xref: /openbmc/u-boot/drivers/crypto/fsl/jr.c (revision 9d466f2f)
1 /*
2  * Copyright 2008-2014 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Based on CAAM driver in drivers/crypto/caam in Linux
7  */
8 
9 #include <common.h>
10 #include <malloc.h>
11 #include "fsl_sec.h"
12 #include "jr.h"
13 #include "jobdesc.h"
14 #include "desc_constr.h"
15 #ifdef CONFIG_FSL_CORENET
16 #include <asm/fsl_pamu.h>
17 #endif
18 
19 #define CIRC_CNT(head, tail, size)	(((head) - (tail)) & (size - 1))
20 #define CIRC_SPACE(head, tail, size)	CIRC_CNT((tail), (head) + 1, (size))
21 
22 uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = {
23 	0,
24 #if defined(CONFIG_ARCH_C29X)
25 	CONFIG_SYS_FSL_SEC_IDX_OFFSET,
26 	2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET
27 #endif
28 };
29 
30 #define SEC_ADDR(idx)	\
31 	((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx]))
32 
33 #define SEC_JR0_ADDR(idx)	\
34 	(SEC_ADDR(idx) +	\
35 	 (CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET))
36 
37 struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC];
38 
39 static inline void start_jr0(uint8_t sec_idx)
40 {
41 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
42 	u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
43 	u32 scfgr = sec_in32(&sec->scfgr);
44 
45 	if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
46 		/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
47 		 * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
48 		 */
49 		if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
50 		    (scfgr & SEC_SCFGR_VIRT_EN))
51 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
52 	} else {
53 		/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
54 		if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
55 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
56 	}
57 }
58 
59 static inline void jr_reset_liodn(uint8_t sec_idx)
60 {
61 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
62 	sec_out32(&sec->jrliodnr[0].ls, 0);
63 }
64 
65 static inline void jr_disable_irq(uint8_t sec_idx)
66 {
67 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
68 	uint32_t jrcfg = sec_in32(&regs->jrcfg1);
69 
70 	jrcfg = jrcfg | JR_INTMASK;
71 
72 	sec_out32(&regs->jrcfg1, jrcfg);
73 }
74 
75 static void jr_initregs(uint8_t sec_idx)
76 {
77 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
78 	struct jobring *jr = &jr0[sec_idx];
79 	phys_addr_t ip_base = virt_to_phys((void *)jr->input_ring);
80 	phys_addr_t op_base = virt_to_phys((void *)jr->output_ring);
81 
82 #ifdef CONFIG_PHYS_64BIT
83 	sec_out32(&regs->irba_h, ip_base >> 32);
84 #else
85 	sec_out32(&regs->irba_h, 0x0);
86 #endif
87 	sec_out32(&regs->irba_l, (uint32_t)ip_base);
88 #ifdef CONFIG_PHYS_64BIT
89 	sec_out32(&regs->orba_h, op_base >> 32);
90 #else
91 	sec_out32(&regs->orba_h, 0x0);
92 #endif
93 	sec_out32(&regs->orba_l, (uint32_t)op_base);
94 	sec_out32(&regs->ors, JR_SIZE);
95 	sec_out32(&regs->irs, JR_SIZE);
96 
97 	if (!jr->irq)
98 		jr_disable_irq(sec_idx);
99 }
100 
101 static int jr_init(uint8_t sec_idx)
102 {
103 	struct jobring *jr = &jr0[sec_idx];
104 
105 	memset(jr, 0, sizeof(struct jobring));
106 
107 	jr->jq_id = DEFAULT_JR_ID;
108 	jr->irq = DEFAULT_IRQ;
109 
110 #ifdef CONFIG_FSL_CORENET
111 	jr->liodn = DEFAULT_JR_LIODN;
112 #endif
113 	jr->size = JR_SIZE;
114 	jr->input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
115 				JR_SIZE * sizeof(dma_addr_t));
116 	if (!jr->input_ring)
117 		return -1;
118 
119 	jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring),
120 			      ARCH_DMA_MINALIGN);
121 	jr->output_ring =
122 	    (struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size);
123 	if (!jr->output_ring)
124 		return -1;
125 
126 	memset(jr->input_ring, 0, JR_SIZE * sizeof(dma_addr_t));
127 	memset(jr->output_ring, 0, jr->op_size);
128 
129 	start_jr0(sec_idx);
130 
131 	jr_initregs(sec_idx);
132 
133 	return 0;
134 }
135 
136 static int jr_sw_cleanup(uint8_t sec_idx)
137 {
138 	struct jobring *jr = &jr0[sec_idx];
139 
140 	jr->head = 0;
141 	jr->tail = 0;
142 	jr->read_idx = 0;
143 	jr->write_idx = 0;
144 	memset(jr->info, 0, sizeof(jr->info));
145 	memset(jr->input_ring, 0, jr->size * sizeof(dma_addr_t));
146 	memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring));
147 
148 	return 0;
149 }
150 
151 static int jr_hw_reset(uint8_t sec_idx)
152 {
153 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
154 	uint32_t timeout = 100000;
155 	uint32_t jrint, jrcr;
156 
157 	sec_out32(&regs->jrcr, JRCR_RESET);
158 	do {
159 		jrint = sec_in32(&regs->jrint);
160 	} while (((jrint & JRINT_ERR_HALT_MASK) ==
161 		  JRINT_ERR_HALT_INPROGRESS) && --timeout);
162 
163 	jrint = sec_in32(&regs->jrint);
164 	if (((jrint & JRINT_ERR_HALT_MASK) !=
165 	     JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
166 		return -1;
167 
168 	timeout = 100000;
169 	sec_out32(&regs->jrcr, JRCR_RESET);
170 	do {
171 		jrcr = sec_in32(&regs->jrcr);
172 	} while ((jrcr & JRCR_RESET) && --timeout);
173 
174 	if (timeout == 0)
175 		return -1;
176 
177 	return 0;
178 }
179 
180 /* -1 --- error, can't enqueue -- no space available */
181 static int jr_enqueue(uint32_t *desc_addr,
182 	       void (*callback)(uint32_t status, void *arg),
183 	       void *arg, uint8_t sec_idx)
184 {
185 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
186 	struct jobring *jr = &jr0[sec_idx];
187 	int head = jr->head;
188 	uint32_t desc_word;
189 	int length = desc_len(desc_addr);
190 	int i;
191 #ifdef CONFIG_PHYS_64BIT
192 	uint32_t *addr_hi, *addr_lo;
193 #endif
194 
195 	/* The descriptor must be submitted to SEC block as per endianness
196 	 * of the SEC Block.
197 	 * So, if the endianness of Core and SEC block is different, each word
198 	 * of the descriptor will be byte-swapped.
199 	 */
200 	for (i = 0; i < length; i++) {
201 		desc_word = desc_addr[i];
202 		sec_out32((uint32_t *)&desc_addr[i], desc_word);
203 	}
204 
205 	phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);
206 
207 	jr->info[head].desc_phys_addr = desc_phys_addr;
208 	jr->info[head].callback = (void *)callback;
209 	jr->info[head].arg = arg;
210 	jr->info[head].op_done = 0;
211 
212 	unsigned long start = (unsigned long)&jr->info[head] &
213 					~(ARCH_DMA_MINALIGN - 1);
214 	unsigned long end = ALIGN((unsigned long)&jr->info[head] +
215 				  sizeof(struct jr_info), ARCH_DMA_MINALIGN);
216 	flush_dcache_range(start, end);
217 
218 #ifdef CONFIG_PHYS_64BIT
219 	/* Write the 64 bit Descriptor address on Input Ring.
220 	 * The 32 bit hign and low part of the address will
221 	 * depend on endianness of SEC block.
222 	 */
223 #ifdef CONFIG_SYS_FSL_SEC_LE
224 	addr_lo = (uint32_t *)(&jr->input_ring[head]);
225 	addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1;
226 #elif defined(CONFIG_SYS_FSL_SEC_BE)
227 	addr_hi = (uint32_t *)(&jr->input_ring[head]);
228 	addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1;
229 #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
230 
231 	sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
232 	sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
233 
234 #else
235 	/* Write the 32 bit Descriptor address on Input Ring. */
236 	sec_out32(&jr->input_ring[head], desc_phys_addr);
237 #endif /* ifdef CONFIG_PHYS_64BIT */
238 
239 	start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
240 	end = ALIGN((unsigned long)&jr->input_ring[head] +
241 		     sizeof(dma_addr_t), ARCH_DMA_MINALIGN);
242 	flush_dcache_range(start, end);
243 
244 	jr->head = (head + 1) & (jr->size - 1);
245 
246 	/* Invalidate output ring */
247 	start = (unsigned long)jr->output_ring &
248 					~(ARCH_DMA_MINALIGN - 1);
249 	end = ALIGN((unsigned long)jr->output_ring + jr->op_size,
250 		    ARCH_DMA_MINALIGN);
251 	invalidate_dcache_range(start, end);
252 
253 	sec_out32(&regs->irja, 1);
254 
255 	return 0;
256 }
257 
258 static int jr_dequeue(int sec_idx)
259 {
260 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
261 	struct jobring *jr = &jr0[sec_idx];
262 	int head = jr->head;
263 	int tail = jr->tail;
264 	int idx, i, found;
265 	void (*callback)(uint32_t status, void *arg);
266 	void *arg = NULL;
267 #ifdef CONFIG_PHYS_64BIT
268 	uint32_t *addr_hi, *addr_lo;
269 #else
270 	uint32_t *addr;
271 #endif
272 
273 	while (sec_in32(&regs->orsf) && CIRC_CNT(jr->head, jr->tail,
274 						 jr->size)) {
275 
276 		found = 0;
277 
278 		phys_addr_t op_desc;
279 	#ifdef CONFIG_PHYS_64BIT
280 		/* Read the 64 bit Descriptor address from Output Ring.
281 		 * The 32 bit hign and low part of the address will
282 		 * depend on endianness of SEC block.
283 		 */
284 	#ifdef CONFIG_SYS_FSL_SEC_LE
285 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc);
286 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
287 	#elif defined(CONFIG_SYS_FSL_SEC_BE)
288 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc);
289 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
290 	#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
291 
292 		op_desc = ((u64)sec_in32(addr_hi) << 32) |
293 			  ((u64)sec_in32(addr_lo));
294 
295 	#else
296 		/* Read the 32 bit Descriptor address from Output Ring. */
297 		addr = (uint32_t *)&jr->output_ring[jr->tail].desc;
298 		op_desc = sec_in32(addr);
299 	#endif /* ifdef CONFIG_PHYS_64BIT */
300 
301 		uint32_t status = sec_in32(&jr->output_ring[jr->tail].status);
302 
303 		for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) {
304 			idx = (tail + i) & (jr->size - 1);
305 			if (op_desc == jr->info[idx].desc_phys_addr) {
306 				found = 1;
307 				break;
308 			}
309 		}
310 
311 		/* Error condition if match not found */
312 		if (!found)
313 			return -1;
314 
315 		jr->info[idx].op_done = 1;
316 		callback = (void *)jr->info[idx].callback;
317 		arg = jr->info[idx].arg;
318 
319 		/* When the job on tail idx gets done, increment
320 		 * tail till the point where job completed out of oredr has
321 		 * been taken into account
322 		 */
323 		if (idx == tail)
324 			do {
325 				tail = (tail + 1) & (jr->size - 1);
326 			} while (jr->info[tail].op_done);
327 
328 		jr->tail = tail;
329 		jr->read_idx = (jr->read_idx + 1) & (jr->size - 1);
330 
331 		sec_out32(&regs->orjr, 1);
332 		jr->info[idx].op_done = 0;
333 
334 		callback(status, arg);
335 	}
336 
337 	return 0;
338 }
339 
340 static void desc_done(uint32_t status, void *arg)
341 {
342 	struct result *x = arg;
343 	x->status = status;
344 #ifndef CONFIG_SPL_BUILD
345 	caam_jr_strstatus(status);
346 #endif
347 	x->done = 1;
348 }
349 
350 static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx)
351 {
352 	unsigned long long timeval = get_ticks();
353 	unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
354 	struct result op;
355 	int ret = 0;
356 
357 	memset(&op, 0, sizeof(op));
358 
359 	ret = jr_enqueue(desc, desc_done, &op, sec_idx);
360 	if (ret) {
361 		debug("Error in SEC enq\n");
362 		ret = JQ_ENQ_ERR;
363 		goto out;
364 	}
365 
366 	timeval = get_ticks();
367 	timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
368 	while (op.done != 1) {
369 		ret = jr_dequeue(sec_idx);
370 		if (ret) {
371 			debug("Error in SEC deq\n");
372 			ret = JQ_DEQ_ERR;
373 			goto out;
374 		}
375 
376 		if ((get_ticks() - timeval) > timeout) {
377 			debug("SEC Dequeue timed out\n");
378 			ret = JQ_DEQ_TO_ERR;
379 			goto out;
380 		}
381 	}
382 
383 	if (op.status) {
384 		debug("Error %x\n", op.status);
385 		ret = op.status;
386 	}
387 out:
388 	return ret;
389 }
390 
391 int run_descriptor_jr(uint32_t *desc)
392 {
393 	return run_descriptor_jr_idx(desc, 0);
394 }
395 
396 static inline int jr_reset_sec(uint8_t sec_idx)
397 {
398 	if (jr_hw_reset(sec_idx) < 0)
399 		return -1;
400 
401 	/* Clean up the jobring structure maintained by software */
402 	jr_sw_cleanup(sec_idx);
403 
404 	return 0;
405 }
406 
407 int jr_reset(void)
408 {
409 	return jr_reset_sec(0);
410 }
411 
412 static inline int sec_reset_idx(uint8_t sec_idx)
413 {
414 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
415 	uint32_t mcfgr = sec_in32(&sec->mcfgr);
416 	uint32_t timeout = 100000;
417 
418 	mcfgr |= MCFGR_SWRST;
419 	sec_out32(&sec->mcfgr, mcfgr);
420 
421 	mcfgr |= MCFGR_DMA_RST;
422 	sec_out32(&sec->mcfgr, mcfgr);
423 	do {
424 		mcfgr = sec_in32(&sec->mcfgr);
425 	} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
426 
427 	if (timeout == 0)
428 		return -1;
429 
430 	timeout = 100000;
431 	do {
432 		mcfgr = sec_in32(&sec->mcfgr);
433 	} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
434 
435 	if (timeout == 0)
436 		return -1;
437 
438 	return 0;
439 }
440 int sec_reset(void)
441 {
442 	return sec_reset_idx(0);
443 }
444 #ifndef CONFIG_SPL_BUILD
445 static int instantiate_rng(uint8_t sec_idx)
446 {
447 	u32 *desc;
448 	u32 rdsta_val;
449 	int ret = 0, sh_idx, size;
450 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
451 	struct rng4tst __iomem *rng =
452 			(struct rng4tst __iomem *)&sec->rng;
453 
454 	desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
455 	if (!desc) {
456 		printf("cannot allocate RNG init descriptor memory\n");
457 		return -1;
458 	}
459 
460 	for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
461 		/*
462 		 * If the corresponding bit is set, this state handle
463 		 * was initialized by somebody else, so it's left alone.
464 		 */
465 		rdsta_val = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
466 		if (rdsta_val & (1 << sh_idx))
467 			continue;
468 
469 		inline_cnstr_jobdesc_rng_instantiation(desc, sh_idx);
470 		size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
471 		flush_dcache_range((unsigned long)desc,
472 				   (unsigned long)desc + size);
473 
474 		ret = run_descriptor_jr_idx(desc, sec_idx);
475 
476 		if (ret)
477 			printf("RNG: Instantiation failed with error 0x%x\n",
478 			       ret);
479 
480 		rdsta_val = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
481 		if (!(rdsta_val & (1 << sh_idx))) {
482 			free(desc);
483 			return -1;
484 		}
485 
486 		memset(desc, 0, sizeof(uint32_t) * 6);
487 	}
488 
489 	free(desc);
490 
491 	return ret;
492 }
493 
494 static u8 get_rng_vid(uint8_t sec_idx)
495 {
496 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
497 	u32 cha_vid = sec_in32(&sec->chavid_ls);
498 
499 	return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT;
500 }
501 
502 /*
503  * By default, the TRNG runs for 200 clocks per sample;
504  * 1200 clocks per sample generates better entropy.
505  */
506 static void kick_trng(int ent_delay, uint8_t sec_idx)
507 {
508 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
509 	struct rng4tst __iomem *rng =
510 			(struct rng4tst __iomem *)&sec->rng;
511 	u32 val;
512 
513 	/* put RNG4 into program mode */
514 	sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
515 	/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
516 	 * length (in system clocks) of each Entropy sample taken
517 	 * */
518 	val = sec_in32(&rng->rtsdctl);
519 	val = (val & ~RTSDCTL_ENT_DLY_MASK) |
520 	      (ent_delay << RTSDCTL_ENT_DLY_SHIFT);
521 	sec_out32(&rng->rtsdctl, val);
522 	/* min. freq. count, equal to 1/4 of the entropy sample length */
523 	sec_out32(&rng->rtfreqmin, ent_delay >> 2);
524 	/* disable maximum frequency count */
525 	sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
526 	/*
527 	 * select raw sampling in both entropy shifter
528 	 * and statistical checker
529 	 */
530 	sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC);
531 	/* put RNG4 into run mode */
532 	sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
533 }
534 
535 static int rng_init(uint8_t sec_idx)
536 {
537 	int ret, ent_delay = RTSDCTL_ENT_DLY_MIN;
538 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
539 	struct rng4tst __iomem *rng =
540 			(struct rng4tst __iomem *)&sec->rng;
541 	u32 inst_handles;
542 
543 	do {
544 		inst_handles = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
545 
546 		/*
547 		 * If either of the SH's were instantiated by somebody else
548 		 * then it is assumed that the entropy
549 		 * parameters are properly set and thus the function
550 		 * setting these (kick_trng(...)) is skipped.
551 		 * Also, if a handle was instantiated, do not change
552 		 * the TRNG parameters.
553 		 */
554 		if (!inst_handles) {
555 			kick_trng(ent_delay, sec_idx);
556 			ent_delay += 400;
557 		}
558 		/*
559 		 * if instantiate_rng(...) fails, the loop will rerun
560 		 * and the kick_trng(...) function will modfiy the
561 		 * upper and lower limits of the entropy sampling
562 		 * interval, leading to a sucessful initialization of
563 		 * the RNG.
564 		 */
565 		ret = instantiate_rng(sec_idx);
566 	} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
567 	if (ret) {
568 		printf("RNG: Failed to instantiate RNG\n");
569 		return ret;
570 	}
571 
572 	 /* Enable RDB bit so that RNG works faster */
573 	sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
574 
575 	return ret;
576 }
577 #endif
578 int sec_init_idx(uint8_t sec_idx)
579 {
580 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
581 	uint32_t mcr = sec_in32(&sec->mcfgr);
582 	uint32_t jrown_ns;
583 	int i;
584 	int ret = 0;
585 
586 #ifdef CONFIG_FSL_CORENET
587 	uint32_t liodnr;
588 	uint32_t liodn_ns;
589 	uint32_t liodn_s;
590 #endif
591 
592 	if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) {
593 		printf("SEC initialization failed\n");
594 		return -1;
595 	}
596 
597 	/*
598 	 * Modifying CAAM Read/Write Attributes
599 	 * For LS2080A
600 	 * For AXI Write - Cacheable, Write Back, Write allocate
601 	 * For AXI Read - Cacheable, Read allocate
602 	 * Only For LS2080a, to solve CAAM coherency issues
603 	 */
604 #ifdef CONFIG_ARCH_LS2080A
605 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
606 	mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
607 #else
608 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
609 #endif
610 
611 #ifdef CONFIG_PHYS_64BIT
612 	mcr |= (1 << MCFGR_PS_SHIFT);
613 #endif
614 	sec_out32(&sec->mcfgr, mcr);
615 
616 #ifdef CONFIG_FSL_CORENET
617 #ifdef CONFIG_SPL_BUILD
618 	/*
619 	 * For SPL Build, Set the Liodns in SEC JR0 for
620 	 * creating PAMU entries corresponding to these.
621 	 * For normal build, these are set in set_liodns().
622 	 */
623 	liodn_ns = CONFIG_SPL_JR0_LIODN_NS & JRNSLIODN_MASK;
624 	liodn_s = CONFIG_SPL_JR0_LIODN_S & JRSLIODN_MASK;
625 
626 	liodnr = sec_in32(&sec->jrliodnr[0].ls) &
627 		 ~(JRNSLIODN_MASK | JRSLIODN_MASK);
628 	liodnr = liodnr |
629 		 (liodn_ns << JRNSLIODN_SHIFT) |
630 		 (liodn_s << JRSLIODN_SHIFT);
631 	sec_out32(&sec->jrliodnr[0].ls, liodnr);
632 #else
633 	liodnr = sec_in32(&sec->jrliodnr[0].ls);
634 	liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
635 	liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
636 #endif
637 #endif
638 
639 	/* Set ownership of job rings to non-TrustZone mode by default */
640 	for (i = 0; i < ARRAY_SIZE(sec->jrliodnr); i++) {
641 		jrown_ns = sec_in32(&sec->jrliodnr[i].ms);
642 		jrown_ns |= JROWN_NS | JRMID_NS;
643 		sec_out32(&sec->jrliodnr[i].ms, jrown_ns);
644 	}
645 
646 	ret = jr_init(sec_idx);
647 	if (ret < 0) {
648 		printf("SEC initialization failed\n");
649 		return -1;
650 	}
651 
652 #ifdef CONFIG_FSL_CORENET
653 	ret = sec_config_pamu_table(liodn_ns, liodn_s);
654 	if (ret < 0)
655 		return -1;
656 
657 	pamu_enable();
658 #endif
659 #ifndef CONFIG_SPL_BUILD
660 	if (get_rng_vid(sec_idx) >= 4) {
661 		if (rng_init(sec_idx) < 0) {
662 			printf("SEC%u: RNG instantiation failed\n", sec_idx);
663 			return -1;
664 		}
665 		printf("SEC%u: RNG instantiated\n", sec_idx);
666 	}
667 #endif
668 	return ret;
669 }
670 
671 int sec_init(void)
672 {
673 	return sec_init_idx(0);
674 }
675