xref: /openbmc/u-boot/drivers/clk/clk_stm32f.c (revision 85231c08)
1 /*
2  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
3  * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 #include <common.h>
9 #include <clk-uclass.h>
10 #include <dm.h>
11 #include <stm32_rcc.h>
12 
13 #include <asm/io.h>
14 #include <asm/arch/stm32.h>
15 #include <asm/arch/stm32_pwr.h>
16 
17 #include <dt-bindings/mfd/stm32f7-rcc.h>
18 
19 #define RCC_CR_HSION			BIT(0)
20 #define RCC_CR_HSEON			BIT(16)
21 #define RCC_CR_HSERDY			BIT(17)
22 #define RCC_CR_HSEBYP			BIT(18)
23 #define RCC_CR_CSSON			BIT(19)
24 #define RCC_CR_PLLON			BIT(24)
25 #define RCC_CR_PLLRDY			BIT(25)
26 #define RCC_CR_PLLSAION			BIT(28)
27 #define RCC_CR_PLLSAIRDY		BIT(29)
28 
29 #define RCC_PLLCFGR_PLLM_MASK		GENMASK(5, 0)
30 #define RCC_PLLCFGR_PLLN_MASK		GENMASK(14, 6)
31 #define RCC_PLLCFGR_PLLP_MASK		GENMASK(17, 16)
32 #define RCC_PLLCFGR_PLLQ_MASK		GENMASK(27, 24)
33 #define RCC_PLLCFGR_PLLSRC		BIT(22)
34 #define RCC_PLLCFGR_PLLM_SHIFT		0
35 #define RCC_PLLCFGR_PLLN_SHIFT		6
36 #define RCC_PLLCFGR_PLLP_SHIFT		16
37 #define RCC_PLLCFGR_PLLQ_SHIFT		24
38 
39 #define RCC_CFGR_AHB_PSC_MASK		GENMASK(7, 4)
40 #define RCC_CFGR_APB1_PSC_MASK		GENMASK(12, 10)
41 #define RCC_CFGR_APB2_PSC_MASK		GENMASK(15, 13)
42 #define RCC_CFGR_SW0			BIT(0)
43 #define RCC_CFGR_SW1			BIT(1)
44 #define RCC_CFGR_SW_MASK		GENMASK(1, 0)
45 #define RCC_CFGR_SW_HSI			0
46 #define RCC_CFGR_SW_HSE			RCC_CFGR_SW0
47 #define RCC_CFGR_SW_PLL			RCC_CFGR_SW1
48 #define RCC_CFGR_SWS0			BIT(2)
49 #define RCC_CFGR_SWS1			BIT(3)
50 #define RCC_CFGR_SWS_MASK		GENMASK(3, 2)
51 #define RCC_CFGR_SWS_HSI		0
52 #define RCC_CFGR_SWS_HSE		RCC_CFGR_SWS0
53 #define RCC_CFGR_SWS_PLL		RCC_CFGR_SWS1
54 #define RCC_CFGR_HPRE_SHIFT		4
55 #define RCC_CFGR_PPRE1_SHIFT		10
56 #define RCC_CFGR_PPRE2_SHIFT		13
57 
58 #define RCC_PLLSAICFGR_PLLSAIN_MASK	GENMASK(14, 6)
59 #define RCC_PLLSAICFGR_PLLSAIP_MASK	GENMASK(17, 16)
60 #define RCC_PLLSAICFGR_PLLSAIQ_MASK	GENMASK(27, 24)
61 #define RCC_PLLSAICFGR_PLLSAIR_MASK	GENMASK(30, 28)
62 #define RCC_PLLSAICFGR_PLLSAIN_SHIFT	6
63 #define RCC_PLLSAICFGR_PLLSAIP_SHIFT	16
64 #define RCC_PLLSAICFGR_PLLSAIQ_SHIFT	24
65 #define RCC_PLLSAICFGR_PLLSAIR_SHIFT	28
66 #define RCC_PLLSAICFGR_PLLSAIP_4	BIT(16)
67 #define RCC_PLLSAICFGR_PLLSAIQ_4	BIT(26)
68 #define RCC_PLLSAICFGR_PLLSAIR_3	BIT(29) | BIT(28)
69 
70 #define RCC_DCKCFGRX_TIMPRE		BIT(24)
71 #define RCC_DCKCFGRX_CK48MSEL		BIT(27)
72 #define RCC_DCKCFGRX_SDMMC1SEL		BIT(28)
73 #define RCC_DCKCFGR2_SDMMC2SEL		BIT(29)
74 
75 #define RCC_DCKCFGR_PLLSAIDIVR_SHIFT    16
76 #define RCC_DCKCFGR_PLLSAIDIVR_MASK	GENMASK(17, 16)
77 #define RCC_DCKCFGR_PLLSAIDIVR_2	0
78 
79 /*
80  * RCC AHB1ENR specific definitions
81  */
82 #define RCC_AHB1ENR_ETHMAC_EN		BIT(25)
83 #define RCC_AHB1ENR_ETHMAC_TX_EN	BIT(26)
84 #define RCC_AHB1ENR_ETHMAC_RX_EN	BIT(27)
85 
86 /*
87  * RCC APB1ENR specific definitions
88  */
89 #define RCC_APB1ENR_TIM2EN		BIT(0)
90 #define RCC_APB1ENR_PWREN		BIT(28)
91 
92 /*
93  * RCC APB2ENR specific definitions
94  */
95 #define RCC_APB2ENR_SYSCFGEN		BIT(14)
96 #define RCC_APB2ENR_SAI1EN		BIT(22)
97 
98 enum pllsai_div {
99 	PLLSAIP,
100 	PLLSAIQ,
101 	PLLSAIR,
102 };
103 
104 static const struct stm32_clk_info stm32f4_clk_info = {
105 	/* 180 MHz */
106 	.sys_pll_psc = {
107 		.pll_n = 360,
108 		.pll_p = 2,
109 		.pll_q = 8,
110 		.ahb_psc = AHB_PSC_1,
111 		.apb1_psc = APB_PSC_4,
112 		.apb2_psc = APB_PSC_2,
113 	},
114 	.has_overdrive = false,
115 	.v2 = false,
116 };
117 
118 static const struct stm32_clk_info stm32f7_clk_info = {
119 	/* 200 MHz */
120 	.sys_pll_psc = {
121 		.pll_n = 400,
122 		.pll_p = 2,
123 		.pll_q = 8,
124 		.ahb_psc = AHB_PSC_1,
125 		.apb1_psc = APB_PSC_4,
126 		.apb2_psc = APB_PSC_2,
127 	},
128 	.has_overdrive = true,
129 	.v2 = true,
130 };
131 
132 struct stm32_clk {
133 	struct stm32_rcc_regs *base;
134 	struct stm32_pwr_regs *pwr_regs;
135 	struct stm32_clk_info info;
136 	unsigned long hse_rate;
137 };
138 
139 #ifdef CONFIG_VIDEO_STM32
140 static const u8 plldivr_table[] = { 0, 0, 2, 3, 4, 5, 6, 7 };
141 #endif
142 static const u8 pllsaidivr_table[] = { 2, 4, 8, 16 };
143 
144 static int configure_clocks(struct udevice *dev)
145 {
146 	struct stm32_clk *priv = dev_get_priv(dev);
147 	struct stm32_rcc_regs *regs = priv->base;
148 	struct stm32_pwr_regs *pwr = priv->pwr_regs;
149 	struct pll_psc *sys_pll_psc = &priv->info.sys_pll_psc;
150 
151 	/* Reset RCC configuration */
152 	setbits_le32(&regs->cr, RCC_CR_HSION);
153 	writel(0, &regs->cfgr); /* Reset CFGR */
154 	clrbits_le32(&regs->cr, (RCC_CR_HSEON | RCC_CR_CSSON
155 		| RCC_CR_PLLON | RCC_CR_PLLSAION));
156 	writel(0x24003010, &regs->pllcfgr); /* Reset value from RM */
157 	clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
158 	writel(0, &regs->cir); /* Disable all interrupts */
159 
160 	/* Configure for HSE+PLL operation */
161 	setbits_le32(&regs->cr, RCC_CR_HSEON);
162 	while (!(readl(&regs->cr) & RCC_CR_HSERDY))
163 		;
164 
165 	setbits_le32(&regs->cfgr, ((
166 		sys_pll_psc->ahb_psc << RCC_CFGR_HPRE_SHIFT)
167 		| (sys_pll_psc->apb1_psc << RCC_CFGR_PPRE1_SHIFT)
168 		| (sys_pll_psc->apb2_psc << RCC_CFGR_PPRE2_SHIFT)));
169 
170 	/* Configure the main PLL */
171 	setbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */
172 	clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLM_MASK,
173 			sys_pll_psc->pll_m << RCC_PLLCFGR_PLLM_SHIFT);
174 	clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLN_MASK,
175 			sys_pll_psc->pll_n << RCC_PLLCFGR_PLLN_SHIFT);
176 	clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLP_MASK,
177 			((sys_pll_psc->pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT);
178 	clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLQ_MASK,
179 			sys_pll_psc->pll_q << RCC_PLLCFGR_PLLQ_SHIFT);
180 
181 	/* configure SDMMC clock */
182 	if (priv->info.v2) { /*stm32f7 case */
183 		/* select PLLQ as 48MHz clock source */
184 		clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
185 
186 		/* select 48MHz as SDMMC1 clock source */
187 		clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_SDMMC1SEL);
188 
189 		/* select 48MHz as SDMMC2 clock source */
190 		clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGR2_SDMMC2SEL);
191 	} else  { /* stm32f4 case */
192 		/* select PLLQ as 48MHz clock source */
193 		clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
194 
195 		/* select 48MHz as SDMMC1 clock source */
196 		clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_SDMMC1SEL);
197 	}
198 
199 #ifdef CONFIG_VIDEO_STM32
200 	/*
201 	 * Configure the SAI PLL to generate LTDC pixel clock
202 	 */
203 	clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK,
204 			RCC_PLLSAICFGR_PLLSAIR_3);
205 	clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIN_MASK,
206 			195 << RCC_PLLSAICFGR_PLLSAIN_SHIFT);
207 
208 	clrsetbits_le32(&regs->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK,
209 			RCC_DCKCFGR_PLLSAIDIVR_2 << RCC_DCKCFGR_PLLSAIDIVR_SHIFT);
210 #endif
211 	/* Enable the main PLL */
212 	setbits_le32(&regs->cr, RCC_CR_PLLON);
213 	while (!(readl(&regs->cr) & RCC_CR_PLLRDY))
214 		;
215 
216 #ifdef CONFIG_VIDEO_STM32
217 /* Enable the SAI PLL */
218 	setbits_le32(&regs->cr, RCC_CR_PLLSAION);
219 	while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
220 		;
221 #endif
222 	setbits_le32(&regs->apb1enr, RCC_APB1ENR_PWREN);
223 
224 	if (priv->info.has_overdrive) {
225 		/*
226 		 * Enable high performance mode
227 		 * System frequency up to 200 MHz
228 		 */
229 		setbits_le32(&pwr->cr1, PWR_CR1_ODEN);
230 		/* Infinite wait! */
231 		while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY))
232 			;
233 		/* Enable the Over-drive switch */
234 		setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN);
235 		/* Infinite wait! */
236 		while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY))
237 			;
238 	}
239 
240 	stm32_flash_latency_cfg(5);
241 	clrbits_le32(&regs->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1));
242 	setbits_le32(&regs->cfgr, RCC_CFGR_SW_PLL);
243 
244 	while ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) !=
245 			RCC_CFGR_SWS_PLL)
246 		;
247 
248 #ifdef CONFIG_ETH_DESIGNWARE
249 	/* gate the SYSCFG clock, needed to set RMII ethernet interface */
250 	setbits_le32(&regs->apb2enr, RCC_APB2ENR_SYSCFGEN);
251 #endif
252 
253 	return 0;
254 }
255 
256 static bool stm32_clk_get_ck48msel(struct stm32_clk *priv)
257 {
258 	struct stm32_rcc_regs *regs = priv->base;
259 
260 	if (priv->info.v2) /*stm32f7 case */
261 		return readl(&regs->dckcfgr2) & RCC_DCKCFGRX_CK48MSEL;
262 	else
263 
264 		return readl(&regs->dckcfgr) & RCC_DCKCFGRX_CK48MSEL;
265 }
266 
267 static unsigned long stm32_clk_get_pllsai_vco_rate(struct stm32_clk *priv)
268 {
269 	struct stm32_rcc_regs *regs = priv->base;
270 	u16 pllm, pllsain;
271 
272 	pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
273 	pllsain = ((readl(&regs->pllsaicfgr) & RCC_PLLSAICFGR_PLLSAIN_MASK)
274 		  >> RCC_PLLSAICFGR_PLLSAIN_SHIFT);
275 
276 	return ((priv->hse_rate / pllm) * pllsain);
277 }
278 
279 static unsigned long stm32_clk_get_pllsai_rate(struct stm32_clk *priv,
280 					       enum pllsai_div output)
281 {
282 	struct stm32_rcc_regs *regs = priv->base;
283 	u16 pll_div_output;
284 
285 	switch (output) {
286 	case PLLSAIP:
287 		pll_div_output = ((((readl(&regs->pllsaicfgr)
288 				  & RCC_PLLSAICFGR_PLLSAIP_MASK)
289 				  >> RCC_PLLSAICFGR_PLLSAIP_SHIFT) + 1) << 1);
290 		break;
291 	case PLLSAIQ:
292 		pll_div_output = (readl(&regs->pllsaicfgr)
293 				  & RCC_PLLSAICFGR_PLLSAIQ_MASK)
294 				  >> RCC_PLLSAICFGR_PLLSAIQ_SHIFT;
295 		break;
296 	case PLLSAIR:
297 		pll_div_output = (readl(&regs->pllsaicfgr)
298 				  & RCC_PLLSAICFGR_PLLSAIR_MASK)
299 				  >> RCC_PLLSAICFGR_PLLSAIR_SHIFT;
300 		break;
301 	default:
302 		pr_err("incorrect PLLSAI output %d\n", output);
303 		return -EINVAL;
304 	}
305 
306 	return (stm32_clk_get_pllsai_vco_rate(priv) / pll_div_output);
307 }
308 
309 static bool stm32_get_timpre(struct stm32_clk *priv)
310 {
311 	struct stm32_rcc_regs *regs = priv->base;
312 	u32 val;
313 
314 	if (priv->info.v2) /*stm32f7 case */
315 		val = readl(&regs->dckcfgr2);
316 	else
317 		val = readl(&regs->dckcfgr);
318 	/* get timer prescaler */
319 	return !!(val & RCC_DCKCFGRX_TIMPRE);
320 }
321 
322 static u32 stm32_get_hclk_rate(struct stm32_rcc_regs *regs, u32 sysclk)
323 {
324 	u8 shift;
325 	/* Prescaler table lookups for clock computation */
326 	u8 ahb_psc_table[16] = {
327 		0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9
328 	};
329 
330 	shift = ahb_psc_table[(
331 		(readl(&regs->cfgr) & RCC_CFGR_AHB_PSC_MASK)
332 		>> RCC_CFGR_HPRE_SHIFT)];
333 
334 	return sysclk >> shift;
335 };
336 
337 static u8 stm32_get_apb_shift(struct stm32_rcc_regs *regs, enum apb apb)
338 {
339 	/* Prescaler table lookups for clock computation */
340 	u8 apb_psc_table[8] = {
341 		0, 0, 0, 0, 1, 2, 3, 4
342 	};
343 
344 	if (apb == APB1)
345 		return apb_psc_table[(
346 		       (readl(&regs->cfgr) & RCC_CFGR_APB1_PSC_MASK)
347 		       >> RCC_CFGR_PPRE1_SHIFT)];
348 	else /* APB2 */
349 		return apb_psc_table[(
350 		       (readl(&regs->cfgr) & RCC_CFGR_APB2_PSC_MASK)
351 		       >> RCC_CFGR_PPRE2_SHIFT)];
352 };
353 
354 static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
355 				enum apb apb)
356 {
357 	struct stm32_rcc_regs *regs = priv->base;
358 	u8 shift = stm32_get_apb_shift(regs, apb);
359 
360 	if (stm32_get_timpre(priv))
361 		/*
362 		 * if APB prescaler is configured to a
363 		 * division factor of 1, 2 or 4
364 		 */
365 		switch (shift) {
366 		case 0:
367 		case 1:
368 		case 2:
369 			return stm32_get_hclk_rate(regs, sysclk);
370 		default:
371 			return (sysclk >> shift) * 4;
372 		}
373 	else
374 		/*
375 		 * if APB prescaler is configured to a
376 		 * division factor of 1
377 		 */
378 		if (shift == 0)
379 			return sysclk;
380 		else
381 			return (sysclk >> shift) * 2;
382 };
383 
384 static ulong stm32_clk_get_rate(struct clk *clk)
385 {
386 	struct stm32_clk *priv = dev_get_priv(clk->dev);
387 	struct stm32_rcc_regs *regs = priv->base;
388 	u32 sysclk = 0;
389 	u32 vco;
390 	u32 sdmmcxsel_bit;
391 	u32 saidivr;
392 	u32 pllsai_rate;
393 	u16 pllm, plln, pllp, pllq;
394 
395 	if ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) ==
396 			RCC_CFGR_SWS_PLL) {
397 		pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
398 		plln = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLN_MASK)
399 			>> RCC_PLLCFGR_PLLN_SHIFT);
400 		pllp = ((((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLP_MASK)
401 			>> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1);
402 		pllq = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLQ_MASK)
403 			>> RCC_PLLCFGR_PLLQ_SHIFT);
404 		vco = (priv->hse_rate / pllm) * plln;
405 		sysclk = vco / pllp;
406 	} else {
407 		return -EINVAL;
408 	}
409 
410 	switch (clk->id) {
411 	/*
412 	 * AHB CLOCK: 3 x 32 bits consecutive registers are used :
413 	 * AHB1, AHB2 and AHB3
414 	 */
415 	case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI):
416 		return stm32_get_hclk_rate(regs, sysclk);
417 	/* APB1 CLOCK */
418 	case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8):
419 		/* For timer clock, an additionnal prescaler is used*/
420 		switch (clk->id) {
421 		case STM32F7_APB1_CLOCK(TIM2):
422 		case STM32F7_APB1_CLOCK(TIM3):
423 		case STM32F7_APB1_CLOCK(TIM4):
424 		case STM32F7_APB1_CLOCK(TIM5):
425 		case STM32F7_APB1_CLOCK(TIM6):
426 		case STM32F7_APB1_CLOCK(TIM7):
427 		case STM32F7_APB1_CLOCK(TIM12):
428 		case STM32F7_APB1_CLOCK(TIM13):
429 		case STM32F7_APB1_CLOCK(TIM14):
430 			return stm32_get_timer_rate(priv, sysclk, APB1);
431 		}
432 		return (sysclk >> stm32_get_apb_shift(regs, APB1));
433 
434 	/* APB2 CLOCK */
435 	case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(DSI):
436 		switch (clk->id) {
437 		/*
438 		 * particular case for SDMMC1 and SDMMC2 :
439 		 * 48Mhz source clock can be from main PLL or from
440 		 * PLLSAIP
441 		 */
442 		case STM32F7_APB2_CLOCK(SDMMC1):
443 		case STM32F7_APB2_CLOCK(SDMMC2):
444 			if (clk->id == STM32F7_APB2_CLOCK(SDMMC1))
445 				sdmmcxsel_bit = RCC_DCKCFGRX_SDMMC1SEL;
446 			else
447 				sdmmcxsel_bit = RCC_DCKCFGR2_SDMMC2SEL;
448 
449 			if (readl(&regs->dckcfgr2) & sdmmcxsel_bit)
450 				/* System clock is selected as SDMMC1 clock */
451 				return sysclk;
452 			/*
453 			 * 48 MHz can be generated by either PLLSAIP
454 			 * or by PLLQ depending of CK48MSEL bit of RCC_DCKCFGR
455 			 */
456 			if (stm32_clk_get_ck48msel(priv))
457 				return stm32_clk_get_pllsai_rate(priv, PLLSAIP);
458 			else
459 				return (vco / pllq);
460 			break;
461 
462 		/* For timer clock, an additionnal prescaler is used*/
463 		case STM32F7_APB2_CLOCK(TIM1):
464 		case STM32F7_APB2_CLOCK(TIM8):
465 		case STM32F7_APB2_CLOCK(TIM9):
466 		case STM32F7_APB2_CLOCK(TIM10):
467 		case STM32F7_APB2_CLOCK(TIM11):
468 			return stm32_get_timer_rate(priv, sysclk, APB2);
469 		break;
470 
471 		/* particular case for LTDC clock */
472 		case STM32F7_APB2_CLOCK(LTDC):
473 			saidivr = readl(&regs->dckcfgr);
474 			saidivr = (saidivr & RCC_DCKCFGR_PLLSAIDIVR_MASK)
475 				  >> RCC_DCKCFGR_PLLSAIDIVR_SHIFT;
476 			pllsai_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR);
477 
478 			return pllsai_rate / pllsaidivr_table[saidivr];
479 		}
480 		return (sysclk >> stm32_get_apb_shift(regs, APB2));
481 
482 	default:
483 		pr_err("clock index %ld out of range\n", clk->id);
484 		return -EINVAL;
485 	}
486 }
487 
488 static ulong stm32_set_rate(struct clk *clk, ulong rate)
489 {
490 #ifdef CONFIG_VIDEO_STM32
491 	struct stm32_clk *priv = dev_get_priv(clk->dev);
492 	struct stm32_rcc_regs *regs = priv->base;
493 	u32 pllsair_rate, pllsai_vco_rate, current_rate;
494 	u32 best_div, best_diff, diff;
495 	u16 div;
496 	u8 best_plldivr, best_pllsaidivr;
497 	u8 i, j;
498 	bool found = false;
499 
500 	/* Only set_rate for LTDC clock is implemented */
501 	if (clk->id != STM32F7_APB2_CLOCK(LTDC)) {
502 		pr_err("set_rate not implemented for clock index %ld\n",
503 		       clk->id);
504 		return 0;
505 	}
506 
507 	if (rate == stm32_clk_get_rate(clk))
508 		/* already set to requested rate */
509 		return rate;
510 
511 	/* get the current PLLSAIR output freq */
512 	pllsair_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR);
513 	best_div = pllsair_rate / rate;
514 
515 	/* look into pllsaidivr_table if this divider is available*/
516 	for (i = 0 ; i < sizeof(pllsaidivr_table); i++)
517 		if (best_div == pllsaidivr_table[i]) {
518 			/* set pll_saidivr with found value */
519 			clrsetbits_le32(&regs->dckcfgr,
520 					RCC_DCKCFGR_PLLSAIDIVR_MASK,
521 					pllsaidivr_table[i]);
522 			return rate;
523 		}
524 
525 	/*
526 	 * As no pllsaidivr value is suitable to obtain requested freq,
527 	 * test all combination of pllsaidivr * pllsair and find the one
528 	 * which give freq closest to requested rate.
529 	 */
530 
531 	pllsai_vco_rate = stm32_clk_get_pllsai_vco_rate(priv);
532 	best_diff = ULONG_MAX;
533 	best_pllsaidivr = 0;
534 	best_plldivr = 0;
535 	/*
536 	 * start at index 2 of plldivr_table as divider value at index 0
537 	 * and 1 are 0)
538 	 */
539 	for (i = 2; i < sizeof(plldivr_table); i++) {
540 		for (j = 0; j < sizeof(pllsaidivr_table); j++) {
541 			div = plldivr_table[i] * pllsaidivr_table[j];
542 			current_rate = pllsai_vco_rate / div;
543 			/* perfect combination is found ? */
544 			if (current_rate == rate) {
545 				best_pllsaidivr = j;
546 				best_plldivr = i;
547 				found = true;
548 				break;
549 			}
550 
551 			diff = (current_rate > rate) ?
552 			       current_rate - rate : rate - current_rate;
553 
554 			/* found a better combination ? */
555 			if (diff < best_diff) {
556 				best_diff = diff;
557 				best_pllsaidivr = j;
558 				best_plldivr = i;
559 			}
560 		}
561 
562 		if (found)
563 			break;
564 	}
565 
566 	/* Disable the SAI PLL */
567 	clrbits_le32(&regs->cr, RCC_CR_PLLSAION);
568 
569 	/* set pll_saidivr with found value */
570 	clrsetbits_le32(&regs->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK,
571 			best_pllsaidivr << RCC_DCKCFGR_PLLSAIDIVR_SHIFT);
572 
573 	/* set pllsair with found value */
574 	clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK,
575 			plldivr_table[best_plldivr]
576 			<< RCC_PLLSAICFGR_PLLSAIR_SHIFT);
577 
578 	/* Enable the SAI PLL */
579 	setbits_le32(&regs->cr, RCC_CR_PLLSAION);
580 	while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
581 		;
582 
583 	div = plldivr_table[best_plldivr] * pllsaidivr_table[best_pllsaidivr];
584 	return pllsai_vco_rate / div;
585 #else
586 	return 0;
587 #endif
588 }
589 
590 static int stm32_clk_enable(struct clk *clk)
591 {
592 	struct stm32_clk *priv = dev_get_priv(clk->dev);
593 	struct stm32_rcc_regs *regs = priv->base;
594 	u32 offset = clk->id / 32;
595 	u32 bit_index = clk->id % 32;
596 
597 	debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n",
598 	      __func__, clk->id, offset, bit_index);
599 	setbits_le32(&regs->ahb1enr + offset, BIT(bit_index));
600 
601 	return 0;
602 }
603 
604 static int stm32_clk_probe(struct udevice *dev)
605 {
606 	struct ofnode_phandle_args args;
607 	struct udevice *fixed_clock_dev = NULL;
608 	struct clk clk;
609 	int err;
610 
611 	debug("%s\n", __func__);
612 
613 	struct stm32_clk *priv = dev_get_priv(dev);
614 	fdt_addr_t addr;
615 
616 	addr = dev_read_addr(dev);
617 	if (addr == FDT_ADDR_T_NONE)
618 		return -EINVAL;
619 
620 	priv->base = (struct stm32_rcc_regs *)addr;
621 
622 	switch (dev_get_driver_data(dev)) {
623 	case STM32F4:
624 		memcpy(&priv->info, &stm32f4_clk_info,
625 		       sizeof(struct stm32_clk_info));
626 		break;
627 	case STM32F7:
628 		memcpy(&priv->info, &stm32f7_clk_info,
629 		       sizeof(struct stm32_clk_info));
630 		break;
631 	default:
632 		return -EINVAL;
633 	}
634 
635 	/* retrieve HSE frequency (external oscillator) */
636 	err = uclass_get_device_by_name(UCLASS_CLK, "clk-hse",
637 					&fixed_clock_dev);
638 
639 	if (err) {
640 		pr_err("Can't find fixed clock (%d)", err);
641 		return err;
642 	}
643 
644 	err = clk_request(fixed_clock_dev, &clk);
645 	if (err) {
646 		pr_err("Can't request %s clk (%d)", fixed_clock_dev->name,
647 		       err);
648 		return err;
649 	}
650 
651 	/*
652 	 * set pllm factor accordingly to the external oscillator
653 	 * frequency (HSE). For STM32F4 and STM32F7, we want VCO
654 	 * freq at 1MHz
655 	 * if input PLL frequency is 25Mhz, divide it by 25
656 	 */
657 	clk.id = 0;
658 	priv->hse_rate = clk_get_rate(&clk);
659 
660 	if (priv->hse_rate < 1000000) {
661 		pr_err("%s: unexpected HSE clock rate = %ld \"n", __func__,
662 		       priv->hse_rate);
663 		return -EINVAL;
664 	}
665 
666 	priv->info.sys_pll_psc.pll_m = priv->hse_rate / 1000000;
667 
668 	if (priv->info.has_overdrive) {
669 		err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0,
670 						 &args);
671 		if (err) {
672 			debug("%s: can't find syscon device (%d)\n", __func__,
673 			      err);
674 			return err;
675 		}
676 
677 		priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node);
678 	}
679 
680 	configure_clocks(dev);
681 
682 	return 0;
683 }
684 
685 static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
686 {
687 	debug("%s(clk=%p)\n", __func__, clk);
688 
689 	if (args->args_count != 2) {
690 		debug("Invaild args_count: %d\n", args->args_count);
691 		return -EINVAL;
692 	}
693 
694 	if (args->args_count)
695 		clk->id = args->args[1];
696 	else
697 		clk->id = 0;
698 
699 	return 0;
700 }
701 
702 static struct clk_ops stm32_clk_ops = {
703 	.of_xlate	= stm32_clk_of_xlate,
704 	.enable		= stm32_clk_enable,
705 	.get_rate	= stm32_clk_get_rate,
706 	.set_rate	= stm32_set_rate,
707 };
708 
709 U_BOOT_DRIVER(stm32fx_clk) = {
710 	.name			= "stm32fx_rcc_clock",
711 	.id			= UCLASS_CLK,
712 	.ops			= &stm32_clk_ops,
713 	.probe			= stm32_clk_probe,
714 	.priv_auto_alloc_size	= sizeof(struct stm32_clk),
715 	.flags			= DM_FLAG_PRE_RELOC,
716 };
717