xref: /openbmc/u-boot/drivers/crypto/fsl/jr.c (revision e6ddb6b0135949e67bf5face7bdff522e493e1e2)
1  /*
2   * Copyright 2008-2014 Freescale Semiconductor, Inc.
3   *
4   * SPDX-License-Identifier:	GPL-2.0+
5   *
6   * Based on CAAM driver in drivers/crypto/caam in Linux
7   */
8  
9  #include <common.h>
10  #include <malloc.h>
11  #include "fsl_sec.h"
12  #include "jr.h"
13  #include "jobdesc.h"
14  #include "desc_constr.h"
15  #ifdef CONFIG_FSL_CORENET
16  #include <asm/fsl_pamu.h>
17  #endif
18  
19  #define CIRC_CNT(head, tail, size)	(((head) - (tail)) & (size - 1))
20  #define CIRC_SPACE(head, tail, size)	CIRC_CNT((tail), (head) + 1, (size))
21  
22  uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = {
23  	0,
24  #if defined(CONFIG_PPC_C29X)
25  	CONFIG_SYS_FSL_SEC_IDX_OFFSET,
26  	2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET
27  #endif
28  };
29  
30  #define SEC_ADDR(idx)	\
31  	((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx]))
32  
33  #define SEC_JR0_ADDR(idx)	\
34  	(SEC_ADDR(idx) +	\
35  	 (CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET))
36  
37  struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC];
38  
39  static inline void start_jr0(uint8_t sec_idx)
40  {
41  	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
42  	u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
43  	u32 scfgr = sec_in32(&sec->scfgr);
44  
45  	if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
46  		/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
47  		 * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
48  		 */
49  		if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
50  		    (!(ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) &&
51  					(scfgr & SEC_SCFGR_VIRT_EN)))
52  			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
53  	} else {
54  		/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
55  		if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
56  			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
57  	}
58  }
59  
60  static inline void jr_reset_liodn(uint8_t sec_idx)
61  {
62  	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
63  	sec_out32(&sec->jrliodnr[0].ls, 0);
64  }
65  
66  static inline void jr_disable_irq(uint8_t sec_idx)
67  {
68  	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
69  	uint32_t jrcfg = sec_in32(&regs->jrcfg1);
70  
71  	jrcfg = jrcfg | JR_INTMASK;
72  
73  	sec_out32(&regs->jrcfg1, jrcfg);
74  }
75  
76  static void jr_initregs(uint8_t sec_idx)
77  {
78  	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
79  	struct jobring *jr = &jr0[sec_idx];
80  	phys_addr_t ip_base = virt_to_phys((void *)jr->input_ring);
81  	phys_addr_t op_base = virt_to_phys((void *)jr->output_ring);
82  
83  #ifdef CONFIG_PHYS_64BIT
84  	sec_out32(&regs->irba_h, ip_base >> 32);
85  #else
86  	sec_out32(&regs->irba_h, 0x0);
87  #endif
88  	sec_out32(&regs->irba_l, (uint32_t)ip_base);
89  #ifdef CONFIG_PHYS_64BIT
90  	sec_out32(&regs->orba_h, op_base >> 32);
91  #else
92  	sec_out32(&regs->orba_h, 0x0);
93  #endif
94  	sec_out32(&regs->orba_l, (uint32_t)op_base);
95  	sec_out32(&regs->ors, JR_SIZE);
96  	sec_out32(&regs->irs, JR_SIZE);
97  
98  	if (!jr->irq)
99  		jr_disable_irq(sec_idx);
100  }
101  
102  static int jr_init(uint8_t sec_idx)
103  {
104  	struct jobring *jr = &jr0[sec_idx];
105  
106  	memset(jr, 0, sizeof(struct jobring));
107  
108  	jr->jq_id = DEFAULT_JR_ID;
109  	jr->irq = DEFAULT_IRQ;
110  
111  #ifdef CONFIG_FSL_CORENET
112  	jr->liodn = DEFAULT_JR_LIODN;
113  #endif
114  	jr->size = JR_SIZE;
115  	jr->input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
116  				JR_SIZE * sizeof(dma_addr_t));
117  	if (!jr->input_ring)
118  		return -1;
119  
120  	jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring),
121  			      ARCH_DMA_MINALIGN);
122  	jr->output_ring =
123  	    (struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size);
124  	if (!jr->output_ring)
125  		return -1;
126  
127  	memset(jr->input_ring, 0, JR_SIZE * sizeof(dma_addr_t));
128  	memset(jr->output_ring, 0, jr->op_size);
129  
130  	start_jr0(sec_idx);
131  
132  	jr_initregs(sec_idx);
133  
134  	return 0;
135  }
136  
137  static int jr_sw_cleanup(uint8_t sec_idx)
138  {
139  	struct jobring *jr = &jr0[sec_idx];
140  
141  	jr->head = 0;
142  	jr->tail = 0;
143  	jr->read_idx = 0;
144  	jr->write_idx = 0;
145  	memset(jr->info, 0, sizeof(jr->info));
146  	memset(jr->input_ring, 0, jr->size * sizeof(dma_addr_t));
147  	memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring));
148  
149  	return 0;
150  }
151  
152  static int jr_hw_reset(uint8_t sec_idx)
153  {
154  	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
155  	uint32_t timeout = 100000;
156  	uint32_t jrint, jrcr;
157  
158  	sec_out32(&regs->jrcr, JRCR_RESET);
159  	do {
160  		jrint = sec_in32(&regs->jrint);
161  	} while (((jrint & JRINT_ERR_HALT_MASK) ==
162  		  JRINT_ERR_HALT_INPROGRESS) && --timeout);
163  
164  	jrint = sec_in32(&regs->jrint);
165  	if (((jrint & JRINT_ERR_HALT_MASK) !=
166  	     JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
167  		return -1;
168  
169  	timeout = 100000;
170  	sec_out32(&regs->jrcr, JRCR_RESET);
171  	do {
172  		jrcr = sec_in32(&regs->jrcr);
173  	} while ((jrcr & JRCR_RESET) && --timeout);
174  
175  	if (timeout == 0)
176  		return -1;
177  
178  	return 0;
179  }
180  
181  /* -1 --- error, can't enqueue -- no space available */
182  static int jr_enqueue(uint32_t *desc_addr,
183  	       void (*callback)(uint32_t status, void *arg),
184  	       void *arg, uint8_t sec_idx)
185  {
186  	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
187  	struct jobring *jr = &jr0[sec_idx];
188  	int head = jr->head;
189  	uint32_t desc_word;
190  	int length = desc_len(desc_addr);
191  	int i;
192  #ifdef CONFIG_PHYS_64BIT
193  	uint32_t *addr_hi, *addr_lo;
194  #endif
195  
196  	/* The descriptor must be submitted to SEC block as per endianness
197  	 * of the SEC Block.
198  	 * So, if the endianness of Core and SEC block is different, each word
199  	 * of the descriptor will be byte-swapped.
200  	 */
201  	for (i = 0; i < length; i++) {
202  		desc_word = desc_addr[i];
203  		sec_out32((uint32_t *)&desc_addr[i], desc_word);
204  	}
205  
206  	phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);
207  
208  	jr->info[head].desc_phys_addr = desc_phys_addr;
209  	jr->info[head].callback = (void *)callback;
210  	jr->info[head].arg = arg;
211  	jr->info[head].op_done = 0;
212  
213  	unsigned long start = (unsigned long)&jr->info[head] &
214  					~(ARCH_DMA_MINALIGN - 1);
215  	unsigned long end = ALIGN((unsigned long)&jr->info[head] +
216  				  sizeof(struct jr_info), ARCH_DMA_MINALIGN);
217  	flush_dcache_range(start, end);
218  
219  #ifdef CONFIG_PHYS_64BIT
220  	/* Write the 64 bit Descriptor address on Input Ring.
221  	 * The 32 bit hign and low part of the address will
222  	 * depend on endianness of SEC block.
223  	 */
224  #ifdef CONFIG_SYS_FSL_SEC_LE
225  	addr_lo = (uint32_t *)(&jr->input_ring[head]);
226  	addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1;
227  #elif defined(CONFIG_SYS_FSL_SEC_BE)
228  	addr_hi = (uint32_t *)(&jr->input_ring[head]);
229  	addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1;
230  #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
231  
232  	sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
233  	sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
234  
235  #else
236  	/* Write the 32 bit Descriptor address on Input Ring. */
237  	sec_out32(&jr->input_ring[head], desc_phys_addr);
238  #endif /* ifdef CONFIG_PHYS_64BIT */
239  
240  	start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
241  	end = ALIGN((unsigned long)&jr->input_ring[head] +
242  		     sizeof(dma_addr_t), ARCH_DMA_MINALIGN);
243  	flush_dcache_range(start, end);
244  
245  	jr->head = (head + 1) & (jr->size - 1);
246  
247  	/* Invalidate output ring */
248  	start = (unsigned long)jr->output_ring &
249  					~(ARCH_DMA_MINALIGN - 1);
250  	end = ALIGN((unsigned long)jr->output_ring + jr->op_size,
251  		    ARCH_DMA_MINALIGN);
252  	invalidate_dcache_range(start, end);
253  
254  	sec_out32(&regs->irja, 1);
255  
256  	return 0;
257  }
258  
259  static int jr_dequeue(int sec_idx)
260  {
261  	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
262  	struct jobring *jr = &jr0[sec_idx];
263  	int head = jr->head;
264  	int tail = jr->tail;
265  	int idx, i, found;
266  	void (*callback)(uint32_t status, void *arg);
267  	void *arg = NULL;
268  #ifdef CONFIG_PHYS_64BIT
269  	uint32_t *addr_hi, *addr_lo;
270  #else
271  	uint32_t *addr;
272  #endif
273  
274  	while (sec_in32(&regs->orsf) && CIRC_CNT(jr->head, jr->tail,
275  						 jr->size)) {
276  
277  		found = 0;
278  
279  		phys_addr_t op_desc;
280  	#ifdef CONFIG_PHYS_64BIT
281  		/* Read the 64 bit Descriptor address from Output Ring.
282  		 * The 32 bit hign and low part of the address will
283  		 * depend on endianness of SEC block.
284  		 */
285  	#ifdef CONFIG_SYS_FSL_SEC_LE
286  		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc);
287  		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
288  	#elif defined(CONFIG_SYS_FSL_SEC_BE)
289  		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc);
290  		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
291  	#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
292  
293  		op_desc = ((u64)sec_in32(addr_hi) << 32) |
294  			  ((u64)sec_in32(addr_lo));
295  
296  	#else
297  		/* Read the 32 bit Descriptor address from Output Ring. */
298  		addr = (uint32_t *)&jr->output_ring[jr->tail].desc;
299  		op_desc = sec_in32(addr);
300  	#endif /* ifdef CONFIG_PHYS_64BIT */
301  
302  		uint32_t status = sec_in32(&jr->output_ring[jr->tail].status);
303  
304  		for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) {
305  			idx = (tail + i) & (jr->size - 1);
306  			if (op_desc == jr->info[idx].desc_phys_addr) {
307  				found = 1;
308  				break;
309  			}
310  		}
311  
312  		/* Error condition if match not found */
313  		if (!found)
314  			return -1;
315  
316  		jr->info[idx].op_done = 1;
317  		callback = (void *)jr->info[idx].callback;
318  		arg = jr->info[idx].arg;
319  
320  		/* When the job on tail idx gets done, increment
321  		 * tail till the point where job completed out of oredr has
322  		 * been taken into account
323  		 */
324  		if (idx == tail)
325  			do {
326  				tail = (tail + 1) & (jr->size - 1);
327  			} while (jr->info[tail].op_done);
328  
329  		jr->tail = tail;
330  		jr->read_idx = (jr->read_idx + 1) & (jr->size - 1);
331  
332  		sec_out32(&regs->orjr, 1);
333  		jr->info[idx].op_done = 0;
334  
335  		callback(status, arg);
336  	}
337  
338  	return 0;
339  }
340  
341  static void desc_done(uint32_t status, void *arg)
342  {
343  	struct result *x = arg;
344  	x->status = status;
345  	caam_jr_strstatus(status);
346  	x->done = 1;
347  }
348  
349  static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx)
350  {
351  	unsigned long long timeval = get_ticks();
352  	unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
353  	struct result op;
354  	int ret = 0;
355  
356  	memset(&op, 0, sizeof(op));
357  
358  	ret = jr_enqueue(desc, desc_done, &op, sec_idx);
359  	if (ret) {
360  		debug("Error in SEC enq\n");
361  		ret = JQ_ENQ_ERR;
362  		goto out;
363  	}
364  
365  	timeval = get_ticks();
366  	timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
367  	while (op.done != 1) {
368  		ret = jr_dequeue(sec_idx);
369  		if (ret) {
370  			debug("Error in SEC deq\n");
371  			ret = JQ_DEQ_ERR;
372  			goto out;
373  		}
374  
375  		if ((get_ticks() - timeval) > timeout) {
376  			debug("SEC Dequeue timed out\n");
377  			ret = JQ_DEQ_TO_ERR;
378  			goto out;
379  		}
380  	}
381  
382  	if (op.status) {
383  		debug("Error %x\n", op.status);
384  		ret = op.status;
385  	}
386  out:
387  	return ret;
388  }
389  
390  int run_descriptor_jr(uint32_t *desc)
391  {
392  	return run_descriptor_jr_idx(desc, 0);
393  }
394  
395  static inline int jr_reset_sec(uint8_t sec_idx)
396  {
397  	if (jr_hw_reset(sec_idx) < 0)
398  		return -1;
399  
400  	/* Clean up the jobring structure maintained by software */
401  	jr_sw_cleanup(sec_idx);
402  
403  	return 0;
404  }
405  
406  int jr_reset(void)
407  {
408  	return jr_reset_sec(0);
409  }
410  
411  static inline int sec_reset_idx(uint8_t sec_idx)
412  {
413  	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
414  	uint32_t mcfgr = sec_in32(&sec->mcfgr);
415  	uint32_t timeout = 100000;
416  
417  	mcfgr |= MCFGR_SWRST;
418  	sec_out32(&sec->mcfgr, mcfgr);
419  
420  	mcfgr |= MCFGR_DMA_RST;
421  	sec_out32(&sec->mcfgr, mcfgr);
422  	do {
423  		mcfgr = sec_in32(&sec->mcfgr);
424  	} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
425  
426  	if (timeout == 0)
427  		return -1;
428  
429  	timeout = 100000;
430  	do {
431  		mcfgr = sec_in32(&sec->mcfgr);
432  	} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
433  
434  	if (timeout == 0)
435  		return -1;
436  
437  	return 0;
438  }
439  
440  static int instantiate_rng(uint8_t sec_idx)
441  {
442  	struct result op;
443  	u32 *desc;
444  	u32 rdsta_val;
445  	int ret = 0;
446  	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
447  	struct rng4tst __iomem *rng =
448  			(struct rng4tst __iomem *)&sec->rng;
449  
450  	memset(&op, 0, sizeof(struct result));
451  
452  	desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
453  	if (!desc) {
454  		printf("cannot allocate RNG init descriptor memory\n");
455  		return -1;
456  	}
457  
458  	inline_cnstr_jobdesc_rng_instantiation(desc);
459  	int size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
460  	flush_dcache_range((unsigned long)desc,
461  			   (unsigned long)desc + size);
462  
463  	ret = run_descriptor_jr_idx(desc, sec_idx);
464  
465  	if (ret)
466  		printf("RNG: Instantiation failed with error %x\n", ret);
467  
468  	rdsta_val = sec_in32(&rng->rdsta);
469  	if (op.status || !(rdsta_val & RNG_STATE0_HANDLE_INSTANTIATED))
470  		return -1;
471  
472  	return ret;
473  }
474  
475  int sec_reset(void)
476  {
477  	return sec_reset_idx(0);
478  }
479  
480  static u8 get_rng_vid(uint8_t sec_idx)
481  {
482  	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
483  	u32 cha_vid = sec_in32(&sec->chavid_ls);
484  
485  	return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT;
486  }
487  
488  /*
489   * By default, the TRNG runs for 200 clocks per sample;
490   * 1200 clocks per sample generates better entropy.
491   */
492  static void kick_trng(int ent_delay, uint8_t sec_idx)
493  {
494  	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
495  	struct rng4tst __iomem *rng =
496  			(struct rng4tst __iomem *)&sec->rng;
497  	u32 val;
498  
499  	/* put RNG4 into program mode */
500  	sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
501  	/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
502  	 * length (in system clocks) of each Entropy sample taken
503  	 * */
504  	val = sec_in32(&rng->rtsdctl);
505  	val = (val & ~RTSDCTL_ENT_DLY_MASK) |
506  	      (ent_delay << RTSDCTL_ENT_DLY_SHIFT);
507  	sec_out32(&rng->rtsdctl, val);
508  	/* min. freq. count, equal to 1/4 of the entropy sample length */
509  	sec_out32(&rng->rtfreqmin, ent_delay >> 2);
510  	/* disable maximum frequency count */
511  	sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
512  	/*
513  	 * select raw sampling in both entropy shifter
514  	 * and statistical checker
515  	 */
516  	sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC);
517  	/* put RNG4 into run mode */
518  	sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
519  }
520  
521  static int rng_init(uint8_t sec_idx)
522  {
523  	int ret, ent_delay = RTSDCTL_ENT_DLY_MIN;
524  	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
525  	struct rng4tst __iomem *rng =
526  			(struct rng4tst __iomem *)&sec->rng;
527  
528  	u32 rdsta = sec_in32(&rng->rdsta);
529  
530  	/* Check if RNG state 0 handler is already instantiated */
531  	if (rdsta & RNG_STATE0_HANDLE_INSTANTIATED)
532  		return 0;
533  
534  	do {
535  		/*
536  		 * If either of the SH's were instantiated by somebody else
537  		 * then it is assumed that the entropy
538  		 * parameters are properly set and thus the function
539  		 * setting these (kick_trng(...)) is skipped.
540  		 * Also, if a handle was instantiated, do not change
541  		 * the TRNG parameters.
542  		 */
543  		kick_trng(ent_delay, sec_idx);
544  		ent_delay += 400;
545  		/*
546  		 * if instantiate_rng(...) fails, the loop will rerun
547  		 * and the kick_trng(...) function will modfiy the
548  		 * upper and lower limits of the entropy sampling
549  		 * interval, leading to a sucessful initialization of
550  		 * the RNG.
551  		 */
552  		ret = instantiate_rng(sec_idx);
553  	} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
554  	if (ret) {
555  		printf("RNG: Failed to instantiate RNG\n");
556  		return ret;
557  	}
558  
559  	 /* Enable RDB bit so that RNG works faster */
560  	sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
561  
562  	return ret;
563  }
564  
565  int sec_init_idx(uint8_t sec_idx)
566  {
567  	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
568  	uint32_t mcr = sec_in32(&sec->mcfgr);
569  	int ret = 0;
570  
571  #ifdef CONFIG_FSL_CORENET
572  	uint32_t liodnr;
573  	uint32_t liodn_ns;
574  	uint32_t liodn_s;
575  #endif
576  
577  	if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) {
578  		printf("SEC initialization failed\n");
579  		return -1;
580  	}
581  
582  	/*
583  	 * Modifying CAAM Read/Write Attributes
584  	 * For LS2080A
585  	 * For AXI Write - Cacheable, Write Back, Write allocate
586  	 * For AXI Read - Cacheable, Read allocate
587  	 * Only For LS2080a, to solve CAAM coherency issues
588  	 */
589  #ifdef CONFIG_LS2080A
590  	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
591  	mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
592  #else
593  	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
594  #endif
595  
596  #ifdef CONFIG_PHYS_64BIT
597  	mcr |= (1 << MCFGR_PS_SHIFT);
598  #endif
599  	sec_out32(&sec->mcfgr, mcr);
600  
601  #ifdef CONFIG_FSL_CORENET
602  	liodnr = sec_in32(&sec->jrliodnr[0].ls);
603  	liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
604  	liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
605  #endif
606  
607  	ret = jr_init(sec_idx);
608  	if (ret < 0) {
609  		printf("SEC initialization failed\n");
610  		return -1;
611  	}
612  
613  #ifdef CONFIG_FSL_CORENET
614  	ret = sec_config_pamu_table(liodn_ns, liodn_s);
615  	if (ret < 0)
616  		return -1;
617  
618  	pamu_enable();
619  #endif
620  
621  	if (get_rng_vid(sec_idx) >= 4) {
622  		if (rng_init(sec_idx) < 0) {
623  			printf("SEC%u: RNG instantiation failed\n", sec_idx);
624  			return -1;
625  		}
626  		printf("SEC%u: RNG instantiated\n", sec_idx);
627  	}
628  
629  	return ret;
630  }
631  
632  int sec_init(void)
633  {
634  	return sec_init_idx(0);
635  }
636