xref: /openbmc/u-boot/board/bosch/shc/board.c (revision e5fd39c8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * board.c
4  *
5  * (C) Copyright 2016
6  * Heiko Schocher, DENX Software Engineering, hs@denx.de.
7  *
8  * Based on:
9  * Board functions for TI AM335X based boards
10  *
11  * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
12  */
13 
14 #include <common.h>
15 #include <errno.h>
16 #include <spl.h>
17 #include <asm/arch/cpu.h>
18 #include <asm/arch/hardware.h>
19 #include <asm/arch/omap.h>
20 #include <asm/arch/ddr_defs.h>
21 #include <asm/arch/clock.h>
22 #include <asm/arch/gpio.h>
23 #include <asm/arch/mmc_host_def.h>
24 #include <asm/arch/sys_proto.h>
25 #include <asm/arch/mem.h>
26 #include <asm/io.h>
27 #include <asm/emif.h>
28 #include <asm/gpio.h>
29 #include <i2c.h>
30 #include <miiphy.h>
31 #include <cpsw.h>
32 #include <power/tps65217.h>
33 #include <environment.h>
34 #include <watchdog.h>
35 #include <environment.h>
36 #include "mmc.h"
37 #include "board.h"
38 
39 DECLARE_GLOBAL_DATA_PTR;
40 
41 static struct shc_eeprom __attribute__((section(".data"))) header;
42 static int shc_eeprom_valid;
43 
44 /*
45  * Read header information from EEPROM into global structure.
46  */
read_eeprom(void)47 static int read_eeprom(void)
48 {
49 	/* Check if baseboard eeprom is available */
50 	if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) {
51 		puts("Could not probe the EEPROM; something fundamentally wrong on the I2C bus.\n");
52 		return -ENODEV;
53 	}
54 
55 	/* read the eeprom using i2c */
56 	if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 2, (uchar *)&header,
57 		     sizeof(header))) {
58 		puts("Could not read the EEPROM; something fundamentally wrong on the I2C bus.\n");
59 		return -EIO;
60 	}
61 
62 	if (header.magic != HDR_MAGIC) {
63 		printf("Incorrect magic number (0x%x) in EEPROM\n",
64 		       header.magic);
65 		return -EIO;
66 	}
67 
68 	shc_eeprom_valid = 1;
69 
70 	return 0;
71 }
72 
shc_request_gpio(void)73 static void shc_request_gpio(void)
74 {
75 	gpio_request(LED_PWR_BL_GPIO, "LED PWR BL");
76 	gpio_request(LED_PWR_RD_GPIO, "LED PWR RD");
77 	gpio_request(RESET_GPIO, "reset");
78 	gpio_request(WIFI_REGEN_GPIO, "WIFI REGEN");
79 	gpio_request(WIFI_RST_GPIO, "WIFI rst");
80 	gpio_request(ZIGBEE_RST_GPIO, "ZigBee rst");
81 	gpio_request(BIDCOS_RST_GPIO, "BIDCOS rst");
82 	gpio_request(ENOC_RST_GPIO, "ENOC rst");
83 #if defined CONFIG_B_SAMPLE
84 	gpio_request(LED_PWR_GN_GPIO, "LED PWR GN");
85 	gpio_request(LED_CONN_BL_GPIO, "LED CONN BL");
86 	gpio_request(LED_CONN_RD_GPIO, "LED CONN RD");
87 	gpio_request(LED_CONN_GN_GPIO, "LED CONN GN");
88 #else
89 	gpio_request(LED_LAN_BL_GPIO, "LED LAN BL");
90 	gpio_request(LED_LAN_RD_GPIO, "LED LAN RD");
91 	gpio_request(LED_CLOUD_BL_GPIO, "LED CLOUD BL");
92 	gpio_request(LED_CLOUD_RD_GPIO, "LED CLOUD RD");
93 	gpio_request(LED_PWM_GPIO, "LED PWM");
94 	gpio_request(Z_WAVE_RST_GPIO, "Z WAVE rst");
95 #endif
96 	gpio_request(BACK_BUTTON_GPIO, "Back button");
97 	gpio_request(FRONT_BUTTON_GPIO, "Front button");
98 }
99 
100 /*
101  * Function which forces all installed modules into running state for ICT
102  * testing. Called by SPL.
103  */
force_modules_running(void)104 static void __maybe_unused force_modules_running(void)
105 {
106 	/* Wi-Fi power regulator enable - high = enabled */
107 	gpio_direction_output(WIFI_REGEN_GPIO, 1);
108 	/*
109 	 * Wait for Wi-Fi power regulator to reach a stable voltage
110 	 * (soft-start time, max. 350 µs)
111 	 */
112 	__udelay(350);
113 
114 	/* Wi-Fi module reset - high = running */
115 	gpio_direction_output(WIFI_RST_GPIO, 1);
116 
117 	/* ZigBee reset - high = running */
118 	gpio_direction_output(ZIGBEE_RST_GPIO, 1);
119 
120 	/* BidCos reset - high = running */
121 	gpio_direction_output(BIDCOS_RST_GPIO, 1);
122 
123 #if !defined(CONFIG_B_SAMPLE)
124 	/* Z-Wave reset - high = running */
125 	gpio_direction_output(Z_WAVE_RST_GPIO, 1);
126 #endif
127 
128 	/* EnOcean reset - low = running */
129 	gpio_direction_output(ENOC_RST_GPIO, 0);
130 }
131 
132 /*
133  * Function which forces all installed modules into reset - to be released by
134  * the OS, called by SPL
135  */
force_modules_reset(void)136 static void __maybe_unused force_modules_reset(void)
137 {
138 	/* Wi-Fi module reset - low = reset */
139 	gpio_direction_output(WIFI_RST_GPIO, 0);
140 
141 	/* Wi-Fi power regulator enable - low = disabled */
142 	gpio_direction_output(WIFI_REGEN_GPIO, 0);
143 
144 	/* ZigBee reset - low = reset */
145 	gpio_direction_output(ZIGBEE_RST_GPIO, 0);
146 
147 	/* BidCos reset - low = reset */
148 	/*gpio_direction_output(BIDCOS_RST_GPIO, 0);*/
149 
150 #if !defined(CONFIG_B_SAMPLE)
151 	/* Z-Wave reset - low = reset */
152 	gpio_direction_output(Z_WAVE_RST_GPIO, 0);
153 #endif
154 
155 	/* EnOcean reset - high = reset*/
156 	gpio_direction_output(ENOC_RST_GPIO, 1);
157 }
158 
159 /*
160  * Function to set the LEDs in the state "Bootloader booting"
161  */
leds_set_booting(void)162 static void __maybe_unused leds_set_booting(void)
163 {
164 #if defined(CONFIG_B_SAMPLE)
165 
166 	/* Turn all red LEDs on */
167 	gpio_direction_output(LED_PWR_RD_GPIO, 1);
168 	gpio_direction_output(LED_CONN_RD_GPIO, 1);
169 
170 #else /* All other SHCs starting with B2-Sample */
171 	/* Set the PWM GPIO */
172 	gpio_direction_output(LED_PWM_GPIO, 1);
173 	/* Turn all red LEDs on */
174 	gpio_direction_output(LED_PWR_RD_GPIO, 1);
175 	gpio_direction_output(LED_LAN_RD_GPIO, 1);
176 	gpio_direction_output(LED_CLOUD_RD_GPIO, 1);
177 
178 #endif
179 }
180 
181 /*
182  * Function to set the LEDs in the state "Bootloader error"
183  */
leds_set_failure(int state)184 static void leds_set_failure(int state)
185 {
186 #if defined(CONFIG_B_SAMPLE)
187 	/* Turn all blue and green LEDs off */
188 	gpio_set_value(LED_PWR_BL_GPIO, 0);
189 	gpio_set_value(LED_PWR_GN_GPIO, 0);
190 	gpio_set_value(LED_CONN_BL_GPIO, 0);
191 	gpio_set_value(LED_CONN_GN_GPIO, 0);
192 
193 	/* Turn all red LEDs to 'state' */
194 	gpio_set_value(LED_PWR_RD_GPIO, state);
195 	gpio_set_value(LED_CONN_RD_GPIO, state);
196 
197 #else /* All other SHCs starting with B2-Sample */
198 	/* Set the PWM GPIO */
199 	gpio_direction_output(LED_PWM_GPIO, 1);
200 
201 	/* Turn all blue LEDs off */
202 	gpio_set_value(LED_PWR_BL_GPIO, 0);
203 	gpio_set_value(LED_LAN_BL_GPIO, 0);
204 	gpio_set_value(LED_CLOUD_BL_GPIO, 0);
205 
206 	/* Turn all red LEDs to 'state' */
207 	gpio_set_value(LED_PWR_RD_GPIO, state);
208 	gpio_set_value(LED_LAN_RD_GPIO, state);
209 	gpio_set_value(LED_CLOUD_RD_GPIO, state);
210 #endif
211 }
212 
213 /*
214  * Function to set the LEDs in the state "Bootloader finished"
215  */
leds_set_finish(void)216 static void leds_set_finish(void)
217 {
218 #if defined(CONFIG_B_SAMPLE)
219 	/* Turn all LEDs off */
220 	gpio_set_value(LED_PWR_BL_GPIO, 0);
221 	gpio_set_value(LED_PWR_RD_GPIO, 0);
222 	gpio_set_value(LED_PWR_GN_GPIO, 0);
223 	gpio_set_value(LED_CONN_BL_GPIO, 0);
224 	gpio_set_value(LED_CONN_RD_GPIO, 0);
225 	gpio_set_value(LED_CONN_GN_GPIO, 0);
226 #else /* All other SHCs starting with B2-Sample */
227 	/* Turn all LEDs off */
228 	gpio_set_value(LED_PWR_BL_GPIO, 0);
229 	gpio_set_value(LED_PWR_RD_GPIO, 0);
230 	gpio_set_value(LED_LAN_BL_GPIO, 0);
231 	gpio_set_value(LED_LAN_RD_GPIO, 0);
232 	gpio_set_value(LED_CLOUD_BL_GPIO, 0);
233 	gpio_set_value(LED_CLOUD_RD_GPIO, 0);
234 
235 	/* Turn off the PWM GPIO and mux it to EHRPWM */
236 	gpio_set_value(LED_PWM_GPIO, 0);
237 	enable_shc_board_pwm_pin_mux();
238 #endif
239 }
240 
check_button_status(void)241 static void check_button_status(void)
242 {
243 	ulong value;
244 	gpio_direction_input(FRONT_BUTTON_GPIO);
245 	value = gpio_get_value(FRONT_BUTTON_GPIO);
246 
247 	if (value == 0) {
248 		printf("front button activated !\n");
249 		env_set("harakiri", "1");
250 	}
251 }
252 
253 #if defined(CONFIG_SPL_BUILD)
254 #ifdef CONFIG_SPL_OS_BOOT
spl_start_uboot(void)255 int spl_start_uboot(void)
256 {
257 	return 1;
258 }
259 #endif
260 
shc_board_early_init(void)261 static void shc_board_early_init(void)
262 {
263 	shc_request_gpio();
264 # ifdef CONFIG_SHC_ICT
265 	/* Force all modules into enabled state for ICT testing */
266 	force_modules_running();
267 # else
268 	/* Force all modules to enter Reset state until released by the OS */
269 	force_modules_reset();
270 # endif
271 	leds_set_booting();
272 }
273 
274 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
275 
276 #define MPU_SPREADING_PERMILLE 18 /* Spread 1.8 percent */
277 #define OSC	(V_OSCK/1000000)
278 /* Bosch: Predivider must be fixed to 4, so N = 4-1 */
279 #define MPUPLL_N        (4-1)
280 /* Bosch: Fref = 24 MHz / (N+1) = 24 MHz / 4 = 6 MHz */
281 #define MPUPLL_FREF (OSC / (MPUPLL_N + 1))
282 
283 const struct dpll_params dpll_ddr_shc = {
284 		400, OSC-1, 1, -1, -1, -1, -1};
285 
get_dpll_ddr_params(void)286 const struct dpll_params *get_dpll_ddr_params(void)
287 {
288 	return &dpll_ddr_shc;
289 }
290 
291 /*
292  * As we enabled downspread SSC with 1.8%, the values needed to be corrected
293  * such that the 20% overshoot will not lead to too high frequencies.
294  * In all cases, this is achieved by subtracting one from M (6 MHz less).
295  * Example: 600 MHz CPU
296  *   Step size: 24 MHz OSC, N = 4 (fix) --> Fref = 6 MHz
297  *   600 MHz - 6 MHz (1x Fref) = 594 MHz
298  *   SSC: 594 MHz * 1.8% = 10.7 MHz SSC
299  *   Overshoot: 10.7 MHz * 20 % = 2.2 MHz
300  *   --> Fmax = 594 MHz + 2.2 MHz = 596.2 MHz, lower than 600 MHz --> OK!
301  */
302 const struct dpll_params dpll_mpu_shc_opp100 = {
303 		99, MPUPLL_N, 1, -1, -1, -1, -1};
304 
am33xx_spl_board_init(void)305 void am33xx_spl_board_init(void)
306 {
307 	int sil_rev;
308 	int mpu_vdd;
309 
310 	puts(BOARD_ID_STR);
311 
312 	/*
313 	 * Set CORE Frequency to OPP100
314 	 * Hint: DCDC3 (CORE) defaults to 1.100V (for OPP100)
315 	 */
316 	do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
317 
318 	sil_rev = readl(&cdev->deviceid) >> 28;
319 	if (sil_rev < 2) {
320 		puts("We do not support Silicon Revisions below 2.0!\n");
321 		return;
322 	}
323 
324 	dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
325 	if (i2c_probe(TPS65217_CHIP_PM))
326 		return;
327 
328 	/*
329 	 * Retrieve the CPU max frequency by reading the efuse
330 	 * SHC-Default: 600 MHz
331 	 */
332 	switch (dpll_mpu_opp100.m) {
333 	case MPUPLL_M_1000:
334 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
335 		break;
336 	case MPUPLL_M_800:
337 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
338 		break;
339 	case MPUPLL_M_720:
340 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV;
341 		break;
342 	case MPUPLL_M_600:
343 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV;
344 		break;
345 	case MPUPLL_M_300:
346 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_950MV;
347 		break;
348 	default:
349 		puts("Cannot determine the frequency, failing!\n");
350 		return;
351 	}
352 
353 	if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
354 		puts("tps65217_voltage_update failure\n");
355 		return;
356 	}
357 
358 	/* Set MPU Frequency to what we detected */
359 	printf("MPU reference clock runs at %d MHz\n", MPUPLL_FREF);
360 	printf("Setting MPU clock to %d MHz\n", MPUPLL_FREF *
361 	       dpll_mpu_shc_opp100.m);
362 	do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_shc_opp100);
363 
364 	/* Enable Spread Spectrum for this freq to be clean on EMI side */
365 	set_mpu_spreadspectrum(MPU_SPREADING_PERMILLE);
366 
367 	/*
368 	 * Using the default voltages for the PMIC (TPS65217D)
369 	 * LS1 = 1.8V (VDD_1V8)
370 	 * LS2 = 3.3V (VDD_3V3A)
371 	 * LDO1 = 1.8V (VIO and VRTC)
372 	 * LDO2 = 3.3V (VDD_3V3AUX)
373 	 */
374 	shc_board_early_init();
375 }
376 
set_uart_mux_conf(void)377 void set_uart_mux_conf(void)
378 {
379 	enable_uart0_pin_mux();
380 }
381 
set_mux_conf_regs(void)382 void set_mux_conf_regs(void)
383 {
384 	enable_shc_board_pin_mux();
385 }
386 
387 const struct ctrl_ioregs ioregs_evmsk = {
388 	.cm0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
389 	.cm1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
390 	.cm2ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
391 	.dt0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
392 	.dt1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
393 };
394 
395 static const struct ddr_data ddr3_shc_data = {
396 	.datardsratio0 = MT41K256M16HA125E_RD_DQS,
397 	.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
398 	.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
399 	.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
400 };
401 
402 static const struct cmd_control ddr3_shc_cmd_ctrl_data = {
403 	.cmd0csratio = MT41K256M16HA125E_RATIO,
404 	.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
405 
406 	.cmd1csratio = MT41K256M16HA125E_RATIO,
407 	.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
408 
409 	.cmd2csratio = MT41K256M16HA125E_RATIO,
410 	.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
411 };
412 
413 static struct emif_regs ddr3_shc_emif_reg_data = {
414 	.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
415 	.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
416 	.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
417 	.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
418 	.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
419 	.zq_config = MT41K256M16HA125E_ZQ_CFG,
420 	.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY |
421 				PHY_EN_DYN_PWRDN,
422 };
423 
sdram_init(void)424 void sdram_init(void)
425 {
426 	/* Configure the DDR3 RAM */
427 	config_ddr(400, &ioregs_evmsk, &ddr3_shc_data,
428 		   &ddr3_shc_cmd_ctrl_data, &ddr3_shc_emif_reg_data, 0);
429 }
430 #endif
431 
432 /*
433  * Basic board specific setup.  Pinmux has been handled already.
434  */
board_init(void)435 int board_init(void)
436 {
437 #if defined(CONFIG_HW_WATCHDOG)
438 	hw_watchdog_init();
439 #endif
440 	i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
441 	if (read_eeprom() < 0)
442 		puts("EEPROM Content Invalid.\n");
443 
444 	gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
445 #if defined(CONFIG_NOR) || defined(CONFIG_NAND)
446 	gpmc_init();
447 #endif
448 	shc_request_gpio();
449 
450 	return 0;
451 }
452 
453 #ifdef CONFIG_BOARD_LATE_INIT
board_late_init(void)454 int board_late_init(void)
455 {
456 	check_button_status();
457 #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
458 	if (shc_eeprom_valid)
459 		if (is_valid_ethaddr(header.mac_addr))
460 			eth_env_set_enetaddr("ethaddr", header.mac_addr);
461 #endif
462 
463 	return 0;
464 }
465 #endif
466 
467 #if defined(CONFIG_USB_ETHER) && \
468 	(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USB_ETHER))
board_eth_init(bd_t * bis)469 int board_eth_init(bd_t *bis)
470 {
471 	return usb_eth_initialize(bis);
472 }
473 #endif
474 
475 #ifdef CONFIG_SHOW_BOOT_PROGRESS
bosch_check_reset_pin(void)476 static void bosch_check_reset_pin(void)
477 {
478 	if (readl(GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0) & RESET_MASK) {
479 		printf("Resetting ...\n");
480 		writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
481 		disable_interrupts();
482 		reset_cpu(0);
483 		/*NOTREACHED*/
484 	}
485 }
486 
hang_bosch(const char * cause,int code)487 static void hang_bosch(const char *cause, int code)
488 {
489 	int lv;
490 
491 	gpio_direction_input(RESET_GPIO);
492 
493 	/* Enable reset pin interrupt on falling edge */
494 	writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
495 	writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_FALLINGDETECT);
496 	enable_interrupts();
497 
498 	puts(cause);
499 	for (;;) {
500 		for (lv = 0; lv < code; lv++) {
501 			bosch_check_reset_pin();
502 			leds_set_failure(1);
503 			__udelay(150 * 1000);
504 			leds_set_failure(0);
505 			__udelay(150 * 1000);
506 		}
507 #if defined(BLINK_CODE)
508 		__udelay(300 * 1000);
509 #endif
510 	}
511 }
512 
show_boot_progress(int val)513 void show_boot_progress(int val)
514 {
515 	switch (val) {
516 	case BOOTSTAGE_ID_NEED_RESET:
517 		hang_bosch("need reset", 4);
518 		break;
519 	}
520 }
521 
arch_preboot_os(void)522 void arch_preboot_os(void)
523 {
524 	leds_set_finish();
525 }
526 #endif
527