xref: /openbmc/u-boot/README (revision 8dafa874)
1#
2# (C) Copyright 2000 - 2005
3# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4#
5# See file CREDITS for list of people who contributed to this
6# project.
7#
8# This program is free software; you can redistribute it and/or
9# modify it under the terms of the GNU General Public License as
10# published by the Free Software Foundation; either version 2 of
11# the License, or (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21# MA 02111-1307 USA
22#
23
24Summary:
25========
26
27This directory contains the source code for U-Boot, a boot loader for
28Embedded boards based on PowerPC, ARM, MIPS and several other
29processors, which can be installed in a boot ROM and used to
30initialize and test the hardware or to download and run application
31code.
32
33The development of U-Boot is closely related to Linux: some parts of
34the source code originate in the Linux source tree, we have some
35header files in common, and special provision has been made to
36support booting of Linux images.
37
38Some attention has been paid to make this software easily
39configurable and extendable. For instance, all monitor commands are
40implemented with the same call interface, so that it's very easy to
41add new commands. Also, instead of permanently adding rarely used
42code (for instance hardware test utilities) to the monitor, you can
43load and run it dynamically.
44
45
46Status:
47=======
48
49In general, all boards for which a configuration option exists in the
50Makefile have been tested to some extent and can be considered
51"working". In fact, many of them are used in production systems.
52
53In case of problems see the CHANGELOG and CREDITS files to find out
54who contributed the specific port.
55
56
57Where to get help:
58==================
59
60In case you have questions about, problems with or contributions for
61U-Boot you should send a message to the U-Boot mailing list at
62<u-boot-users@lists.sourceforge.net>. There is also an archive of
63previous traffic on the mailing list - please search the archive
64before asking FAQ's. Please see
65http://lists.sourceforge.net/lists/listinfo/u-boot-users/
66
67
68Where we come from:
69===================
70
71- start from 8xxrom sources
72- create PPCBoot project (http://sourceforge.net/projects/ppcboot)
73- clean up code
74- make it easier to add custom boards
75- make it possible to add other [PowerPC] CPUs
76- extend functions, especially:
77  * Provide extended interface to Linux boot loader
78  * S-Record download
79  * network boot
80  * PCMCIA / CompactFLash / ATA disk / SCSI ... boot
81- create ARMBoot project (http://sourceforge.net/projects/armboot)
82- add other CPU families (starting with ARM)
83- create U-Boot project (http://sourceforge.net/projects/u-boot)
84
85
86Names and Spelling:
87===================
88
89The "official" name of this project is "Das U-Boot". The spelling
90"U-Boot" shall be used in all written text (documentation, comments
91in source files etc.). Example:
92
93	This is the README file for the U-Boot project.
94
95File names etc. shall be based on the string "u-boot". Examples:
96
97	include/asm-ppc/u-boot.h
98
99	#include <asm/u-boot.h>
100
101Variable names, preprocessor constants etc. shall be either based on
102the string "u_boot" or on "U_BOOT". Example:
103
104	U_BOOT_VERSION		u_boot_logo
105	IH_OS_U_BOOT		u_boot_hush_start
106
107
108Versioning:
109===========
110
111U-Boot uses a 3 level version number containing a version, a
112sub-version, and a patchlevel: "U-Boot-2.34.5" means version "2",
113sub-version "34", and patchlevel "4".
114
115The patchlevel is used to indicate certain stages of development
116between released versions, i. e. officially released versions of
117U-Boot will always have a patchlevel of "0".
118
119
120Directory Hierarchy:
121====================
122
123- board		Board dependent files
124- common	Misc architecture independent functions
125- cpu		CPU specific files
126  - 74xx_7xx	Files specific to Freescale MPC74xx and 7xx CPUs
127  - arm720t	Files specific to ARM 720 CPUs
128  - arm920t	Files specific to ARM 920 CPUs
129    - at91rm9200 Files specific to Atmel AT91RM9200 CPU
130    - imx	Files specific to Freescale MC9328 i.MX CPUs
131    - s3c24x0	Files specific to Samsung S3C24X0 CPUs
132  - arm925t	Files specific to ARM 925 CPUs
133  - arm926ejs	Files specific to ARM 926 CPUs
134  - arm1136	Files specific to ARM 1136 CPUs
135  - at32ap	Files specific to Atmel AVR32 AP CPUs
136  - i386	Files specific to i386 CPUs
137  - ixp		Files specific to Intel XScale IXP CPUs
138  - mcf52x2	Files specific to Freescale ColdFire MCF52x2 CPUs
139  - mcf5227x	Files specific to Freescale ColdFire MCF5227x CPUs
140  - mcf532x	Files specific to Freescale ColdFire MCF5329 CPUs
141  - mcf5445x	Files specific to Freescale ColdFire MCF5445x CPUs
142  - mcf547x_8x	Files specific to Freescale ColdFire MCF547x_8x CPUs
143  - mips	Files specific to MIPS CPUs
144  - mpc5xx	Files specific to Freescale MPC5xx  CPUs
145  - mpc5xxx	Files specific to Freescale MPC5xxx CPUs
146  - mpc8xx	Files specific to Freescale MPC8xx  CPUs
147  - mpc8220	Files specific to Freescale MPC8220 CPUs
148  - mpc824x	Files specific to Freescale MPC824x CPUs
149  - mpc8260	Files specific to Freescale MPC8260 CPUs
150  - mpc85xx	Files specific to Freescale MPC85xx CPUs
151  - nios	Files specific to Altera NIOS CPUs
152  - nios2	Files specific to Altera Nios-II CPUs
153  - ppc4xx	Files specific to AMCC PowerPC 4xx CPUs
154  - pxa		Files specific to Intel XScale PXA CPUs
155  - s3c44b0	Files specific to Samsung S3C44B0 CPUs
156  - sa1100	Files specific to Intel StrongARM SA1100 CPUs
157- disk		Code for disk drive partition handling
158- doc		Documentation (don't expect too much)
159- drivers	Commonly used device drivers
160- dtt		Digital Thermometer and Thermostat drivers
161- examples	Example code for standalone applications, etc.
162- include	Header Files
163- lib_arm	Files generic to ARM	 architecture
164- lib_avr32	Files generic to AVR32	 architecture
165- lib_generic	Files generic to all	 architectures
166- lib_i386	Files generic to i386	 architecture
167- lib_m68k	Files generic to m68k	 architecture
168- lib_mips	Files generic to MIPS	 architecture
169- lib_nios	Files generic to NIOS	 architecture
170- lib_ppc	Files generic to PowerPC architecture
171- libfdt 	Library files to support flattened device trees
172- net		Networking code
173- post		Power On Self Test
174- rtc		Real Time Clock drivers
175- tools		Tools to build S-Record or U-Boot images, etc.
176
177Software Configuration:
178=======================
179
180Configuration is usually done using C preprocessor defines; the
181rationale behind that is to avoid dead code whenever possible.
182
183There are two classes of configuration variables:
184
185* Configuration _OPTIONS_:
186  These are selectable by the user and have names beginning with
187  "CONFIG_".
188
189* Configuration _SETTINGS_:
190  These depend on the hardware etc. and should not be meddled with if
191  you don't know what you're doing; they have names beginning with
192  "CFG_".
193
194Later we will add a configuration tool - probably similar to or even
195identical to what's used for the Linux kernel. Right now, we have to
196do the configuration by hand, which means creating some symbolic
197links and editing some configuration files. We use the TQM8xxL boards
198as an example here.
199
200
201Selection of Processor Architecture and Board Type:
202---------------------------------------------------
203
204For all supported boards there are ready-to-use default
205configurations available; just type "make <board_name>_config".
206
207Example: For a TQM823L module type:
208
209	cd u-boot
210	make TQM823L_config
211
212For the Cogent platform, you need to specify the cpu type as well;
213e.g. "make cogent_mpc8xx_config". And also configure the cogent
214directory according to the instructions in cogent/README.
215
216
217Configuration Options:
218----------------------
219
220Configuration depends on the combination of board and CPU type; all
221such information is kept in a configuration file
222"include/configs/<board_name>.h".
223
224Example: For a TQM823L module, all configuration settings are in
225"include/configs/TQM823L.h".
226
227
228Many of the options are named exactly as the corresponding Linux
229kernel configuration options. The intention is to make it easier to
230build a config tool - later.
231
232
233The following options need to be configured:
234
235- CPU Type:	Define exactly one, e.g. CONFIG_MPC85XX.
236
237- Board Type:	Define exactly one, e.g. CONFIG_MPC8540ADS.
238
239- CPU Daughterboard Type: (if CONFIG_ATSTK1000 is defined)
240		Define exactly one, e.g. CONFIG_ATSTK1002
241
242- CPU Module Type: (if CONFIG_COGENT is defined)
243		Define exactly one of
244		CONFIG_CMA286_60_OLD
245--- FIXME --- not tested yet:
246		CONFIG_CMA286_60, CONFIG_CMA286_21, CONFIG_CMA286_60P,
247		CONFIG_CMA287_23, CONFIG_CMA287_50
248
249- Motherboard Type: (if CONFIG_COGENT is defined)
250		Define exactly one of
251		CONFIG_CMA101, CONFIG_CMA102
252
253- Motherboard I/O Modules: (if CONFIG_COGENT is defined)
254		Define one or more of
255		CONFIG_CMA302
256
257- Motherboard Options: (if CONFIG_CMA101 or CONFIG_CMA102 are defined)
258		Define one or more of
259		CONFIG_LCD_HEARTBEAT	- update a character position on
260					  the lcd display every second with
261					  a "rotator" |\-/|\-/
262
263- Board flavour: (if CONFIG_MPC8260ADS is defined)
264		CONFIG_ADSTYPE
265		Possible values are:
266			CFG_8260ADS	- original MPC8260ADS
267			CFG_8266ADS	- MPC8266ADS
268			CFG_PQ2FADS	- PQ2FADS-ZU or PQ2FADS-VR
269			CFG_8272ADS	- MPC8272ADS
270
271- MPC824X Family Member (if CONFIG_MPC824X is defined)
272		Define exactly one of
273		CONFIG_MPC8240, CONFIG_MPC8245
274
275- 8xx CPU Options: (if using an MPC8xx cpu)
276		CONFIG_8xx_GCLK_FREQ	- deprecated: CPU clock if
277					  get_gclk_freq() cannot work
278					  e.g. if there is no 32KHz
279					  reference PIT/RTC clock
280		CONFIG_8xx_OSCLK	- PLL input clock (either EXTCLK
281					  or XTAL/EXTAL)
282
283- 859/866/885 CPU options: (if using a MPC859 or MPC866 or MPC885 CPU):
284		CFG_8xx_CPUCLK_MIN
285		CFG_8xx_CPUCLK_MAX
286		CONFIG_8xx_CPUCLK_DEFAULT
287			See doc/README.MPC866
288
289		CFG_MEASURE_CPUCLK
290
291		Define this to measure the actual CPU clock instead
292		of relying on the correctness of the configured
293		values. Mostly useful for board bringup to make sure
294		the PLL is locked at the intended frequency. Note
295		that this requires a (stable) reference clock (32 kHz
296		RTC clock or CFG_8XX_XIN)
297
298- Intel Monahans options:
299		CFG_MONAHANS_RUN_MODE_OSC_RATIO
300
301		Defines the Monahans run mode to oscillator
302		ratio. Valid values are 8, 16, 24, 31. The core
303		frequency is this value multiplied by 13 MHz.
304
305		CFG_MONAHANS_TURBO_RUN_MODE_RATIO
306
307		Defines the Monahans turbo mode to oscillator
308		ratio. Valid values are 1 (default if undefined) and
309		2. The core frequency as calculated above is multiplied
310		by this value.
311
312- Linux Kernel Interface:
313		CONFIG_CLOCKS_IN_MHZ
314
315		U-Boot stores all clock information in Hz
316		internally. For binary compatibility with older Linux
317		kernels (which expect the clocks passed in the
318		bd_info data to be in MHz) the environment variable
319		"clocks_in_mhz" can be defined so that U-Boot
320		converts clock data to MHZ before passing it to the
321		Linux kernel.
322		When CONFIG_CLOCKS_IN_MHZ is defined, a definition of
323		"clocks_in_mhz=1" is  automatically  included  in  the
324		default environment.
325
326		CONFIG_MEMSIZE_IN_BYTES		[relevant for MIPS only]
327
328		When transfering memsize parameter to linux, some versions
329		expect it to be in bytes, others in MB.
330		Define CONFIG_MEMSIZE_IN_BYTES to make it in bytes.
331
332		CONFIG_OF_LIBFDT / CONFIG_OF_FLAT_TREE
333
334		New kernel versions are expecting firmware settings to be
335		passed using flattened device trees (based on open firmware
336		concepts).
337
338		CONFIG_OF_LIBFDT
339		 * New libfdt-based support
340		 * Adds the "fdt" command
341		 * The bootm command automatically updates the fdt
342
343		CONFIG_OF_FLAT_TREE
344		 * Deprecated, see CONFIG_OF_LIBFDT
345		 * Original ft_build.c-based support
346		 * Automatically modifies the dft as part of the bootm command
347		 * The environment variable "disable_of", when set,
348		     disables this functionality.
349
350		OF_CPU - The proper name of the cpus node.
351		OF_SOC - The proper name of the soc node.
352		OF_TBCLK - The timebase frequency.
353		OF_STDOUT_PATH - The path to the console device
354
355		boards with QUICC Engines require OF_QE to set UCC mac addresses
356
357		CONFIG_OF_HAS_BD_T
358
359		 * CONFIG_OF_LIBFDT - enables the "fdt bd_t" command
360		 * CONFIG_OF_FLAT_TREE - The resulting flat device tree
361		     will have a copy of the bd_t.  Space should be
362		     pre-allocated in the dts for the bd_t.
363
364		CONFIG_OF_HAS_UBOOT_ENV
365
366		 * CONFIG_OF_LIBFDT - enables the "fdt env" command
367		 * CONFIG_OF_FLAT_TREE - The resulting flat device tree
368		     will have a copy of u-boot's environment variables
369
370		CONFIG_OF_BOARD_SETUP
371
372		Board code has addition modification that it wants to make
373		to the flat device tree before handing it off to the kernel
374
375		CONFIG_OF_BOOT_CPU
376
377		This define fills in the correct boot cpu in the boot
378		param header, the default value is zero if undefined.
379
380- Serial Ports:
381		CFG_PL010_SERIAL
382
383		Define this if you want support for Amba PrimeCell PL010 UARTs.
384
385		CFG_PL011_SERIAL
386
387		Define this if you want support for Amba PrimeCell PL011 UARTs.
388
389		CONFIG_PL011_CLOCK
390
391		If you have Amba PrimeCell PL011 UARTs, set this variable to
392		the clock speed of the UARTs.
393
394		CONFIG_PL01x_PORTS
395
396		If you have Amba PrimeCell PL010 or PL011 UARTs on your board,
397		define this to a list of base addresses for each (supported)
398		port. See e.g. include/configs/versatile.h
399
400
401- Console Interface:
402		Depending on board, define exactly one serial port
403		(like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2,
404		CONFIG_8xx_CONS_SCC1, ...), or switch off the serial
405		console by defining CONFIG_8xx_CONS_NONE
406
407		Note: if CONFIG_8xx_CONS_NONE is defined, the serial
408		port routines must be defined elsewhere
409		(i.e. serial_init(), serial_getc(), ...)
410
411		CONFIG_CFB_CONSOLE
412		Enables console device for a color framebuffer. Needs following
413		defines (cf. smiLynxEM, i8042, board/eltec/bab7xx)
414			VIDEO_FB_LITTLE_ENDIAN	graphic memory organisation
415						(default big endian)
416			VIDEO_HW_RECTFILL	graphic chip supports
417						rectangle fill
418						(cf. smiLynxEM)
419			VIDEO_HW_BITBLT		graphic chip supports
420						bit-blit (cf. smiLynxEM)
421			VIDEO_VISIBLE_COLS	visible pixel columns
422						(cols=pitch)
423			VIDEO_VISIBLE_ROWS	visible pixel rows
424			VIDEO_PIXEL_SIZE	bytes per pixel
425			VIDEO_DATA_FORMAT	graphic data format
426						(0-5, cf. cfb_console.c)
427			VIDEO_FB_ADRS		framebuffer address
428			VIDEO_KBD_INIT_FCT	keyboard int fct
429						(i.e. i8042_kbd_init())
430			VIDEO_TSTC_FCT		test char fct
431						(i.e. i8042_tstc)
432			VIDEO_GETC_FCT		get char fct
433						(i.e. i8042_getc)
434			CONFIG_CONSOLE_CURSOR	cursor drawing on/off
435						(requires blink timer
436						cf. i8042.c)
437			CFG_CONSOLE_BLINK_COUNT blink interval (cf. i8042.c)
438			CONFIG_CONSOLE_TIME	display time/date info in
439						upper right corner
440						(requires CONFIG_CMD_DATE)
441			CONFIG_VIDEO_LOGO	display Linux logo in
442						upper left corner
443			CONFIG_VIDEO_BMP_LOGO	use bmp_logo.h instead of
444						linux_logo.h for logo.
445						Requires CONFIG_VIDEO_LOGO
446			CONFIG_CONSOLE_EXTRA_INFO
447						addional board info beside
448						the logo
449
450		When CONFIG_CFB_CONSOLE is defined, video console is
451		default i/o. Serial console can be forced with
452		environment 'console=serial'.
453
454		When CONFIG_SILENT_CONSOLE is defined, all console
455		messages (by U-Boot and Linux!) can be silenced with
456		the "silent" environment variable. See
457		doc/README.silent for more information.
458
459- Console Baudrate:
460		CONFIG_BAUDRATE - in bps
461		Select one of the baudrates listed in
462		CFG_BAUDRATE_TABLE, see below.
463		CFG_BRGCLK_PRESCALE, baudrate prescale
464
465- Interrupt driven serial port input:
466		CONFIG_SERIAL_SOFTWARE_FIFO
467
468		PPC405GP only.
469		Use an interrupt handler for receiving data on the
470		serial port. It also enables using hardware handshake
471		(RTS/CTS) and UART's built-in FIFO. Set the number of
472		bytes the interrupt driven input buffer should have.
473
474		Leave undefined to disable this feature, including
475		disable the buffer and hardware handshake.
476
477- Console UART Number:
478		CONFIG_UART1_CONSOLE
479
480		AMCC PPC4xx only.
481		If defined internal UART1 (and not UART0) is used
482		as default U-Boot console.
483
484- Boot Delay:	CONFIG_BOOTDELAY - in seconds
485		Delay before automatically booting the default image;
486		set to -1 to disable autoboot.
487
488		See doc/README.autoboot for these options that
489		work with CONFIG_BOOTDELAY. None are required.
490		CONFIG_BOOT_RETRY_TIME
491		CONFIG_BOOT_RETRY_MIN
492		CONFIG_AUTOBOOT_KEYED
493		CONFIG_AUTOBOOT_PROMPT
494		CONFIG_AUTOBOOT_DELAY_STR
495		CONFIG_AUTOBOOT_STOP_STR
496		CONFIG_AUTOBOOT_DELAY_STR2
497		CONFIG_AUTOBOOT_STOP_STR2
498		CONFIG_ZERO_BOOTDELAY_CHECK
499		CONFIG_RESET_TO_RETRY
500
501- Autoboot Command:
502		CONFIG_BOOTCOMMAND
503		Only needed when CONFIG_BOOTDELAY is enabled;
504		define a command string that is automatically executed
505		when no character is read on the console interface
506		within "Boot Delay" after reset.
507
508		CONFIG_BOOTARGS
509		This can be used to pass arguments to the bootm
510		command. The value of CONFIG_BOOTARGS goes into the
511		environment value "bootargs".
512
513		CONFIG_RAMBOOT and CONFIG_NFSBOOT
514		The value of these goes into the environment as
515		"ramboot" and "nfsboot" respectively, and can be used
516		as a convenience, when switching between booting from
517		ram and nfs.
518
519- Pre-Boot Commands:
520		CONFIG_PREBOOT
521
522		When this option is #defined, the existence of the
523		environment variable "preboot" will be checked
524		immediately before starting the CONFIG_BOOTDELAY
525		countdown and/or running the auto-boot command resp.
526		entering interactive mode.
527
528		This feature is especially useful when "preboot" is
529		automatically generated or modified. For an example
530		see the LWMON board specific code: here "preboot" is
531		modified when the user holds down a certain
532		combination of keys on the (special) keyboard when
533		booting the systems
534
535- Serial Download Echo Mode:
536		CONFIG_LOADS_ECHO
537		If defined to 1, all characters received during a
538		serial download (using the "loads" command) are
539		echoed back. This might be needed by some terminal
540		emulations (like "cu"), but may as well just take
541		time on others. This setting #define's the initial
542		value of the "loads_echo" environment variable.
543
544- Kgdb Serial Baudrate: (if CONFIG_CMD_KGDB is defined)
545		CONFIG_KGDB_BAUDRATE
546		Select one of the baudrates listed in
547		CFG_BAUDRATE_TABLE, see below.
548
549- Monitor Functions:
550		Monitor commands can be included or excluded
551		from the build by using the #include files
552		"config_cmd_all.h" and #undef'ing unwanted
553		commands, or using "config_cmd_default.h"
554		and augmenting with additional #define's
555		for wanted commands.
556
557		The default command configuration includes all commands
558		except those marked below with a "*".
559
560		CONFIG_CMD_ASKENV	* ask for env variable
561		CONFIG_CMD_AUTOSCRIPT	  Autoscript Support
562		CONFIG_CMD_BDI		  bdinfo
563		CONFIG_CMD_BEDBUG	* Include BedBug Debugger
564		CONFIG_CMD_BMP		* BMP support
565		CONFIG_CMD_BSP		* Board specific commands
566		CONFIG_CMD_BOOTD	  bootd
567		CONFIG_CMD_CACHE	* icache, dcache
568		CONFIG_CMD_CONSOLE	  coninfo
569		CONFIG_CMD_DATE		* support for RTC, date/time...
570		CONFIG_CMD_DHCP		* DHCP support
571		CONFIG_CMD_DIAG		* Diagnostics
572		CONFIG_CMD_DOC		* Disk-On-Chip Support
573		CONFIG_CMD_DTT		* Digital Therm and Thermostat
574		CONFIG_CMD_ECHO		  echo arguments
575		CONFIG_CMD_EEPROM	* EEPROM read/write support
576		CONFIG_CMD_ELF		* bootelf, bootvx
577		CONFIG_CMD_ENV		  saveenv
578		CONFIG_CMD_FDC		* Floppy Disk Support
579		CONFIG_CMD_FAT		* FAT partition support
580		CONFIG_CMD_FDOS		* Dos diskette Support
581		CONFIG_CMD_FLASH	  flinfo, erase, protect
582		CONFIG_CMD_FPGA		  FPGA device initialization support
583		CONFIG_CMD_HWFLOW	* RTS/CTS hw flow control
584		CONFIG_CMD_I2C		* I2C serial bus support
585		CONFIG_CMD_IDE		* IDE harddisk support
586		CONFIG_CMD_IMI		  iminfo
587		CONFIG_CMD_IMLS		  List all found images
588		CONFIG_CMD_IMMAP	* IMMR dump support
589		CONFIG_CMD_IRQ		* irqinfo
590		CONFIG_CMD_ITEST	  Integer/string test of 2 values
591		CONFIG_CMD_JFFS2	* JFFS2 Support
592		CONFIG_CMD_KGDB		* kgdb
593		CONFIG_CMD_LOADB	  loadb
594		CONFIG_CMD_LOADS	  loads
595		CONFIG_CMD_MEMORY	  md, mm, nm, mw, cp, cmp, crc, base,
596					  loop, loopw, mtest
597		CONFIG_CMD_MISC		  Misc functions like sleep etc
598		CONFIG_CMD_MMC		* MMC memory mapped support
599		CONFIG_CMD_MII		* MII utility commands
600		CONFIG_CMD_NAND		* NAND support
601		CONFIG_CMD_NET		  bootp, tftpboot, rarpboot
602		CONFIG_CMD_PCI		* pciinfo
603		CONFIG_CMD_PCMCIA		* PCMCIA support
604		CONFIG_CMD_PING		* send ICMP ECHO_REQUEST to network
605					  host
606		CONFIG_CMD_PORTIO	* Port I/O
607		CONFIG_CMD_REGINFO	* Register dump
608		CONFIG_CMD_RUN		  run command in env variable
609		CONFIG_CMD_SAVES	* save S record dump
610		CONFIG_CMD_SCSI		* SCSI Support
611		CONFIG_CMD_SDRAM	* print SDRAM configuration information
612					  (requires CONFIG_CMD_I2C)
613		CONFIG_CMD_SETGETDCR	  Support for DCR Register access
614					  (4xx only)
615		CONFIG_CMD_SPI		* SPI serial bus support
616		CONFIG_CMD_USB		* USB support
617		CONFIG_CMD_VFD		* VFD support (TRAB)
618		CONFIG_CMD_BSP		* Board SPecific functions
619		CONFIG_CMD_CDP		* Cisco Discover Protocol support
620		CONFIG_CMD_FSL		* Microblaze FSL support
621
622
623		EXAMPLE: If you want all functions except of network
624		support you can write:
625
626		#include "config_cmd_all.h"
627		#undef CONFIG_CMD_NET
628
629	Other Commands:
630		fdt (flattened device tree) command: CONFIG_OF_LIBFDT
631
632	Note:	Don't enable the "icache" and "dcache" commands
633		(configuration option CONFIG_CMD_CACHE) unless you know
634		what you (and your U-Boot users) are doing. Data
635		cache cannot be enabled on systems like the 8xx or
636		8260 (where accesses to the IMMR region must be
637		uncached), and it cannot be disabled on all other
638		systems where we (mis-) use the data cache to hold an
639		initial stack and some data.
640
641
642		XXX - this list needs to get updated!
643
644- Watchdog:
645		CONFIG_WATCHDOG
646		If this variable is defined, it enables watchdog
647		support. There must be support in the platform specific
648		code for a watchdog. For the 8xx and 8260 CPUs, the
649		SIU Watchdog feature is enabled in the SYPCR
650		register.
651
652- U-Boot Version:
653		CONFIG_VERSION_VARIABLE
654		If this variable is defined, an environment variable
655		named "ver" is created by U-Boot showing the U-Boot
656		version as printed by the "version" command.
657		This variable is readonly.
658
659- Real-Time Clock:
660
661		When CONFIG_CMD_DATE is selected, the type of the RTC
662		has to be selected, too. Define exactly one of the
663		following options:
664
665		CONFIG_RTC_MPC8xx	- use internal RTC of MPC8xx
666		CONFIG_RTC_PCF8563	- use Philips PCF8563 RTC
667		CONFIG_RTC_MC146818	- use MC146818 RTC
668		CONFIG_RTC_DS1307	- use Maxim, Inc. DS1307 RTC
669		CONFIG_RTC_DS1337	- use Maxim, Inc. DS1337 RTC
670		CONFIG_RTC_DS1338	- use Maxim, Inc. DS1338 RTC
671		CONFIG_RTC_DS164x	- use Dallas DS164x RTC
672		CONFIG_RTC_MAX6900	- use Maxim, Inc. MAX6900 RTC
673
674		Note that if the RTC uses I2C, then the I2C interface
675		must also be configured. See I2C Support, below.
676
677- Timestamp Support:
678
679		When CONFIG_TIMESTAMP is selected, the timestamp
680		(date and time) of an image is printed by image
681		commands like bootm or iminfo. This option is
682		automatically enabled when you select CONFIG_CMD_DATE .
683
684- Partition Support:
685		CONFIG_MAC_PARTITION and/or CONFIG_DOS_PARTITION
686		and/or CONFIG_ISO_PARTITION
687
688		If IDE or SCSI support	is  enabled  (CONFIG_CMD_IDE or
689		CONFIG_CMD_SCSI) you must configure support for at least
690		one partition type as well.
691
692- IDE Reset method:
693		CONFIG_IDE_RESET_ROUTINE - this is defined in several
694		board configurations files but used nowhere!
695
696		CONFIG_IDE_RESET - is this is defined, IDE Reset will
697		be performed by calling the function
698			ide_set_reset(int reset)
699		which has to be defined in a board specific file
700
701- ATAPI Support:
702		CONFIG_ATAPI
703
704		Set this to enable ATAPI support.
705
706- LBA48 Support
707		CONFIG_LBA48
708
709		Set this to enable support for disks larger than 137GB
710		Also look at CFG_64BIT_LBA ,CFG_64BIT_VSPRINTF and CFG_64BIT_STRTOUL
711		Whithout these , LBA48 support uses 32bit variables and will 'only'
712		support disks up to 2.1TB.
713
714		CFG_64BIT_LBA:
715			When enabled, makes the IDE subsystem use 64bit sector addresses.
716			Default is 32bit.
717
718- SCSI Support:
719		At the moment only there is only support for the
720		SYM53C8XX SCSI controller; define
721		CONFIG_SCSI_SYM53C8XX to enable it.
722
723		CFG_SCSI_MAX_LUN [8], CFG_SCSI_MAX_SCSI_ID [7] and
724		CFG_SCSI_MAX_DEVICE [CFG_SCSI_MAX_SCSI_ID *
725		CFG_SCSI_MAX_LUN] can be adjusted to define the
726		maximum numbers of LUNs, SCSI ID's and target
727		devices.
728		CFG_SCSI_SYM53C8XX_CCF to fix clock timing (80Mhz)
729
730- NETWORK Support (PCI):
731		CONFIG_E1000
732		Support for Intel 8254x gigabit chips.
733
734		CONFIG_EEPRO100
735		Support for Intel 82557/82559/82559ER chips.
736		Optional CONFIG_EEPRO100_SROM_WRITE enables eeprom
737		write routine for first time initialisation.
738
739		CONFIG_TULIP
740		Support for Digital 2114x chips.
741		Optional CONFIG_TULIP_SELECT_MEDIA for board specific
742		modem chip initialisation (KS8761/QS6611).
743
744		CONFIG_NATSEMI
745		Support for National dp83815 chips.
746
747		CONFIG_NS8382X
748		Support for National dp8382[01] gigabit chips.
749
750- NETWORK Support (other):
751
752		CONFIG_DRIVER_LAN91C96
753		Support for SMSC's LAN91C96 chips.
754
755			CONFIG_LAN91C96_BASE
756			Define this to hold the physical address
757			of the LAN91C96's I/O space
758
759			CONFIG_LAN91C96_USE_32_BIT
760			Define this to enable 32 bit addressing
761
762		CONFIG_DRIVER_SMC91111
763		Support for SMSC's LAN91C111 chip
764
765			CONFIG_SMC91111_BASE
766			Define this to hold the physical address
767			of the device (I/O space)
768
769			CONFIG_SMC_USE_32_BIT
770			Define this if data bus is 32 bits
771
772			CONFIG_SMC_USE_IOFUNCS
773			Define this to use i/o functions instead of macros
774			(some hardware wont work with macros)
775
776- USB Support:
777		At the moment only the UHCI host controller is
778		supported (PIP405, MIP405, MPC5200); define
779		CONFIG_USB_UHCI to enable it.
780		define CONFIG_USB_KEYBOARD to enable the USB Keyboard
781		and define CONFIG_USB_STORAGE to enable the USB
782		storage devices.
783		Note:
784		Supported are USB Keyboards and USB Floppy drives
785		(TEAC FD-05PUB).
786		MPC5200 USB requires additional defines:
787			CONFIG_USB_CLOCK
788				for 528 MHz Clock: 0x0001bbbb
789			CONFIG_USB_CONFIG
790				for differential drivers: 0x00001000
791				for single ended drivers: 0x00005000
792			CFG_USB_EVENT_POLL
793				May be defined to allow interrupt polling
794				instead of using asynchronous interrupts
795
796- USB Device:
797		Define the below if you wish to use the USB console.
798		Once firmware is rebuilt from a serial console issue the
799		command "setenv stdin usbtty; setenv stdout usbtty" and
800		attach your usb cable. The Unix command "dmesg" should print
801		it has found a new device. The environment variable usbtty
802		can be set to gserial or cdc_acm to enable your device to
803		appear to a USB host as a Linux gserial device or a
804		Common Device Class Abstract Control Model serial device.
805		If you select usbtty = gserial you should be able to enumerate
806		a Linux host by
807		# modprobe usbserial vendor=0xVendorID product=0xProductID
808		else if using cdc_acm, simply setting the environment
809		variable usbtty to be cdc_acm should suffice. The following
810		might be defined in YourBoardName.h
811
812			CONFIG_USB_DEVICE
813			Define this to build a UDC device
814
815			CONFIG_USB_TTY
816			Define this to have a tty type of device available to
817			talk to the UDC device
818
819			CFG_CONSOLE_IS_IN_ENV
820			Define this if you want stdin, stdout &/or stderr to
821			be set to usbtty.
822
823			mpc8xx:
824				CFG_USB_EXTC_CLK 0xBLAH
825				Derive USB clock from external clock "blah"
826				- CFG_USB_EXTC_CLK 0x02
827
828				CFG_USB_BRG_CLK 0xBLAH
829				Derive USB clock from brgclk
830				- CFG_USB_BRG_CLK 0x04
831
832		If you have a USB-IF assigned VendorID then you may wish to
833		define your own vendor specific values either in BoardName.h
834		or directly in usbd_vendor_info.h. If you don't define
835		CONFIG_USBD_MANUFACTURER, CONFIG_USBD_PRODUCT_NAME,
836		CONFIG_USBD_VENDORID and CONFIG_USBD_PRODUCTID, then U-Boot
837		should pretend to be a Linux device to it's target host.
838
839			CONFIG_USBD_MANUFACTURER
840			Define this string as the name of your company for
841			- CONFIG_USBD_MANUFACTURER "my company"
842
843			CONFIG_USBD_PRODUCT_NAME
844			Define this string as the name of your product
845			- CONFIG_USBD_PRODUCT_NAME "acme usb device"
846
847			CONFIG_USBD_VENDORID
848			Define this as your assigned Vendor ID from the USB
849			Implementors Forum. This *must* be a genuine Vendor ID
850			to avoid polluting the USB namespace.
851			- CONFIG_USBD_VENDORID 0xFFFF
852
853			CONFIG_USBD_PRODUCTID
854			Define this as the unique Product ID
855			for your device
856			- CONFIG_USBD_PRODUCTID 0xFFFF
857
858
859- MMC Support:
860		The MMC controller on the Intel PXA is supported. To
861		enable this define CONFIG_MMC. The MMC can be
862		accessed from the boot prompt by mapping the device
863		to physical memory similar to flash. Command line is
864		enabled with CONFIG_CMD_MMC. The MMC driver also works with
865		the FAT fs. This is enabled with CONFIG_CMD_FAT.
866
867- Journaling Flash filesystem support:
868		CONFIG_JFFS2_NAND, CONFIG_JFFS2_NAND_OFF, CONFIG_JFFS2_NAND_SIZE,
869		CONFIG_JFFS2_NAND_DEV
870		Define these for a default partition on a NAND device
871
872		CFG_JFFS2_FIRST_SECTOR,
873		CFG_JFFS2_FIRST_BANK, CFG_JFFS2_NUM_BANKS
874		Define these for a default partition on a NOR device
875
876		CFG_JFFS_CUSTOM_PART
877		Define this to create an own partition. You have to provide a
878		function struct part_info* jffs2_part_info(int part_num)
879
880		If you define only one JFFS2 partition you may also want to
881		#define CFG_JFFS_SINGLE_PART	1
882		to disable the command chpart. This is the default when you
883		have not defined a custom partition
884
885- Keyboard Support:
886		CONFIG_ISA_KEYBOARD
887
888		Define this to enable standard (PC-Style) keyboard
889		support
890
891		CONFIG_I8042_KBD
892		Standard PC keyboard driver with US (is default) and
893		GERMAN key layout (switch via environment 'keymap=de') support.
894		Export function i8042_kbd_init, i8042_tstc and i8042_getc
895		for cfb_console. Supports cursor blinking.
896
897- Video support:
898		CONFIG_VIDEO
899
900		Define this to enable video support (for output to
901		video).
902
903		CONFIG_VIDEO_CT69000
904
905		Enable Chips & Technologies 69000 Video chip
906
907		CONFIG_VIDEO_SMI_LYNXEM
908		Enable Silicon Motion SMI 712/710/810 Video chip. The
909		video output is selected via environment 'videoout'
910		(1 = LCD and 2 = CRT). If videoout is undefined, CRT is
911		assumed.
912
913		For the CT69000 and SMI_LYNXEM drivers, videomode is
914		selected via environment 'videomode'. Two diferent ways
915		are possible:
916		- "videomode=num"   'num' is a standard LiLo mode numbers.
917		Following standard modes are supported	(* is default):
918
919		      Colors	640x480 800x600 1024x768 1152x864 1280x1024
920		-------------+---------------------------------------------
921		      8 bits |	0x301*	0x303	 0x305	  0x161	    0x307
922		     15 bits |	0x310	0x313	 0x316	  0x162	    0x319
923		     16 bits |	0x311	0x314	 0x317	  0x163	    0x31A
924		     24 bits |	0x312	0x315	 0x318	    ?	    0x31B
925		-------------+---------------------------------------------
926		(i.e. setenv videomode 317; saveenv; reset;)
927
928		- "videomode=bootargs" all the video parameters are parsed
929		from the bootargs. (See drivers/video/videomodes.c)
930
931
932		CONFIG_VIDEO_SED13806
933		Enable Epson SED13806 driver. This driver supports 8bpp
934		and 16bpp modes defined by CONFIG_VIDEO_SED13806_8BPP
935		or CONFIG_VIDEO_SED13806_16BPP
936
937- Keyboard Support:
938		CONFIG_KEYBOARD
939
940		Define this to enable a custom keyboard support.
941		This simply calls drv_keyboard_init() which must be
942		defined in your board-specific files.
943		The only board using this so far is RBC823.
944
945- LCD Support:	CONFIG_LCD
946
947		Define this to enable LCD support (for output to LCD
948		display); also select one of the supported displays
949		by defining one of these:
950
951		CONFIG_NEC_NL6448AC33:
952
953			NEC NL6448AC33-18. Active, color, single scan.
954
955		CONFIG_NEC_NL6448BC20
956
957			NEC NL6448BC20-08. 6.5", 640x480.
958			Active, color, single scan.
959
960		CONFIG_NEC_NL6448BC33_54
961
962			NEC NL6448BC33-54. 10.4", 640x480.
963			Active, color, single scan.
964
965		CONFIG_SHARP_16x9
966
967			Sharp 320x240. Active, color, single scan.
968			It isn't 16x9, and I am not sure what it is.
969
970		CONFIG_SHARP_LQ64D341
971
972			Sharp LQ64D341 display, 640x480.
973			Active, color, single scan.
974
975		CONFIG_HLD1045
976
977			HLD1045 display, 640x480.
978			Active, color, single scan.
979
980		CONFIG_OPTREX_BW
981
982			Optrex	 CBL50840-2 NF-FW 99 22 M5
983			or
984			Hitachi	 LMG6912RPFC-00T
985			or
986			Hitachi	 SP14Q002
987
988			320x240. Black & white.
989
990		Normally display is black on white background; define
991		CFG_WHITE_ON_BLACK to get it inverted.
992
993- Splash Screen Support: CONFIG_SPLASH_SCREEN
994
995		If this option is set, the environment is checked for
996		a variable "splashimage". If found, the usual display
997		of logo, copyright and system information on the LCD
998		is suppressed and the BMP image at the address
999		specified in "splashimage" is loaded instead. The
1000		console is redirected to the "nulldev", too. This
1001		allows for a "silent" boot where a splash screen is
1002		loaded very quickly after power-on.
1003
1004- Gzip compressed BMP image support: CONFIG_VIDEO_BMP_GZIP
1005
1006		If this option is set, additionally to standard BMP
1007		images, gzipped BMP images can be displayed via the
1008		splashscreen support or the bmp command.
1009
1010- Compression support:
1011		CONFIG_BZIP2
1012
1013		If this option is set, support for bzip2 compressed
1014		images is included. If not, only uncompressed and gzip
1015		compressed images are supported.
1016
1017		NOTE: the bzip2 algorithm requires a lot of RAM, so
1018		the malloc area (as defined by CFG_MALLOC_LEN) should
1019		be at least 4MB.
1020
1021- MII/PHY support:
1022		CONFIG_PHY_ADDR
1023
1024		The address of PHY on MII bus.
1025
1026		CONFIG_PHY_CLOCK_FREQ (ppc4xx)
1027
1028		The clock frequency of the MII bus
1029
1030		CONFIG_PHY_GIGE
1031
1032		If this option is set, support for speed/duplex
1033		detection of Gigabit PHY is included.
1034
1035		CONFIG_PHY_RESET_DELAY
1036
1037		Some PHY like Intel LXT971A need extra delay after
1038		reset before any MII register access is possible.
1039		For such PHY, set this option to the usec delay
1040		required. (minimum 300usec for LXT971A)
1041
1042		CONFIG_PHY_CMD_DELAY (ppc4xx)
1043
1044		Some PHY like Intel LXT971A need extra delay after
1045		command issued before MII status register can be read
1046
1047- Ethernet address:
1048		CONFIG_ETHADDR
1049		CONFIG_ETH2ADDR
1050		CONFIG_ETH3ADDR
1051
1052		Define a default value for ethernet address to use
1053		for the respective ethernet interface, in case this
1054		is not determined automatically.
1055
1056- IP address:
1057		CONFIG_IPADDR
1058
1059		Define a default value for the IP address to use for
1060		the default ethernet interface, in case this is not
1061		determined through e.g. bootp.
1062
1063- Server IP address:
1064		CONFIG_SERVERIP
1065
1066		Defines a default value for theIP address of a TFTP
1067		server to contact when using the "tftboot" command.
1068
1069- Multicast TFTP Mode:
1070		CONFIG_MCAST_TFTP
1071
1072		Defines whether you want to support multicast TFTP as per
1073		rfc-2090; for example to work with atftp.  Lets lots of targets
1074		tftp down the same boot image concurrently.  Note: the ethernet
1075		driver in use must provide a function: mcast() to join/leave a
1076		multicast group.
1077
1078		CONFIG_BOOTP_RANDOM_DELAY
1079- BOOTP Recovery Mode:
1080		CONFIG_BOOTP_RANDOM_DELAY
1081
1082		If you have many targets in a network that try to
1083		boot using BOOTP, you may want to avoid that all
1084		systems send out BOOTP requests at precisely the same
1085		moment (which would happen for instance at recovery
1086		from a power failure, when all systems will try to
1087		boot, thus flooding the BOOTP server. Defining
1088		CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be
1089		inserted before sending out BOOTP requests. The
1090		following delays are inserted then:
1091
1092		1st BOOTP request:	delay 0 ... 1 sec
1093		2nd BOOTP request:	delay 0 ... 2 sec
1094		3rd BOOTP request:	delay 0 ... 4 sec
1095		4th and following
1096		BOOTP requests:		delay 0 ... 8 sec
1097
1098- DHCP Advanced Options:
1099		You can fine tune the DHCP functionality by defining
1100		CONFIG_BOOTP_* symbols:
1101
1102		CONFIG_BOOTP_SUBNETMASK
1103		CONFIG_BOOTP_GATEWAY
1104		CONFIG_BOOTP_HOSTNAME
1105		CONFIG_BOOTP_NISDOMAIN
1106		CONFIG_BOOTP_BOOTPATH
1107		CONFIG_BOOTP_BOOTFILESIZE
1108		CONFIG_BOOTP_DNS
1109		CONFIG_BOOTP_DNS2
1110		CONFIG_BOOTP_SEND_HOSTNAME
1111		CONFIG_BOOTP_NTPSERVER
1112		CONFIG_BOOTP_TIMEOFFSET
1113		CONFIG_BOOTP_VENDOREX
1114
1115		CONFIG_BOOTP_SERVERIP - TFTP server will be the serverip
1116		environment variable, not the BOOTP server.
1117
1118		CONFIG_BOOTP_DNS2 - If a DHCP client requests the DNS
1119		serverip from a DHCP server, it is possible that more
1120		than one DNS serverip is offered to the client.
1121		If CONFIG_BOOTP_DNS2 is enabled, the secondary DNS
1122		serverip will be stored in the additional environment
1123		variable "dnsip2". The first DNS serverip is always
1124		stored in the variable "dnsip", when CONFIG_BOOTP_DNS
1125		is defined.
1126
1127		CONFIG_BOOTP_SEND_HOSTNAME - Some DHCP servers are capable
1128		to do a dynamic update of a DNS server. To do this, they
1129		need the hostname of the DHCP requester.
1130		If CONFIG_BOOTP_SEND_HOSTNAME is defined, the content
1131		of the "hostname" environment variable is passed as
1132		option 12 to the DHCP server.
1133
1134 - CDP Options:
1135		CONFIG_CDP_DEVICE_ID
1136
1137		The device id used in CDP trigger frames.
1138
1139		CONFIG_CDP_DEVICE_ID_PREFIX
1140
1141		A two character string which is prefixed to the MAC address
1142		of the device.
1143
1144		CONFIG_CDP_PORT_ID
1145
1146		A printf format string which contains the ascii name of
1147		the port. Normally is set to "eth%d" which sets
1148		eth0 for the first ethernet, eth1 for the second etc.
1149
1150		CONFIG_CDP_CAPABILITIES
1151
1152		A 32bit integer which indicates the device capabilities;
1153		0x00000010 for a normal host which does not forwards.
1154
1155		CONFIG_CDP_VERSION
1156
1157		An ascii string containing the version of the software.
1158
1159		CONFIG_CDP_PLATFORM
1160
1161		An ascii string containing the name of the platform.
1162
1163		CONFIG_CDP_TRIGGER
1164
1165		A 32bit integer sent on the trigger.
1166
1167		CONFIG_CDP_POWER_CONSUMPTION
1168
1169		A 16bit integer containing the power consumption of the
1170		device in .1 of milliwatts.
1171
1172		CONFIG_CDP_APPLIANCE_VLAN_TYPE
1173
1174		A byte containing the id of the VLAN.
1175
1176- Status LED:	CONFIG_STATUS_LED
1177
1178		Several configurations allow to display the current
1179		status using a LED. For instance, the LED will blink
1180		fast while running U-Boot code, stop blinking as
1181		soon as a reply to a BOOTP request was received, and
1182		start blinking slow once the Linux kernel is running
1183		(supported by a status LED driver in the Linux
1184		kernel). Defining CONFIG_STATUS_LED enables this
1185		feature in U-Boot.
1186
1187- CAN Support:	CONFIG_CAN_DRIVER
1188
1189		Defining CONFIG_CAN_DRIVER enables CAN driver support
1190		on those systems that support this (optional)
1191		feature, like the TQM8xxL modules.
1192
1193- I2C Support:	CONFIG_HARD_I2C | CONFIG_SOFT_I2C
1194
1195		These enable I2C serial bus commands. Defining either of
1196		(but not both of) CONFIG_HARD_I2C or CONFIG_SOFT_I2C will
1197		include the appropriate I2C driver for the selected cpu.
1198
1199		This will allow you to use i2c commands at the u-boot
1200		command line (as long as you set CONFIG_CMD_I2C in
1201		CONFIG_COMMANDS) and communicate with i2c based realtime
1202		clock chips. See common/cmd_i2c.c for a description of the
1203		command line interface.
1204
1205		CONFIG_I2C_CMD_TREE is a recommended option that places
1206		all I2C commands under a single 'i2c' root command.  The
1207		older 'imm', 'imd', 'iprobe' etc. commands are considered
1208		deprecated and may disappear in the future.
1209
1210		CONFIG_HARD_I2C selects a hardware I2C controller.
1211
1212		CONFIG_SOFT_I2C configures u-boot to use a software (aka
1213		bit-banging) driver instead of CPM or similar hardware
1214		support for I2C.
1215
1216		There are several other quantities that must also be
1217		defined when you define CONFIG_HARD_I2C or CONFIG_SOFT_I2C.
1218
1219		In both cases you will need to define CFG_I2C_SPEED
1220		to be the frequency (in Hz) at which you wish your i2c bus
1221		to run and CFG_I2C_SLAVE to be the address of this node (ie
1222		the cpu's i2c node address).
1223
1224		Now, the u-boot i2c code for the mpc8xx (cpu/mpc8xx/i2c.c)
1225		sets the cpu up as a master node and so its address should
1226		therefore be cleared to 0 (See, eg, MPC823e User's Manual
1227		p.16-473). So, set CFG_I2C_SLAVE to 0.
1228
1229		That's all that's required for CONFIG_HARD_I2C.
1230
1231		If you use the software i2c interface (CONFIG_SOFT_I2C)
1232		then the following macros need to be defined (examples are
1233		from include/configs/lwmon.h):
1234
1235		I2C_INIT
1236
1237		(Optional). Any commands necessary to enable the I2C
1238		controller or configure ports.
1239
1240		eg: #define I2C_INIT (immr->im_cpm.cp_pbdir |=	PB_SCL)
1241
1242		I2C_PORT
1243
1244		(Only for MPC8260 CPU). The I/O port to use (the code
1245		assumes both bits are on the same port). Valid values
1246		are 0..3 for ports A..D.
1247
1248		I2C_ACTIVE
1249
1250		The code necessary to make the I2C data line active
1251		(driven).  If the data line is open collector, this
1252		define can be null.
1253
1254		eg: #define I2C_ACTIVE (immr->im_cpm.cp_pbdir |=  PB_SDA)
1255
1256		I2C_TRISTATE
1257
1258		The code necessary to make the I2C data line tri-stated
1259		(inactive).  If the data line is open collector, this
1260		define can be null.
1261
1262		eg: #define I2C_TRISTATE (immr->im_cpm.cp_pbdir &= ~PB_SDA)
1263
1264		I2C_READ
1265
1266		Code that returns TRUE if the I2C data line is high,
1267		FALSE if it is low.
1268
1269		eg: #define I2C_READ ((immr->im_cpm.cp_pbdat & PB_SDA) != 0)
1270
1271		I2C_SDA(bit)
1272
1273		If <bit> is TRUE, sets the I2C data line high. If it
1274		is FALSE, it clears it (low).
1275
1276		eg: #define I2C_SDA(bit) \
1277			if(bit) immr->im_cpm.cp_pbdat |=  PB_SDA; \
1278			else	immr->im_cpm.cp_pbdat &= ~PB_SDA
1279
1280		I2C_SCL(bit)
1281
1282		If <bit> is TRUE, sets the I2C clock line high. If it
1283		is FALSE, it clears it (low).
1284
1285		eg: #define I2C_SCL(bit) \
1286			if(bit) immr->im_cpm.cp_pbdat |=  PB_SCL; \
1287			else	immr->im_cpm.cp_pbdat &= ~PB_SCL
1288
1289		I2C_DELAY
1290
1291		This delay is invoked four times per clock cycle so this
1292		controls the rate of data transfer.  The data rate thus
1293		is 1 / (I2C_DELAY * 4). Often defined to be something
1294		like:
1295
1296		#define I2C_DELAY  udelay(2)
1297
1298		CFG_I2C_INIT_BOARD
1299
1300		When a board is reset during an i2c bus transfer
1301		chips might think that the current transfer is still
1302		in progress. On some boards it is possible to access
1303		the i2c SCLK line directly, either by using the
1304		processor pin as a GPIO or by having a second pin
1305		connected to the bus. If this option is defined a
1306		custom i2c_init_board() routine in boards/xxx/board.c
1307		is run early in the boot sequence.
1308
1309		CONFIG_I2CFAST (PPC405GP|PPC405EP only)
1310
1311		This option enables configuration of bi_iic_fast[] flags
1312		in u-boot bd_info structure based on u-boot environment
1313		variable "i2cfast". (see also i2cfast)
1314
1315		CONFIG_I2C_MULTI_BUS
1316
1317		This option allows the use of multiple I2C buses, each of which
1318		must have a controller.  At any point in time, only one bus is
1319		active.  To switch to a different bus, use the 'i2c dev' command.
1320		Note that bus numbering is zero-based.
1321
1322		CFG_I2C_NOPROBES
1323
1324		This option specifies a list of I2C devices that will be skipped
1325		when the 'i2c probe' command is issued (or 'iprobe' using the legacy
1326		command).  If CONFIG_I2C_MULTI_BUS is set, specify a list of bus-device
1327		pairs.  Otherwise, specify a 1D array of device addresses
1328
1329		e.g.
1330			#undef	CONFIG_I2C_MULTI_BUS
1331			#define CFG_I2C_NOPROBES	{0x50,0x68}
1332
1333		will skip addresses 0x50 and 0x68 on a board with one I2C bus
1334
1335			#define	CONFIG_I2C_MULTI_BUS
1336			#define CFG_I2C_MULTI_NOPROBES	{{0,0x50},{0,0x68},{1,0x54}}
1337
1338		will skip addresses 0x50 and 0x68 on bus 0 and address 0x54 on bus 1
1339
1340		CFG_SPD_BUS_NUM
1341
1342		If defined, then this indicates the I2C bus number for DDR SPD.
1343		If not defined, then U-Boot assumes that SPD is on I2C bus 0.
1344
1345		CFG_RTC_BUS_NUM
1346
1347		If defined, then this indicates the I2C bus number for the RTC.
1348		If not defined, then U-Boot assumes that RTC is on I2C bus 0.
1349
1350		CFG_DTT_BUS_NUM
1351
1352		If defined, then this indicates the I2C bus number for the DTT.
1353		If not defined, then U-Boot assumes that DTT is on I2C bus 0.
1354
1355		CONFIG_FSL_I2C
1356
1357		Define this option if you want to use Freescale's I2C driver in
1358		drivers/i2c/fsl_i2c.c.
1359
1360
1361- SPI Support:	CONFIG_SPI
1362
1363		Enables SPI driver (so far only tested with
1364		SPI EEPROM, also an instance works with Crystal A/D and
1365		D/As on the SACSng board)
1366
1367		CONFIG_SPI_X
1368
1369		Enables extended (16-bit) SPI EEPROM addressing.
1370		(symmetrical to CONFIG_I2C_X)
1371
1372		CONFIG_SOFT_SPI
1373
1374		Enables a software (bit-bang) SPI driver rather than
1375		using hardware support. This is a general purpose
1376		driver that only requires three general I/O port pins
1377		(two outputs, one input) to function. If this is
1378		defined, the board configuration must define several
1379		SPI configuration items (port pins to use, etc). For
1380		an example, see include/configs/sacsng.h.
1381
1382		CONFIG_HARD_SPI
1383
1384		Enables a hardware SPI driver for general-purpose reads
1385		and writes.  As with CONFIG_SOFT_SPI, the board configuration
1386		must define a list of chip-select function pointers.
1387		Currently supported on some MPC8xxx processors.  For an
1388		example, see include/configs/mpc8349emds.h.
1389
1390- FPGA Support: CONFIG_FPGA
1391
1392		Enables FPGA subsystem.
1393
1394		CONFIG_FPGA_<vendor>
1395
1396		Enables support for specific chip vendors.
1397		(ALTERA, XILINX)
1398
1399		CONFIG_FPGA_<family>
1400
1401		Enables support for FPGA family.
1402		(SPARTAN2, SPARTAN3, VIRTEX2, CYCLONE2, ACEX1K, ACEX)
1403
1404		CONFIG_FPGA_COUNT
1405
1406		Specify the number of FPGA devices to support.
1407
1408		CFG_FPGA_PROG_FEEDBACK
1409
1410		Enable printing of hash marks during FPGA configuration.
1411
1412		CFG_FPGA_CHECK_BUSY
1413
1414		Enable checks on FPGA configuration interface busy
1415		status by the configuration function. This option
1416		will require a board or device specific function to
1417		be written.
1418
1419		CONFIG_FPGA_DELAY
1420
1421		If defined, a function that provides delays in the FPGA
1422		configuration driver.
1423
1424		CFG_FPGA_CHECK_CTRLC
1425		Allow Control-C to interrupt FPGA configuration
1426
1427		CFG_FPGA_CHECK_ERROR
1428
1429		Check for configuration errors during FPGA bitfile
1430		loading. For example, abort during Virtex II
1431		configuration if the INIT_B line goes low (which
1432		indicated a CRC error).
1433
1434		CFG_FPGA_WAIT_INIT
1435
1436		Maximum time to wait for the INIT_B line to deassert
1437		after PROB_B has been deasserted during a Virtex II
1438		FPGA configuration sequence. The default time is 500
1439		mS.
1440
1441		CFG_FPGA_WAIT_BUSY
1442
1443		Maximum time to wait for BUSY to deassert during
1444		Virtex II FPGA configuration. The default is 5 mS.
1445
1446		CFG_FPGA_WAIT_CONFIG
1447
1448		Time to wait after FPGA configuration. The default is
1449		200 mS.
1450
1451- Configuration Management:
1452		CONFIG_IDENT_STRING
1453
1454		If defined, this string will be added to the U-Boot
1455		version information (U_BOOT_VERSION)
1456
1457- Vendor Parameter Protection:
1458
1459		U-Boot considers the values of the environment
1460		variables "serial#" (Board Serial Number) and
1461		"ethaddr" (Ethernet Address) to be parameters that
1462		are set once by the board vendor / manufacturer, and
1463		protects these variables from casual modification by
1464		the user. Once set, these variables are read-only,
1465		and write or delete attempts are rejected. You can
1466		change this behviour:
1467
1468		If CONFIG_ENV_OVERWRITE is #defined in your config
1469		file, the write protection for vendor parameters is
1470		completely disabled. Anybody can change or delete
1471		these parameters.
1472
1473		Alternatively, if you #define _both_ CONFIG_ETHADDR
1474		_and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default
1475		ethernet address is installed in the environment,
1476		which can be changed exactly ONCE by the user. [The
1477		serial# is unaffected by this, i. e. it remains
1478		read-only.]
1479
1480- Protected RAM:
1481		CONFIG_PRAM
1482
1483		Define this variable to enable the reservation of
1484		"protected RAM", i. e. RAM which is not overwritten
1485		by U-Boot. Define CONFIG_PRAM to hold the number of
1486		kB you want to reserve for pRAM. You can overwrite
1487		this default value by defining an environment
1488		variable "pram" to the number of kB you want to
1489		reserve. Note that the board info structure will
1490		still show the full amount of RAM. If pRAM is
1491		reserved, a new environment variable "mem" will
1492		automatically be defined to hold the amount of
1493		remaining RAM in a form that can be passed as boot
1494		argument to Linux, for instance like that:
1495
1496			setenv bootargs ... mem=\${mem}
1497			saveenv
1498
1499		This way you can tell Linux not to use this memory,
1500		either, which results in a memory region that will
1501		not be affected by reboots.
1502
1503		*WARNING* If your board configuration uses automatic
1504		detection of the RAM size, you must make sure that
1505		this memory test is non-destructive. So far, the
1506		following board configurations are known to be
1507		"pRAM-clean":
1508
1509			ETX094, IVMS8, IVML24, SPD8xx, TQM8xxL,
1510			HERMES, IP860, RPXlite, LWMON, LANTEC,
1511			PCU_E, FLAGADM, TQM8260
1512
1513- Error Recovery:
1514		CONFIG_PANIC_HANG
1515
1516		Define this variable to stop the system in case of a
1517		fatal error, so that you have to reset it manually.
1518		This is probably NOT a good idea for an embedded
1519		system where you want to system to reboot
1520		automatically as fast as possible, but it may be
1521		useful during development since you can try to debug
1522		the conditions that lead to the situation.
1523
1524		CONFIG_NET_RETRY_COUNT
1525
1526		This variable defines the number of retries for
1527		network operations like ARP, RARP, TFTP, or BOOTP
1528		before giving up the operation. If not defined, a
1529		default value of 5 is used.
1530
1531- Command Interpreter:
1532		CONFIG_AUTO_COMPLETE
1533
1534		Enable auto completion of commands using TAB.
1535
1536		Note that this feature has NOT been implemented yet
1537		for the "hush" shell.
1538
1539
1540		CFG_HUSH_PARSER
1541
1542		Define this variable to enable the "hush" shell (from
1543		Busybox) as command line interpreter, thus enabling
1544		powerful command line syntax like
1545		if...then...else...fi conditionals or `&&' and '||'
1546		constructs ("shell scripts").
1547
1548		If undefined, you get the old, much simpler behaviour
1549		with a somewhat smaller memory footprint.
1550
1551
1552		CFG_PROMPT_HUSH_PS2
1553
1554		This defines the secondary prompt string, which is
1555		printed when the command interpreter needs more input
1556		to complete a command. Usually "> ".
1557
1558	Note:
1559
1560		In the current implementation, the local variables
1561		space and global environment variables space are
1562		separated. Local variables are those you define by
1563		simply typing `name=value'. To access a local
1564		variable later on, you have write `$name' or
1565		`${name}'; to execute the contents of a variable
1566		directly type `$name' at the command prompt.
1567
1568		Global environment variables are those you use
1569		setenv/printenv to work with. To run a command stored
1570		in such a variable, you need to use the run command,
1571		and you must not use the '$' sign to access them.
1572
1573		To store commands and special characters in a
1574		variable, please use double quotation marks
1575		surrounding the whole text of the variable, instead
1576		of the backslashes before semicolons and special
1577		symbols.
1578
1579- Commandline Editing and History:
1580		CONFIG_CMDLINE_EDITING
1581
1582		Enable editiong and History functions for interactive
1583		commandline input operations
1584
1585- Default Environment:
1586		CONFIG_EXTRA_ENV_SETTINGS
1587
1588		Define this to contain any number of null terminated
1589		strings (variable = value pairs) that will be part of
1590		the default environment compiled into the boot image.
1591
1592		For example, place something like this in your
1593		board's config file:
1594
1595		#define CONFIG_EXTRA_ENV_SETTINGS \
1596			"myvar1=value1\0" \
1597			"myvar2=value2\0"
1598
1599		Warning: This method is based on knowledge about the
1600		internal format how the environment is stored by the
1601		U-Boot code. This is NOT an official, exported
1602		interface! Although it is unlikely that this format
1603		will change soon, there is no guarantee either.
1604		You better know what you are doing here.
1605
1606		Note: overly (ab)use of the default environment is
1607		discouraged. Make sure to check other ways to preset
1608		the environment like the autoscript function or the
1609		boot command first.
1610
1611- DataFlash Support:
1612		CONFIG_HAS_DATAFLASH
1613
1614		Defining this option enables DataFlash features and
1615		allows to read/write in Dataflash via the standard
1616		commands cp, md...
1617
1618- SystemACE Support:
1619		CONFIG_SYSTEMACE
1620
1621		Adding this option adds support for Xilinx SystemACE
1622		chips attached via some sort of local bus. The address
1623		of the chip must alsh be defined in the
1624		CFG_SYSTEMACE_BASE macro. For example:
1625
1626		#define CONFIG_SYSTEMACE
1627		#define CFG_SYSTEMACE_BASE 0xf0000000
1628
1629		When SystemACE support is added, the "ace" device type
1630		becomes available to the fat commands, i.e. fatls.
1631
1632- TFTP Fixed UDP Port:
1633		CONFIG_TFTP_PORT
1634
1635		If this is defined, the environment variable tftpsrcp
1636		is used to supply the TFTP UDP source port value.
1637		If tftpsrcp isn't defined, the normal pseudo-random port
1638		number generator is used.
1639
1640		Also, the environment variable tftpdstp is used to supply
1641		the TFTP UDP destination port value.  If tftpdstp isn't
1642		defined, the normal port 69 is used.
1643
1644		The purpose for tftpsrcp is to allow a TFTP server to
1645		blindly start the TFTP transfer using the pre-configured
1646		target IP address and UDP port. This has the effect of
1647		"punching through" the (Windows XP) firewall, allowing
1648		the remainder of the TFTP transfer to proceed normally.
1649		A better solution is to properly configure the firewall,
1650		but sometimes that is not allowed.
1651
1652- Show boot progress:
1653		CONFIG_SHOW_BOOT_PROGRESS
1654
1655		Defining this option allows to add some board-
1656		specific code (calling a user-provided function
1657		"show_boot_progress(int)") that enables you to show
1658		the system's boot progress on some display (for
1659		example, some LED's) on your board. At the moment,
1660		the following checkpoints are implemented:
1661
1662  Arg	Where			When
1663    1	common/cmd_bootm.c	before attempting to boot an image
1664   -1	common/cmd_bootm.c	Image header has bad	 magic number
1665    2	common/cmd_bootm.c	Image header has correct magic number
1666   -2	common/cmd_bootm.c	Image header has bad	 checksum
1667    3	common/cmd_bootm.c	Image header has correct checksum
1668   -3	common/cmd_bootm.c	Image data   has bad	 checksum
1669    4	common/cmd_bootm.c	Image data   has correct checksum
1670   -4	common/cmd_bootm.c	Image is for unsupported architecture
1671    5	common/cmd_bootm.c	Architecture check OK
1672   -5	common/cmd_bootm.c	Wrong Image Type (not kernel, multi, standalone)
1673    6	common/cmd_bootm.c	Image Type check OK
1674   -6	common/cmd_bootm.c	gunzip uncompression error
1675   -7	common/cmd_bootm.c	Unimplemented compression type
1676    7	common/cmd_bootm.c	Uncompression OK
1677   -8	common/cmd_bootm.c	Wrong Image Type (not kernel, multi, standalone)
1678    8	common/cmd_bootm.c	Image Type check OK
1679   -9	common/cmd_bootm.c	Unsupported OS (not Linux, BSD, VxWorks, QNX)
1680    9	common/cmd_bootm.c	Start initial ramdisk verification
1681  -10	common/cmd_bootm.c	Ramdisk header has bad	   magic number
1682  -11	common/cmd_bootm.c	Ramdisk header has bad	   checksum
1683   10	common/cmd_bootm.c	Ramdisk header is OK
1684  -12	common/cmd_bootm.c	Ramdisk data   has bad	   checksum
1685   11	common/cmd_bootm.c	Ramdisk data   has correct checksum
1686   12	common/cmd_bootm.c	Ramdisk verification complete, start loading
1687  -13	common/cmd_bootm.c	Wrong Image Type (not PPC Linux Ramdisk)
1688   13	common/cmd_bootm.c	Start multifile image verification
1689   14	common/cmd_bootm.c	No initial ramdisk, no multifile, continue.
1690   15	common/cmd_bootm.c	All preparation done, transferring control to OS
1691
1692  -30	lib_ppc/board.c		Fatal error, hang the system
1693  -31	post/post.c		POST test failed, detected by post_output_backlog()
1694  -32	post/post.c		POST test failed, detected by post_run_single()
1695
1696   34	common/cmd_doc.c	before loading a Image from a DOC device
1697  -35	common/cmd_doc.c	Bad usage of "doc" command
1698   35	common/cmd_doc.c	correct usage of "doc" command
1699  -36	common/cmd_doc.c	No boot device
1700   36	common/cmd_doc.c	correct boot device
1701  -37	common/cmd_doc.c	Unknown Chip ID on boot device
1702   37	common/cmd_doc.c	correct chip ID found, device available
1703  -38	common/cmd_doc.c	Read Error on boot device
1704   38	common/cmd_doc.c	reading Image header from DOC device OK
1705  -39	common/cmd_doc.c	Image header has bad magic number
1706   39	common/cmd_doc.c	Image header has correct magic number
1707  -40	common/cmd_doc.c	Error reading Image from DOC device
1708   40	common/cmd_doc.c	Image header has correct magic number
1709   41	common/cmd_ide.c	before loading a Image from a IDE device
1710  -42	common/cmd_ide.c	Bad usage of "ide" command
1711   42	common/cmd_ide.c	correct usage of "ide" command
1712  -43	common/cmd_ide.c	No boot device
1713   43	common/cmd_ide.c	boot device found
1714  -44	common/cmd_ide.c	Device not available
1715   44	common/cmd_ide.c	Device available
1716  -45	common/cmd_ide.c	wrong partition selected
1717   45	common/cmd_ide.c	partition selected
1718  -46	common/cmd_ide.c	Unknown partition table
1719   46	common/cmd_ide.c	valid partition table found
1720  -47	common/cmd_ide.c	Invalid partition type
1721   47	common/cmd_ide.c	correct partition type
1722  -48	common/cmd_ide.c	Error reading Image Header on boot device
1723   48	common/cmd_ide.c	reading Image Header from IDE device OK
1724  -49	common/cmd_ide.c	Image header has bad magic number
1725   49	common/cmd_ide.c	Image header has correct magic number
1726  -50	common/cmd_ide.c	Image header has bad	 checksum
1727   50	common/cmd_ide.c	Image header has correct checksum
1728  -51	common/cmd_ide.c	Error reading Image from IDE device
1729   51	common/cmd_ide.c	reading Image from IDE device OK
1730   52	common/cmd_nand.c	before loading a Image from a NAND device
1731  -53	common/cmd_nand.c	Bad usage of "nand" command
1732   53	common/cmd_nand.c	correct usage of "nand" command
1733  -54	common/cmd_nand.c	No boot device
1734   54	common/cmd_nand.c	boot device found
1735  -55	common/cmd_nand.c	Unknown Chip ID on boot device
1736   55	common/cmd_nand.c	correct chip ID found, device available
1737  -56	common/cmd_nand.c	Error reading Image Header on boot device
1738   56	common/cmd_nand.c	reading Image Header from NAND device OK
1739  -57	common/cmd_nand.c	Image header has bad magic number
1740   57	common/cmd_nand.c	Image header has correct magic number
1741  -58	common/cmd_nand.c	Error reading Image from NAND device
1742   58	common/cmd_nand.c	reading Image from NAND device OK
1743
1744  -60	common/env_common.c	Environment has a bad CRC, using default
1745
1746   64	net/eth.c		starting with Ethernetconfiguration.
1747  -64	net/eth.c		no Ethernet found.
1748   65	net/eth.c		Ethernet found.
1749
1750  -80	common/cmd_net.c	usage wrong
1751   80	common/cmd_net.c	before calling NetLoop()
1752  -81	common/cmd_net.c	some error in NetLoop() occured
1753   81	common/cmd_net.c	NetLoop() back without error
1754  -82	common/cmd_net.c	size == 0 (File with size 0 loaded)
1755   82	common/cmd_net.c	trying automatic boot
1756   83	common/cmd_net.c	running autoscript
1757  -83	common/cmd_net.c	some error in automatic boot or autoscript
1758   84	common/cmd_net.c	end without errors
1759
1760Modem Support:
1761--------------
1762
1763[so far only for SMDK2400 and TRAB boards]
1764
1765- Modem support endable:
1766		CONFIG_MODEM_SUPPORT
1767
1768- RTS/CTS Flow control enable:
1769		CONFIG_HWFLOW
1770
1771- Modem debug support:
1772		CONFIG_MODEM_SUPPORT_DEBUG
1773
1774		Enables debugging stuff (char screen[1024], dbg())
1775		for modem support. Useful only with BDI2000.
1776
1777- Interrupt support (PPC):
1778
1779		There are common interrupt_init() and timer_interrupt()
1780		for all PPC archs. interrupt_init() calls interrupt_init_cpu()
1781		for cpu specific initialization. interrupt_init_cpu()
1782		should set decrementer_count to appropriate value. If
1783		cpu resets decrementer automatically after interrupt
1784		(ppc4xx) it should set decrementer_count to zero.
1785		timer_interrupt() calls timer_interrupt_cpu() for cpu
1786		specific handling. If board has watchdog / status_led
1787		/ other_activity_monitor it works automatically from
1788		general timer_interrupt().
1789
1790- General:
1791
1792		In the target system modem support is enabled when a
1793		specific key (key combination) is pressed during
1794		power-on. Otherwise U-Boot will boot normally
1795		(autoboot). The key_pressed() fuction is called from
1796		board_init(). Currently key_pressed() is a dummy
1797		function, returning 1 and thus enabling modem
1798		initialization.
1799
1800		If there are no modem init strings in the
1801		environment, U-Boot proceed to autoboot; the
1802		previous output (banner, info printfs) will be
1803		supressed, though.
1804
1805		See also: doc/README.Modem
1806
1807
1808Configuration Settings:
1809-----------------------
1810
1811- CFG_LONGHELP: Defined when you want long help messages included;
1812		undefine this when you're short of memory.
1813
1814- CFG_PROMPT:	This is what U-Boot prints on the console to
1815		prompt for user input.
1816
1817- CFG_CBSIZE:	Buffer size for input from the Console
1818
1819- CFG_PBSIZE:	Buffer size for Console output
1820
1821- CFG_MAXARGS:	max. Number of arguments accepted for monitor commands
1822
1823- CFG_BARGSIZE: Buffer size for Boot Arguments which are passed to
1824		the application (usually a Linux kernel) when it is
1825		booted
1826
1827- CFG_BAUDRATE_TABLE:
1828		List of legal baudrate settings for this board.
1829
1830- CFG_CONSOLE_INFO_QUIET
1831		Suppress display of console information at boot.
1832
1833- CFG_CONSOLE_IS_IN_ENV
1834		If the board specific function
1835			extern int overwrite_console (void);
1836		returns 1, the stdin, stderr and stdout are switched to the
1837		serial port, else the settings in the environment are used.
1838
1839- CFG_CONSOLE_OVERWRITE_ROUTINE
1840		Enable the call to overwrite_console().
1841
1842- CFG_CONSOLE_ENV_OVERWRITE
1843		Enable overwrite of previous console environment settings.
1844
1845- CFG_MEMTEST_START, CFG_MEMTEST_END:
1846		Begin and End addresses of the area used by the
1847		simple memory test.
1848
1849- CFG_ALT_MEMTEST:
1850		Enable an alternate, more extensive memory test.
1851
1852- CFG_MEMTEST_SCRATCH:
1853		Scratch address used by the alternate memory test
1854		You only need to set this if address zero isn't writeable
1855
1856- CFG_TFTP_LOADADDR:
1857		Default load address for network file downloads
1858
1859- CFG_LOADS_BAUD_CHANGE:
1860		Enable temporary baudrate change while serial download
1861
1862- CFG_SDRAM_BASE:
1863		Physical start address of SDRAM. _Must_ be 0 here.
1864
1865- CFG_MBIO_BASE:
1866		Physical start address of Motherboard I/O (if using a
1867		Cogent motherboard)
1868
1869- CFG_FLASH_BASE:
1870		Physical start address of Flash memory.
1871
1872- CFG_MONITOR_BASE:
1873		Physical start address of boot monitor code (set by
1874		make config files to be same as the text base address
1875		(TEXT_BASE) used when linking) - same as
1876		CFG_FLASH_BASE when booting from flash.
1877
1878- CFG_MONITOR_LEN:
1879		Size of memory reserved for monitor code, used to
1880		determine _at_compile_time_ (!) if the environment is
1881		embedded within the U-Boot image, or in a separate
1882		flash sector.
1883
1884- CFG_MALLOC_LEN:
1885		Size of DRAM reserved for malloc() use.
1886
1887- CFG_BOOTM_LEN:
1888		Normally compressed uImages are limited to an
1889		uncompressed size of 8 MBytes. If this is not enough,
1890		you can define CFG_BOOTM_LEN in your board config file
1891		to adjust this setting to your needs.
1892
1893- CFG_BOOTMAPSZ:
1894		Maximum size of memory mapped by the startup code of
1895		the Linux kernel; all data that must be processed by
1896		the Linux kernel (bd_info, boot arguments, eventually
1897		initrd image) must be put below this limit.
1898
1899- CFG_MAX_FLASH_BANKS:
1900		Max number of Flash memory banks
1901
1902- CFG_MAX_FLASH_SECT:
1903		Max number of sectors on a Flash chip
1904
1905- CFG_FLASH_ERASE_TOUT:
1906		Timeout for Flash erase operations (in ms)
1907
1908- CFG_FLASH_WRITE_TOUT:
1909		Timeout for Flash write operations (in ms)
1910
1911- CFG_FLASH_LOCK_TOUT
1912		Timeout for Flash set sector lock bit operation (in ms)
1913
1914- CFG_FLASH_UNLOCK_TOUT
1915		Timeout for Flash clear lock bits operation (in ms)
1916
1917- CFG_FLASH_PROTECTION
1918		If defined, hardware flash sectors protection is used
1919		instead of U-Boot software protection.
1920
1921- CFG_DIRECT_FLASH_TFTP:
1922
1923		Enable TFTP transfers directly to flash memory;
1924		without this option such a download has to be
1925		performed in two steps: (1) download to RAM, and (2)
1926		copy from RAM to flash.
1927
1928		The two-step approach is usually more reliable, since
1929		you can check if the download worked before you erase
1930		the flash, but in some situations (when sytem RAM is
1931		too limited to allow for a tempory copy of the
1932		downloaded image) this option may be very useful.
1933
1934- CFG_FLASH_CFI:
1935		Define if the flash driver uses extra elements in the
1936		common flash structure for storing flash geometry.
1937
1938- CFG_FLASH_CFI_DRIVER
1939		This option also enables the building of the cfi_flash driver
1940		in the drivers directory
1941
1942- CFG_FLASH_QUIET_TEST
1943		If this option is defined, the common CFI flash doesn't
1944		print it's warning upon not recognized FLASH banks. This
1945		is useful, if some of the configured banks are only
1946		optionally available.
1947
1948- CFG_RX_ETH_BUFFER:
1949		Defines the number of ethernet receive buffers. On some
1950		ethernet controllers it is recommended to set this value
1951		to 8 or even higher (EEPRO100 or 405 EMAC), since all
1952		buffers can be full shortly after enabling the interface
1953		on high ethernet traffic.
1954		Defaults to 4 if not defined.
1955
1956The following definitions that deal with the placement and management
1957of environment data (variable area); in general, we support the
1958following configurations:
1959
1960- CFG_ENV_IS_IN_FLASH:
1961
1962	Define this if the environment is in flash memory.
1963
1964	a) The environment occupies one whole flash sector, which is
1965	   "embedded" in the text segment with the U-Boot code. This
1966	   happens usually with "bottom boot sector" or "top boot
1967	   sector" type flash chips, which have several smaller
1968	   sectors at the start or the end. For instance, such a
1969	   layout can have sector sizes of 8, 2x4, 16, Nx32 kB. In
1970	   such a case you would place the environment in one of the
1971	   4 kB sectors - with U-Boot code before and after it. With
1972	   "top boot sector" type flash chips, you would put the
1973	   environment in one of the last sectors, leaving a gap
1974	   between U-Boot and the environment.
1975
1976	- CFG_ENV_OFFSET:
1977
1978	   Offset of environment data (variable area) to the
1979	   beginning of flash memory; for instance, with bottom boot
1980	   type flash chips the second sector can be used: the offset
1981	   for this sector is given here.
1982
1983	   CFG_ENV_OFFSET is used relative to CFG_FLASH_BASE.
1984
1985	- CFG_ENV_ADDR:
1986
1987	   This is just another way to specify the start address of
1988	   the flash sector containing the environment (instead of
1989	   CFG_ENV_OFFSET).
1990
1991	- CFG_ENV_SECT_SIZE:
1992
1993	   Size of the sector containing the environment.
1994
1995
1996	b) Sometimes flash chips have few, equal sized, BIG sectors.
1997	   In such a case you don't want to spend a whole sector for
1998	   the environment.
1999
2000	- CFG_ENV_SIZE:
2001
2002	   If you use this in combination with CFG_ENV_IS_IN_FLASH
2003	   and CFG_ENV_SECT_SIZE, you can specify to use only a part
2004	   of this flash sector for the environment. This saves
2005	   memory for the RAM copy of the environment.
2006
2007	   It may also save flash memory if you decide to use this
2008	   when your environment is "embedded" within U-Boot code,
2009	   since then the remainder of the flash sector could be used
2010	   for U-Boot code. It should be pointed out that this is
2011	   STRONGLY DISCOURAGED from a robustness point of view:
2012	   updating the environment in flash makes it always
2013	   necessary to erase the WHOLE sector. If something goes
2014	   wrong before the contents has been restored from a copy in
2015	   RAM, your target system will be dead.
2016
2017	- CFG_ENV_ADDR_REDUND
2018	  CFG_ENV_SIZE_REDUND
2019
2020	   These settings describe a second storage area used to hold
2021	   a redundand copy of the environment data, so that there is
2022	   a valid backup copy in case there is a power failure during
2023	   a "saveenv" operation.
2024
2025BE CAREFUL! Any changes to the flash layout, and some changes to the
2026source code will make it necessary to adapt <board>/u-boot.lds*
2027accordingly!
2028
2029
2030- CFG_ENV_IS_IN_NVRAM:
2031
2032	Define this if you have some non-volatile memory device
2033	(NVRAM, battery buffered SRAM) which you want to use for the
2034	environment.
2035
2036	- CFG_ENV_ADDR:
2037	- CFG_ENV_SIZE:
2038
2039	  These two #defines are used to determin the memory area you
2040	  want to use for environment. It is assumed that this memory
2041	  can just be read and written to, without any special
2042	  provision.
2043
2044BE CAREFUL! The first access to the environment happens quite early
2045in U-Boot initalization (when we try to get the setting of for the
2046console baudrate). You *MUST* have mappend your NVRAM area then, or
2047U-Boot will hang.
2048
2049Please note that even with NVRAM we still use a copy of the
2050environment in RAM: we could work on NVRAM directly, but we want to
2051keep settings there always unmodified except somebody uses "saveenv"
2052to save the current settings.
2053
2054
2055- CFG_ENV_IS_IN_EEPROM:
2056
2057	Use this if you have an EEPROM or similar serial access
2058	device and a driver for it.
2059
2060	- CFG_ENV_OFFSET:
2061	- CFG_ENV_SIZE:
2062
2063	  These two #defines specify the offset and size of the
2064	  environment area within the total memory of your EEPROM.
2065
2066	- CFG_I2C_EEPROM_ADDR:
2067	  If defined, specified the chip address of the EEPROM device.
2068	  The default address is zero.
2069
2070	- CFG_EEPROM_PAGE_WRITE_BITS:
2071	  If defined, the number of bits used to address bytes in a
2072	  single page in the EEPROM device.  A 64 byte page, for example
2073	  would require six bits.
2074
2075	- CFG_EEPROM_PAGE_WRITE_DELAY_MS:
2076	  If defined, the number of milliseconds to delay between
2077	  page writes.	The default is zero milliseconds.
2078
2079	- CFG_I2C_EEPROM_ADDR_LEN:
2080	  The length in bytes of the EEPROM memory array address.  Note
2081	  that this is NOT the chip address length!
2082
2083	- CFG_I2C_EEPROM_ADDR_OVERFLOW:
2084	  EEPROM chips that implement "address overflow" are ones
2085	  like Catalyst 24WC04/08/16 which has 9/10/11 bits of
2086	  address and the extra bits end up in the "chip address" bit
2087	  slots. This makes a 24WC08 (1Kbyte) chip look like four 256
2088	  byte chips.
2089
2090	  Note that we consider the length of the address field to
2091	  still be one byte because the extra address bits are hidden
2092	  in the chip address.
2093
2094	- CFG_EEPROM_SIZE:
2095	  The size in bytes of the EEPROM device.
2096
2097
2098- CFG_ENV_IS_IN_DATAFLASH:
2099
2100	Define this if you have a DataFlash memory device which you
2101	want to use for the environment.
2102
2103	- CFG_ENV_OFFSET:
2104	- CFG_ENV_ADDR:
2105	- CFG_ENV_SIZE:
2106
2107	  These three #defines specify the offset and size of the
2108	  environment area within the total memory of your DataFlash placed
2109	  at the specified address.
2110
2111- CFG_ENV_IS_IN_NAND:
2112
2113	Define this if you have a NAND device which you want to use
2114	for the environment.
2115
2116	- CFG_ENV_OFFSET:
2117	- CFG_ENV_SIZE:
2118
2119	  These two #defines specify the offset and size of the environment
2120	  area within the first NAND device.
2121
2122	- CFG_ENV_OFFSET_REDUND
2123
2124	  This setting describes a second storage area of CFG_ENV_SIZE
2125	  size used to hold a redundant copy of the environment data,
2126	  so that there is a valid backup copy in case there is a
2127	  power failure during a "saveenv" operation.
2128
2129	Note: CFG_ENV_OFFSET and CFG_ENV_OFFSET_REDUND must be aligned
2130	to a block boundary, and CFG_ENV_SIZE must be a multiple of
2131	the NAND devices block size.
2132
2133- CFG_SPI_INIT_OFFSET
2134
2135	Defines offset to the initial SPI buffer area in DPRAM. The
2136	area is used at an early stage (ROM part) if the environment
2137	is configured to reside in the SPI EEPROM: We need a 520 byte
2138	scratch DPRAM area. It is used between the two initialization
2139	calls (spi_init_f() and spi_init_r()). A value of 0xB00 seems
2140	to be a good choice since it makes it far enough from the
2141	start of the data area as well as from the stack pointer.
2142
2143Please note that the environment is read-only until the monitor
2144has been relocated to RAM and a RAM copy of the environment has been
2145created; also, when using EEPROM you will have to use getenv_r()
2146until then to read environment variables.
2147
2148The environment is protected by a CRC32 checksum. Before the monitor
2149is relocated into RAM, as a result of a bad CRC you will be working
2150with the compiled-in default environment - *silently*!!! [This is
2151necessary, because the first environment variable we need is the
2152"baudrate" setting for the console - if we have a bad CRC, we don't
2153have any device yet where we could complain.]
2154
2155Note: once the monitor has been relocated, then it will complain if
2156the default environment is used; a new CRC is computed as soon as you
2157use the "saveenv" command to store a valid environment.
2158
2159- CFG_FAULT_ECHO_LINK_DOWN:
2160		Echo the inverted Ethernet link state to the fault LED.
2161
2162		Note: If this option is active, then CFG_FAULT_MII_ADDR
2163		      also needs to be defined.
2164
2165- CFG_FAULT_MII_ADDR:
2166		MII address of the PHY to check for the Ethernet link state.
2167
2168- CFG_64BIT_VSPRINTF:
2169		Makes vsprintf (and all *printf functions) support printing
2170		of 64bit values by using the L quantifier
2171
2172- CFG_64BIT_STRTOUL:
2173		Adds simple_strtoull that returns a 64bit value
2174
2175Low Level (hardware related) configuration options:
2176---------------------------------------------------
2177
2178- CFG_CACHELINE_SIZE:
2179		Cache Line Size of the CPU.
2180
2181- CFG_DEFAULT_IMMR:
2182		Default address of the IMMR after system reset.
2183
2184		Needed on some 8260 systems (MPC8260ADS, PQ2FADS-ZU,
2185		and RPXsuper) to be able to adjust the position of
2186		the IMMR register after a reset.
2187
2188- Floppy Disk Support:
2189		CFG_FDC_DRIVE_NUMBER
2190
2191		the default drive number (default value 0)
2192
2193		CFG_ISA_IO_STRIDE
2194
2195		defines the spacing between fdc chipset registers
2196		(default value 1)
2197
2198		CFG_ISA_IO_OFFSET
2199
2200		defines the offset of register from address. It
2201		depends on which part of the data bus is connected to
2202		the fdc chipset. (default value 0)
2203
2204		If CFG_ISA_IO_STRIDE CFG_ISA_IO_OFFSET and
2205		CFG_FDC_DRIVE_NUMBER are undefined, they take their
2206		default value.
2207
2208		if CFG_FDC_HW_INIT is defined, then the function
2209		fdc_hw_init() is called at the beginning of the FDC
2210		setup. fdc_hw_init() must be provided by the board
2211		source code. It is used to make hardware dependant
2212		initializations.
2213
2214- CFG_IMMR:	Physical address of the Internal Memory.
2215		DO NOT CHANGE unless you know exactly what you're
2216		doing! (11-4) [MPC8xx/82xx systems only]
2217
2218- CFG_INIT_RAM_ADDR:
2219
2220		Start address of memory area that can be used for
2221		initial data and stack; please note that this must be
2222		writable memory that is working WITHOUT special
2223		initialization, i. e. you CANNOT use normal RAM which
2224		will become available only after programming the
2225		memory controller and running certain initialization
2226		sequences.
2227
2228		U-Boot uses the following memory types:
2229		- MPC8xx and MPC8260: IMMR (internal memory of the CPU)
2230		- MPC824X: data cache
2231		- PPC4xx:  data cache
2232
2233- CFG_GBL_DATA_OFFSET:
2234
2235		Offset of the initial data structure in the memory
2236		area defined by CFG_INIT_RAM_ADDR. Usually
2237		CFG_GBL_DATA_OFFSET is chosen such that the initial
2238		data is located at the end of the available space
2239		(sometimes written as (CFG_INIT_RAM_END -
2240		CFG_INIT_DATA_SIZE), and the initial stack is just
2241		below that area (growing from (CFG_INIT_RAM_ADDR +
2242		CFG_GBL_DATA_OFFSET) downward.
2243
2244	Note:
2245		On the MPC824X (or other systems that use the data
2246		cache for initial memory) the address chosen for
2247		CFG_INIT_RAM_ADDR is basically arbitrary - it must
2248		point to an otherwise UNUSED address space between
2249		the top of RAM and the start of the PCI space.
2250
2251- CFG_SIUMCR:	SIU Module Configuration (11-6)
2252
2253- CFG_SYPCR:	System Protection Control (11-9)
2254
2255- CFG_TBSCR:	Time Base Status and Control (11-26)
2256
2257- CFG_PISCR:	Periodic Interrupt Status and Control (11-31)
2258
2259- CFG_PLPRCR:	PLL, Low-Power, and Reset Control Register (15-30)
2260
2261- CFG_SCCR:	System Clock and reset Control Register (15-27)
2262
2263- CFG_OR_TIMING_SDRAM:
2264		SDRAM timing
2265
2266- CFG_MAMR_PTA:
2267		periodic timer for refresh
2268
2269- CFG_DER:	Debug Event Register (37-47)
2270
2271- FLASH_BASE0_PRELIM, FLASH_BASE1_PRELIM, CFG_REMAP_OR_AM,
2272  CFG_PRELIM_OR_AM, CFG_OR_TIMING_FLASH, CFG_OR0_REMAP,
2273  CFG_OR0_PRELIM, CFG_BR0_PRELIM, CFG_OR1_REMAP, CFG_OR1_PRELIM,
2274  CFG_BR1_PRELIM:
2275		Memory Controller Definitions: BR0/1 and OR0/1 (FLASH)
2276
2277- SDRAM_BASE2_PRELIM, SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE,
2278  CFG_OR_TIMING_SDRAM, CFG_OR2_PRELIM, CFG_BR2_PRELIM,
2279  CFG_OR3_PRELIM, CFG_BR3_PRELIM:
2280		Memory Controller Definitions: BR2/3 and OR2/3 (SDRAM)
2281
2282- CFG_MAMR_PTA, CFG_MPTPR_2BK_4K, CFG_MPTPR_1BK_4K, CFG_MPTPR_2BK_8K,
2283  CFG_MPTPR_1BK_8K, CFG_MAMR_8COL, CFG_MAMR_9COL:
2284		Machine Mode Register and Memory Periodic Timer
2285		Prescaler definitions (SDRAM timing)
2286
2287- CFG_I2C_UCODE_PATCH, CFG_I2C_DPMEM_OFFSET [0x1FC0]:
2288		enable I2C microcode relocation patch (MPC8xx);
2289		define relocation offset in DPRAM [DSP2]
2290
2291- CFG_SMC_UCODE_PATCH, CFG_SMC_DPMEM_OFFSET [0x1FC0]:
2292		enable SMC microcode relocation patch (MPC8xx);
2293		define relocation offset in DPRAM [SMC1]
2294
2295- CFG_SPI_UCODE_PATCH, CFG_SPI_DPMEM_OFFSET [0x1FC0]:
2296		enable SPI microcode relocation patch (MPC8xx);
2297		define relocation offset in DPRAM [SCC4]
2298
2299- CFG_USE_OSCCLK:
2300		Use OSCM clock mode on MBX8xx board. Be careful,
2301		wrong setting might damage your board. Read
2302		doc/README.MBX before setting this variable!
2303
2304- CFG_CPM_POST_WORD_ADDR: (MPC8xx, MPC8260 only)
2305		Offset of the bootmode word in DPRAM used by post
2306		(Power On Self Tests). This definition overrides
2307		#define'd default value in commproc.h resp.
2308		cpm_8260.h.
2309
2310- CFG_PCI_SLV_MEM_LOCAL, CFG_PCI_SLV_MEM_BUS, CFG_PICMR0_MASK_ATTRIB,
2311  CFG_PCI_MSTR0_LOCAL, CFG_PCIMSK0_MASK, CFG_PCI_MSTR1_LOCAL,
2312  CFG_PCIMSK1_MASK, CFG_PCI_MSTR_MEM_LOCAL, CFG_PCI_MSTR_MEM_BUS,
2313  CFG_CPU_PCI_MEM_START, CFG_PCI_MSTR_MEM_SIZE, CFG_POCMR0_MASK_ATTRIB,
2314  CFG_PCI_MSTR_MEMIO_LOCAL, CFG_PCI_MSTR_MEMIO_BUS, CPU_PCI_MEMIO_START,
2315  CFG_PCI_MSTR_MEMIO_SIZE, CFG_POCMR1_MASK_ATTRIB, CFG_PCI_MSTR_IO_LOCAL,
2316  CFG_PCI_MSTR_IO_BUS, CFG_CPU_PCI_IO_START, CFG_PCI_MSTR_IO_SIZE,
2317  CFG_POCMR2_MASK_ATTRIB: (MPC826x only)
2318		Overrides the default PCI memory map in cpu/mpc8260/pci.c if set.
2319
2320- CONFIG_SPD_EEPROM
2321		Get DDR timing information from an I2C EEPROM.  Common with pluggable
2322		memory modules such as SODIMMs
2323  SPD_EEPROM_ADDRESS
2324		I2C address of the SPD EEPROM
2325
2326- CFG_SPD_BUS_NUM
2327		If SPD EEPROM is on an I2C bus other than the first one, specify here.
2328		Note that the value must resolve to something your driver can deal with.
2329
2330- CFG_83XX_DDR_USES_CS0
2331		Only for 83xx systems. If specified, then DDR should be configured
2332		using CS0 and CS1 instead of CS2 and CS3.
2333
2334- CFG_83XX_DDR_USES_CS0
2335		Only for 83xx systems. If specified, then DDR should be configured
2336		using CS0 and CS1 instead of CS2 and CS3.
2337
2338- CONFIG_ETHER_ON_FEC[12]
2339		Define to enable FEC[12] on a 8xx series processor.
2340
2341- CONFIG_FEC[12]_PHY
2342		Define to the hardcoded PHY address which corresponds
2343		to the given FEC; i. e.
2344			#define CONFIG_FEC1_PHY 4
2345		means that the PHY with address 4 is connected to FEC1
2346
2347		When set to -1, means to probe for first available.
2348
2349- CONFIG_FEC[12]_PHY_NORXERR
2350		The PHY does not have a RXERR line (RMII only).
2351		(so program the FEC to ignore it).
2352
2353- CONFIG_RMII
2354		Enable RMII mode for all FECs.
2355		Note that this is a global option, we can't
2356		have one FEC in standard MII mode and another in RMII mode.
2357
2358- CONFIG_CRC32_VERIFY
2359		Add a verify option to the crc32 command.
2360		The syntax is:
2361
2362		=> crc32 -v <address> <count> <crc32>
2363
2364		Where address/count indicate a memory area
2365		and crc32 is the correct crc32 which the
2366		area should have.
2367
2368- CONFIG_LOOPW
2369		Add the "loopw" memory command. This only takes effect if
2370		the memory commands are activated globally (CONFIG_CMD_MEM).
2371
2372- CONFIG_MX_CYCLIC
2373		Add the "mdc" and "mwc" memory commands. These are cyclic
2374		"md/mw" commands.
2375		Examples:
2376
2377		=> mdc.b 10 4 500
2378		This command will print 4 bytes (10,11,12,13) each 500 ms.
2379
2380		=> mwc.l 100 12345678 10
2381		This command will write 12345678 to address 100 all 10 ms.
2382
2383		This only takes effect if the memory commands are activated
2384		globally (CONFIG_CMD_MEM).
2385
2386- CONFIG_SKIP_LOWLEVEL_INIT
2387- CONFIG_SKIP_RELOCATE_UBOOT
2388
2389		[ARM only] If these variables are defined, then
2390		certain low level initializations (like setting up
2391		the memory controller) are omitted and/or U-Boot does
2392		not relocate itself into RAM.
2393		Normally these variables MUST NOT be defined. The
2394		only exception is when U-Boot is loaded (to RAM) by
2395		some other boot loader or by a debugger which
2396		performs these intializations itself.
2397
2398
2399Building the Software:
2400======================
2401
2402Building U-Boot has been tested in native PPC environments (on a
2403PowerBook G3 running LinuxPPC 2000) and in cross environments
2404(running RedHat 6.x and 7.x Linux on x86, Solaris 2.6 on a SPARC, and
2405NetBSD 1.5 on x86).
2406
2407If you are not using a native PPC environment, it is assumed that you
2408have the GNU cross compiling tools available in your path and named
2409with a prefix of "powerpc-linux-". If this is not the case, (e.g. if
2410you are using Monta Vista's Hard Hat Linux CDK 1.2) you must change
2411the definition of CROSS_COMPILE in Makefile. For HHL on a 4xx CPU,
2412change it to:
2413
2414	CROSS_COMPILE = ppc_4xx-
2415
2416
2417U-Boot is intended to be  simple  to  build.  After  installing	 the
2418sources	 you must configure U-Boot for one specific board type. This
2419is done by typing:
2420
2421	make NAME_config
2422
2423where "NAME_config" is the name of one of the existing
2424configurations; see the main Makefile for supported names.
2425
2426Note: for some board special configuration names may exist; check if
2427      additional information is available from the board vendor; for
2428      instance, the TQM823L systems are available without (standard)
2429      or with LCD support. You can select such additional "features"
2430      when chosing the configuration, i. e.
2431
2432      make TQM823L_config
2433	- will configure for a plain TQM823L, i. e. no LCD support
2434
2435      make TQM823L_LCD_config
2436	- will configure for a TQM823L with U-Boot console on LCD
2437
2438      etc.
2439
2440
2441Finally, type "make all", and you should get some working U-Boot
2442images ready for download to / installation on your system:
2443
2444- "u-boot.bin" is a raw binary image
2445- "u-boot" is an image in ELF binary format
2446- "u-boot.srec" is in Motorola S-Record format
2447
2448By default the build is performed locally and the objects are saved
2449in the source directory. One of the two methods can be used to change
2450this behavior and build U-Boot to some external directory:
2451
24521. Add O= to the make command line invocations:
2453
2454	make O=/tmp/build distclean
2455	make O=/tmp/build NAME_config
2456	make O=/tmp/build all
2457
24582. Set environment variable BUILD_DIR to point to the desired location:
2459
2460	export BUILD_DIR=/tmp/build
2461	make distclean
2462	make NAME_config
2463	make all
2464
2465Note that the command line "O=" setting overrides the BUILD_DIR environment
2466variable.
2467
2468
2469Please be aware that the Makefiles assume you are using GNU make, so
2470for instance on NetBSD you might need to use "gmake" instead of
2471native "make".
2472
2473
2474If the system board that you have is not listed, then you will need
2475to port U-Boot to your hardware platform. To do this, follow these
2476steps:
2477
24781.  Add a new configuration option for your board to the toplevel
2479    "Makefile" and to the "MAKEALL" script, using the existing
2480    entries as examples. Note that here and at many other places
2481    boards and other names are listed in alphabetical sort order. Please
2482    keep this order.
24832.  Create a new directory to hold your board specific code. Add any
2484    files you need. In your board directory, you will need at least
2485    the "Makefile", a "<board>.c", "flash.c" and "u-boot.lds".
24863.  Create a new configuration file "include/configs/<board>.h" for
2487    your board
24883.  If you're porting U-Boot to a new CPU, then also create a new
2489    directory to hold your CPU specific code. Add any files you need.
24904.  Run "make <board>_config" with your new name.
24915.  Type "make", and you should get a working "u-boot.srec" file
2492    to be installed on your target system.
24936.  Debug and solve any problems that might arise.
2494    [Of course, this last step is much harder than it sounds.]
2495
2496
2497Testing of U-Boot Modifications, Ports to New Hardware, etc.:
2498==============================================================
2499
2500If you have modified U-Boot sources (for instance added a new	board
2501or  support  for  new  devices,	 a new CPU, etc.) you are expected to
2502provide feedback to the other developers. The feedback normally takes
2503the form of a "patch", i. e. a context diff against a certain (latest
2504official or latest in CVS) version of U-Boot sources.
2505
2506But before you submit such a patch, please verify that	your  modifi-
2507cation	did not break existing code. At least make sure that *ALL* of
2508the supported boards compile WITHOUT ANY compiler warnings. To do so,
2509just run the "MAKEALL" script, which will configure and build U-Boot
2510for ALL supported system. Be warned, this will take a while. You  can
2511select	which  (cross)	compiler  to use by passing a `CROSS_COMPILE'
2512environment variable to the script, i. e. to use the cross tools from
2513MontaVista's Hard Hat Linux you can type
2514
2515	CROSS_COMPILE=ppc_8xx- MAKEALL
2516
2517or to build on a native PowerPC system you can type
2518
2519	CROSS_COMPILE=' ' MAKEALL
2520
2521When using the MAKEALL script, the default behaviour is to build U-Boot
2522in the source directory. This location can be changed by setting the
2523BUILD_DIR environment variable. Also, for each target built, the MAKEALL
2524script saves two log files (<target>.ERR and <target>.MAKEALL) in the
2525<source dir>/LOG directory. This default location can be changed by
2526setting the MAKEALL_LOGDIR environment variable. For example:
2527
2528	export BUILD_DIR=/tmp/build
2529	export MAKEALL_LOGDIR=/tmp/log
2530	CROSS_COMPILE=ppc_8xx- MAKEALL
2531
2532With the above settings build objects are saved in the /tmp/build, log
2533files are saved in the /tmp/log and the source tree remains clean during
2534the whole build process.
2535
2536
2537See also "U-Boot Porting Guide" below.
2538
2539
2540Monitor Commands - Overview:
2541============================
2542
2543go	- start application at address 'addr'
2544run	- run commands in an environment variable
2545bootm	- boot application image from memory
2546bootp	- boot image via network using BootP/TFTP protocol
2547tftpboot- boot image via network using TFTP protocol
2548	       and env variables "ipaddr" and "serverip"
2549	       (and eventually "gatewayip")
2550rarpboot- boot image via network using RARP/TFTP protocol
2551diskboot- boot from IDE devicebootd   - boot default, i.e., run 'bootcmd'
2552loads	- load S-Record file over serial line
2553loadb	- load binary file over serial line (kermit mode)
2554md	- memory display
2555mm	- memory modify (auto-incrementing)
2556nm	- memory modify (constant address)
2557mw	- memory write (fill)
2558cp	- memory copy
2559cmp	- memory compare
2560crc32	- checksum calculation
2561imd	- i2c memory display
2562imm	- i2c memory modify (auto-incrementing)
2563inm	- i2c memory modify (constant address)
2564imw	- i2c memory write (fill)
2565icrc32	- i2c checksum calculation
2566iprobe	- probe to discover valid I2C chip addresses
2567iloop	- infinite loop on address range
2568isdram	- print SDRAM configuration information
2569sspi	- SPI utility commands
2570base	- print or set address offset
2571printenv- print environment variables
2572setenv	- set environment variables
2573saveenv - save environment variables to persistent storage
2574protect - enable or disable FLASH write protection
2575erase	- erase FLASH memory
2576flinfo	- print FLASH memory information
2577bdinfo	- print Board Info structure
2578iminfo	- print header information for application image
2579coninfo - print console devices and informations
2580ide	- IDE sub-system
2581loop	- infinite loop on address range
2582loopw	- infinite write loop on address range
2583mtest	- simple RAM test
2584icache	- enable or disable instruction cache
2585dcache	- enable or disable data cache
2586reset	- Perform RESET of the CPU
2587echo	- echo args to console
2588version - print monitor version
2589help	- print online help
2590?	- alias for 'help'
2591
2592
2593Monitor Commands - Detailed Description:
2594========================================
2595
2596TODO.
2597
2598For now: just type "help <command>".
2599
2600
2601Environment Variables:
2602======================
2603
2604U-Boot supports user configuration using Environment Variables which
2605can be made persistent by saving to Flash memory.
2606
2607Environment Variables are set using "setenv", printed using
2608"printenv", and saved to Flash using "saveenv". Using "setenv"
2609without a value can be used to delete a variable from the
2610environment. As long as you don't save the environment you are
2611working with an in-memory copy. In case the Flash area containing the
2612environment is erased by accident, a default environment is provided.
2613
2614Some configuration options can be set using Environment Variables:
2615
2616  baudrate	- see CONFIG_BAUDRATE
2617
2618  bootdelay	- see CONFIG_BOOTDELAY
2619
2620  bootcmd	- see CONFIG_BOOTCOMMAND
2621
2622  bootargs	- Boot arguments when booting an RTOS image
2623
2624  bootfile	- Name of the image to load with TFTP
2625
2626  autoload	- if set to "no" (any string beginning with 'n'),
2627		  "bootp" will just load perform a lookup of the
2628		  configuration from the BOOTP server, but not try to
2629		  load any image using TFTP
2630
2631  autostart	- if set to "yes", an image loaded using the "bootp",
2632		  "rarpboot", "tftpboot" or "diskboot" commands will
2633		  be automatically started (by internally calling
2634		  "bootm")
2635
2636		  If set to "no", a standalone image passed to the
2637		  "bootm" command will be copied to the load address
2638		  (and eventually uncompressed), but NOT be started.
2639		  This can be used to load and uncompress arbitrary
2640		  data.
2641
2642  i2cfast	- (PPC405GP|PPC405EP only)
2643		  if set to 'y' configures Linux I2C driver for fast
2644		  mode (400kHZ). This environment variable is used in
2645		  initialization code. So, for changes to be effective
2646		  it must be saved and board must be reset.
2647
2648  initrd_high	- restrict positioning of initrd images:
2649		  If this variable is not set, initrd images will be
2650		  copied to the highest possible address in RAM; this
2651		  is usually what you want since it allows for
2652		  maximum initrd size. If for some reason you want to
2653		  make sure that the initrd image is loaded below the
2654		  CFG_BOOTMAPSZ limit, you can set this environment
2655		  variable to a value of "no" or "off" or "0".
2656		  Alternatively, you can set it to a maximum upper
2657		  address to use (U-Boot will still check that it
2658		  does not overwrite the U-Boot stack and data).
2659
2660		  For instance, when you have a system with 16 MB
2661		  RAM, and want to reserve 4 MB from use by Linux,
2662		  you can do this by adding "mem=12M" to the value of
2663		  the "bootargs" variable. However, now you must make
2664		  sure that the initrd image is placed in the first
2665		  12 MB as well - this can be done with
2666
2667		  setenv initrd_high 00c00000
2668
2669		  If you set initrd_high to 0xFFFFFFFF, this is an
2670		  indication to U-Boot that all addresses are legal
2671		  for the Linux kernel, including addresses in flash
2672		  memory. In this case U-Boot will NOT COPY the
2673		  ramdisk at all. This may be useful to reduce the
2674		  boot time on your system, but requires that this
2675		  feature is supported by your Linux kernel.
2676
2677  ipaddr	- IP address; needed for tftpboot command
2678
2679  loadaddr	- Default load address for commands like "bootp",
2680		  "rarpboot", "tftpboot", "loadb" or "diskboot"
2681
2682  loads_echo	- see CONFIG_LOADS_ECHO
2683
2684  serverip	- TFTP server IP address; needed for tftpboot command
2685
2686  bootretry	- see CONFIG_BOOT_RETRY_TIME
2687
2688  bootdelaykey	- see CONFIG_AUTOBOOT_DELAY_STR
2689
2690  bootstopkey	- see CONFIG_AUTOBOOT_STOP_STR
2691
2692  ethprime	- When CONFIG_NET_MULTI is enabled controls which
2693		  interface is used first.
2694
2695  ethact	- When CONFIG_NET_MULTI is enabled controls which
2696		  interface is currently active. For example you
2697		  can do the following
2698
2699		  => setenv ethact FEC ETHERNET
2700		  => ping 192.168.0.1 # traffic sent on FEC ETHERNET
2701		  => setenv ethact SCC ETHERNET
2702		  => ping 10.0.0.1 # traffic sent on SCC ETHERNET
2703
2704  ethrotate	- When set to "no" U-Boot does not go through all
2705		  available network interfaces.
2706		  It just stays at the currently selected interface.
2707
2708   netretry	- When set to "no" each network operation will
2709		  either succeed or fail without retrying.
2710		  When set to "once" the network operation will
2711		  fail when all the available network interfaces
2712		  are tried once without success.
2713		  Useful on scripts which control the retry operation
2714		  themselves.
2715
2716  npe_ucode	- see CONFIG_IXP4XX_NPE_EXT_UCOD
2717		  if set load address for the npe microcode
2718
2719  tftpsrcport	- If this is set, the value is used for TFTP's
2720		  UDP source port.
2721
2722  tftpdstport	- If this is set, the value is used for TFTP's UDP
2723		  destination port instead of the Well Know Port 69.
2724
2725   vlan		- When set to a value < 4095 the traffic over
2726		  ethernet is encapsulated/received over 802.1q
2727		  VLAN tagged frames.
2728
2729The following environment variables may be used and automatically
2730updated by the network boot commands ("bootp" and "rarpboot"),
2731depending the information provided by your boot server:
2732
2733  bootfile	- see above
2734  dnsip		- IP address of your Domain Name Server
2735  dnsip2	- IP address of your secondary Domain Name Server
2736  gatewayip	- IP address of the Gateway (Router) to use
2737  hostname	- Target hostname
2738  ipaddr	- see above
2739  netmask	- Subnet Mask
2740  rootpath	- Pathname of the root filesystem on the NFS server
2741  serverip	- see above
2742
2743
2744There are two special Environment Variables:
2745
2746  serial#	- contains hardware identification information such
2747		  as type string and/or serial number
2748  ethaddr	- Ethernet address
2749
2750These variables can be set only once (usually during manufacturing of
2751the board). U-Boot refuses to delete or overwrite these variables
2752once they have been set once.
2753
2754
2755Further special Environment Variables:
2756
2757  ver		- Contains the U-Boot version string as printed
2758		  with the "version" command. This variable is
2759		  readonly (see CONFIG_VERSION_VARIABLE).
2760
2761
2762Please note that changes to some configuration parameters may take
2763only effect after the next boot (yes, that's just like Windoze :-).
2764
2765
2766Command Line Parsing:
2767=====================
2768
2769There are two different command line parsers available with U-Boot:
2770the old "simple" one, and the much more powerful "hush" shell:
2771
2772Old, simple command line parser:
2773--------------------------------
2774
2775- supports environment variables (through setenv / saveenv commands)
2776- several commands on one line, separated by ';'
2777- variable substitution using "... ${name} ..." syntax
2778- special characters ('$', ';') can be escaped by prefixing with '\',
2779  for example:
2780	setenv bootcmd bootm \${address}
2781- You can also escape text by enclosing in single apostrophes, for example:
2782	setenv addip 'setenv bootargs $bootargs ip=$ipaddr:$serverip:$gatewayip:$netmask:$hostname::off'
2783
2784Hush shell:
2785-----------
2786
2787- similar to Bourne shell, with control structures like
2788  if...then...else...fi, for...do...done; while...do...done,
2789  until...do...done, ...
2790- supports environment ("global") variables (through setenv / saveenv
2791  commands) and local shell variables (through standard shell syntax
2792  "name=value"); only environment variables can be used with "run"
2793  command
2794
2795General rules:
2796--------------
2797
2798(1) If a command line (or an environment variable executed by a "run"
2799    command) contains several commands separated by semicolon, and
2800    one of these commands fails, then the remaining commands will be
2801    executed anyway.
2802
2803(2) If you execute several variables with one call to run (i. e.
2804    calling run with a list af variables as arguments), any failing
2805    command will cause "run" to terminate, i. e. the remaining
2806    variables are not executed.
2807
2808Note for Redundant Ethernet Interfaces:
2809=======================================
2810
2811Some boards come with redundant ethernet interfaces; U-Boot supports
2812such configurations and is capable of automatic selection of a
2813"working" interface when needed. MAC assignment works as follows:
2814
2815Network interfaces are numbered eth0, eth1, eth2, ... Corresponding
2816MAC addresses can be stored in the environment as "ethaddr" (=>eth0),
2817"eth1addr" (=>eth1), "eth2addr", ...
2818
2819If the network interface stores some valid MAC address (for instance
2820in SROM), this is used as default address if there is NO correspon-
2821ding setting in the environment; if the corresponding environment
2822variable is set, this overrides the settings in the card; that means:
2823
2824o If the SROM has a valid MAC address, and there is no address in the
2825  environment, the SROM's address is used.
2826
2827o If there is no valid address in the SROM, and a definition in the
2828  environment exists, then the value from the environment variable is
2829  used.
2830
2831o If both the SROM and the environment contain a MAC address, and
2832  both addresses are the same, this MAC address is used.
2833
2834o If both the SROM and the environment contain a MAC address, and the
2835  addresses differ, the value from the environment is used and a
2836  warning is printed.
2837
2838o If neither SROM nor the environment contain a MAC address, an error
2839  is raised.
2840
2841
2842Image Formats:
2843==============
2844
2845The "boot" commands of this monitor operate on "image" files which
2846can be basicly anything, preceeded by a special header; see the
2847definitions in include/image.h for details; basicly, the header
2848defines the following image properties:
2849
2850* Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD,
2851  4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks,
2852  LynxOS, pSOS, QNX, RTEMS, ARTOS;
2853  Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS).
2854* Target CPU Architecture (Provisions for Alpha, ARM, AVR32, Intel x86,
2855  IA64, MIPS, NIOS, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit;
2856  Currently supported: ARM, AVR32, Intel x86, MIPS, NIOS, PowerPC).
2857* Compression Type (uncompressed, gzip, bzip2)
2858* Load Address
2859* Entry Point
2860* Image Name
2861* Image Timestamp
2862
2863The header is marked by a special Magic Number, and both the header
2864and the data portions of the image are secured against corruption by
2865CRC32 checksums.
2866
2867
2868Linux Support:
2869==============
2870
2871Although U-Boot should support any OS or standalone application
2872easily, the main focus has always been on Linux during the design of
2873U-Boot.
2874
2875U-Boot includes many features that so far have been part of some
2876special "boot loader" code within the Linux kernel. Also, any
2877"initrd" images to be used are no longer part of one big Linux image;
2878instead, kernel and "initrd" are separate images. This implementation
2879serves several purposes:
2880
2881- the same features can be used for other OS or standalone
2882  applications (for instance: using compressed images to reduce the
2883  Flash memory footprint)
2884
2885- it becomes much easier to port new Linux kernel versions because
2886  lots of low-level, hardware dependent stuff are done by U-Boot
2887
2888- the same Linux kernel image can now be used with different "initrd"
2889  images; of course this also means that different kernel images can
2890  be run with the same "initrd". This makes testing easier (you don't
2891  have to build a new "zImage.initrd" Linux image when you just
2892  change a file in your "initrd"). Also, a field-upgrade of the
2893  software is easier now.
2894
2895
2896Linux HOWTO:
2897============
2898
2899Porting Linux to U-Boot based systems:
2900---------------------------------------
2901
2902U-Boot cannot save you from doing all the necessary modifications to
2903configure the Linux device drivers for use with your target hardware
2904(no, we don't intend to provide a full virtual machine interface to
2905Linux :-).
2906
2907But now you can ignore ALL boot loader code (in arch/ppc/mbxboot).
2908
2909Just make sure your machine specific header file (for instance
2910include/asm-ppc/tqm8xx.h) includes the same definition of the Board
2911Information structure as we define in include/u-boot.h, and make
2912sure that your definition of IMAP_ADDR uses the same value as your
2913U-Boot configuration in CFG_IMMR.
2914
2915
2916Configuring the Linux kernel:
2917-----------------------------
2918
2919No specific requirements for U-Boot. Make sure you have some root
2920device (initial ramdisk, NFS) for your target system.
2921
2922
2923Building a Linux Image:
2924-----------------------
2925
2926With U-Boot, "normal" build targets like "zImage" or "bzImage" are
2927not used. If you use recent kernel source, a new build target
2928"uImage" will exist which automatically builds an image usable by
2929U-Boot. Most older kernels also have support for a "pImage" target,
2930which was introduced for our predecessor project PPCBoot and uses a
2931100% compatible format.
2932
2933Example:
2934
2935	make TQM850L_config
2936	make oldconfig
2937	make dep
2938	make uImage
2939
2940The "uImage" build target uses a special tool (in 'tools/mkimage') to
2941encapsulate a compressed Linux kernel image with header	 information,
2942CRC32 checksum etc. for use with U-Boot. This is what we are doing:
2943
2944* build a standard "vmlinux" kernel image (in ELF binary format):
2945
2946* convert the kernel into a raw binary image:
2947
2948	${CROSS_COMPILE}-objcopy -O binary \
2949				 -R .note -R .comment \
2950				 -S vmlinux linux.bin
2951
2952* compress the binary image:
2953
2954	gzip -9 linux.bin
2955
2956* package compressed binary image for U-Boot:
2957
2958	mkimage -A ppc -O linux -T kernel -C gzip \
2959		-a 0 -e 0 -n "Linux Kernel Image" \
2960		-d linux.bin.gz uImage
2961
2962
2963The "mkimage" tool can also be used to create ramdisk images for use
2964with U-Boot, either separated from the Linux kernel image, or
2965combined into one file. "mkimage" encapsulates the images with a 64
2966byte header containing information about target architecture,
2967operating system, image type, compression method, entry points, time
2968stamp, CRC32 checksums, etc.
2969
2970"mkimage" can be called in two ways: to verify existing images and
2971print the header information, or to build new images.
2972
2973In the first form (with "-l" option) mkimage lists the information
2974contained in the header of an existing U-Boot image; this includes
2975checksum verification:
2976
2977	tools/mkimage -l image
2978	  -l ==> list image header information
2979
2980The second form (with "-d" option) is used to build a U-Boot image
2981from a "data file" which is used as image payload:
2982
2983	tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \
2984		      -n name -d data_file image
2985	  -A ==> set architecture to 'arch'
2986	  -O ==> set operating system to 'os'
2987	  -T ==> set image type to 'type'
2988	  -C ==> set compression type 'comp'
2989	  -a ==> set load address to 'addr' (hex)
2990	  -e ==> set entry point to 'ep' (hex)
2991	  -n ==> set image name to 'name'
2992	  -d ==> use image data from 'datafile'
2993
2994Right now, all Linux kernels for PowerPC systems use the same load
2995address (0x00000000), but the entry point address depends on the
2996kernel version:
2997
2998- 2.2.x kernels have the entry point at 0x0000000C,
2999- 2.3.x and later kernels have the entry point at 0x00000000.
3000
3001So a typical call to build a U-Boot image would read:
3002
3003	-> tools/mkimage -n '2.4.4 kernel for TQM850L' \
3004	> -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \
3005	> -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux.gz \
3006	> examples/uImage.TQM850L
3007	Image Name:   2.4.4 kernel for TQM850L
3008	Created:      Wed Jul 19 02:34:59 2000
3009	Image Type:   PowerPC Linux Kernel Image (gzip compressed)
3010	Data Size:    335725 Bytes = 327.86 kB = 0.32 MB
3011	Load Address: 0x00000000
3012	Entry Point:  0x00000000
3013
3014To verify the contents of the image (or check for corruption):
3015
3016	-> tools/mkimage -l examples/uImage.TQM850L
3017	Image Name:   2.4.4 kernel for TQM850L
3018	Created:      Wed Jul 19 02:34:59 2000
3019	Image Type:   PowerPC Linux Kernel Image (gzip compressed)
3020	Data Size:    335725 Bytes = 327.86 kB = 0.32 MB
3021	Load Address: 0x00000000
3022	Entry Point:  0x00000000
3023
3024NOTE: for embedded systems where boot time is critical you can trade
3025speed for memory and install an UNCOMPRESSED image instead: this
3026needs more space in Flash, but boots much faster since it does not
3027need to be uncompressed:
3028
3029	-> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux.gz
3030	-> tools/mkimage -n '2.4.4 kernel for TQM850L' \
3031	> -A ppc -O linux -T kernel -C none -a 0 -e 0 \
3032	> -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux \
3033	> examples/uImage.TQM850L-uncompressed
3034	Image Name:   2.4.4 kernel for TQM850L
3035	Created:      Wed Jul 19 02:34:59 2000
3036	Image Type:   PowerPC Linux Kernel Image (uncompressed)
3037	Data Size:    792160 Bytes = 773.59 kB = 0.76 MB
3038	Load Address: 0x00000000
3039	Entry Point:  0x00000000
3040
3041
3042Similar you can build U-Boot images from a 'ramdisk.image.gz' file
3043when your kernel is intended to use an initial ramdisk:
3044
3045	-> tools/mkimage -n 'Simple Ramdisk Image' \
3046	> -A ppc -O linux -T ramdisk -C gzip \
3047	> -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd
3048	Image Name:   Simple Ramdisk Image
3049	Created:      Wed Jan 12 14:01:50 2000
3050	Image Type:   PowerPC Linux RAMDisk Image (gzip compressed)
3051	Data Size:    566530 Bytes = 553.25 kB = 0.54 MB
3052	Load Address: 0x00000000
3053	Entry Point:  0x00000000
3054
3055
3056Installing a Linux Image:
3057-------------------------
3058
3059To downloading a U-Boot image over the serial (console) interface,
3060you must convert the image to S-Record format:
3061
3062	objcopy -I binary -O srec examples/image examples/image.srec
3063
3064The 'objcopy' does not understand the information in the U-Boot
3065image header, so the resulting S-Record file will be relative to
3066address 0x00000000. To load it to a given address, you need to
3067specify the target address as 'offset' parameter with the 'loads'
3068command.
3069
3070Example: install the image to address 0x40100000 (which on the
3071TQM8xxL is in the first Flash bank):
3072
3073	=> erase 40100000 401FFFFF
3074
3075	.......... done
3076	Erased 8 sectors
3077
3078	=> loads 40100000
3079	## Ready for S-Record download ...
3080	~>examples/image.srec
3081	1 2 3 4 5 6 7 8 9 10 11 12 13 ...
3082	...
3083	15989 15990 15991 15992
3084	[file transfer complete]
3085	[connected]
3086	## Start Addr = 0x00000000
3087
3088
3089You can check the success of the download using the 'iminfo' command;
3090this includes a checksum verification so you  can  be  sure  no	 data
3091corruption happened:
3092
3093	=> imi 40100000
3094
3095	## Checking Image at 40100000 ...
3096	   Image Name:	 2.2.13 for initrd on TQM850L
3097	   Image Type:	 PowerPC Linux Kernel Image (gzip compressed)
3098	   Data Size:	 335725 Bytes = 327 kB = 0 MB
3099	   Load Address: 00000000
3100	   Entry Point:	 0000000c
3101	   Verifying Checksum ... OK
3102
3103
3104Boot Linux:
3105-----------
3106
3107The "bootm" command is used to boot an application that is stored in
3108memory (RAM or Flash). In case of a Linux kernel image, the contents
3109of the "bootargs" environment variable is passed to the kernel as
3110parameters. You can check and modify this variable using the
3111"printenv" and "setenv" commands:
3112
3113
3114	=> printenv bootargs
3115	bootargs=root=/dev/ram
3116
3117	=> setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
3118
3119	=> printenv bootargs
3120	bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
3121
3122	=> bootm 40020000
3123	## Booting Linux kernel at 40020000 ...
3124	   Image Name:	 2.2.13 for NFS on TQM850L
3125	   Image Type:	 PowerPC Linux Kernel Image (gzip compressed)
3126	   Data Size:	 381681 Bytes = 372 kB = 0 MB
3127	   Load Address: 00000000
3128	   Entry Point:	 0000000c
3129	   Verifying Checksum ... OK
3130	   Uncompressing Kernel Image ... OK
3131	Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:35:17 MEST 2000
3132	Boot arguments: root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
3133	time_init: decrementer frequency = 187500000/60
3134	Calibrating delay loop... 49.77 BogoMIPS
3135	Memory: 15208k available (700k kernel code, 444k data, 32k init) [c0000000,c1000000]
3136	...
3137
3138If you want to boot a Linux kernel with initial ram disk, you pass
3139the memory addresses of both the kernel and the initrd image (PPBCOOT
3140format!) to the "bootm" command:
3141
3142	=> imi 40100000 40200000
3143
3144	## Checking Image at 40100000 ...
3145	   Image Name:	 2.2.13 for initrd on TQM850L
3146	   Image Type:	 PowerPC Linux Kernel Image (gzip compressed)
3147	   Data Size:	 335725 Bytes = 327 kB = 0 MB
3148	   Load Address: 00000000
3149	   Entry Point:	 0000000c
3150	   Verifying Checksum ... OK
3151
3152	## Checking Image at 40200000 ...
3153	   Image Name:	 Simple Ramdisk Image
3154	   Image Type:	 PowerPC Linux RAMDisk Image (gzip compressed)
3155	   Data Size:	 566530 Bytes = 553 kB = 0 MB
3156	   Load Address: 00000000
3157	   Entry Point:	 00000000
3158	   Verifying Checksum ... OK
3159
3160	=> bootm 40100000 40200000
3161	## Booting Linux kernel at 40100000 ...
3162	   Image Name:	 2.2.13 for initrd on TQM850L
3163	   Image Type:	 PowerPC Linux Kernel Image (gzip compressed)
3164	   Data Size:	 335725 Bytes = 327 kB = 0 MB
3165	   Load Address: 00000000
3166	   Entry Point:	 0000000c
3167	   Verifying Checksum ... OK
3168	   Uncompressing Kernel Image ... OK
3169	## Loading RAMDisk Image at 40200000 ...
3170	   Image Name:	 Simple Ramdisk Image
3171	   Image Type:	 PowerPC Linux RAMDisk Image (gzip compressed)
3172	   Data Size:	 566530 Bytes = 553 kB = 0 MB
3173	   Load Address: 00000000
3174	   Entry Point:	 00000000
3175	   Verifying Checksum ... OK
3176	   Loading Ramdisk ... OK
3177	Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:32:08 MEST 2000
3178	Boot arguments: root=/dev/ram
3179	time_init: decrementer frequency = 187500000/60
3180	Calibrating delay loop... 49.77 BogoMIPS
3181	...
3182	RAMDISK: Compressed image found at block 0
3183	VFS: Mounted root (ext2 filesystem).
3184
3185	bash#
3186
3187Boot Linux and pass a flat device tree:
3188-----------
3189
3190First, U-Boot must be compiled with the appropriate defines. See the section
3191titled "Linux Kernel Interface" above for a more in depth explanation. The
3192following is an example of how to start a kernel and pass an updated
3193flat device tree:
3194
3195=> print oftaddr
3196oftaddr=0x300000
3197=> print oft
3198oft=oftrees/mpc8540ads.dtb
3199=> tftp $oftaddr $oft
3200Speed: 1000, full duplex
3201Using TSEC0 device
3202TFTP from server 192.168.1.1; our IP address is 192.168.1.101
3203Filename 'oftrees/mpc8540ads.dtb'.
3204Load address: 0x300000
3205Loading: #
3206done
3207Bytes transferred = 4106 (100a hex)
3208=> tftp $loadaddr $bootfile
3209Speed: 1000, full duplex
3210Using TSEC0 device
3211TFTP from server 192.168.1.1; our IP address is 192.168.1.2
3212Filename 'uImage'.
3213Load address: 0x200000
3214Loading:############
3215done
3216Bytes transferred = 1029407 (fb51f hex)
3217=> print loadaddr
3218loadaddr=200000
3219=> print oftaddr
3220oftaddr=0x300000
3221=> bootm $loadaddr - $oftaddr
3222## Booting image at 00200000 ...
3223   Image Name:	 Linux-2.6.17-dirty
3224   Image Type:	 PowerPC Linux Kernel Image (gzip compressed)
3225   Data Size:	 1029343 Bytes = 1005.2 kB
3226   Load Address: 00000000
3227   Entry Point:	 00000000
3228   Verifying Checksum ... OK
3229   Uncompressing Kernel Image ... OK
3230Booting using flat device tree at 0x300000
3231Using MPC85xx ADS machine description
3232Memory CAM mapping: CAM0=256Mb, CAM1=256Mb, CAM2=0Mb residual: 0Mb
3233[snip]
3234
3235
3236More About U-Boot Image Types:
3237------------------------------
3238
3239U-Boot supports the following image types:
3240
3241   "Standalone Programs" are directly runnable in the environment
3242	provided by U-Boot; it is expected that (if they behave
3243	well) you can continue to work in U-Boot after return from
3244	the Standalone Program.
3245   "OS Kernel Images" are usually images of some Embedded OS which
3246	will take over control completely. Usually these programs
3247	will install their own set of exception handlers, device
3248	drivers, set up the MMU, etc. - this means, that you cannot
3249	expect to re-enter U-Boot except by resetting the CPU.
3250   "RAMDisk Images" are more or less just data blocks, and their
3251	parameters (address, size) are passed to an OS kernel that is
3252	being started.
3253   "Multi-File Images" contain several images, typically an OS
3254	(Linux) kernel image and one or more data images like
3255	RAMDisks. This construct is useful for instance when you want
3256	to boot over the network using BOOTP etc., where the boot
3257	server provides just a single image file, but you want to get
3258	for instance an OS kernel and a RAMDisk image.
3259
3260	"Multi-File Images" start with a list of image sizes, each
3261	image size (in bytes) specified by an "uint32_t" in network
3262	byte order. This list is terminated by an "(uint32_t)0".
3263	Immediately after the terminating 0 follow the images, one by
3264	one, all aligned on "uint32_t" boundaries (size rounded up to
3265	a multiple of 4 bytes).
3266
3267   "Firmware Images" are binary images containing firmware (like
3268	U-Boot or FPGA images) which usually will be programmed to
3269	flash memory.
3270
3271   "Script files" are command sequences that will be executed by
3272	U-Boot's command interpreter; this feature is especially
3273	useful when you configure U-Boot to use a real shell (hush)
3274	as command interpreter.
3275
3276
3277Standalone HOWTO:
3278=================
3279
3280One of the features of U-Boot is that you can dynamically load and
3281run "standalone" applications, which can use some resources of
3282U-Boot like console I/O functions or interrupt services.
3283
3284Two simple examples are included with the sources:
3285
3286"Hello World" Demo:
3287-------------------
3288
3289'examples/hello_world.c' contains a small "Hello World" Demo
3290application; it is automatically compiled when you build U-Boot.
3291It's configured to run at address 0x00040004, so you can play with it
3292like that:
3293
3294	=> loads
3295	## Ready for S-Record download ...
3296	~>examples/hello_world.srec
3297	1 2 3 4 5 6 7 8 9 10 11 ...
3298	[file transfer complete]
3299	[connected]
3300	## Start Addr = 0x00040004
3301
3302	=> go 40004 Hello World! This is a test.
3303	## Starting application at 0x00040004 ...
3304	Hello World
3305	argc = 7
3306	argv[0] = "40004"
3307	argv[1] = "Hello"
3308	argv[2] = "World!"
3309	argv[3] = "This"
3310	argv[4] = "is"
3311	argv[5] = "a"
3312	argv[6] = "test."
3313	argv[7] = "<NULL>"
3314	Hit any key to exit ...
3315
3316	## Application terminated, rc = 0x0
3317
3318Another example, which demonstrates how to register a CPM interrupt
3319handler with the U-Boot code, can be found in 'examples/timer.c'.
3320Here, a CPM timer is set up to generate an interrupt every second.
3321The interrupt service routine is trivial, just printing a '.'
3322character, but this is just a demo program. The application can be
3323controlled by the following keys:
3324
3325	? - print current values og the CPM Timer registers
3326	b - enable interrupts and start timer
3327	e - stop timer and disable interrupts
3328	q - quit application
3329
3330	=> loads
3331	## Ready for S-Record download ...
3332	~>examples/timer.srec
3333	1 2 3 4 5 6 7 8 9 10 11 ...
3334	[file transfer complete]
3335	[connected]
3336	## Start Addr = 0x00040004
3337
3338	=> go 40004
3339	## Starting application at 0x00040004 ...
3340	TIMERS=0xfff00980
3341	Using timer 1
3342	  tgcr @ 0xfff00980, tmr @ 0xfff00990, trr @ 0xfff00994, tcr @ 0xfff00998, tcn @ 0xfff0099c, ter @ 0xfff009b0
3343
3344Hit 'b':
3345	[q, b, e, ?] Set interval 1000000 us
3346	Enabling timer
3347Hit '?':
3348	[q, b, e, ?] ........
3349	tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0xef6, ter=0x0
3350Hit '?':
3351	[q, b, e, ?] .
3352	tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x2ad4, ter=0x0
3353Hit '?':
3354	[q, b, e, ?] .
3355	tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x1efc, ter=0x0
3356Hit '?':
3357	[q, b, e, ?] .
3358	tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x169d, ter=0x0
3359Hit 'e':
3360	[q, b, e, ?] ...Stopping timer
3361Hit 'q':
3362	[q, b, e, ?] ## Application terminated, rc = 0x0
3363
3364
3365Minicom warning:
3366================
3367
3368Over time, many people have reported problems when trying to use the
3369"minicom" terminal emulation program for serial download. I (wd)
3370consider minicom to be broken, and recommend not to use it. Under
3371Unix, I recommend to use C-Kermit for general purpose use (and
3372especially for kermit binary protocol download ("loadb" command), and
3373use "cu" for S-Record download ("loads" command).
3374
3375Nevertheless, if you absolutely want to use it try adding this
3376configuration to your "File transfer protocols" section:
3377
3378	   Name	   Program			Name U/D FullScr IO-Red. Multi
3379	X  kermit  /usr/bin/kermit -i -l %l -s	 Y    U	   Y	   N	  N
3380	Y  kermit  /usr/bin/kermit -i -l %l -r	 N    D	   Y	   N	  N
3381
3382
3383NetBSD Notes:
3384=============
3385
3386Starting at version 0.9.2, U-Boot supports NetBSD both as host
3387(build U-Boot) and target system (boots NetBSD/mpc8xx).
3388
3389Building requires a cross environment; it is known to work on
3390NetBSD/i386 with the cross-powerpc-netbsd-1.3 package (you will also
3391need gmake since the Makefiles are not compatible with BSD make).
3392Note that the cross-powerpc package does not install include files;
3393attempting to build U-Boot will fail because <machine/ansi.h> is
3394missing.  This file has to be installed and patched manually:
3395
3396	# cd /usr/pkg/cross/powerpc-netbsd/include
3397	# mkdir powerpc
3398	# ln -s powerpc machine
3399	# cp /usr/src/sys/arch/powerpc/include/ansi.h powerpc/ansi.h
3400	# ${EDIT} powerpc/ansi.h	## must remove __va_list, _BSD_VA_LIST
3401
3402Native builds *don't* work due to incompatibilities between native
3403and U-Boot include files.
3404
3405Booting assumes that (the first part of) the image booted is a
3406stage-2 loader which in turn loads and then invokes the kernel
3407proper. Loader sources will eventually appear in the NetBSD source
3408tree (probably in sys/arc/mpc8xx/stand/u-boot_stage2/); in the
3409meantime, see ftp://ftp.denx.de/pub/u-boot/ppcboot_stage2.tar.gz
3410
3411
3412Implementation Internals:
3413=========================
3414
3415The following is not intended to be a complete description of every
3416implementation detail. However, it should help to understand the
3417inner workings of U-Boot and make it easier to port it to custom
3418hardware.
3419
3420
3421Initial Stack, Global Data:
3422---------------------------
3423
3424The implementation of U-Boot is complicated by the fact that U-Boot
3425starts running out of ROM (flash memory), usually without access to
3426system RAM (because the memory controller is not initialized yet).
3427This means that we don't have writable Data or BSS segments, and BSS
3428is not initialized as zero. To be able to get a C environment working
3429at all, we have to allocate at least a minimal stack. Implementation
3430options for this are defined and restricted by the CPU used: Some CPU
3431models provide on-chip memory (like the IMMR area on MPC8xx and
3432MPC826x processors), on others (parts of) the data cache can be
3433locked as (mis-) used as memory, etc.
3434
3435	Chris Hallinan posted a good summary of	 these	issues	to  the
3436	u-boot-users mailing list:
3437
3438	Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)?
3439	From: "Chris Hallinan" <clh@net1plus.com>
3440	Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET)
3441	...
3442
3443	Correct me if I'm wrong, folks, but the way I understand it
3444	is this: Using DCACHE as initial RAM for Stack, etc, does not
3445	require any physical RAM backing up the cache. The cleverness
3446	is that the cache is being used as a temporary supply of
3447	necessary storage before the SDRAM controller is setup. It's
3448	beyond the scope of this list to expain the details, but you
3449	can see how this works by studying the cache architecture and
3450	operation in the architecture and processor-specific manuals.
3451
3452	OCM is On Chip Memory, which I believe the 405GP has 4K. It
3453	is another option for the system designer to use as an
3454	initial stack/ram area prior to SDRAM being available. Either
3455	option should work for you. Using CS 4 should be fine if your
3456	board designers haven't used it for something that would
3457	cause you grief during the initial boot! It is frequently not
3458	used.
3459
3460	CFG_INIT_RAM_ADDR should be somewhere that won't interfere
3461	with your processor/board/system design. The default value
3462	you will find in any recent u-boot distribution in
3463	walnut.h should work for you. I'd set it to a value larger
3464	than your SDRAM module. If you have a 64MB SDRAM module, set
3465	it above 400_0000. Just make sure your board has no resources
3466	that are supposed to respond to that address! That code in
3467	start.S has been around a while and should work as is when
3468	you get the config right.
3469
3470	-Chris Hallinan
3471	DS4.COM, Inc.
3472
3473It is essential to remember this, since it has some impact on the C
3474code for the initialization procedures:
3475
3476* Initialized global data (data segment) is read-only. Do not attempt
3477  to write it.
3478
3479* Do not use any unitialized global data (or implicitely initialized
3480  as zero data - BSS segment) at all - this is undefined, initiali-
3481  zation is performed later (when relocating to RAM).
3482
3483* Stack space is very limited. Avoid big data buffers or things like
3484  that.
3485
3486Having only the stack as writable memory limits means we cannot use
3487normal global data to share information beween the code. But it
3488turned out that the implementation of U-Boot can be greatly
3489simplified by making a global data structure (gd_t) available to all
3490functions. We could pass a pointer to this data as argument to _all_
3491functions, but this would bloat the code. Instead we use a feature of
3492the GCC compiler (Global Register Variables) to share the data: we
3493place a pointer (gd) to the global data into a register which we
3494reserve for this purpose.
3495
3496When choosing a register for such a purpose we are restricted by the
3497relevant  (E)ABI  specifications for the current architecture, and by
3498GCC's implementation.
3499
3500For PowerPC, the following registers have specific use:
3501	R1:	stack pointer
3502	R2:	TOC pointer
3503	R3-R4:	parameter passing and return values
3504	R5-R10: parameter passing
3505	R13:	small data area pointer
3506	R30:	GOT pointer
3507	R31:	frame pointer
3508
3509	(U-Boot also uses R14 as internal GOT pointer.)
3510
3511    ==> U-Boot will use R29 to hold a pointer to the global data
3512
3513    Note: on PPC, we could use a static initializer (since the
3514    address of the global data structure is known at compile time),
3515    but it turned out that reserving a register results in somewhat
3516    smaller code - although the code savings are not that big (on
3517    average for all boards 752 bytes for the whole U-Boot image,
3518    624 text + 127 data).
3519
3520On ARM, the following registers are used:
3521
3522	R0:	function argument word/integer result
3523	R1-R3:	function argument word
3524	R9:	GOT pointer
3525	R10:	stack limit (used only if stack checking if enabled)
3526	R11:	argument (frame) pointer
3527	R12:	temporary workspace
3528	R13:	stack pointer
3529	R14:	link register
3530	R15:	program counter
3531
3532    ==> U-Boot will use R8 to hold a pointer to the global data
3533
3534NOTE: DECLARE_GLOBAL_DATA_PTR must be used with file-global scope,
3535or current versions of GCC may "optimize" the code too much.
3536
3537Memory Management:
3538------------------
3539
3540U-Boot runs in system state and uses physical addresses, i.e. the
3541MMU is not used either for address mapping nor for memory protection.
3542
3543The available memory is mapped to fixed addresses using the memory
3544controller. In this process, a contiguous block is formed for each
3545memory type (Flash, SDRAM, SRAM), even when it consists of several
3546physical memory banks.
3547
3548U-Boot is installed in the first 128 kB of the first Flash bank (on
3549TQM8xxL modules this is the range 0x40000000 ... 0x4001FFFF). After
3550booting and sizing and initializing DRAM, the code relocates itself
3551to the upper end of DRAM. Immediately below the U-Boot code some
3552memory is reserved for use by malloc() [see CFG_MALLOC_LEN
3553configuration setting]. Below that, a structure with global Board
3554Info data is placed, followed by the stack (growing downward).
3555
3556Additionally, some exception handler code is copied to the low 8 kB
3557of DRAM (0x00000000 ... 0x00001FFF).
3558
3559So a typical memory configuration with 16 MB of DRAM could look like
3560this:
3561
3562	0x0000 0000	Exception Vector code
3563	      :
3564	0x0000 1FFF
3565	0x0000 2000	Free for Application Use
3566	      :
3567	      :
3568
3569	      :
3570	      :
3571	0x00FB FF20	Monitor Stack (Growing downward)
3572	0x00FB FFAC	Board Info Data and permanent copy of global data
3573	0x00FC 0000	Malloc Arena
3574	      :
3575	0x00FD FFFF
3576	0x00FE 0000	RAM Copy of Monitor Code
3577	...		eventually: LCD or video framebuffer
3578	...		eventually: pRAM (Protected RAM - unchanged by reset)
3579	0x00FF FFFF	[End of RAM]
3580
3581
3582System Initialization:
3583----------------------
3584
3585In the reset configuration, U-Boot starts at the reset entry point
3586(on most PowerPC systens at address 0x00000100). Because of the reset
3587configuration for CS0# this is a mirror of the onboard Flash memory.
3588To be able to re-map memory U-Boot then jumps to its link address.
3589To be able to implement the initialization code in C, a (small!)
3590initial stack is set up in the internal Dual Ported RAM (in case CPUs
3591which provide such a feature like MPC8xx or MPC8260), or in a locked
3592part of the data cache. After that, U-Boot initializes the CPU core,
3593the caches and the SIU.
3594
3595Next, all (potentially) available memory banks are mapped using a
3596preliminary mapping. For example, we put them on 512 MB boundaries
3597(multiples of 0x20000000: SDRAM on 0x00000000 and 0x20000000, Flash
3598on 0x40000000 and 0x60000000, SRAM on 0x80000000). Then UPM A is
3599programmed for SDRAM access. Using the temporary configuration, a
3600simple memory test is run that determines the size of the SDRAM
3601banks.
3602
3603When there is more than one SDRAM bank, and the banks are of
3604different size, the largest is mapped first. For equal size, the first
3605bank (CS2#) is mapped first. The first mapping is always for address
36060x00000000, with any additional banks following immediately to create
3607contiguous memory starting from 0.
3608
3609Then, the monitor installs itself at the upper end of the SDRAM area
3610and allocates memory for use by malloc() and for the global Board
3611Info data; also, the exception vector code is copied to the low RAM
3612pages, and the final stack is set up.
3613
3614Only after this relocation will you have a "normal" C environment;
3615until that you are restricted in several ways, mostly because you are
3616running from ROM, and because the code will have to be relocated to a
3617new address in RAM.
3618
3619
3620U-Boot Porting Guide:
3621----------------------
3622
3623[Based on messages by Jerry Van Baren in the U-Boot-Users mailing
3624list, October 2002]
3625
3626
3627int main (int argc, char *argv[])
3628{
3629	sighandler_t no_more_time;
3630
3631	signal (SIGALRM, no_more_time);
3632	alarm (PROJECT_DEADLINE - toSec (3 * WEEK));
3633
3634	if (available_money > available_manpower) {
3635		pay consultant to port U-Boot;
3636		return 0;
3637	}
3638
3639	Download latest U-Boot source;
3640
3641	Subscribe to u-boot-users mailing list;
3642
3643	if (clueless) {
3644		email ("Hi, I am new to U-Boot, how do I get started?");
3645	}
3646
3647	while (learning) {
3648		Read the README file in the top level directory;
3649		Read http://www.denx.de/twiki/bin/view/DULG/Manual ;
3650		Read the source, Luke;
3651	}
3652
3653	if (available_money > toLocalCurrency ($2500)) {
3654		Buy a BDI2000;
3655	} else {
3656		Add a lot of aggravation and time;
3657	}
3658
3659	Create your own board support subdirectory;
3660
3661	Create your own board config file;
3662
3663	while (!running) {
3664		do {
3665			Add / modify source code;
3666		} until (compiles);
3667		Debug;
3668		if (clueless)
3669			email ("Hi, I am having problems...");
3670	}
3671	Send patch file to Wolfgang;
3672
3673	return 0;
3674}
3675
3676void no_more_time (int sig)
3677{
3678      hire_a_guru();
3679}
3680
3681
3682Coding Standards:
3683-----------------
3684
3685All contributions to U-Boot should conform to the Linux kernel
3686coding style; see the file "Documentation/CodingStyle" and the script
3687"scripts/Lindent" in your Linux kernel source directory.  In sources
3688originating from U-Boot a style corresponding to "Lindent -pcs" (adding
3689spaces before parameters to function calls) is actually used.
3690
3691Source files originating from a different project (for example the
3692MTD subsystem) are generally exempt from these guidelines and are not
3693reformated to ease subsequent migration to newer versions of those
3694sources.
3695
3696Please note that U-Boot is implemented in C (and to some small parts in
3697Assembler); no C++ is used, so please do not use C++ style comments (//)
3698in your code.
3699
3700Please also stick to the following formatting rules:
3701- remove any trailing white space
3702- use TAB characters for indentation, not spaces
3703- make sure NOT to use DOS '\r\n' line feeds
3704- do not add more than 2 empty lines to source files
3705- do not add trailing empty lines to source files
3706
3707Submissions which do not conform to the standards may be returned
3708with a request to reformat the changes.
3709
3710
3711Submitting Patches:
3712-------------------
3713
3714Since the number of patches for U-Boot is growing, we need to
3715establish some rules. Submissions which do not conform to these rules
3716may be rejected, even when they contain important and valuable stuff.
3717
3718Patches shall be sent to the u-boot-users mailing list.
3719
3720When you send a patch, please include the following information with
3721it:
3722
3723* For bug fixes: a description of the bug and how your patch fixes
3724  this bug. Please try to include a way of demonstrating that the
3725  patch actually fixes something.
3726
3727* For new features: a description of the feature and your
3728  implementation.
3729
3730* A CHANGELOG entry as plaintext (separate from the patch)
3731
3732* For major contributions, your entry to the CREDITS file
3733
3734* When you add support for a new board, don't forget to add this
3735  board to the MAKEALL script, too.
3736
3737* If your patch adds new configuration options, don't forget to
3738  document these in the README file.
3739
3740* The patch itself. If you are accessing the CVS repository use "cvs
3741  update; cvs diff -puRN"; else, use "diff -purN OLD NEW". If your
3742  version of diff does not support these options, then get the latest
3743  version of GNU diff.
3744
3745  The current directory when running this command shall be the top
3746  level directory of the U-Boot source tree, or it's parent directory
3747  (i. e. please make sure that your patch includes sufficient
3748  directory information for the affected files).
3749
3750  We accept patches as plain text, MIME attachments or as uuencoded
3751  gzipped text.
3752
3753* If one logical set of modifications affects or creates several
3754  files, all these changes shall be submitted in a SINGLE patch file.
3755
3756* Changesets that contain different, unrelated modifications shall be
3757  submitted as SEPARATE patches, one patch per changeset.
3758
3759
3760Notes:
3761
3762* Before sending the patch, run the MAKEALL script on your patched
3763  source tree and make sure that no errors or warnings are reported
3764  for any of the boards.
3765
3766* Keep your modifications to the necessary minimum: A patch
3767  containing several unrelated changes or arbitrary reformats will be
3768  returned with a request to re-formatting / split it.
3769
3770* If you modify existing code, make sure that your new code does not
3771  add to the memory footprint of the code ;-) Small is beautiful!
3772  When adding new features, these should compile conditionally only
3773  (using #ifdef), and the resulting code with the new feature
3774  disabled must not need more memory than the old code without your
3775  modification.
3776
3777* Remember that there is a size limit of 40 kB per message on the
3778  u-boot-users mailing list. Compression may help.
3779