mtd;
2125 
2126 	/* Do nothing if already configured from SFDP. */
2127 	if (mtd->erasesize)
2128 		return 0;
2129 
2130 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
2131 	/* prefer "small sector" erase if possible */
2132 	if (info->flags & SECT_4K) {
2133 		nor->erase_opcode = SPINOR_OP_BE_4K;
2134 		mtd->erasesize = 4096;
2135 	} else if (info->flags & SECT_4K_PMC) {
2136 		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
2137 		mtd->erasesize = 4096;
2138 	} else
2139 #endif
2140 	{
2141 		nor->erase_opcode = SPINOR_OP_SE;
2142 		mtd->erasesize = info->sector_size;
2143 	}
2144 	return 0;
2145 }
2146 
2147 static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
2148 			 const struct spi_nor_flash_parameter *params,
2149 			 const struct spi_nor_hwcaps *hwcaps)
2150 {
2151 	u32 ignored_mask, shared_mask;
2152 	bool enable_quad_io;
2153 	int err;
2154 
2155 	/*
2156 	 * Keep only the hardware capabilities supported by both the SPI
2157 	 * controller and the SPI flash memory.
2158 	 */
2159 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2160 
2161 	/* SPI n-n-n protocols are not supported yet. */
2162 	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
2163 			SNOR_HWCAPS_READ_4_4_4 |
2164 			SNOR_HWCAPS_READ_8_8_8 |
2165 			SNOR_HWCAPS_PP_4_4_4 |
2166 			SNOR_HWCAPS_PP_8_8_8);
2167 	if (shared_mask & ignored_mask) {
2168 		dev_dbg(nor->dev,
2169 			"SPI n-n-n protocols are not supported yet.\n");
2170 		shared_mask &= ~ignored_mask;
2171 	}
2172 
2173 	/* Select the (Fast) Read command. */
2174 	err = spi_nor_select_read(nor, params, shared_mask);
2175 	if (err) {
2176 		dev_dbg(nor->dev,
2177 			"can't select read settings supported by both the SPI controller and memory.\n");
2178 		return err;
2179 	}
2180 
2181 	/* Select the Page Program command. */
2182 	err = spi_nor_select_pp(nor, params, shared_mask);
2183 	if (err) {
2184 		dev_dbg(nor->dev,
2185 			"can't select write settings supported by both the SPI controller and memory.\n");
2186 		return err;
2187 	}
2188 
2189 	/* Select the Sector Erase command. */
2190 	err = spi_nor_select_erase(nor, info);
2191 	if (err) {
2192 		dev_dbg(nor->dev,
2193 			"can't select erase settings supported by both the SPI controller and memory.\n");
2194 		return err;
2195 	}
2196 
2197 	/* Enable Quad I/O if needed. */
2198 	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2199 			  spi_nor_get_protocol_width(nor->write_proto) == 4);
2200 	if (enable_quad_io && params->quad_enable)
2201 		nor->quad_enable = params->quad_enable;
2202 	else
2203 		nor->quad_enable = NULL;
2204 
2205 	return 0;
2206 }
2207 
2208 static int spi_nor_init(struct spi_nor *nor)
2209 {
2210 	int err;
2211 
2212 	/*
2213 	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
2214 	 * with the software protection bits set
2215 	 */
2216 	if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
2217 	    JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
2218 	    JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
2219 	    nor->info->flags & SPI_NOR_HAS_LOCK) {
2220 		write_enable(nor);
2221 		write_sr(nor, 0);
2222 		spi_nor_wait_till_ready(nor);
2223 	}
2224 
2225 	if (nor->quad_enable) {
2226 		err = nor->quad_enable(nor);
2227 		if (err) {
2228 			dev_dbg(nor->dev, "quad mode not supported\n");
2229 			return err;
2230 		}
2231 	}
2232 
2233 	if (nor->addr_width == 4 &&
2234 	    (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
2235 	    !(nor->info->flags & SPI_NOR_4B_OPCODES)) {
2236 		/*
2237 		 * If the RESET# pin isn't hooked up properly, or the system
2238 		 * otherwise doesn't perform a reset command in the boot
2239 		 * sequence, it's impossible to 100% protect against unexpected
2240 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
2241 		 * designer) that this is bad.
2242 		 */
2243 		if (nor->flags & SNOR_F_BROKEN_RESET)
2244 			printf("enabling reset hack; may not recover from unexpected reboots\n");
2245 		set_4byte(nor, nor->info, 1);
2246 	}
2247 
2248 	return 0;
2249 }
2250 
2251 int spi_nor_scan(struct spi_nor *nor)
2252 {
2253 	struct spi_nor_flash_parameter params;
2254 	const struct flash_info *info = NULL;
2255 	struct mtd_info *mtd = &nor->mtd;
2256 	struct spi_nor_hwcaps hwcaps = {
2257 		.mask = SNOR_HWCAPS_READ |
2258 			SNOR_HWCAPS_READ_FAST |
2259 			SNOR_HWCAPS_PP,
2260 	};
2261 	struct spi_slave *spi = nor->spi;
2262 	int ret;
2263 
2264 	/* Reset SPI protocol for all commands. */
2265 	nor->reg_proto = SNOR_PROTO_1_1_1;
2266 	nor->read_proto = SNOR_PROTO_1_1_1;
2267 	nor->write_proto = SNOR_PROTO_1_1_1;
2268 	nor->read = spi_nor_read_data;
2269 	nor->write = spi_nor_write_data;
2270 	nor->read_reg = spi_nor_read_reg;
2271 	nor->write_reg = spi_nor_write_reg;
2272 
2273 	if (spi->mode & SPI_RX_QUAD) {
2274 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2275 
2276 		if (spi->mode & SPI_TX_QUAD)
2277 			hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
2278 					SNOR_HWCAPS_PP_1_1_4 |
2279 					SNOR_HWCAPS_PP_1_4_4);
2280 	} else if (spi->mode & SPI_RX_DUAL) {
2281 		hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2282 
2283 		if (spi->mode & SPI_TX_DUAL)
2284 			hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
2285 	}
2286 
2287 	info = spi_nor_read_id(nor);
2288 	if (IS_ERR_OR_NULL(info))
2289 		return -ENOENT;
2290 	/* Parse the Serial Flash Discoverable Parameters table. */
2291 	ret = spi_nor_init_params(nor, info, &params);
2292 	if (ret)
2293 		return ret;
2294 
2295 	if (!mtd->name)
2296 		mtd->name = info->name;
2297 	mtd->priv = nor;
2298 	mtd->type = MTD_NORFLASH;
2299 	mtd->writesize = 1;
2300 	mtd->flags = MTD_CAP_NORFLASH;
2301 	mtd->size = params.size;
2302 	mtd->_erase = spi_nor_erase;
2303 	mtd->_read = spi_nor_read;
2304 
2305 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
2306 	/* NOR protection support for STmicro/Micron chips and similar */
2307 	if (JEDEC_MFR(info) == SNOR_MFR_ST ||
2308 	    JEDEC_MFR(info) == SNOR_MFR_MICRON ||
2309 	    JEDEC_MFR(info) == SNOR_MFR_SST ||
2310 			info->flags & SPI_NOR_HAS_LOCK) {
2311 		nor->flash_lock = stm_lock;
2312 		nor->flash_unlock = stm_unlock;
2313 		nor->flash_is_locked = stm_is_locked;
2314 	}
2315 #endif
2316 
2317 #ifdef CONFIG_SPI_FLASH_SST
2318 	/* sst nor chips use AAI word program */
2319 	if (info->flags & SST_WRITE)
2320 		mtd->_write = sst_write;
2321 	else
2322 #endif
2323 		mtd->_write = spi_nor_write;
2324 
2325 	if (info->flags & USE_FSR)
2326 		nor->flags |= SNOR_F_USE_FSR;
2327 	if (info->flags & SPI_NOR_HAS_TB)
2328 		nor->flags |= SNOR_F_HAS_SR_TB;
2329 	if (info->flags & NO_CHIP_ERASE)
2330 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2331 	if (info->flags & USE_CLSR)
2332 		nor->flags |= SNOR_F_USE_CLSR;
2333 
2334 	if (info->flags & SPI_NOR_NO_ERASE)
2335 		mtd->flags |= MTD_NO_ERASE;
2336 
2337 	nor->page_size = params.page_size;
2338 	mtd->writebufsize = nor->page_size;
2339 
2340 	/* Some devices cannot do fast-read, no matter what DT tells us */
2341 	if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
2342 		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2343 
2344 	/*
2345 	 * Configure the SPI memory:
2346 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
2347 	 * - set the number of dummy cycles (mode cycles + wait states).
2348 	 * - set the SPI protocols for register and memory accesses.
2349 	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
2350 	 */
2351 	ret = spi_nor_setup(nor, info, &params, &hwcaps);
2352 	if (ret)
2353 		return ret;
2354 
2355 	if (nor->addr_width) {
2356 		/* already configured from SFDP */
2357 	} else if (info->addr_width) {
2358 		nor->addr_width = info->addr_width;
2359 	} else if (mtd->size > SZ_16M) {
2360 #ifndef CONFIG_SPI_FLASH_BAR
2361 		/* enable 4-byte addressing if the device exceeds 16MiB */
2362 		nor->addr_width = 4;
2363 		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
2364 		    info->flags & SPI_NOR_4B_OPCODES)
2365 			spi_nor_set_4byte_opcodes(nor, info);
2366 #else
2367 	/* Configure the BAR - discover bank cmds and read current bank */
2368 	nor->addr_width = 3;
2369 	ret = read_bar(nor, info);
2370 	if (ret < 0)
2371 		return ret;
2372 #endif
2373 	} else {
2374 		nor->addr_width = 3;
2375 	}
2376 
2377 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
2378 		dev_dbg(dev, "address width is too large: %u\n",
2379 			nor->addr_width);
2380 		return -EINVAL;
2381 	}
2382 
2383 	/* Send all the required SPI flash commands to initialize device */
2384 	nor->info = info;
2385 	ret = spi_nor_init(nor);
2386 	if (ret)
2387 		return ret;
2388 
2389 	nor->name = mtd->name;
2390 	nor->size = mtd->size;
2391 	nor->erase_size = mtd->erasesize;
2392 	nor->sector_size = mtd->erasesize;
2393 
2394 #ifndef CONFIG_SPL_BUILD
2395 	printf("SF: Detected %s with page size ", nor->name);
2396 	print_size(nor->page_size, ", erase size ");
2397 	print_size(nor->erase_size, ", total ");
2398 	print_size(nor->size, "");
2399 	puts("\n");
2400 #endif
2401 
2402 	return 0;
2403 }
2404 
2405 /* U-Boot specific functions, need to extend MTD to support these */
2406 int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor)
2407 {
2408 	int sr = read_sr(nor);
2409 
2410 	if (sr < 0)
2411 		return sr;
2412 
2413 	return (sr >> 2) & 7;
2414 }
2415