1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with 4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c 5 * 6 * Copyright (C) 2005, Intec Automation Inc. 7 * Copyright (C) 2014, Freescale Semiconductor, Inc. 8 * 9 * Synced from Linux v4.19 10 */ 11 12 #include <common.h> 13 #include <linux/err.h> 14 #include <linux/errno.h> 15 #include <linux/log2.h> 16 #include <linux/math64.h> 17 #include <linux/sizes.h> 18 19 #include <linux/mtd/mtd.h> 20 #include <linux/mtd/spi-nor.h> 21 #include <spi-mem.h> 22 #include <spi.h> 23 24 #include "sf_internal.h" 25 26 /* Define max times to check status register before we give up. */ 27 28 /* 29 * For everything but full-chip erase; probably could be much smaller, but kept 30 * around for safety for now 31 */ 32 33 #define HZ CONFIG_SYS_HZ 34 35 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) 36 37 static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op 38 *op, void *buf) 39 { 40 if (op->data.dir == SPI_MEM_DATA_IN) 41 op->data.buf.in = buf; 42 else 43 op->data.buf.out = buf; 44 return spi_mem_exec_op(nor->spi, op); 45 } 46 47 static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len) 48 { 49 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1), 50 SPI_MEM_OP_NO_ADDR, 51 SPI_MEM_OP_NO_DUMMY, 52 SPI_MEM_OP_DATA_IN(len, NULL, 1)); 53 int ret; 54 55 ret = spi_nor_read_write_reg(nor, &op, val); 56 if (ret < 0) 57 dev_dbg(&flash->spimem->spi->dev, "error %d reading %x\n", ret, 58 code); 59 60 return ret; 61 } 62 63 static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) 64 { 65 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1), 66 SPI_MEM_OP_NO_ADDR, 67 SPI_MEM_OP_NO_DUMMY, 68 SPI_MEM_OP_DATA_OUT(len, NULL, 1)); 69 70 return spi_nor_read_write_reg(nor, &op, buf); 71 } 72 73 static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, 74 u_char *buf) 75 { 76 struct spi_mem_op op = 77 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1), 78 SPI_MEM_OP_ADDR(nor->addr_width, from, 1), 79 SPI_MEM_OP_DUMMY(nor->read_dummy, 1), 80 SPI_MEM_OP_DATA_IN(len, buf, 1)); 81 size_t remaining = len; 82 int ret; 83 84 /* get transfer protocols. */ 85 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto); 86 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto); 87 op.dummy.buswidth = op.addr.buswidth; 88 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto); 89 90 /* convert the dummy cycles to the number of bytes */ 91 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8; 92 93 while (remaining) { 94 op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX; 95 ret = spi_mem_adjust_op_size(nor->spi, &op); 96 if (ret) 97 return ret; 98 99 ret = spi_mem_exec_op(nor->spi, &op); 100 if (ret) 101 return ret; 102 103 op.addr.val += op.data.nbytes; 104 remaining -= op.data.nbytes; 105 op.data.buf.in += op.data.nbytes; 106 } 107 108 return len; 109 } 110 111 static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, 112 const u_char *buf) 113 { 114 struct spi_mem_op op = 115 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1), 116 SPI_MEM_OP_ADDR(nor->addr_width, to, 1), 117 SPI_MEM_OP_NO_DUMMY, 118 SPI_MEM_OP_DATA_OUT(len, buf, 1)); 119 size_t remaining = len; 120 int ret; 121 122 /* get transfer protocols. */ 123 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto); 124 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto); 125 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto); 126 127 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) 128 op.addr.nbytes = 0; 129 130 while (remaining) { 131 op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX; 132 ret = spi_mem_adjust_op_size(nor->spi, &op); 133 if (ret) 134 return ret; 135 136 ret = spi_mem_exec_op(nor->spi, &op); 137 if (ret) 138 return ret; 139 140 op.addr.val += op.data.nbytes; 141 remaining -= op.data.nbytes; 142 op.data.buf.out += op.data.nbytes; 143 } 144 145 return len; 146 } 147 148 /* 149 * Read the status register, returning its value in the location 150 * Return the status register value. 151 * Returns negative if error occurred. 152 */ 153 static int read_sr(struct spi_nor *nor) 154 { 155 int ret; 156 u8 val; 157 158 ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); 159 if (ret < 0) { 160 pr_debug("error %d reading SR\n", (int)ret); 161 return ret; 162 } 163 164 return val; 165 } 166 167 /* 168 * Read the flag status register, returning its value in the location 169 * Return the status register value. 170 * Returns negative if error occurred. 171 */ 172 static int read_fsr(struct spi_nor *nor) 173 { 174 int ret; 175 u8 val; 176 177 ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1); 178 if (ret < 0) { 179 pr_debug("error %d reading FSR\n", ret); 180 return ret; 181 } 182 183 return val; 184 } 185 186 /* 187 * Read configuration register, returning its value in the 188 * location. Return the configuration register value. 189 * Returns negative if error occurred. 190 */ 191 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) 192 static int read_cr(struct spi_nor *nor) 193 { 194 int ret; 195 u8 val; 196 197 ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); 198 if (ret < 0) { 199 dev_dbg(nor->dev, "error %d reading CR\n", ret); 200 return ret; 201 } 202 203 return val; 204 } 205 #endif 206 207 /* 208 * Write status register 1 byte 209 * Returns negative if error occurred. 210 */ 211 static int write_sr(struct spi_nor *nor, u8 val) 212 { 213 nor->cmd_buf[0] = val; 214 return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1); 215 } 216 217 /* 218 * Set write enable latch with Write Enable command. 219 * Returns negative if error occurred. 220 */ 221 static int write_enable(struct spi_nor *nor) 222 { 223 return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0); 224 } 225 226 /* 227 * Send write disable instruction to the chip. 228 */ 229 static int write_disable(struct spi_nor *nor) 230 { 231 return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0); 232 } 233 234 static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) 235 { 236 return mtd->priv; 237 } 238 239 #ifndef CONFIG_SPI_FLASH_BAR 240 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) 241 { 242 size_t i; 243 244 for (i = 0; i < size; i++) 245 if (table[i][0] == opcode) 246 return table[i][1]; 247 248 /* No conversion found, keep input op code. */ 249 return opcode; 250 } 251 252 static u8 spi_nor_convert_3to4_read(u8 opcode) 253 { 254 static const u8 spi_nor_3to4_read[][2] = { 255 { SPINOR_OP_READ, SPINOR_OP_READ_4B }, 256 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, 257 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, 258 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, 259 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, 260 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, 261 262 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, 263 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, 264 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, 265 }; 266 267 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, 268 ARRAY_SIZE(spi_nor_3to4_read)); 269 } 270 271 static u8 spi_nor_convert_3to4_program(u8 opcode) 272 { 273 static const u8 spi_nor_3to4_program[][2] = { 274 { SPINOR_OP_PP, SPINOR_OP_PP_4B }, 275 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, 276 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, 277 }; 278 279 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, 280 ARRAY_SIZE(spi_nor_3to4_program)); 281 } 282 283 static u8 spi_nor_convert_3to4_erase(u8 opcode) 284 { 285 static const u8 spi_nor_3to4_erase[][2] = { 286 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, 287 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, 288 { SPINOR_OP_SE, SPINOR_OP_SE_4B }, 289 }; 290 291 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, 292 ARRAY_SIZE(spi_nor_3to4_erase)); 293 } 294 295 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor, 296 const struct flash_info *info) 297 { 298 /* Do some manufacturer fixups first */ 299 switch (JEDEC_MFR(info)) { 300 case SNOR_MFR_SPANSION: 301 /* No small sector erase for 4-byte command set */ 302 nor->erase_opcode = SPINOR_OP_SE; 303 nor->mtd.erasesize = info->sector_size; 304 break; 305 306 default: 307 break; 308 } 309 310 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); 311 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); 312 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); 313 } 314 #endif /* !CONFIG_SPI_FLASH_BAR */ 315 316 /* Enable/disable 4-byte addressing mode. */ 317 static int set_4byte(struct spi_nor *nor, const struct flash_info *info, 318 int enable) 319 { 320 int status; 321 bool need_wren = false; 322 u8 cmd; 323 324 switch (JEDEC_MFR(info)) { 325 case SNOR_MFR_ST: 326 case SNOR_MFR_MICRON: 327 /* Some Micron need WREN command; all will accept it */ 328 need_wren = true; 329 case SNOR_MFR_MACRONIX: 330 case SNOR_MFR_WINBOND: 331 case SNOR_MFR_GIGADEVICE: 332 case SNOR_MFR_ISSI: 333 if (need_wren) 334 write_enable(nor); 335 336 cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; 337 status = nor->write_reg(nor, cmd, NULL, 0); 338 if (need_wren) 339 write_disable(nor); 340 341 if (!status && !enable && 342 JEDEC_MFR(info) == SNOR_MFR_WINBOND) { 343 /* 344 * On Winbond W25Q256FV, leaving 4byte mode causes 345 * the Extended Address Register to be set to 1, so all 346 * 3-byte-address reads come from the second 16M. 347 * We must clear the register to enable normal behavior. 348 */ 349 write_enable(nor); 350 nor->cmd_buf[0] = 0; 351 nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1); 352 write_disable(nor); 353 } 354 355 return status; 356 default: 357 /* Spansion style */ 358 nor->cmd_buf[0] = enable << 7; 359 return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1); 360 } 361 } 362 363 static int spi_nor_sr_ready(struct spi_nor *nor) 364 { 365 int sr = read_sr(nor); 366 367 if (sr < 0) 368 return sr; 369 370 if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) { 371 if (sr & SR_E_ERR) 372 dev_dbg(nor->dev, "Erase Error occurred\n"); 373 else 374 dev_dbg(nor->dev, "Programming Error occurred\n"); 375 376 nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0); 377 return -EIO; 378 } 379 380 return !(sr & SR_WIP); 381 } 382 383 static int spi_nor_fsr_ready(struct spi_nor *nor) 384 { 385 int fsr = read_fsr(nor); 386 387 if (fsr < 0) 388 return fsr; 389 390 if (fsr & (FSR_E_ERR | FSR_P_ERR)) { 391 if (fsr & FSR_E_ERR) 392 dev_dbg(nor->dev, "Erase operation failed.\n"); 393 else 394 dev_dbg(nor->dev, "Program operation failed.\n"); 395 396 if (fsr & FSR_PT_ERR) 397 dev_dbg(nor->dev, 398 "Attempted to modify a protected sector.\n"); 399 400 nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0); 401 return -EIO; 402 } 403 404 return fsr & FSR_READY; 405 } 406 407 static int spi_nor_ready(struct spi_nor *nor) 408 { 409 int sr, fsr; 410 411 sr = spi_nor_sr_ready(nor); 412 if (sr < 0) 413 return sr; 414 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1; 415 if (fsr < 0) 416 return fsr; 417 return sr && fsr; 418 } 419 420 /* 421 * Service routine to read status register until ready, or timeout occurs. 422 * Returns non-zero if error. 423 */ 424 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, 425 unsigned long timeout) 426 { 427 unsigned long timebase; 428 int ret; 429 430 timebase = get_timer(0); 431 432 while (get_timer(timebase) < timeout) { 433 ret = spi_nor_ready(nor); 434 if (ret < 0) 435 return ret; 436 if (ret) 437 return 0; 438 } 439 440 dev_err(nor->dev, "flash operation timed out\n"); 441 442 return -ETIMEDOUT; 443 } 444 445 static int spi_nor_wait_till_ready(struct spi_nor *nor) 446 { 447 return spi_nor_wait_till_ready_with_timeout(nor, 448 DEFAULT_READY_WAIT_JIFFIES); 449 } 450 451 #ifdef CONFIG_SPI_FLASH_BAR 452 /* 453 * This "clean_bar" is necessary in a situation when one was accessing 454 * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit. 455 * 456 * After it the BA24 bit shall be cleared to allow access to correct 457 * memory region after SW reset (by calling "reset" command). 458 * 459 * Otherwise, the BA24 bit may be left set and then after reset, the 460 * ROM would read/write/erase SPL from 16 MiB * bank_sel address. 461 */ 462 static int clean_bar(struct spi_nor *nor) 463 { 464 u8 cmd, bank_sel = 0; 465 466 if (nor->bank_curr == 0) 467 return 0; 468 cmd = nor->bank_write_cmd; 469 nor->bank_curr = 0; 470 write_enable(nor); 471 472 return nor->write_reg(nor, cmd, &bank_sel, 1); 473 } 474 475 static int write_bar(struct spi_nor *nor, u32 offset) 476 { 477 u8 cmd, bank_sel; 478 int ret; 479 480 bank_sel = offset / SZ_16M; 481 if (bank_sel == nor->bank_curr) 482 goto bar_end; 483 484 cmd = nor->bank_write_cmd; 485 write_enable(nor); 486 ret = nor->write_reg(nor, cmd, &bank_sel, 1); 487 if (ret < 0) { 488 debug("SF: fail to write bank register\n"); 489 return ret; 490 } 491 492 bar_end: 493 nor->bank_curr = bank_sel; 494 return nor->bank_curr; 495 } 496 497 static int read_bar(struct spi_nor *nor, const struct flash_info *info) 498 { 499 u8 curr_bank = 0; 500 int ret; 501 502 switch (JEDEC_MFR(info)) { 503 case SNOR_MFR_SPANSION: 504 nor->bank_read_cmd = SPINOR_OP_BRRD; 505 nor->bank_write_cmd = SPINOR_OP_BRWR; 506 break; 507 default: 508 nor->bank_read_cmd = SPINOR_OP_RDEAR; 509 nor->bank_write_cmd = SPINOR_OP_WREAR; 510 } 511 512 ret = nor->read_reg(nor, nor->bank_read_cmd, 513 &curr_bank, 1); 514 if (ret) { 515 debug("SF: fail to read bank addr register\n"); 516 return ret; 517 } 518 nor->bank_curr = curr_bank; 519 520 return 0; 521 } 522 #endif 523 524 /* 525 * Initiate the erasure of a single sector 526 */ 527 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) 528 { 529 u8 buf[SPI_NOR_MAX_ADDR_WIDTH]; 530 int i; 531 532 if (nor->erase) 533 return nor->erase(nor, addr); 534 535 /* 536 * Default implementation, if driver doesn't have a specialized HW 537 * control 538 */ 539 for (i = nor->addr_width - 1; i >= 0; i--) { 540 buf[i] = addr & 0xff; 541 addr >>= 8; 542 } 543 544 return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width); 545 } 546 547 /* 548 * Erase an address range on the nor chip. The address range may extend 549 * one or more erase sectors. Return an error is there is a problem erasing. 550 */ 551 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) 552 { 553 struct spi_nor *nor = mtd_to_spi_nor(mtd); 554 u32 addr, len, rem; 555 int ret; 556 557 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, 558 (long long)instr->len); 559 560 div_u64_rem(instr->len, mtd->erasesize, &rem); 561 if (rem) 562 return -EINVAL; 563 564 addr = instr->addr; 565 len = instr->len; 566 567 while (len) { 568 #ifdef CONFIG_SPI_FLASH_BAR 569 ret = write_bar(nor, addr); 570 if (ret < 0) 571 return ret; 572 #endif 573 write_enable(nor); 574 575 ret = spi_nor_erase_sector(nor, addr); 576 if (ret) 577 goto erase_err; 578 579 addr += mtd->erasesize; 580 len -= mtd->erasesize; 581 582 ret = spi_nor_wait_till_ready(nor); 583 if (ret) 584 goto erase_err; 585 } 586 587 erase_err: 588 #ifdef CONFIG_SPI_FLASH_BAR 589 ret = clean_bar(nor); 590 #endif 591 write_disable(nor); 592 593 return ret; 594 } 595 596 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) 597 /* Write status register and ensure bits in mask match written values */ 598 static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask) 599 { 600 int ret; 601 602 write_enable(nor); 603 ret = write_sr(nor, status_new); 604 if (ret) 605 return ret; 606 607 ret = spi_nor_wait_till_ready(nor); 608 if (ret) 609 return ret; 610 611 ret = read_sr(nor); 612 if (ret < 0) 613 return ret; 614 615 return ((ret & mask) != (status_new & mask)) ? -EIO : 0; 616 } 617 618 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs, 619 uint64_t *len) 620 { 621 struct mtd_info *mtd = &nor->mtd; 622 u8 mask = SR_BP2 | SR_BP1 | SR_BP0; 623 int shift = ffs(mask) - 1; 624 int pow; 625 626 if (!(sr & mask)) { 627 /* No protection */ 628 *ofs = 0; 629 *len = 0; 630 } else { 631 pow = ((sr & mask) ^ mask) >> shift; 632 *len = mtd->size >> pow; 633 if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB) 634 *ofs = 0; 635 else 636 *ofs = mtd->size - *len; 637 } 638 } 639 640 /* 641 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if 642 * @locked is false); 0 otherwise 643 */ 644 static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len, 645 u8 sr, bool locked) 646 { 647 loff_t lock_offs; 648 uint64_t lock_len; 649 650 if (!len) 651 return 1; 652 653 stm_get_locked_range(nor, sr, &lock_offs, &lock_len); 654 655 if (locked) 656 /* Requested range is a sub-range of locked range */ 657 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); 658 else 659 /* Requested range does not overlap with locked range */ 660 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs); 661 } 662 663 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, 664 u8 sr) 665 { 666 return stm_check_lock_status_sr(nor, ofs, len, sr, true); 667 } 668 669 static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, 670 u8 sr) 671 { 672 return stm_check_lock_status_sr(nor, ofs, len, sr, false); 673 } 674 675 /* 676 * Lock a region of the flash. Compatible with ST Micro and similar flash. 677 * Supports the block protection bits BP{0,1,2} in the status register 678 * (SR). Does not support these features found in newer SR bitfields: 679 * - SEC: sector/block protect - only handle SEC=0 (block protect) 680 * - CMP: complement protect - only support CMP=0 (range is not complemented) 681 * 682 * Support for the following is provided conditionally for some flash: 683 * - TB: top/bottom protect 684 * 685 * Sample table portion for 8MB flash (Winbond w25q64fw): 686 * 687 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion 688 * -------------------------------------------------------------------------- 689 * X | X | 0 | 0 | 0 | NONE | NONE 690 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 691 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 692 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 693 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 694 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 695 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 696 * X | X | 1 | 1 | 1 | 8 MB | ALL 697 * ------|-------|-------|-------|-------|---------------|------------------- 698 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64 699 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32 700 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16 701 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8 702 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4 703 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2 704 * 705 * Returns negative on errors, 0 on success. 706 */ 707 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) 708 { 709 struct mtd_info *mtd = &nor->mtd; 710 int status_old, status_new; 711 u8 mask = SR_BP2 | SR_BP1 | SR_BP0; 712 u8 shift = ffs(mask) - 1, pow, val; 713 loff_t lock_len; 714 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; 715 bool use_top; 716 717 status_old = read_sr(nor); 718 if (status_old < 0) 719 return status_old; 720 721 /* If nothing in our range is unlocked, we don't need to do anything */ 722 if (stm_is_locked_sr(nor, ofs, len, status_old)) 723 return 0; 724 725 /* If anything below us is unlocked, we can't use 'bottom' protection */ 726 if (!stm_is_locked_sr(nor, 0, ofs, status_old)) 727 can_be_bottom = false; 728 729 /* If anything above us is unlocked, we can't use 'top' protection */ 730 if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len), 731 status_old)) 732 can_be_top = false; 733 734 if (!can_be_bottom && !can_be_top) 735 return -EINVAL; 736 737 /* Prefer top, if both are valid */ 738 use_top = can_be_top; 739 740 /* lock_len: length of region that should end up locked */ 741 if (use_top) 742 lock_len = mtd->size - ofs; 743 else 744 lock_len = ofs + len; 745 746 /* 747 * Need smallest pow such that: 748 * 749 * 1 / (2^pow) <= (len / size) 750 * 751 * so (assuming power-of-2 size) we do: 752 * 753 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) 754 */ 755 pow = ilog2(mtd->size) - ilog2(lock_len); 756 val = mask - (pow << shift); 757 if (val & ~mask) 758 return -EINVAL; 759 /* Don't "lock" with no region! */ 760 if (!(val & mask)) 761 return -EINVAL; 762 763 status_new = (status_old & ~mask & ~SR_TB) | val; 764 765 /* Disallow further writes if WP pin is asserted */ 766 status_new |= SR_SRWD; 767 768 if (!use_top) 769 status_new |= SR_TB; 770 771 /* Don't bother if they're the same */ 772 if (status_new == status_old) 773 return 0; 774 775 /* Only modify protection if it will not unlock other areas */ 776 if ((status_new & mask) < (status_old & mask)) 777 return -EINVAL; 778 779 return write_sr_and_check(nor, status_new, mask); 780 } 781 782 /* 783 * Unlock a region of the flash. See stm_lock() for more info 784 * 785 * Returns negative on errors, 0 on success. 786 */ 787 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) 788 { 789 struct mtd_info *mtd = &nor->mtd; 790 int status_old, status_new; 791 u8 mask = SR_BP2 | SR_BP1 | SR_BP0; 792 u8 shift = ffs(mask) - 1, pow, val; 793 loff_t lock_len; 794 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; 795 bool use_top; 796 797 status_old = read_sr(nor); 798 if (status_old < 0) 799 return status_old; 800 801 /* If nothing in our range is locked, we don't need to do anything */ 802 if (stm_is_unlocked_sr(nor, ofs, len, status_old)) 803 return 0; 804 805 /* If anything below us is locked, we can't use 'top' protection */ 806 if (!stm_is_unlocked_sr(nor, 0, ofs, status_old)) 807 can_be_top = false; 808 809 /* If anything above us is locked, we can't use 'bottom' protection */ 810 if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len), 811 status_old)) 812 can_be_bottom = false; 813 814 if (!can_be_bottom && !can_be_top) 815 return -EINVAL; 816 817 /* Prefer top, if both are valid */ 818 use_top = can_be_top; 819 820 /* lock_len: length of region that should remain locked */ 821 if (use_top) 822 lock_len = mtd->size - (ofs + len); 823 else 824 lock_len = ofs; 825 826 /* 827 * Need largest pow such that: 828 * 829 * 1 / (2^pow) >= (len / size) 830 * 831 * so (assuming power-of-2 size) we do: 832 * 833 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) 834 */ 835 pow = ilog2(mtd->size) - order_base_2(lock_len); 836 if (lock_len == 0) { 837 val = 0; /* fully unlocked */ 838 } else { 839 val = mask - (pow << shift); 840 /* Some power-of-two sizes are not supported */ 841 if (val & ~mask) 842 return -EINVAL; 843 } 844 845 status_new = (status_old & ~mask & ~SR_TB) | val; 846 847 /* Don't protect status register if we're fully unlocked */ 848 if (lock_len == 0) 849 status_new &= ~SR_SRWD; 850 851 if (!use_top) 852 status_new |= SR_TB; 853 854 /* Don't bother if they're the same */ 855 if (status_new == status_old) 856 return 0; 857 858 /* Only modify protection if it will not lock other areas */ 859 if ((status_new & mask) > (status_old & mask)) 860 return -EINVAL; 861 862 return write_sr_and_check(nor, status_new, mask); 863 } 864 865 /* 866 * Check if a region of the flash is (completely) locked. See stm_lock() for 867 * more info. 868 * 869 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and 870 * negative on errors. 871 */ 872 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) 873 { 874 int status; 875 876 status = read_sr(nor); 877 if (status < 0) 878 return status; 879 880 return stm_is_locked_sr(nor, ofs, len, status); 881 } 882 #endif /* CONFIG_SPI_FLASH_STMICRO */ 883 884 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) 885 { 886 int tmp; 887 u8 id[SPI_NOR_MAX_ID_LEN]; 888 const struct flash_info *info; 889 890 tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); 891 if (tmp < 0) { 892 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp); 893 return ERR_PTR(tmp); 894 } 895 896 info = spi_nor_ids; 897 for (; info->name; info++) { 898 if (info->id_len) { 899 if (!memcmp(info->id, id, info->id_len)) 900 return info; 901 } 902 } 903 904 dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n", 905 id[0], id[1], id[2]); 906 return ERR_PTR(-ENODEV); 907 } 908 909 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, 910 size_t *retlen, u_char *buf) 911 { 912 struct spi_nor *nor = mtd_to_spi_nor(mtd); 913 int ret; 914 915 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); 916 917 while (len) { 918 loff_t addr = from; 919 size_t read_len = len; 920 921 #ifdef CONFIG_SPI_FLASH_BAR 922 u32 remain_len; 923 924 ret = write_bar(nor, addr); 925 if (ret < 0) 926 return log_ret(ret); 927 remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr; 928 929 if (len < remain_len) 930 read_len = len; 931 else 932 read_len = remain_len; 933 #endif 934 935 ret = nor->read(nor, addr, read_len, buf); 936 if (ret == 0) { 937 /* We shouldn't see 0-length reads */ 938 ret = -EIO; 939 goto read_err; 940 } 941 if (ret < 0) 942 goto read_err; 943 944 *retlen += ret; 945 buf += ret; 946 from += ret; 947 len -= ret; 948 } 949 ret = 0; 950 951 read_err: 952 #ifdef CONFIG_SPI_FLASH_BAR 953 ret = clean_bar(nor); 954 #endif 955 return ret; 956 } 957 958 #ifdef CONFIG_SPI_FLASH_SST 959 static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len, 960 size_t *retlen, const u_char *buf) 961 { 962 size_t actual; 963 int ret = 0; 964 965 for (actual = 0; actual < len; actual++) { 966 nor->program_opcode = SPINOR_OP_BP; 967 968 write_enable(nor); 969 /* write one byte. */ 970 ret = nor->write(nor, to, 1, buf + actual); 971 if (ret < 0) 972 goto sst_write_err; 973 ret = spi_nor_wait_till_ready(nor); 974 if (ret) 975 goto sst_write_err; 976 to++; 977 } 978 979 sst_write_err: 980 write_disable(nor); 981 return ret; 982 } 983 984 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, 985 size_t *retlen, const u_char *buf) 986 { 987 struct spi_nor *nor = mtd_to_spi_nor(mtd); 988 struct spi_slave *spi = nor->spi; 989 size_t actual; 990 int ret; 991 992 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); 993 if (spi->mode & SPI_TX_BYTE) 994 return sst_write_byteprogram(nor, to, len, retlen, buf); 995 996 write_enable(nor); 997 998 nor->sst_write_second = false; 999 1000 actual = to % 2; 1001 /* Start write from odd address. */ 1002 if (actual) { 1003 nor->program_opcode = SPINOR_OP_BP; 1004 1005 /* write one byte. */ 1006 ret = nor->write(nor, to, 1, buf); 1007 if (ret < 0) 1008 goto sst_write_err; 1009 ret = spi_nor_wait_till_ready(nor); 1010 if (ret) 1011 goto sst_write_err; 1012 } 1013 to += actual; 1014 1015 /* Write out most of the data here. */ 1016 for (; actual < len - 1; actual += 2) { 1017 nor->program_opcode = SPINOR_OP_AAI_WP; 1018 1019 /* write two bytes. */ 1020 ret = nor->write(nor, to, 2, buf + actual); 1021 if (ret < 0) 1022 goto sst_write_err; 1023 ret = spi_nor_wait_till_ready(nor); 1024 if (ret) 1025 goto sst_write_err; 1026 to += 2; 1027 nor->sst_write_second = true; 1028 } 1029 nor->sst_write_second = false; 1030 1031 write_disable(nor); 1032 ret = spi_nor_wait_till_ready(nor); 1033 if (ret) 1034 goto sst_write_err; 1035 1036 /* Write out trailing byte if it exists. */ 1037 if (actual != len) { 1038 write_enable(nor); 1039 1040 nor->program_opcode = SPINOR_OP_BP; 1041 ret = nor->write(nor, to, 1, buf + actual); 1042 if (ret < 0) 1043 goto sst_write_err; 1044 ret = spi_nor_wait_till_ready(nor); 1045 if (ret) 1046 goto sst_write_err; 1047 write_disable(nor); 1048 actual += 1; 1049 } 1050 sst_write_err: 1051 *retlen += actual; 1052 return ret; 1053 } 1054 #endif 1055 /* 1056 * Write an address range to the nor chip. Data must be written in 1057 * FLASH_PAGESIZE chunks. The address range may be any size provided 1058 * it is within the physical boundaries. 1059 */ 1060 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, 1061 size_t *retlen, const u_char *buf) 1062 { 1063 struct spi_nor *nor = mtd_to_spi_nor(mtd); 1064 size_t page_offset, page_remain, i; 1065 ssize_t ret; 1066 1067 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); 1068 1069 for (i = 0; i < len; ) { 1070 ssize_t written; 1071 loff_t addr = to + i; 1072 1073 /* 1074 * If page_size is a power of two, the offset can be quickly 1075 * calculated with an AND operation. On the other cases we 1076 * need to do a modulus operation (more expensive). 1077 * Power of two numbers have only one bit set and we can use 1078 * the instruction hweight32 to detect if we need to do a 1079 * modulus (do_div()) or not. 1080 */ 1081 if (hweight32(nor->page_size) == 1) { 1082 page_offset = addr & (nor->page_size - 1); 1083 } else { 1084 u64 aux = addr; 1085 1086 page_offset = do_div(aux, nor->page_size); 1087 } 1088 /* the size of data remaining on the first page */ 1089 page_remain = min_t(size_t, 1090 nor->page_size - page_offset, len - i); 1091 1092 #ifdef CONFIG_SPI_FLASH_BAR 1093 ret = write_bar(nor, addr); 1094 if (ret < 0) 1095 return ret; 1096 #endif 1097 write_enable(nor); 1098 ret = nor->write(nor, addr, page_remain, buf + i); 1099 if (ret < 0) 1100 goto write_err; 1101 written = ret; 1102 1103 ret = spi_nor_wait_till_ready(nor); 1104 if (ret) 1105 goto write_err; 1106 *retlen += written; 1107 i += written; 1108 if (written != page_remain) { 1109 ret = -EIO; 1110 goto write_err; 1111 } 1112 } 1113 1114 write_err: 1115 #ifdef CONFIG_SPI_FLASH_BAR 1116 ret = clean_bar(nor); 1117 #endif 1118 return ret; 1119 } 1120 1121 #ifdef CONFIG_SPI_FLASH_MACRONIX 1122 /** 1123 * macronix_quad_enable() - set QE bit in Status Register. 1124 * @nor: pointer to a 'struct spi_nor' 1125 * 1126 * Set the Quad Enable (QE) bit in the Status Register. 1127 * 1128 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories. 1129 * 1130 * Return: 0 on success, -errno otherwise. 1131 */ 1132 static int macronix_quad_enable(struct spi_nor *nor) 1133 { 1134 int ret, val; 1135 1136 val = read_sr(nor); 1137 if (val < 0) 1138 return val; 1139 if (val & SR_QUAD_EN_MX) 1140 return 0; 1141 1142 write_enable(nor); 1143 1144 write_sr(nor, val | SR_QUAD_EN_MX); 1145 1146 ret = spi_nor_wait_till_ready(nor); 1147 if (ret) 1148 return ret; 1149 1150 ret = read_sr(nor); 1151 if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { 1152 dev_err(nor->dev, "Macronix Quad bit not set\n"); 1153 return -EINVAL; 1154 } 1155 1156 return 0; 1157 } 1158 #endif 1159 1160 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) 1161 /* 1162 * Write status Register and configuration register with 2 bytes 1163 * The first byte will be written to the status register, while the 1164 * second byte will be written to the configuration register. 1165 * Return negative if error occurred. 1166 */ 1167 static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr) 1168 { 1169 int ret; 1170 1171 write_enable(nor); 1172 1173 ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2); 1174 if (ret < 0) { 1175 dev_dbg(nor->dev, 1176 "error while writing configuration register\n"); 1177 return -EINVAL; 1178 } 1179 1180 ret = spi_nor_wait_till_ready(nor); 1181 if (ret) { 1182 dev_dbg(nor->dev, 1183 "timeout while writing configuration register\n"); 1184 return ret; 1185 } 1186 1187 return 0; 1188 } 1189 1190 /** 1191 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register. 1192 * @nor: pointer to a 'struct spi_nor' 1193 * 1194 * Set the Quad Enable (QE) bit in the Configuration Register. 1195 * This function should be used with QSPI memories supporting the Read 1196 * Configuration Register (35h) instruction. 1197 * 1198 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI 1199 * memories. 1200 * 1201 * Return: 0 on success, -errno otherwise. 1202 */ 1203 static int spansion_read_cr_quad_enable(struct spi_nor *nor) 1204 { 1205 u8 sr_cr[2]; 1206 int ret; 1207 1208 /* Check current Quad Enable bit value. */ 1209 ret = read_cr(nor); 1210 if (ret < 0) { 1211 dev_dbg(dev, "error while reading configuration register\n"); 1212 return -EINVAL; 1213 } 1214 1215 if (ret & CR_QUAD_EN_SPAN) 1216 return 0; 1217 1218 sr_cr[1] = ret | CR_QUAD_EN_SPAN; 1219 1220 /* Keep the current value of the Status Register. */ 1221 ret = read_sr(nor); 1222 if (ret < 0) { 1223 dev_dbg(dev, "error while reading status register\n"); 1224 return -EINVAL; 1225 } 1226 sr_cr[0] = ret; 1227 1228 ret = write_sr_cr(nor, sr_cr); 1229 if (ret) 1230 return ret; 1231 1232 /* Read back and check it. */ 1233 ret = read_cr(nor); 1234 if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { 1235 dev_dbg(nor->dev, "Spansion Quad bit not set\n"); 1236 return -EINVAL; 1237 } 1238 1239 return 0; 1240 } 1241 1242 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT) 1243 /** 1244 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register. 1245 * @nor: pointer to a 'struct spi_nor' 1246 * 1247 * Set the Quad Enable (QE) bit in the Configuration Register. 1248 * This function should be used with QSPI memories not supporting the Read 1249 * Configuration Register (35h) instruction. 1250 * 1251 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI 1252 * memories. 1253 * 1254 * Return: 0 on success, -errno otherwise. 1255 */ 1256 static int spansion_no_read_cr_quad_enable(struct spi_nor *nor) 1257 { 1258 u8 sr_cr[2]; 1259 int ret; 1260 1261 /* Keep the current value of the Status Register. */ 1262 ret = read_sr(nor); 1263 if (ret < 0) { 1264 dev_dbg(nor->dev, "error while reading status register\n"); 1265 return -EINVAL; 1266 } 1267 sr_cr[0] = ret; 1268 sr_cr[1] = CR_QUAD_EN_SPAN; 1269 1270 return write_sr_cr(nor, sr_cr); 1271 } 1272 1273 #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */ 1274 #endif /* CONFIG_SPI_FLASH_SPANSION */ 1275 1276 struct spi_nor_read_command { 1277 u8 num_mode_clocks; 1278 u8 num_wait_states; 1279 u8 opcode; 1280 enum spi_nor_protocol proto; 1281 }; 1282 1283 struct spi_nor_pp_command { 1284 u8 opcode; 1285 enum spi_nor_protocol proto; 1286 }; 1287 1288 enum spi_nor_read_command_index { 1289 SNOR_CMD_READ, 1290 SNOR_CMD_READ_FAST, 1291 SNOR_CMD_READ_1_1_1_DTR, 1292 1293 /* Dual SPI */ 1294 SNOR_CMD_READ_1_1_2, 1295 SNOR_CMD_READ_1_2_2, 1296 SNOR_CMD_READ_2_2_2, 1297 SNOR_CMD_READ_1_2_2_DTR, 1298 1299 /* Quad SPI */ 1300 SNOR_CMD_READ_1_1_4, 1301 SNOR_CMD_READ_1_4_4, 1302 SNOR_CMD_READ_4_4_4, 1303 SNOR_CMD_READ_1_4_4_DTR, 1304 1305 /* Octo SPI */ 1306 SNOR_CMD_READ_1_1_8, 1307 SNOR_CMD_READ_1_8_8, 1308 SNOR_CMD_READ_8_8_8, 1309 SNOR_CMD_READ_1_8_8_DTR, 1310 1311 SNOR_CMD_READ_MAX 1312 }; 1313 1314 enum spi_nor_pp_command_index { 1315 SNOR_CMD_PP, 1316 1317 /* Quad SPI */ 1318 SNOR_CMD_PP_1_1_4, 1319 SNOR_CMD_PP_1_4_4, 1320 SNOR_CMD_PP_4_4_4, 1321 1322 /* Octo SPI */ 1323 SNOR_CMD_PP_1_1_8, 1324 SNOR_CMD_PP_1_8_8, 1325 SNOR_CMD_PP_8_8_8, 1326 1327 SNOR_CMD_PP_MAX 1328 }; 1329 1330 struct spi_nor_flash_parameter { 1331 u64 size; 1332 u32 page_size; 1333 1334 struct spi_nor_hwcaps hwcaps; 1335 struct spi_nor_read_command reads[SNOR_CMD_READ_MAX]; 1336 struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX]; 1337 1338 int (*quad_enable)(struct spi_nor *nor); 1339 }; 1340 1341 static void 1342 spi_nor_set_read_settings(struct spi_nor_read_command *read, 1343 u8 num_mode_clocks, 1344 u8 num_wait_states, 1345 u8 opcode, 1346 enum spi_nor_protocol proto) 1347 { 1348 read->num_mode_clocks = num_mode_clocks; 1349 read->num_wait_states = num_wait_states; 1350 read->opcode = opcode; 1351 read->proto = proto; 1352 } 1353 1354 static void 1355 spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, 1356 u8 opcode, 1357 enum spi_nor_protocol proto) 1358 { 1359 pp->opcode = opcode; 1360 pp->proto = proto; 1361 } 1362 1363 #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT) 1364 /* 1365 * Serial Flash Discoverable Parameters (SFDP) parsing. 1366 */ 1367 1368 /** 1369 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. 1370 * @nor: pointer to a 'struct spi_nor' 1371 * @addr: offset in the SFDP area to start reading data from 1372 * @len: number of bytes to read 1373 * @buf: buffer where the SFDP data are copied into (dma-safe memory) 1374 * 1375 * Whatever the actual numbers of bytes for address and dummy cycles are 1376 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always 1377 * followed by a 3-byte address and 8 dummy clock cycles. 1378 * 1379 * Return: 0 on success, -errno otherwise. 1380 */ 1381 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, 1382 size_t len, void *buf) 1383 { 1384 u8 addr_width, read_opcode, read_dummy; 1385 int ret; 1386 1387 read_opcode = nor->read_opcode; 1388 addr_width = nor->addr_width; 1389 read_dummy = nor->read_dummy; 1390 1391 nor->read_opcode = SPINOR_OP_RDSFDP; 1392 nor->addr_width = 3; 1393 nor->read_dummy = 8; 1394 1395 while (len) { 1396 ret = nor->read(nor, addr, len, (u8 *)buf); 1397 if (!ret || ret > len) { 1398 ret = -EIO; 1399 goto read_err; 1400 } 1401 if (ret < 0) 1402 goto read_err; 1403 1404 buf += ret; 1405 addr += ret; 1406 len -= ret; 1407 } 1408 ret = 0; 1409 1410 read_err: 1411 nor->read_opcode = read_opcode; 1412 nor->addr_width = addr_width; 1413 nor->read_dummy = read_dummy; 1414 1415 return ret; 1416 } 1417 1418 struct sfdp_parameter_header { 1419 u8 id_lsb; 1420 u8 minor; 1421 u8 major; 1422 u8 length; /* in double words */ 1423 u8 parameter_table_pointer[3]; /* byte address */ 1424 u8 id_msb; 1425 }; 1426 1427 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) 1428 #define SFDP_PARAM_HEADER_PTP(p) \ 1429 (((p)->parameter_table_pointer[2] << 16) | \ 1430 ((p)->parameter_table_pointer[1] << 8) | \ 1431 ((p)->parameter_table_pointer[0] << 0)) 1432 1433 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ 1434 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ 1435 1436 #define SFDP_SIGNATURE 0x50444653U 1437 #define SFDP_JESD216_MAJOR 1 1438 #define SFDP_JESD216_MINOR 0 1439 #define SFDP_JESD216A_MINOR 5 1440 #define SFDP_JESD216B_MINOR 6 1441 1442 struct sfdp_header { 1443 u32 signature; /* Ox50444653U <=> "SFDP" */ 1444 u8 minor; 1445 u8 major; 1446 u8 nph; /* 0-base number of parameter headers */ 1447 u8 unused; 1448 1449 /* Basic Flash Parameter Table. */ 1450 struct sfdp_parameter_header bfpt_header; 1451 }; 1452 1453 /* Basic Flash Parameter Table */ 1454 1455 /* 1456 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs. 1457 * They are indexed from 1 but C arrays are indexed from 0. 1458 */ 1459 #define BFPT_DWORD(i) ((i) - 1) 1460 #define BFPT_DWORD_MAX 16 1461 1462 /* The first version of JESB216 defined only 9 DWORDs. */ 1463 #define BFPT_DWORD_MAX_JESD216 9 1464 1465 /* 1st DWORD. */ 1466 #define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16) 1467 #define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17) 1468 #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17) 1469 #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17) 1470 #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17) 1471 #define BFPT_DWORD1_DTR BIT(19) 1472 #define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20) 1473 #define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21) 1474 #define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22) 1475 1476 /* 5th DWORD. */ 1477 #define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0) 1478 #define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4) 1479 1480 /* 11th DWORD. */ 1481 #define BFPT_DWORD11_PAGE_SIZE_SHIFT 4 1482 #define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4) 1483 1484 /* 15th DWORD. */ 1485 1486 /* 1487 * (from JESD216 rev B) 1488 * Quad Enable Requirements (QER): 1489 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4 1490 * reads based on instruction. DQ3/HOLD# functions are hold during 1491 * instruction phase. 1492 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with 1493 * two data bytes where bit 1 of the second byte is one. 1494 * [...] 1495 * Writing only one byte to the status register has the side-effect of 1496 * clearing status register 2, including the QE bit. The 100b code is 1497 * used if writing one byte to the status register does not modify 1498 * status register 2. 1499 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with 1500 * one data byte where bit 6 is one. 1501 * [...] 1502 * - 011b: QE is bit 7 of status register 2. It is set via Write status 1503 * register 2 instruction 3Eh with one data byte where bit 7 is one. 1504 * [...] 1505 * The status register 2 is read using instruction 3Fh. 1506 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with 1507 * two data bytes where bit 1 of the second byte is one. 1508 * [...] 1509 * In contrast to the 001b code, writing one byte to the status 1510 * register does not modify status register 2. 1511 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using 1512 * Read Status instruction 05h. Status register2 is read using 1513 * instruction 35h. QE is set via Writ Status instruction 01h with 1514 * two data bytes where bit 1 of the second byte is one. 1515 * [...] 1516 */ 1517 #define BFPT_DWORD15_QER_MASK GENMASK(22, 20) 1518 #define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */ 1519 #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20) 1520 #define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */ 1521 #define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20) 1522 #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20) 1523 #define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */ 1524 1525 struct sfdp_bfpt { 1526 u32 dwords[BFPT_DWORD_MAX]; 1527 }; 1528 1529 /* Fast Read settings. */ 1530 1531 static void 1532 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, 1533 u16 half, 1534 enum spi_nor_protocol proto) 1535 { 1536 read->num_mode_clocks = (half >> 5) & 0x07; 1537 read->num_wait_states = (half >> 0) & 0x1f; 1538 read->opcode = (half >> 8) & 0xff; 1539 read->proto = proto; 1540 } 1541 1542 struct sfdp_bfpt_read { 1543 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ 1544 u32 hwcaps; 1545 1546 /* 1547 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us 1548 * whether the Fast Read x-y-z command is supported. 1549 */ 1550 u32 supported_dword; 1551 u32 supported_bit; 1552 1553 /* 1554 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD 1555 * encodes the op code, the number of mode clocks and the number of wait 1556 * states to be used by Fast Read x-y-z command. 1557 */ 1558 u32 settings_dword; 1559 u32 settings_shift; 1560 1561 /* The SPI protocol for this Fast Read x-y-z command. */ 1562 enum spi_nor_protocol proto; 1563 }; 1564 1565 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { 1566 /* Fast Read 1-1-2 */ 1567 { 1568 SNOR_HWCAPS_READ_1_1_2, 1569 BFPT_DWORD(1), BIT(16), /* Supported bit */ 1570 BFPT_DWORD(4), 0, /* Settings */ 1571 SNOR_PROTO_1_1_2, 1572 }, 1573 1574 /* Fast Read 1-2-2 */ 1575 { 1576 SNOR_HWCAPS_READ_1_2_2, 1577 BFPT_DWORD(1), BIT(20), /* Supported bit */ 1578 BFPT_DWORD(4), 16, /* Settings */ 1579 SNOR_PROTO_1_2_2, 1580 }, 1581 1582 /* Fast Read 2-2-2 */ 1583 { 1584 SNOR_HWCAPS_READ_2_2_2, 1585 BFPT_DWORD(5), BIT(0), /* Supported bit */ 1586 BFPT_DWORD(6), 16, /* Settings */ 1587 SNOR_PROTO_2_2_2, 1588 }, 1589 1590 /* Fast Read 1-1-4 */ 1591 { 1592 SNOR_HWCAPS_READ_1_1_4, 1593 BFPT_DWORD(1), BIT(22), /* Supported bit */ 1594 BFPT_DWORD(3), 16, /* Settings */ 1595 SNOR_PROTO_1_1_4, 1596 }, 1597 1598 /* Fast Read 1-4-4 */ 1599 { 1600 SNOR_HWCAPS_READ_1_4_4, 1601 BFPT_DWORD(1), BIT(21), /* Supported bit */ 1602 BFPT_DWORD(3), 0, /* Settings */ 1603 SNOR_PROTO_1_4_4, 1604 }, 1605 1606 /* Fast Read 4-4-4 */ 1607 { 1608 SNOR_HWCAPS_READ_4_4_4, 1609 BFPT_DWORD(5), BIT(4), /* Supported bit */ 1610 BFPT_DWORD(7), 16, /* Settings */ 1611 SNOR_PROTO_4_4_4, 1612 }, 1613 }; 1614 1615 struct sfdp_bfpt_erase { 1616 /* 1617 * The half-word at offset <shift> in DWORD <dwoard> encodes the 1618 * op code and erase sector size to be used by Sector Erase commands. 1619 */ 1620 u32 dword; 1621 u32 shift; 1622 }; 1623 1624 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { 1625 /* Erase Type 1 in DWORD8 bits[15:0] */ 1626 {BFPT_DWORD(8), 0}, 1627 1628 /* Erase Type 2 in DWORD8 bits[31:16] */ 1629 {BFPT_DWORD(8), 16}, 1630 1631 /* Erase Type 3 in DWORD9 bits[15:0] */ 1632 {BFPT_DWORD(9), 0}, 1633 1634 /* Erase Type 4 in DWORD9 bits[31:16] */ 1635 {BFPT_DWORD(9), 16}, 1636 }; 1637 1638 static int spi_nor_hwcaps_read2cmd(u32 hwcaps); 1639 1640 /** 1641 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. 1642 * @nor: pointer to a 'struct spi_nor' 1643 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing 1644 * the Basic Flash Parameter Table length and version 1645 * @params: pointer to the 'struct spi_nor_flash_parameter' to be 1646 * filled 1647 * 1648 * The Basic Flash Parameter Table is the main and only mandatory table as 1649 * defined by the SFDP (JESD216) specification. 1650 * It provides us with the total size (memory density) of the data array and 1651 * the number of address bytes for Fast Read, Page Program and Sector Erase 1652 * commands. 1653 * For Fast READ commands, it also gives the number of mode clock cycles and 1654 * wait states (regrouped in the number of dummy clock cycles) for each 1655 * supported instruction op code. 1656 * For Page Program, the page size is now available since JESD216 rev A, however 1657 * the supported instruction op codes are still not provided. 1658 * For Sector Erase commands, this table stores the supported instruction op 1659 * codes and the associated sector sizes. 1660 * Finally, the Quad Enable Requirements (QER) are also available since JESD216 1661 * rev A. The QER bits encode the manufacturer dependent procedure to be 1662 * executed to set the Quad Enable (QE) bit in some internal register of the 1663 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before 1664 * sending any Quad SPI command to the memory. Actually, setting the QE bit 1665 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 1666 * and IO3 hence enabling 4 (Quad) I/O lines. 1667 * 1668 * Return: 0 on success, -errno otherwise. 1669 */ 1670 static int spi_nor_parse_bfpt(struct spi_nor *nor, 1671 const struct sfdp_parameter_header *bfpt_header, 1672 struct spi_nor_flash_parameter *params) 1673 { 1674 struct mtd_info *mtd = &nor->mtd; 1675 struct sfdp_bfpt bfpt; 1676 size_t len; 1677 int i, cmd, err; 1678 u32 addr; 1679 u16 half; 1680 1681 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ 1682 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) 1683 return -EINVAL; 1684 1685 /* Read the Basic Flash Parameter Table. */ 1686 len = min_t(size_t, sizeof(bfpt), 1687 bfpt_header->length * sizeof(u32)); 1688 addr = SFDP_PARAM_HEADER_PTP(bfpt_header); 1689 memset(&bfpt, 0, sizeof(bfpt)); 1690 err = spi_nor_read_sfdp(nor, addr, len, &bfpt); 1691 if (err < 0) 1692 return err; 1693 1694 /* Fix endianness of the BFPT DWORDs. */ 1695 for (i = 0; i < BFPT_DWORD_MAX; i++) 1696 bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]); 1697 1698 /* Number of address bytes. */ 1699 switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { 1700 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: 1701 nor->addr_width = 3; 1702 break; 1703 1704 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: 1705 nor->addr_width = 4; 1706 break; 1707 1708 default: 1709 break; 1710 } 1711 1712 /* Flash Memory Density (in bits). */ 1713 params->size = bfpt.dwords[BFPT_DWORD(2)]; 1714 if (params->size & BIT(31)) { 1715 params->size &= ~BIT(31); 1716 1717 /* 1718 * Prevent overflows on params->size. Anyway, a NOR of 2^64 1719 * bits is unlikely to exist so this error probably means 1720 * the BFPT we are reading is corrupted/wrong. 1721 */ 1722 if (params->size > 63) 1723 return -EINVAL; 1724 1725 params->size = 1ULL << params->size; 1726 } else { 1727 params->size++; 1728 } 1729 params->size >>= 3; /* Convert to bytes. */ 1730 1731 /* Fast Read settings. */ 1732 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { 1733 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; 1734 struct spi_nor_read_command *read; 1735 1736 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { 1737 params->hwcaps.mask &= ~rd->hwcaps; 1738 continue; 1739 } 1740 1741 params->hwcaps.mask |= rd->hwcaps; 1742 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); 1743 read = ¶ms->reads[cmd]; 1744 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; 1745 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); 1746 } 1747 1748 /* Sector Erase settings. */ 1749 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { 1750 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; 1751 u32 erasesize; 1752 u8 opcode; 1753 1754 half = bfpt.dwords[er->dword] >> er->shift; 1755 erasesize = half & 0xff; 1756 1757 /* erasesize == 0 means this Erase Type is not supported. */ 1758 if (!erasesize) 1759 continue; 1760 1761 erasesize = 1U << erasesize; 1762 opcode = (half >> 8) & 0xff; 1763 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS 1764 if (erasesize == SZ_4K) { 1765 nor->erase_opcode = opcode; 1766 mtd->erasesize = erasesize; 1767 break; 1768 } 1769 #endif 1770 if (!mtd->erasesize || mtd->erasesize < erasesize) { 1771 nor->erase_opcode = opcode; 1772 mtd->erasesize = erasesize; 1773 } 1774 } 1775 1776 /* Stop here if not JESD216 rev A or later. */ 1777 if (bfpt_header->length < BFPT_DWORD_MAX) 1778 return 0; 1779 1780 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ 1781 params->page_size = bfpt.dwords[BFPT_DWORD(11)]; 1782 params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK; 1783 params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; 1784 params->page_size = 1U << params->page_size; 1785 1786 /* Quad Enable Requirements. */ 1787 switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) { 1788 case BFPT_DWORD15_QER_NONE: 1789 params->quad_enable = NULL; 1790 break; 1791 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) 1792 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: 1793 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: 1794 params->quad_enable = spansion_no_read_cr_quad_enable; 1795 break; 1796 #endif 1797 #ifdef CONFIG_SPI_FLASH_MACRONIX 1798 case BFPT_DWORD15_QER_SR1_BIT6: 1799 params->quad_enable = macronix_quad_enable; 1800 break; 1801 #endif 1802 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) 1803 case BFPT_DWORD15_QER_SR2_BIT1: 1804 params->quad_enable = spansion_read_cr_quad_enable; 1805 break; 1806 #endif 1807 default: 1808 return -EINVAL; 1809 } 1810 1811 return 0; 1812 } 1813 1814 /** 1815 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. 1816 * @nor: pointer to a 'struct spi_nor' 1817 * @params: pointer to the 'struct spi_nor_flash_parameter' to be 1818 * filled 1819 * 1820 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 1821 * specification. This is a standard which tends to supported by almost all 1822 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at 1823 * runtime the main parameters needed to perform basic SPI flash operations such 1824 * as Fast Read, Page Program or Sector Erase commands. 1825 * 1826 * Return: 0 on success, -errno otherwise. 1827 */ 1828 static int spi_nor_parse_sfdp(struct spi_nor *nor, 1829 struct spi_nor_flash_parameter *params) 1830 { 1831 const struct sfdp_parameter_header *param_header, *bfpt_header; 1832 struct sfdp_parameter_header *param_headers = NULL; 1833 struct sfdp_header header; 1834 size_t psize; 1835 int i, err; 1836 1837 /* Get the SFDP header. */ 1838 err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header); 1839 if (err < 0) 1840 return err; 1841 1842 /* Check the SFDP header version. */ 1843 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || 1844 header.major != SFDP_JESD216_MAJOR) 1845 return -EINVAL; 1846 1847 /* 1848 * Verify that the first and only mandatory parameter header is a 1849 * Basic Flash Parameter Table header as specified in JESD216. 1850 */ 1851 bfpt_header = &header.bfpt_header; 1852 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || 1853 bfpt_header->major != SFDP_JESD216_MAJOR) 1854 return -EINVAL; 1855 1856 /* 1857 * Allocate memory then read all parameter headers with a single 1858 * Read SFDP command. These parameter headers will actually be parsed 1859 * twice: a first time to get the latest revision of the basic flash 1860 * parameter table, then a second time to handle the supported optional 1861 * tables. 1862 * Hence we read the parameter headers once for all to reduce the 1863 * processing time. Also we use kmalloc() instead of devm_kmalloc() 1864 * because we don't need to keep these parameter headers: the allocated 1865 * memory is always released with kfree() before exiting this function. 1866 */ 1867 if (header.nph) { 1868 psize = header.nph * sizeof(*param_headers); 1869 1870 param_headers = kmalloc(psize, GFP_KERNEL); 1871 if (!param_headers) 1872 return -ENOMEM; 1873 1874 err = spi_nor_read_sfdp(nor, sizeof(header), 1875 psize, param_headers); 1876 if (err < 0) { 1877 dev_err(dev, "failed to read SFDP parameter headers\n"); 1878 goto exit; 1879 } 1880 } 1881 1882 /* 1883 * Check other parameter headers to get the latest revision of 1884 * the basic flash parameter table. 1885 */ 1886 for (i = 0; i < header.nph; i++) { 1887 param_header = ¶m_headers[i]; 1888 1889 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && 1890 param_header->major == SFDP_JESD216_MAJOR && 1891 (param_header->minor > bfpt_header->minor || 1892 (param_header->minor == bfpt_header->minor && 1893 param_header->length > bfpt_header->length))) 1894 bfpt_header = param_header; 1895 } 1896 1897 err = spi_nor_parse_bfpt(nor, bfpt_header, params); 1898 if (err) 1899 goto exit; 1900 1901 /* Parse other parameter headers. */ 1902 for (i = 0; i < header.nph; i++) { 1903 param_header = ¶m_headers[i]; 1904 1905 switch (SFDP_PARAM_HEADER_ID(param_header)) { 1906 case SFDP_SECTOR_MAP_ID: 1907 dev_info(dev, "non-uniform erase sector maps are not supported yet.\n"); 1908 break; 1909 1910 default: 1911 break; 1912 } 1913 1914 if (err) 1915 goto exit; 1916 } 1917 1918 exit: 1919 kfree(param_headers); 1920 return err; 1921 } 1922 #else 1923 static int spi_nor_parse_sfdp(struct spi_nor *nor, 1924 struct spi_nor_flash_parameter *params) 1925 { 1926 return -EINVAL; 1927 } 1928 #endif /* SPI_FLASH_SFDP_SUPPORT */ 1929 1930 static int spi_nor_init_params(struct spi_nor *nor, 1931 const struct flash_info *info, 1932 struct spi_nor_flash_parameter *params) 1933 { 1934 /* Set legacy flash parameters as default. */ 1935 memset(params, 0, sizeof(*params)); 1936 1937 /* Set SPI NOR sizes. */ 1938 params->size = info->sector_size * info->n_sectors; 1939 params->page_size = info->page_size; 1940 1941 /* (Fast) Read settings. */ 1942 params->hwcaps.mask |= SNOR_HWCAPS_READ; 1943 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], 1944 0, 0, SPINOR_OP_READ, 1945 SNOR_PROTO_1_1_1); 1946 1947 if (!(info->flags & SPI_NOR_NO_FR)) { 1948 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; 1949 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], 1950 0, 8, SPINOR_OP_READ_FAST, 1951 SNOR_PROTO_1_1_1); 1952 } 1953 1954 if (info->flags & SPI_NOR_DUAL_READ) { 1955 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; 1956 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], 1957 0, 8, SPINOR_OP_READ_1_1_2, 1958 SNOR_PROTO_1_1_2); 1959 } 1960 1961 if (info->flags & SPI_NOR_QUAD_READ) { 1962 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; 1963 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], 1964 0, 8, SPINOR_OP_READ_1_1_4, 1965 SNOR_PROTO_1_1_4); 1966 } 1967 1968 /* Page Program settings. */ 1969 params->hwcaps.mask |= SNOR_HWCAPS_PP; 1970 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], 1971 SPINOR_OP_PP, SNOR_PROTO_1_1_1); 1972 1973 if (info->flags & SPI_NOR_QUAD_READ) { 1974 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; 1975 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], 1976 SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4); 1977 } 1978 1979 /* Select the procedure to set the Quad Enable bit. */ 1980 if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD | 1981 SNOR_HWCAPS_PP_QUAD)) { 1982 switch (JEDEC_MFR(info)) { 1983 #ifdef CONFIG_SPI_FLASH_MACRONIX 1984 case SNOR_MFR_MACRONIX: 1985 params->quad_enable = macronix_quad_enable; 1986 break; 1987 #endif 1988 case SNOR_MFR_ST: 1989 case SNOR_MFR_MICRON: 1990 case SNOR_MFR_ISSI: 1991 break; 1992 1993 default: 1994 #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) 1995 /* Kept only for backward compatibility purpose. */ 1996 params->quad_enable = spansion_read_cr_quad_enable; 1997 #endif 1998 break; 1999 } 2000 } 2001 2002 /* Override the parameters with data read from SFDP tables. */ 2003 nor->addr_width = 0; 2004 nor->mtd.erasesize = 0; 2005 if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) && 2006 !(info->flags & SPI_NOR_SKIP_SFDP)) { 2007 struct spi_nor_flash_parameter sfdp_params; 2008 2009 memcpy(&sfdp_params, params, sizeof(sfdp_params)); 2010 if (spi_nor_parse_sfdp(nor, &sfdp_params)) { 2011 nor->addr_width = 0; 2012 nor->mtd.erasesize = 0; 2013 } else { 2014 memcpy(params, &sfdp_params, sizeof(*params)); 2015 } 2016 } 2017 2018 return 0; 2019 } 2020 2021 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) 2022 { 2023 size_t i; 2024 2025 for (i = 0; i < size; i++) 2026 if (table[i][0] == (int)hwcaps) 2027 return table[i][1]; 2028 2029 return -EINVAL; 2030 } 2031 2032 static int spi_nor_hwcaps_read2cmd(u32 hwcaps) 2033 { 2034 static const int hwcaps_read2cmd[][2] = { 2035 { SNOR_HWCAPS_READ, SNOR_CMD_READ }, 2036 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, 2037 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, 2038 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, 2039 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, 2040 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, 2041 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, 2042 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, 2043 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, 2044 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, 2045 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, 2046 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, 2047 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, 2048 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, 2049 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, 2050 }; 2051 2052 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, 2053 ARRAY_SIZE(hwcaps_read2cmd)); 2054 } 2055 2056 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps) 2057 { 2058 static const int hwcaps_pp2cmd[][2] = { 2059 { SNOR_HWCAPS_PP, SNOR_CMD_PP }, 2060 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, 2061 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, 2062 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, 2063 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, 2064 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, 2065 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, 2066 }; 2067 2068 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, 2069 ARRAY_SIZE(hwcaps_pp2cmd)); 2070 } 2071 2072 static int spi_nor_select_read(struct spi_nor *nor, 2073 const struct spi_nor_flash_parameter *params, 2074 u32 shared_hwcaps) 2075 { 2076 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; 2077 const struct spi_nor_read_command *read; 2078 2079 if (best_match < 0) 2080 return -EINVAL; 2081 2082 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); 2083 if (cmd < 0) 2084 return -EINVAL; 2085 2086 read = ¶ms->reads[cmd]; 2087 nor->read_opcode = read->opcode; 2088 nor->read_proto = read->proto; 2089 2090 /* 2091 * In the spi-nor framework, we don't need to make the difference 2092 * between mode clock cycles and wait state clock cycles. 2093 * Indeed, the value of the mode clock cycles is used by a QSPI 2094 * flash memory to know whether it should enter or leave its 0-4-4 2095 * (Continuous Read / XIP) mode. 2096 * eXecution In Place is out of the scope of the mtd sub-system. 2097 * Hence we choose to merge both mode and wait state clock cycles 2098 * into the so called dummy clock cycles. 2099 */ 2100 nor->read_dummy = read->num_mode_clocks + read->num_wait_states; 2101 return 0; 2102 } 2103 2104 static int spi_nor_select_pp(struct spi_nor *nor, 2105 const struct spi_nor_flash_parameter *params, 2106 u32 shared_hwcaps) 2107 { 2108 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; 2109 const struct spi_nor_pp_command *pp; 2110 2111 if (best_match < 0) 2112 return -EINVAL; 2113 2114 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); 2115 if (cmd < 0) 2116 return -EINVAL; 2117 2118 pp = ¶ms->page_programs[cmd]; 2119 nor->program_opcode = pp->opcode; 2120 nor->write_proto = pp->proto; 2121 return 0; 2122 } 2123 2124 static int spi_nor_select_erase(struct spi_nor *nor, 2125 const struct flash_info *info) 2126 { 2127 struct mtd_info *mtd = &nor->mtd; 2128 2129 /* Do nothing if already configured from SFDP. */ 2130 if (mtd->erasesize) 2131 return 0; 2132 2133 #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS 2134 /* prefer "small sector" erase if possible */ 2135 if (info->flags & SECT_4K) { 2136 nor->erase_opcode = SPINOR_OP_BE_4K; 2137 mtd->erasesize = 4096; 2138 } else if (info->flags & SECT_4K_PMC) { 2139 nor->erase_opcode = SPINOR_OP_BE_4K_PMC; 2140 mtd->erasesize = 4096; 2141 } else 2142 #endif 2143 { 2144 nor->erase_opcode = SPINOR_OP_SE; 2145 mtd->erasesize = info->sector_size; 2146 } 2147 return 0; 2148 } 2149 2150 static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info, 2151 const struct spi_nor_flash_parameter *params, 2152 const struct spi_nor_hwcaps *hwcaps) 2153 { 2154 u32 ignored_mask, shared_mask; 2155 bool enable_quad_io; 2156 int err; 2157 2158 /* 2159 * Keep only the hardware capabilities supported by both the SPI 2160 * controller and the SPI flash memory. 2161 */ 2162 shared_mask = hwcaps->mask & params->hwcaps.mask; 2163 2164 /* SPI n-n-n protocols are not supported yet. */ 2165 ignored_mask = (SNOR_HWCAPS_READ_2_2_2 | 2166 SNOR_HWCAPS_READ_4_4_4 | 2167 SNOR_HWCAPS_READ_8_8_8 | 2168 SNOR_HWCAPS_PP_4_4_4 | 2169 SNOR_HWCAPS_PP_8_8_8); 2170 if (shared_mask & ignored_mask) { 2171 dev_dbg(nor->dev, 2172 "SPI n-n-n protocols are not supported yet.\n"); 2173 shared_mask &= ~ignored_mask; 2174 } 2175 2176 /* Select the (Fast) Read command. */ 2177 err = spi_nor_select_read(nor, params, shared_mask); 2178 if (err) { 2179 dev_dbg(nor->dev, 2180 "can't select read settings supported by both the SPI controller and memory.\n"); 2181 return err; 2182 } 2183 2184 /* Select the Page Program command. */ 2185 err = spi_nor_select_pp(nor, params, shared_mask); 2186 if (err) { 2187 dev_dbg(nor->dev, 2188 "can't select write settings supported by both the SPI controller and memory.\n"); 2189 return err; 2190 } 2191 2192 /* Select the Sector Erase command. */ 2193 err = spi_nor_select_erase(nor, info); 2194 if (err) { 2195 dev_dbg(nor->dev, 2196 "can't select erase settings supported by both the SPI controller and memory.\n"); 2197 return err; 2198 } 2199 2200 /* Enable Quad I/O if needed. */ 2201 enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 || 2202 spi_nor_get_protocol_width(nor->write_proto) == 4); 2203 if (enable_quad_io && params->quad_enable) 2204 nor->quad_enable = params->quad_enable; 2205 else 2206 nor->quad_enable = NULL; 2207 2208 return 0; 2209 } 2210 2211 static int spi_nor_init(struct spi_nor *nor) 2212 { 2213 int err; 2214 2215 /* 2216 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up 2217 * with the software protection bits set 2218 */ 2219 if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL || 2220 JEDEC_MFR(nor->info) == SNOR_MFR_INTEL || 2221 JEDEC_MFR(nor->info) == SNOR_MFR_SST || 2222 nor->info->flags & SPI_NOR_HAS_LOCK) { 2223 write_enable(nor); 2224 write_sr(nor, 0); 2225 spi_nor_wait_till_ready(nor); 2226 } 2227 2228 if (nor->quad_enable) { 2229 err = nor->quad_enable(nor); 2230 if (err) { 2231 dev_dbg(nor->dev, "quad mode not supported\n"); 2232 return err; 2233 } 2234 } 2235 2236 if (nor->addr_width == 4 && 2237 (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION)) { 2238 /* 2239 * If the RESET# pin isn't hooked up properly, or the system 2240 * otherwise doesn't perform a reset command in the boot 2241 * sequence, it's impossible to 100% protect against unexpected 2242 * reboots (e.g., crashes). Warn the user (or hopefully, system 2243 * designer) that this is bad. 2244 */ 2245 if (nor->flags & SNOR_F_BROKEN_RESET) 2246 printf("enabling reset hack; may not recover from unexpected reboots\n"); 2247 set_4byte(nor, nor->info, 1); 2248 } 2249 2250 return 0; 2251 } 2252 2253 int spi_nor_scan(struct spi_nor *nor) 2254 { 2255 struct spi_nor_flash_parameter params; 2256 const struct flash_info *info = NULL; 2257 struct mtd_info *mtd = &nor->mtd; 2258 struct spi_nor_hwcaps hwcaps = { 2259 .mask = SNOR_HWCAPS_READ | 2260 SNOR_HWCAPS_READ_FAST | 2261 SNOR_HWCAPS_PP, 2262 }; 2263 struct spi_slave *spi = nor->spi; 2264 int ret; 2265 2266 /* Reset SPI protocol for all commands. */ 2267 nor->reg_proto = SNOR_PROTO_1_1_1; 2268 nor->read_proto = SNOR_PROTO_1_1_1; 2269 nor->write_proto = SNOR_PROTO_1_1_1; 2270 nor->read = spi_nor_read_data; 2271 nor->write = spi_nor_write_data; 2272 nor->read_reg = spi_nor_read_reg; 2273 nor->write_reg = spi_nor_write_reg; 2274 2275 if (spi->mode & SPI_RX_QUAD) { 2276 hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; 2277 2278 if (spi->mode & SPI_TX_QUAD) 2279 hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 | 2280 SNOR_HWCAPS_PP_1_1_4 | 2281 SNOR_HWCAPS_PP_1_4_4); 2282 } else if (spi->mode & SPI_RX_DUAL) { 2283 hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; 2284 2285 if (spi->mode & SPI_TX_DUAL) 2286 hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2; 2287 } 2288 2289 info = spi_nor_read_id(nor); 2290 if (IS_ERR_OR_NULL(info)) 2291 return -ENOENT; 2292 /* Parse the Serial Flash Discoverable Parameters table. */ 2293 ret = spi_nor_init_params(nor, info, ¶ms); 2294 if (ret) 2295 return ret; 2296 2297 if (!mtd->name) 2298 mtd->name = info->name; 2299 mtd->priv = nor; 2300 mtd->type = MTD_NORFLASH; 2301 mtd->writesize = 1; 2302 mtd->flags = MTD_CAP_NORFLASH; 2303 mtd->size = params.size; 2304 mtd->_erase = spi_nor_erase; 2305 mtd->_read = spi_nor_read; 2306 2307 #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) 2308 /* NOR protection support for STmicro/Micron chips and similar */ 2309 if (JEDEC_MFR(info) == SNOR_MFR_ST || 2310 JEDEC_MFR(info) == SNOR_MFR_MICRON || 2311 JEDEC_MFR(info) == SNOR_MFR_SST || 2312 info->flags & SPI_NOR_HAS_LOCK) { 2313 nor->flash_lock = stm_lock; 2314 nor->flash_unlock = stm_unlock; 2315 nor->flash_is_locked = stm_is_locked; 2316 } 2317 #endif 2318 2319 #ifdef CONFIG_SPI_FLASH_SST 2320 /* sst nor chips use AAI word program */ 2321 if (info->flags & SST_WRITE) 2322 mtd->_write = sst_write; 2323 else 2324 #endif 2325 mtd->_write = spi_nor_write; 2326 2327 if (info->flags & USE_FSR) 2328 nor->flags |= SNOR_F_USE_FSR; 2329 if (info->flags & SPI_NOR_HAS_TB) 2330 nor->flags |= SNOR_F_HAS_SR_TB; 2331 if (info->flags & NO_CHIP_ERASE) 2332 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; 2333 if (info->flags & USE_CLSR) 2334 nor->flags |= SNOR_F_USE_CLSR; 2335 2336 if (info->flags & SPI_NOR_NO_ERASE) 2337 mtd->flags |= MTD_NO_ERASE; 2338 2339 nor->page_size = params.page_size; 2340 mtd->writebufsize = nor->page_size; 2341 2342 /* Some devices cannot do fast-read, no matter what DT tells us */ 2343 if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW)) 2344 params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; 2345 2346 /* 2347 * Configure the SPI memory: 2348 * - select op codes for (Fast) Read, Page Program and Sector Erase. 2349 * - set the number of dummy cycles (mode cycles + wait states). 2350 * - set the SPI protocols for register and memory accesses. 2351 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos). 2352 */ 2353 ret = spi_nor_setup(nor, info, ¶ms, &hwcaps); 2354 if (ret) 2355 return ret; 2356 2357 if (nor->addr_width) { 2358 /* already configured from SFDP */ 2359 } else if (info->addr_width) { 2360 nor->addr_width = info->addr_width; 2361 } else if (mtd->size > SZ_16M) { 2362 #ifndef CONFIG_SPI_FLASH_BAR 2363 /* enable 4-byte addressing if the device exceeds 16MiB */ 2364 nor->addr_width = 4; 2365 spi_nor_set_4byte_opcodes(nor, info); 2366 #else 2367 /* Configure the BAR - discover bank cmds and read current bank */ 2368 nor->addr_width = 3; 2369 ret = read_bar(nor, info); 2370 if (ret < 0) 2371 return ret; 2372 #endif 2373 } else { 2374 nor->addr_width = 3; 2375 } 2376 2377 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) { 2378 dev_dbg(dev, "address width is too large: %u\n", 2379 nor->addr_width); 2380 return -EINVAL; 2381 } 2382 2383 /* Send all the required SPI flash commands to initialize device */ 2384 nor->info = info; 2385 ret = spi_nor_init(nor); 2386 if (ret) 2387 return ret; 2388 2389 nor->name = mtd->name; 2390 nor->size = mtd->size; 2391 nor->erase_size = mtd->erasesize; 2392 nor->sector_size = mtd->erasesize; 2393 2394 #ifndef CONFIG_SPL_BUILD 2395 printf("SF: Detected %s with page size ", nor->name); 2396 print_size(nor->page_size, ", erase size "); 2397 print_size(nor->erase_size, ", total "); 2398 print_size(nor->size, ""); 2399 puts("\n"); 2400 #endif 2401 2402 return 0; 2403 } 2404 2405 /* U-Boot specific functions, need to extend MTD to support these */ 2406 int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor) 2407 { 2408 int sr = read_sr(nor); 2409 2410 if (sr < 0) 2411 return sr; 2412 2413 return (sr >> 2) & 7; 2414 } 2415