1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright 2008-2014 Freescale Semiconductor, Inc. 4 * 5 * Based on CAAM driver in drivers/crypto/caam in Linux 6 */ 7 8 #include <common.h> 9 #include <malloc.h> 10 #include "fsl_sec.h" 11 #include "jr.h" 12 #include "jobdesc.h" 13 #include "desc_constr.h" 14 #ifdef CONFIG_FSL_CORENET 15 #include <asm/fsl_pamu.h> 16 #endif 17 18 #define CIRC_CNT(head, tail, size) (((head) - (tail)) & (size - 1)) 19 #define CIRC_SPACE(head, tail, size) CIRC_CNT((tail), (head) + 1, (size)) 20 21 uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = { 22 0, 23 #if defined(CONFIG_ARCH_C29X) 24 CONFIG_SYS_FSL_SEC_IDX_OFFSET, 25 2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET 26 #endif 27 }; 28 29 #define SEC_ADDR(idx) \ 30 ((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx])) 31 32 #define SEC_JR0_ADDR(idx) \ 33 (SEC_ADDR(idx) + \ 34 (CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET)) 35 36 struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC]; 37 38 static inline void start_jr0(uint8_t sec_idx) 39 { 40 ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx); 41 u32 ctpr_ms = sec_in32(&sec->ctpr_ms); 42 u32 scfgr = sec_in32(&sec->scfgr); 43 44 if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) { 45 /* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or 46 * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1 47 */ 48 if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) || 49 (scfgr & SEC_SCFGR_VIRT_EN)) 50 sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0); 51 } else { 52 /* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */ 53 if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) 54 sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0); 55 } 56 } 57 58 static inline void jr_reset_liodn(uint8_t sec_idx) 59 { 60 ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx); 61 sec_out32(&sec->jrliodnr[0].ls, 0); 62 } 63 64 static inline void jr_disable_irq(uint8_t sec_idx) 65 { 66 struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx); 67 uint32_t jrcfg = sec_in32(®s->jrcfg1); 68 69 jrcfg = jrcfg | JR_INTMASK; 70 71 sec_out32(®s->jrcfg1, jrcfg); 72 } 73 74 static void jr_initregs(uint8_t sec_idx) 75 { 76 struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx); 77 struct jobring *jr = &jr0[sec_idx]; 78 phys_addr_t ip_base = virt_to_phys((void *)jr->input_ring); 79 phys_addr_t op_base = virt_to_phys((void *)jr->output_ring); 80 81 #ifdef CONFIG_PHYS_64BIT 82 sec_out32(®s->irba_h, ip_base >> 32); 83 #else 84 sec_out32(®s->irba_h, 0x0); 85 #endif 86 sec_out32(®s->irba_l, (uint32_t)ip_base); 87 #ifdef CONFIG_PHYS_64BIT 88 sec_out32(®s->orba_h, op_base >> 32); 89 #else 90 sec_out32(®s->orba_h, 0x0); 91 #endif 92 sec_out32(®s->orba_l, (uint32_t)op_base); 93 sec_out32(®s->ors, JR_SIZE); 94 sec_out32(®s->irs, JR_SIZE); 95 96 if (!jr->irq) 97 jr_disable_irq(sec_idx); 98 } 99 100 static int jr_init(uint8_t sec_idx) 101 { 102 struct jobring *jr = &jr0[sec_idx]; 103 104 memset(jr, 0, sizeof(struct jobring)); 105 106 jr->jq_id = DEFAULT_JR_ID; 107 jr->irq = DEFAULT_IRQ; 108 109 #ifdef CONFIG_FSL_CORENET 110 jr->liodn = DEFAULT_JR_LIODN; 111 #endif 112 jr->size = JR_SIZE; 113 jr->input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN, 114 JR_SIZE * sizeof(dma_addr_t)); 115 if (!jr->input_ring) 116 return -1; 117 118 jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring), 119 ARCH_DMA_MINALIGN); 120 jr->output_ring = 121 (struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size); 122 if (!jr->output_ring) 123 return -1; 124 125 memset(jr->input_ring, 0, JR_SIZE * sizeof(dma_addr_t)); 126 memset(jr->output_ring, 0, jr->op_size); 127 128 start_jr0(sec_idx); 129 130 jr_initregs(sec_idx); 131 132 return 0; 133 } 134 135 static int jr_sw_cleanup(uint8_t sec_idx) 136 { 137 struct jobring *jr = &jr0[sec_idx]; 138 139 jr->head = 0; 140 jr->tail = 0; 141 jr->read_idx = 0; 142 jr->write_idx = 0; 143 memset(jr->info, 0, sizeof(jr->info)); 144 memset(jr->input_ring, 0, jr->size * sizeof(dma_addr_t)); 145 memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring)); 146 147 return 0; 148 } 149 150 static int jr_hw_reset(uint8_t sec_idx) 151 { 152 struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx); 153 uint32_t timeout = 100000; 154 uint32_t jrint, jrcr; 155 156 sec_out32(®s->jrcr, JRCR_RESET); 157 do { 158 jrint = sec_in32(®s->jrint); 159 } while (((jrint & JRINT_ERR_HALT_MASK) == 160 JRINT_ERR_HALT_INPROGRESS) && --timeout); 161 162 jrint = sec_in32(®s->jrint); 163 if (((jrint & JRINT_ERR_HALT_MASK) != 164 JRINT_ERR_HALT_INPROGRESS) && timeout == 0) 165 return -1; 166 167 timeout = 100000; 168 sec_out32(®s->jrcr, JRCR_RESET); 169 do { 170 jrcr = sec_in32(®s->jrcr); 171 } while ((jrcr & JRCR_RESET) && --timeout); 172 173 if (timeout == 0) 174 return -1; 175 176 return 0; 177 } 178 179 /* -1 --- error, can't enqueue -- no space available */ 180 static int jr_enqueue(uint32_t *desc_addr, 181 void (*callback)(uint32_t status, void *arg), 182 void *arg, uint8_t sec_idx) 183 { 184 struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx); 185 struct jobring *jr = &jr0[sec_idx]; 186 int head = jr->head; 187 uint32_t desc_word; 188 int length = desc_len(desc_addr); 189 int i; 190 #ifdef CONFIG_PHYS_64BIT 191 uint32_t *addr_hi, *addr_lo; 192 #endif 193 194 /* The descriptor must be submitted to SEC block as per endianness 195 * of the SEC Block. 196 * So, if the endianness of Core and SEC block is different, each word 197 * of the descriptor will be byte-swapped. 198 */ 199 for (i = 0; i < length; i++) { 200 desc_word = desc_addr[i]; 201 sec_out32((uint32_t *)&desc_addr[i], desc_word); 202 } 203 204 phys_addr_t desc_phys_addr = virt_to_phys(desc_addr); 205 206 jr->info[head].desc_phys_addr = desc_phys_addr; 207 jr->info[head].callback = (void *)callback; 208 jr->info[head].arg = arg; 209 jr->info[head].op_done = 0; 210 211 unsigned long start = (unsigned long)&jr->info[head] & 212 ~(ARCH_DMA_MINALIGN - 1); 213 unsigned long end = ALIGN((unsigned long)&jr->info[head] + 214 sizeof(struct jr_info), ARCH_DMA_MINALIGN); 215 flush_dcache_range(start, end); 216 217 #ifdef CONFIG_PHYS_64BIT 218 /* Write the 64 bit Descriptor address on Input Ring. 219 * The 32 bit hign and low part of the address will 220 * depend on endianness of SEC block. 221 */ 222 #ifdef CONFIG_SYS_FSL_SEC_LE 223 addr_lo = (uint32_t *)(&jr->input_ring[head]); 224 addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1; 225 #elif defined(CONFIG_SYS_FSL_SEC_BE) 226 addr_hi = (uint32_t *)(&jr->input_ring[head]); 227 addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1; 228 #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */ 229 230 sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32)); 231 sec_out32(addr_lo, (uint32_t)(desc_phys_addr)); 232 233 #else 234 /* Write the 32 bit Descriptor address on Input Ring. */ 235 sec_out32(&jr->input_ring[head], desc_phys_addr); 236 #endif /* ifdef CONFIG_PHYS_64BIT */ 237 238 start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1); 239 end = ALIGN((unsigned long)&jr->input_ring[head] + 240 sizeof(dma_addr_t), ARCH_DMA_MINALIGN); 241 flush_dcache_range(start, end); 242 243 jr->head = (head + 1) & (jr->size - 1); 244 245 /* Invalidate output ring */ 246 start = (unsigned long)jr->output_ring & 247 ~(ARCH_DMA_MINALIGN - 1); 248 end = ALIGN((unsigned long)jr->output_ring + jr->op_size, 249 ARCH_DMA_MINALIGN); 250 invalidate_dcache_range(start, end); 251 252 sec_out32(®s->irja, 1); 253 254 return 0; 255 } 256 257 static int jr_dequeue(int sec_idx) 258 { 259 struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx); 260 struct jobring *jr = &jr0[sec_idx]; 261 int head = jr->head; 262 int tail = jr->tail; 263 int idx, i, found; 264 void (*callback)(uint32_t status, void *arg); 265 void *arg = NULL; 266 #ifdef CONFIG_PHYS_64BIT 267 uint32_t *addr_hi, *addr_lo; 268 #else 269 uint32_t *addr; 270 #endif 271 272 while (sec_in32(®s->orsf) && CIRC_CNT(jr->head, jr->tail, 273 jr->size)) { 274 275 found = 0; 276 277 phys_addr_t op_desc; 278 #ifdef CONFIG_PHYS_64BIT 279 /* Read the 64 bit Descriptor address from Output Ring. 280 * The 32 bit hign and low part of the address will 281 * depend on endianness of SEC block. 282 */ 283 #ifdef CONFIG_SYS_FSL_SEC_LE 284 addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc); 285 addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1; 286 #elif defined(CONFIG_SYS_FSL_SEC_BE) 287 addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc); 288 addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1; 289 #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */ 290 291 op_desc = ((u64)sec_in32(addr_hi) << 32) | 292 ((u64)sec_in32(addr_lo)); 293 294 #else 295 /* Read the 32 bit Descriptor address from Output Ring. */ 296 addr = (uint32_t *)&jr->output_ring[jr->tail].desc; 297 op_desc = sec_in32(addr); 298 #endif /* ifdef CONFIG_PHYS_64BIT */ 299 300 uint32_t status = sec_in32(&jr->output_ring[jr->tail].status); 301 302 for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) { 303 idx = (tail + i) & (jr->size - 1); 304 if (op_desc == jr->info[idx].desc_phys_addr) { 305 found = 1; 306 break; 307 } 308 } 309 310 /* Error condition if match not found */ 311 if (!found) 312 return -1; 313 314 jr->info[idx].op_done = 1; 315 callback = (void *)jr->info[idx].callback; 316 arg = jr->info[idx].arg; 317 318 /* When the job on tail idx gets done, increment 319 * tail till the point where job completed out of oredr has 320 * been taken into account 321 */ 322 if (idx == tail) 323 do { 324 tail = (tail + 1) & (jr->size - 1); 325 } while (jr->info[tail].op_done); 326 327 jr->tail = tail; 328 jr->read_idx = (jr->read_idx + 1) & (jr->size - 1); 329 330 sec_out32(®s->orjr, 1); 331 jr->info[idx].op_done = 0; 332 333 callback(status, arg); 334 } 335 336 return 0; 337 } 338 339 static void desc_done(uint32_t status, void *arg) 340 { 341 struct result *x = arg; 342 x->status = status; 343 #ifndef CONFIG_SPL_BUILD 344 caam_jr_strstatus(status); 345 #endif 346 x->done = 1; 347 } 348 349 static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx) 350 { 351 unsigned long long timeval = get_ticks(); 352 unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT); 353 struct result op; 354 int ret = 0; 355 356 memset(&op, 0, sizeof(op)); 357 358 ret = jr_enqueue(desc, desc_done, &op, sec_idx); 359 if (ret) { 360 debug("Error in SEC enq\n"); 361 ret = JQ_ENQ_ERR; 362 goto out; 363 } 364 365 timeval = get_ticks(); 366 timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT); 367 while (op.done != 1) { 368 ret = jr_dequeue(sec_idx); 369 if (ret) { 370 debug("Error in SEC deq\n"); 371 ret = JQ_DEQ_ERR; 372 goto out; 373 } 374 375 if ((get_ticks() - timeval) > timeout) { 376 debug("SEC Dequeue timed out\n"); 377 ret = JQ_DEQ_TO_ERR; 378 goto out; 379 } 380 } 381 382 if (op.status) { 383 debug("Error %x\n", op.status); 384 ret = op.status; 385 } 386 out: 387 return ret; 388 } 389 390 int run_descriptor_jr(uint32_t *desc) 391 { 392 return run_descriptor_jr_idx(desc, 0); 393 } 394 395 static inline int jr_reset_sec(uint8_t sec_idx) 396 { 397 if (jr_hw_reset(sec_idx) < 0) 398 return -1; 399 400 /* Clean up the jobring structure maintained by software */ 401 jr_sw_cleanup(sec_idx); 402 403 return 0; 404 } 405 406 int jr_reset(void) 407 { 408 return jr_reset_sec(0); 409 } 410 411 static inline int sec_reset_idx(uint8_t sec_idx) 412 { 413 ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx); 414 uint32_t mcfgr = sec_in32(&sec->mcfgr); 415 uint32_t timeout = 100000; 416 417 mcfgr |= MCFGR_SWRST; 418 sec_out32(&sec->mcfgr, mcfgr); 419 420 mcfgr |= MCFGR_DMA_RST; 421 sec_out32(&sec->mcfgr, mcfgr); 422 do { 423 mcfgr = sec_in32(&sec->mcfgr); 424 } while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout); 425 426 if (timeout == 0) 427 return -1; 428 429 timeout = 100000; 430 do { 431 mcfgr = sec_in32(&sec->mcfgr); 432 } while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout); 433 434 if (timeout == 0) 435 return -1; 436 437 return 0; 438 } 439 int sec_reset(void) 440 { 441 return sec_reset_idx(0); 442 } 443 #ifndef CONFIG_SPL_BUILD 444 static int instantiate_rng(uint8_t sec_idx) 445 { 446 u32 *desc; 447 u32 rdsta_val; 448 int ret = 0, sh_idx, size; 449 ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx); 450 struct rng4tst __iomem *rng = 451 (struct rng4tst __iomem *)&sec->rng; 452 453 desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6); 454 if (!desc) { 455 printf("cannot allocate RNG init descriptor memory\n"); 456 return -1; 457 } 458 459 for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) { 460 /* 461 * If the corresponding bit is set, this state handle 462 * was initialized by somebody else, so it's left alone. 463 */ 464 rdsta_val = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK; 465 if (rdsta_val & (1 << sh_idx)) 466 continue; 467 468 inline_cnstr_jobdesc_rng_instantiation(desc, sh_idx); 469 size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN); 470 flush_dcache_range((unsigned long)desc, 471 (unsigned long)desc + size); 472 473 ret = run_descriptor_jr_idx(desc, sec_idx); 474 475 if (ret) 476 printf("RNG: Instantiation failed with error 0x%x\n", 477 ret); 478 479 rdsta_val = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK; 480 if (!(rdsta_val & (1 << sh_idx))) { 481 free(desc); 482 return -1; 483 } 484 485 memset(desc, 0, sizeof(uint32_t) * 6); 486 } 487 488 free(desc); 489 490 return ret; 491 } 492 493 static u8 get_rng_vid(uint8_t sec_idx) 494 { 495 ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx); 496 u32 cha_vid = sec_in32(&sec->chavid_ls); 497 498 return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT; 499 } 500 501 /* 502 * By default, the TRNG runs for 200 clocks per sample; 503 * 1200 clocks per sample generates better entropy. 504 */ 505 static void kick_trng(int ent_delay, uint8_t sec_idx) 506 { 507 ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx); 508 struct rng4tst __iomem *rng = 509 (struct rng4tst __iomem *)&sec->rng; 510 u32 val; 511 512 /* put RNG4 into program mode */ 513 sec_setbits32(&rng->rtmctl, RTMCTL_PRGM); 514 /* rtsdctl bits 0-15 contain "Entropy Delay, which defines the 515 * length (in system clocks) of each Entropy sample taken 516 * */ 517 val = sec_in32(&rng->rtsdctl); 518 val = (val & ~RTSDCTL_ENT_DLY_MASK) | 519 (ent_delay << RTSDCTL_ENT_DLY_SHIFT); 520 sec_out32(&rng->rtsdctl, val); 521 /* min. freq. count, equal to 1/4 of the entropy sample length */ 522 sec_out32(&rng->rtfreqmin, ent_delay >> 2); 523 /* disable maximum frequency count */ 524 sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE); 525 /* 526 * select raw sampling in both entropy shifter 527 * and statistical checker 528 */ 529 sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC); 530 /* put RNG4 into run mode */ 531 sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM); 532 } 533 534 static int rng_init(uint8_t sec_idx) 535 { 536 int ret, ent_delay = RTSDCTL_ENT_DLY_MIN; 537 ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx); 538 struct rng4tst __iomem *rng = 539 (struct rng4tst __iomem *)&sec->rng; 540 u32 inst_handles; 541 542 do { 543 inst_handles = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK; 544 545 /* 546 * If either of the SH's were instantiated by somebody else 547 * then it is assumed that the entropy 548 * parameters are properly set and thus the function 549 * setting these (kick_trng(...)) is skipped. 550 * Also, if a handle was instantiated, do not change 551 * the TRNG parameters. 552 */ 553 if (!inst_handles) { 554 kick_trng(ent_delay, sec_idx); 555 ent_delay += 400; 556 } 557 /* 558 * if instantiate_rng(...) fails, the loop will rerun 559 * and the kick_trng(...) function will modfiy the 560 * upper and lower limits of the entropy sampling 561 * interval, leading to a sucessful initialization of 562 * the RNG. 563 */ 564 ret = instantiate_rng(sec_idx); 565 } while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX)); 566 if (ret) { 567 printf("RNG: Failed to instantiate RNG\n"); 568 return ret; 569 } 570 571 /* Enable RDB bit so that RNG works faster */ 572 sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE); 573 574 return ret; 575 } 576 #endif 577 int sec_init_idx(uint8_t sec_idx) 578 { 579 ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx); 580 uint32_t mcr = sec_in32(&sec->mcfgr); 581 uint32_t jrown_ns; 582 int i; 583 int ret = 0; 584 585 #ifdef CONFIG_FSL_CORENET 586 uint32_t liodnr; 587 uint32_t liodn_ns; 588 uint32_t liodn_s; 589 #endif 590 591 if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) { 592 printf("SEC initialization failed\n"); 593 return -1; 594 } 595 596 /* 597 * Modifying CAAM Read/Write Attributes 598 * For LS2080A 599 * For AXI Write - Cacheable, Write Back, Write allocate 600 * For AXI Read - Cacheable, Read allocate 601 * Only For LS2080a, to solve CAAM coherency issues 602 */ 603 #ifdef CONFIG_ARCH_LS2080A 604 mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT); 605 mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT); 606 #else 607 mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT); 608 #endif 609 610 #ifdef CONFIG_PHYS_64BIT 611 mcr |= (1 << MCFGR_PS_SHIFT); 612 #endif 613 sec_out32(&sec->mcfgr, mcr); 614 615 #ifdef CONFIG_FSL_CORENET 616 #ifdef CONFIG_SPL_BUILD 617 /* 618 * For SPL Build, Set the Liodns in SEC JR0 for 619 * creating PAMU entries corresponding to these. 620 * For normal build, these are set in set_liodns(). 621 */ 622 liodn_ns = CONFIG_SPL_JR0_LIODN_NS & JRNSLIODN_MASK; 623 liodn_s = CONFIG_SPL_JR0_LIODN_S & JRSLIODN_MASK; 624 625 liodnr = sec_in32(&sec->jrliodnr[0].ls) & 626 ~(JRNSLIODN_MASK | JRSLIODN_MASK); 627 liodnr = liodnr | 628 (liodn_ns << JRNSLIODN_SHIFT) | 629 (liodn_s << JRSLIODN_SHIFT); 630 sec_out32(&sec->jrliodnr[0].ls, liodnr); 631 #else 632 liodnr = sec_in32(&sec->jrliodnr[0].ls); 633 liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT; 634 liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT; 635 #endif 636 #endif 637 638 /* Set ownership of job rings to non-TrustZone mode by default */ 639 for (i = 0; i < ARRAY_SIZE(sec->jrliodnr); i++) { 640 jrown_ns = sec_in32(&sec->jrliodnr[i].ms); 641 jrown_ns |= JROWN_NS | JRMID_NS; 642 sec_out32(&sec->jrliodnr[i].ms, jrown_ns); 643 } 644 645 ret = jr_init(sec_idx); 646 if (ret < 0) { 647 printf("SEC initialization failed\n"); 648 return -1; 649 } 650 651 #ifdef CONFIG_FSL_CORENET 652 ret = sec_config_pamu_table(liodn_ns, liodn_s); 653 if (ret < 0) 654 return -1; 655 656 pamu_enable(); 657 #endif 658 #ifndef CONFIG_SPL_BUILD 659 if (get_rng_vid(sec_idx) >= 4) { 660 if (rng_init(sec_idx) < 0) { 661 printf("SEC%u: RNG instantiation failed\n", sec_idx); 662 return -1; 663 } 664 printf("SEC%u: RNG instantiated\n", sec_idx); 665 } 666 #endif 667 return ret; 668 } 669 670 int sec_init(void) 671 { 672 return sec_init_idx(0); 673 } 674