1# 2# (C) Copyright 2000 - 2013 3# Wolfgang Denk, DENX Software Engineering, wd@denx.de. 4# 5# SPDX-License-Identifier: GPL-2.0+ 6# 7 8Summary: 9======== 10 11This directory contains the source code for U-Boot, a boot loader for 12Embedded boards based on PowerPC, ARM, MIPS and several other 13processors, which can be installed in a boot ROM and used to 14initialize and test the hardware or to download and run application 15code. 16 17The development of U-Boot is closely related to Linux: some parts of 18the source code originate in the Linux source tree, we have some 19header files in common, and special provision has been made to 20support booting of Linux images. 21 22Some attention has been paid to make this software easily 23configurable and extendable. For instance, all monitor commands are 24implemented with the same call interface, so that it's very easy to 25add new commands. Also, instead of permanently adding rarely used 26code (for instance hardware test utilities) to the monitor, you can 27load and run it dynamically. 28 29 30Status: 31======= 32 33In general, all boards for which a configuration option exists in the 34Makefile have been tested to some extent and can be considered 35"working". In fact, many of them are used in production systems. 36 37In case of problems see the CHANGELOG file to find out who contributed 38the specific port. In addition, there are various MAINTAINERS files 39scattered throughout the U-Boot source identifying the people or 40companies responsible for various boards and subsystems. 41 42Note: As of August, 2010, there is no longer a CHANGELOG file in the 43actual U-Boot source tree; however, it can be created dynamically 44from the Git log using: 45 46 make CHANGELOG 47 48 49Where to get help: 50================== 51 52In case you have questions about, problems with or contributions for 53U-Boot, you should send a message to the U-Boot mailing list at 54<u-boot@lists.denx.de>. There is also an archive of previous traffic 55on the mailing list - please search the archive before asking FAQ's. 56Please see http://lists.denx.de/pipermail/u-boot and 57http://dir.gmane.org/gmane.comp.boot-loaders.u-boot 58 59 60Where to get source code: 61========================= 62 63The U-Boot source code is maintained in the Git repository at 64git://www.denx.de/git/u-boot.git ; you can browse it online at 65http://www.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary 66 67The "snapshot" links on this page allow you to download tarballs of 68any version you might be interested in. Official releases are also 69available for FTP download from the ftp://ftp.denx.de/pub/u-boot/ 70directory. 71 72Pre-built (and tested) images are available from 73ftp://ftp.denx.de/pub/u-boot/images/ 74 75 76Where we come from: 77=================== 78 79- start from 8xxrom sources 80- create PPCBoot project (http://sourceforge.net/projects/ppcboot) 81- clean up code 82- make it easier to add custom boards 83- make it possible to add other [PowerPC] CPUs 84- extend functions, especially: 85 * Provide extended interface to Linux boot loader 86 * S-Record download 87 * network boot 88 * PCMCIA / CompactFlash / ATA disk / SCSI ... boot 89- create ARMBoot project (http://sourceforge.net/projects/armboot) 90- add other CPU families (starting with ARM) 91- create U-Boot project (http://sourceforge.net/projects/u-boot) 92- current project page: see http://www.denx.de/wiki/U-Boot 93 94 95Names and Spelling: 96=================== 97 98The "official" name of this project is "Das U-Boot". The spelling 99"U-Boot" shall be used in all written text (documentation, comments 100in source files etc.). Example: 101 102 This is the README file for the U-Boot project. 103 104File names etc. shall be based on the string "u-boot". Examples: 105 106 include/asm-ppc/u-boot.h 107 108 #include <asm/u-boot.h> 109 110Variable names, preprocessor constants etc. shall be either based on 111the string "u_boot" or on "U_BOOT". Example: 112 113 U_BOOT_VERSION u_boot_logo 114 IH_OS_U_BOOT u_boot_hush_start 115 116 117Versioning: 118=========== 119 120Starting with the release in October 2008, the names of the releases 121were changed from numerical release numbers without deeper meaning 122into a time stamp based numbering. Regular releases are identified by 123names consisting of the calendar year and month of the release date. 124Additional fields (if present) indicate release candidates or bug fix 125releases in "stable" maintenance trees. 126 127Examples: 128 U-Boot v2009.11 - Release November 2009 129 U-Boot v2009.11.1 - Release 1 in version November 2009 stable tree 130 U-Boot v2010.09-rc1 - Release candiate 1 for September 2010 release 131 132 133Directory Hierarchy: 134==================== 135 136/arch Architecture specific files 137 /arc Files generic to ARC architecture 138 /arm Files generic to ARM architecture 139 /avr32 Files generic to AVR32 architecture 140 /blackfin Files generic to Analog Devices Blackfin architecture 141 /m68k Files generic to m68k architecture 142 /microblaze Files generic to microblaze architecture 143 /mips Files generic to MIPS architecture 144 /nds32 Files generic to NDS32 architecture 145 /nios2 Files generic to Altera NIOS2 architecture 146 /openrisc Files generic to OpenRISC architecture 147 /powerpc Files generic to PowerPC architecture 148 /sandbox Files generic to HW-independent "sandbox" 149 /sh Files generic to SH architecture 150 /sparc Files generic to SPARC architecture 151 /x86 Files generic to x86 architecture 152/api Machine/arch independent API for external apps 153/board Board dependent files 154/cmd U-Boot commands functions 155/common Misc architecture independent functions 156/configs Board default configuration files 157/disk Code for disk drive partition handling 158/doc Documentation (don't expect too much) 159/drivers Commonly used device drivers 160/dts Contains Makefile for building internal U-Boot fdt. 161/examples Example code for standalone applications, etc. 162/fs Filesystem code (cramfs, ext2, jffs2, etc.) 163/include Header Files 164/lib Library routines generic to all architectures 165/Licenses Various license files 166/net Networking code 167/post Power On Self Test 168/scripts Various build scripts and Makefiles 169/test Various unit test files 170/tools Tools to build S-Record or U-Boot images, etc. 171 172Software Configuration: 173======================= 174 175Configuration is usually done using C preprocessor defines; the 176rationale behind that is to avoid dead code whenever possible. 177 178There are two classes of configuration variables: 179 180* Configuration _OPTIONS_: 181 These are selectable by the user and have names beginning with 182 "CONFIG_". 183 184* Configuration _SETTINGS_: 185 These depend on the hardware etc. and should not be meddled with if 186 you don't know what you're doing; they have names beginning with 187 "CONFIG_SYS_". 188 189Previously, all configuration was done by hand, which involved creating 190symbolic links and editing configuration files manually. More recently, 191U-Boot has added the Kbuild infrastructure used by the Linux kernel, 192allowing you to use the "make menuconfig" command to configure your 193build. 194 195 196Selection of Processor Architecture and Board Type: 197--------------------------------------------------- 198 199For all supported boards there are ready-to-use default 200configurations available; just type "make <board_name>_defconfig". 201 202Example: For a TQM823L module type: 203 204 cd u-boot 205 make TQM823L_defconfig 206 207Note: If you're looking for the default configuration file for a board 208you're sure used to be there but is now missing, check the file 209doc/README.scrapyard for a list of no longer supported boards. 210 211Sandbox Environment: 212-------------------- 213 214U-Boot can be built natively to run on a Linux host using the 'sandbox' 215board. This allows feature development which is not board- or architecture- 216specific to be undertaken on a native platform. The sandbox is also used to 217run some of U-Boot's tests. 218 219See board/sandbox/README.sandbox for more details. 220 221 222Board Initialisation Flow: 223-------------------------- 224 225This is the intended start-up flow for boards. This should apply for both 226SPL and U-Boot proper (i.e. they both follow the same rules). 227 228Note: "SPL" stands for "Secondary Program Loader," which is explained in 229more detail later in this file. 230 231At present, SPL mostly uses a separate code path, but the function names 232and roles of each function are the same. Some boards or architectures 233may not conform to this. At least most ARM boards which use 234CONFIG_SPL_FRAMEWORK conform to this. 235 236Execution typically starts with an architecture-specific (and possibly 237CPU-specific) start.S file, such as: 238 239 - arch/arm/cpu/armv7/start.S 240 - arch/powerpc/cpu/mpc83xx/start.S 241 - arch/mips/cpu/start.S 242 243and so on. From there, three functions are called; the purpose and 244limitations of each of these functions are described below. 245 246lowlevel_init(): 247 - purpose: essential init to permit execution to reach board_init_f() 248 - no global_data or BSS 249 - there is no stack (ARMv7 may have one but it will soon be removed) 250 - must not set up SDRAM or use console 251 - must only do the bare minimum to allow execution to continue to 252 board_init_f() 253 - this is almost never needed 254 - return normally from this function 255 256board_init_f(): 257 - purpose: set up the machine ready for running board_init_r(): 258 i.e. SDRAM and serial UART 259 - global_data is available 260 - stack is in SRAM 261 - BSS is not available, so you cannot use global/static variables, 262 only stack variables and global_data 263 264 Non-SPL-specific notes: 265 - dram_init() is called to set up DRAM. If already done in SPL this 266 can do nothing 267 268 SPL-specific notes: 269 - you can override the entire board_init_f() function with your own 270 version as needed. 271 - preloader_console_init() can be called here in extremis 272 - should set up SDRAM, and anything needed to make the UART work 273 - these is no need to clear BSS, it will be done by crt0.S 274 - must return normally from this function (don't call board_init_r() 275 directly) 276 277Here the BSS is cleared. For SPL, if CONFIG_SPL_STACK_R is defined, then at 278this point the stack and global_data are relocated to below 279CONFIG_SPL_STACK_R_ADDR. For non-SPL, U-Boot is relocated to run at the top of 280memory. 281 282board_init_r(): 283 - purpose: main execution, common code 284 - global_data is available 285 - SDRAM is available 286 - BSS is available, all static/global variables can be used 287 - execution eventually continues to main_loop() 288 289 Non-SPL-specific notes: 290 - U-Boot is relocated to the top of memory and is now running from 291 there. 292 293 SPL-specific notes: 294 - stack is optionally in SDRAM, if CONFIG_SPL_STACK_R is defined and 295 CONFIG_SPL_STACK_R_ADDR points into SDRAM 296 - preloader_console_init() can be called here - typically this is 297 done by defining CONFIG_SPL_BOARD_INIT and then supplying a 298 spl_board_init() function containing this call 299 - loads U-Boot or (in falcon mode) Linux 300 301 302 303Configuration Options: 304---------------------- 305 306Configuration depends on the combination of board and CPU type; all 307such information is kept in a configuration file 308"include/configs/<board_name>.h". 309 310Example: For a TQM823L module, all configuration settings are in 311"include/configs/TQM823L.h". 312 313 314Many of the options are named exactly as the corresponding Linux 315kernel configuration options. The intention is to make it easier to 316build a config tool - later. 317 318 319The following options need to be configured: 320 321- CPU Type: Define exactly one, e.g. CONFIG_MPC85XX. 322 323- Board Type: Define exactly one, e.g. CONFIG_MPC8540ADS. 324 325- CPU Daughterboard Type: (if CONFIG_ATSTK1000 is defined) 326 Define exactly one, e.g. CONFIG_ATSTK1002 327 328- Marvell Family Member 329 CONFIG_SYS_MVFS - define it if you want to enable 330 multiple fs option at one time 331 for marvell soc family 332 333- 8xx CPU Options: (if using an MPC8xx CPU) 334 CONFIG_8xx_GCLK_FREQ - deprecated: CPU clock if 335 get_gclk_freq() cannot work 336 e.g. if there is no 32KHz 337 reference PIT/RTC clock 338 CONFIG_8xx_OSCLK - PLL input clock (either EXTCLK 339 or XTAL/EXTAL) 340 341- 859/866/885 CPU options: (if using a MPC859 or MPC866 or MPC885 CPU): 342 CONFIG_SYS_8xx_CPUCLK_MIN 343 CONFIG_SYS_8xx_CPUCLK_MAX 344 CONFIG_8xx_CPUCLK_DEFAULT 345 See doc/README.MPC866 346 347 CONFIG_SYS_MEASURE_CPUCLK 348 349 Define this to measure the actual CPU clock instead 350 of relying on the correctness of the configured 351 values. Mostly useful for board bringup to make sure 352 the PLL is locked at the intended frequency. Note 353 that this requires a (stable) reference clock (32 kHz 354 RTC clock or CONFIG_SYS_8XX_XIN) 355 356 CONFIG_SYS_DELAYED_ICACHE 357 358 Define this option if you want to enable the 359 ICache only when Code runs from RAM. 360 361- 85xx CPU Options: 362 CONFIG_SYS_PPC64 363 364 Specifies that the core is a 64-bit PowerPC implementation (implements 365 the "64" category of the Power ISA). This is necessary for ePAPR 366 compliance, among other possible reasons. 367 368 CONFIG_SYS_FSL_TBCLK_DIV 369 370 Defines the core time base clock divider ratio compared to the 371 system clock. On most PQ3 devices this is 8, on newer QorIQ 372 devices it can be 16 or 32. The ratio varies from SoC to Soc. 373 374 CONFIG_SYS_FSL_PCIE_COMPAT 375 376 Defines the string to utilize when trying to match PCIe device 377 tree nodes for the given platform. 378 379 CONFIG_SYS_PPC_E500_DEBUG_TLB 380 381 Enables a temporary TLB entry to be used during boot to work 382 around limitations in e500v1 and e500v2 external debugger 383 support. This reduces the portions of the boot code where 384 breakpoints and single stepping do not work. The value of this 385 symbol should be set to the TLB1 entry to be used for this 386 purpose. 387 388 CONFIG_SYS_FSL_ERRATUM_A004510 389 390 Enables a workaround for erratum A004510. If set, 391 then CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV and 392 CONFIG_SYS_FSL_CORENET_SNOOPVEC_COREONLY must be set. 393 394 CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV 395 CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV2 (optional) 396 397 Defines one or two SoC revisions (low 8 bits of SVR) 398 for which the A004510 workaround should be applied. 399 400 The rest of SVR is either not relevant to the decision 401 of whether the erratum is present (e.g. p2040 versus 402 p2041) or is implied by the build target, which controls 403 whether CONFIG_SYS_FSL_ERRATUM_A004510 is set. 404 405 See Freescale App Note 4493 for more information about 406 this erratum. 407 408 CONFIG_A003399_NOR_WORKAROUND 409 Enables a workaround for IFC erratum A003399. It is only 410 required during NOR boot. 411 412 CONFIG_A008044_WORKAROUND 413 Enables a workaround for T1040/T1042 erratum A008044. It is only 414 required during NAND boot and valid for Rev 1.0 SoC revision 415 416 CONFIG_SYS_FSL_CORENET_SNOOPVEC_COREONLY 417 418 This is the value to write into CCSR offset 0x18600 419 according to the A004510 workaround. 420 421 CONFIG_SYS_FSL_DSP_DDR_ADDR 422 This value denotes start offset of DDR memory which is 423 connected exclusively to the DSP cores. 424 425 CONFIG_SYS_FSL_DSP_M2_RAM_ADDR 426 This value denotes start offset of M2 memory 427 which is directly connected to the DSP core. 428 429 CONFIG_SYS_FSL_DSP_M3_RAM_ADDR 430 This value denotes start offset of M3 memory which is directly 431 connected to the DSP core. 432 433 CONFIG_SYS_FSL_DSP_CCSRBAR_DEFAULT 434 This value denotes start offset of DSP CCSR space. 435 436 CONFIG_SYS_FSL_SINGLE_SOURCE_CLK 437 Single Source Clock is clocking mode present in some of FSL SoC's. 438 In this mode, a single differential clock is used to supply 439 clocks to the sysclock, ddrclock and usbclock. 440 441 CONFIG_SYS_CPC_REINIT_F 442 This CONFIG is defined when the CPC is configured as SRAM at the 443 time of U-Boot entry and is required to be re-initialized. 444 445 CONFIG_DEEP_SLEEP 446 Indicates this SoC supports deep sleep feature. If deep sleep is 447 supported, core will start to execute uboot when wakes up. 448 449- Generic CPU options: 450 CONFIG_SYS_GENERIC_GLOBAL_DATA 451 Defines global data is initialized in generic board board_init_f(). 452 If this macro is defined, global data is created and cleared in 453 generic board board_init_f(). Without this macro, architecture/board 454 should initialize global data before calling board_init_f(). 455 456 CONFIG_SYS_BIG_ENDIAN, CONFIG_SYS_LITTLE_ENDIAN 457 458 Defines the endianess of the CPU. Implementation of those 459 values is arch specific. 460 461 CONFIG_SYS_FSL_DDR 462 Freescale DDR driver in use. This type of DDR controller is 463 found in mpc83xx, mpc85xx, mpc86xx as well as some ARM core 464 SoCs. 465 466 CONFIG_SYS_FSL_DDR_ADDR 467 Freescale DDR memory-mapped register base. 468 469 CONFIG_SYS_FSL_DDR_EMU 470 Specify emulator support for DDR. Some DDR features such as 471 deskew training are not available. 472 473 CONFIG_SYS_FSL_DDRC_GEN1 474 Freescale DDR1 controller. 475 476 CONFIG_SYS_FSL_DDRC_GEN2 477 Freescale DDR2 controller. 478 479 CONFIG_SYS_FSL_DDRC_GEN3 480 Freescale DDR3 controller. 481 482 CONFIG_SYS_FSL_DDRC_GEN4 483 Freescale DDR4 controller. 484 485 CONFIG_SYS_FSL_DDRC_ARM_GEN3 486 Freescale DDR3 controller for ARM-based SoCs. 487 488 CONFIG_SYS_FSL_DDR1 489 Board config to use DDR1. It can be enabled for SoCs with 490 Freescale DDR1 or DDR2 controllers, depending on the board 491 implemetation. 492 493 CONFIG_SYS_FSL_DDR2 494 Board config to use DDR2. It can be enabled for SoCs with 495 Freescale DDR2 or DDR3 controllers, depending on the board 496 implementation. 497 498 CONFIG_SYS_FSL_DDR3 499 Board config to use DDR3. It can be enabled for SoCs with 500 Freescale DDR3 or DDR3L controllers. 501 502 CONFIG_SYS_FSL_DDR3L 503 Board config to use DDR3L. It can be enabled for SoCs with 504 DDR3L controllers. 505 506 CONFIG_SYS_FSL_DDR4 507 Board config to use DDR4. It can be enabled for SoCs with 508 DDR4 controllers. 509 510 CONFIG_SYS_FSL_IFC_BE 511 Defines the IFC controller register space as Big Endian 512 513 CONFIG_SYS_FSL_IFC_LE 514 Defines the IFC controller register space as Little Endian 515 516 CONFIG_SYS_FSL_PBL_PBI 517 It enables addition of RCW (Power on reset configuration) in built image. 518 Please refer doc/README.pblimage for more details 519 520 CONFIG_SYS_FSL_PBL_RCW 521 It adds PBI(pre-boot instructions) commands in u-boot build image. 522 PBI commands can be used to configure SoC before it starts the execution. 523 Please refer doc/README.pblimage for more details 524 525 CONFIG_SPL_FSL_PBL 526 It adds a target to create boot binary having SPL binary in PBI format 527 concatenated with u-boot binary. 528 529 CONFIG_SYS_FSL_DDR_BE 530 Defines the DDR controller register space as Big Endian 531 532 CONFIG_SYS_FSL_DDR_LE 533 Defines the DDR controller register space as Little Endian 534 535 CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY 536 Physical address from the view of DDR controllers. It is the 537 same as CONFIG_SYS_DDR_SDRAM_BASE for all Power SoCs. But 538 it could be different for ARM SoCs. 539 540 CONFIG_SYS_FSL_DDR_INTLV_256B 541 DDR controller interleaving on 256-byte. This is a special 542 interleaving mode, handled by Dickens for Freescale layerscape 543 SoCs with ARM core. 544 545 CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS 546 Number of controllers used as main memory. 547 548 CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS 549 Number of controllers used for other than main memory. 550 551 CONFIG_SYS_FSL_HAS_DP_DDR 552 Defines the SoC has DP-DDR used for DPAA. 553 554 CONFIG_SYS_FSL_SEC_BE 555 Defines the SEC controller register space as Big Endian 556 557 CONFIG_SYS_FSL_SEC_LE 558 Defines the SEC controller register space as Little Endian 559 560- MIPS CPU options: 561 CONFIG_SYS_INIT_SP_OFFSET 562 563 Offset relative to CONFIG_SYS_SDRAM_BASE for initial stack 564 pointer. This is needed for the temporary stack before 565 relocation. 566 567 CONFIG_SYS_MIPS_CACHE_MODE 568 569 Cache operation mode for the MIPS CPU. 570 See also arch/mips/include/asm/mipsregs.h. 571 Possible values are: 572 CONF_CM_CACHABLE_NO_WA 573 CONF_CM_CACHABLE_WA 574 CONF_CM_UNCACHED 575 CONF_CM_CACHABLE_NONCOHERENT 576 CONF_CM_CACHABLE_CE 577 CONF_CM_CACHABLE_COW 578 CONF_CM_CACHABLE_CUW 579 CONF_CM_CACHABLE_ACCELERATED 580 581 CONFIG_SYS_XWAY_EBU_BOOTCFG 582 583 Special option for Lantiq XWAY SoCs for booting from NOR flash. 584 See also arch/mips/cpu/mips32/start.S. 585 586 CONFIG_XWAY_SWAP_BYTES 587 588 Enable compilation of tools/xway-swap-bytes needed for Lantiq 589 XWAY SoCs for booting from NOR flash. The U-Boot image needs to 590 be swapped if a flash programmer is used. 591 592- ARM options: 593 CONFIG_SYS_EXCEPTION_VECTORS_HIGH 594 595 Select high exception vectors of the ARM core, e.g., do not 596 clear the V bit of the c1 register of CP15. 597 598 CONFIG_SYS_THUMB_BUILD 599 600 Use this flag to build U-Boot using the Thumb instruction 601 set for ARM architectures. Thumb instruction set provides 602 better code density. For ARM architectures that support 603 Thumb2 this flag will result in Thumb2 code generated by 604 GCC. 605 606 CONFIG_ARM_ERRATA_716044 607 CONFIG_ARM_ERRATA_742230 608 CONFIG_ARM_ERRATA_743622 609 CONFIG_ARM_ERRATA_751472 610 CONFIG_ARM_ERRATA_761320 611 CONFIG_ARM_ERRATA_773022 612 CONFIG_ARM_ERRATA_774769 613 CONFIG_ARM_ERRATA_794072 614 615 If set, the workarounds for these ARM errata are applied early 616 during U-Boot startup. Note that these options force the 617 workarounds to be applied; no CPU-type/version detection 618 exists, unlike the similar options in the Linux kernel. Do not 619 set these options unless they apply! 620 621 COUNTER_FREQUENCY 622 Generic timer clock source frequency. 623 624 COUNTER_FREQUENCY_REAL 625 Generic timer clock source frequency if the real clock is 626 different from COUNTER_FREQUENCY, and can only be determined 627 at run time. 628 629 NOTE: The following can be machine specific errata. These 630 do have ability to provide rudimentary version and machine 631 specific checks, but expect no product checks. 632 CONFIG_ARM_ERRATA_430973 633 CONFIG_ARM_ERRATA_454179 634 CONFIG_ARM_ERRATA_621766 635 CONFIG_ARM_ERRATA_798870 636 CONFIG_ARM_ERRATA_801819 637 638- Tegra SoC options: 639 CONFIG_TEGRA_SUPPORT_NON_SECURE 640 641 Support executing U-Boot in non-secure (NS) mode. Certain 642 impossible actions will be skipped if the CPU is in NS mode, 643 such as ARM architectural timer initialization. 644 645- Linux Kernel Interface: 646 CONFIG_CLOCKS_IN_MHZ 647 648 U-Boot stores all clock information in Hz 649 internally. For binary compatibility with older Linux 650 kernels (which expect the clocks passed in the 651 bd_info data to be in MHz) the environment variable 652 "clocks_in_mhz" can be defined so that U-Boot 653 converts clock data to MHZ before passing it to the 654 Linux kernel. 655 When CONFIG_CLOCKS_IN_MHZ is defined, a definition of 656 "clocks_in_mhz=1" is automatically included in the 657 default environment. 658 659 CONFIG_MEMSIZE_IN_BYTES [relevant for MIPS only] 660 661 When transferring memsize parameter to Linux, some versions 662 expect it to be in bytes, others in MB. 663 Define CONFIG_MEMSIZE_IN_BYTES to make it in bytes. 664 665 CONFIG_OF_LIBFDT 666 667 New kernel versions are expecting firmware settings to be 668 passed using flattened device trees (based on open firmware 669 concepts). 670 671 CONFIG_OF_LIBFDT 672 * New libfdt-based support 673 * Adds the "fdt" command 674 * The bootm command automatically updates the fdt 675 676 OF_CPU - The proper name of the cpus node (only required for 677 MPC512X and MPC5xxx based boards). 678 OF_SOC - The proper name of the soc node (only required for 679 MPC512X and MPC5xxx based boards). 680 OF_TBCLK - The timebase frequency. 681 OF_STDOUT_PATH - The path to the console device 682 683 boards with QUICC Engines require OF_QE to set UCC MAC 684 addresses 685 686 CONFIG_OF_BOARD_SETUP 687 688 Board code has addition modification that it wants to make 689 to the flat device tree before handing it off to the kernel 690 691 CONFIG_OF_SYSTEM_SETUP 692 693 Other code has addition modification that it wants to make 694 to the flat device tree before handing it off to the kernel. 695 This causes ft_system_setup() to be called before booting 696 the kernel. 697 698 CONFIG_OF_IDE_FIXUP 699 700 U-Boot can detect if an IDE device is present or not. 701 If not, and this new config option is activated, U-Boot 702 removes the ATA node from the DTS before booting Linux, 703 so the Linux IDE driver does not probe the device and 704 crash. This is needed for buggy hardware (uc101) where 705 no pull down resistor is connected to the signal IDE5V_DD7. 706 707 CONFIG_MACH_TYPE [relevant for ARM only][mandatory] 708 709 This setting is mandatory for all boards that have only one 710 machine type and must be used to specify the machine type 711 number as it appears in the ARM machine registry 712 (see http://www.arm.linux.org.uk/developer/machines/). 713 Only boards that have multiple machine types supported 714 in a single configuration file and the machine type is 715 runtime discoverable, do not have to use this setting. 716 717- vxWorks boot parameters: 718 719 bootvx constructs a valid bootline using the following 720 environments variables: bootdev, bootfile, ipaddr, netmask, 721 serverip, gatewayip, hostname, othbootargs. 722 It loads the vxWorks image pointed bootfile. 723 724 Note: If a "bootargs" environment is defined, it will overwride 725 the defaults discussed just above. 726 727- Cache Configuration: 728 CONFIG_SYS_ICACHE_OFF - Do not enable instruction cache in U-Boot 729 CONFIG_SYS_DCACHE_OFF - Do not enable data cache in U-Boot 730 CONFIG_SYS_L2CACHE_OFF- Do not enable L2 cache in U-Boot 731 732- Cache Configuration for ARM: 733 CONFIG_SYS_L2_PL310 - Enable support for ARM PL310 L2 cache 734 controller 735 CONFIG_SYS_PL310_BASE - Physical base address of PL310 736 controller register space 737 738- Serial Ports: 739 CONFIG_PL010_SERIAL 740 741 Define this if you want support for Amba PrimeCell PL010 UARTs. 742 743 CONFIG_PL011_SERIAL 744 745 Define this if you want support for Amba PrimeCell PL011 UARTs. 746 747 CONFIG_PL011_CLOCK 748 749 If you have Amba PrimeCell PL011 UARTs, set this variable to 750 the clock speed of the UARTs. 751 752 CONFIG_PL01x_PORTS 753 754 If you have Amba PrimeCell PL010 or PL011 UARTs on your board, 755 define this to a list of base addresses for each (supported) 756 port. See e.g. include/configs/versatile.h 757 758 CONFIG_SERIAL_HW_FLOW_CONTROL 759 760 Define this variable to enable hw flow control in serial driver. 761 Current user of this option is drivers/serial/nsl16550.c driver 762 763- Console Interface: 764 Depending on board, define exactly one serial port 765 (like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2, 766 CONFIG_8xx_CONS_SCC1, ...), or switch off the serial 767 console by defining CONFIG_8xx_CONS_NONE 768 769 Note: if CONFIG_8xx_CONS_NONE is defined, the serial 770 port routines must be defined elsewhere 771 (i.e. serial_init(), serial_getc(), ...) 772 773 CONFIG_CFB_CONSOLE 774 Enables console device for a color framebuffer. Needs following 775 defines (cf. smiLynxEM, i8042) 776 VIDEO_FB_LITTLE_ENDIAN graphic memory organisation 777 (default big endian) 778 VIDEO_HW_RECTFILL graphic chip supports 779 rectangle fill 780 (cf. smiLynxEM) 781 VIDEO_HW_BITBLT graphic chip supports 782 bit-blit (cf. smiLynxEM) 783 VIDEO_VISIBLE_COLS visible pixel columns 784 (cols=pitch) 785 VIDEO_VISIBLE_ROWS visible pixel rows 786 VIDEO_PIXEL_SIZE bytes per pixel 787 VIDEO_DATA_FORMAT graphic data format 788 (0-5, cf. cfb_console.c) 789 VIDEO_FB_ADRS framebuffer address 790 VIDEO_KBD_INIT_FCT keyboard int fct 791 (i.e. rx51_kp_init()) 792 VIDEO_TSTC_FCT test char fct 793 (i.e. rx51_kp_tstc) 794 VIDEO_GETC_FCT get char fct 795 (i.e. rx51_kp_getc) 796 CONFIG_VIDEO_LOGO display Linux logo in 797 upper left corner 798 CONFIG_VIDEO_BMP_LOGO use bmp_logo.h instead of 799 linux_logo.h for logo. 800 Requires CONFIG_VIDEO_LOGO 801 CONFIG_CONSOLE_EXTRA_INFO 802 additional board info beside 803 the logo 804 CONFIG_HIDE_LOGO_VERSION 805 do not display bootloader 806 version string 807 808 When CONFIG_CFB_CONSOLE_ANSI is defined, console will support 809 a limited number of ANSI escape sequences (cursor control, 810 erase functions and limited graphics rendition control). 811 812 When CONFIG_CFB_CONSOLE is defined, video console is 813 default i/o. Serial console can be forced with 814 environment 'console=serial'. 815 816 When CONFIG_SILENT_CONSOLE is defined, all console 817 messages (by U-Boot and Linux!) can be silenced with 818 the "silent" environment variable. See 819 doc/README.silent for more information. 820 821 CONFIG_SYS_CONSOLE_BG_COL: define the backgroundcolor, default 822 is 0x00. 823 CONFIG_SYS_CONSOLE_FG_COL: define the foregroundcolor, default 824 is 0xa0. 825 826- Console Baudrate: 827 CONFIG_BAUDRATE - in bps 828 Select one of the baudrates listed in 829 CONFIG_SYS_BAUDRATE_TABLE, see below. 830 CONFIG_SYS_BRGCLK_PRESCALE, baudrate prescale 831 832- Console Rx buffer length 833 With CONFIG_SYS_SMC_RXBUFLEN it is possible to define 834 the maximum receive buffer length for the SMC. 835 This option is actual only for 82xx and 8xx possible. 836 If using CONFIG_SYS_SMC_RXBUFLEN also CONFIG_SYS_MAXIDLE 837 must be defined, to setup the maximum idle timeout for 838 the SMC. 839 840- Pre-Console Buffer: 841 Prior to the console being initialised (i.e. serial UART 842 initialised etc) all console output is silently discarded. 843 Defining CONFIG_PRE_CONSOLE_BUFFER will cause U-Boot to 844 buffer any console messages prior to the console being 845 initialised to a buffer of size CONFIG_PRE_CON_BUF_SZ 846 bytes located at CONFIG_PRE_CON_BUF_ADDR. The buffer is 847 a circular buffer, so if more than CONFIG_PRE_CON_BUF_SZ 848 bytes are output before the console is initialised, the 849 earlier bytes are discarded. 850 851 Note that when printing the buffer a copy is made on the 852 stack so CONFIG_PRE_CON_BUF_SZ must fit on the stack. 853 854 'Sane' compilers will generate smaller code if 855 CONFIG_PRE_CON_BUF_SZ is a power of 2 856 857- Autoboot Command: 858 CONFIG_BOOTCOMMAND 859 Only needed when CONFIG_BOOTDELAY is enabled; 860 define a command string that is automatically executed 861 when no character is read on the console interface 862 within "Boot Delay" after reset. 863 864 CONFIG_BOOTARGS 865 This can be used to pass arguments to the bootm 866 command. The value of CONFIG_BOOTARGS goes into the 867 environment value "bootargs". 868 869 CONFIG_RAMBOOT and CONFIG_NFSBOOT 870 The value of these goes into the environment as 871 "ramboot" and "nfsboot" respectively, and can be used 872 as a convenience, when switching between booting from 873 RAM and NFS. 874 875- Bootcount: 876 CONFIG_BOOTCOUNT_LIMIT 877 Implements a mechanism for detecting a repeating reboot 878 cycle, see: 879 http://www.denx.de/wiki/view/DULG/UBootBootCountLimit 880 881 CONFIG_BOOTCOUNT_ENV 882 If no softreset save registers are found on the hardware 883 "bootcount" is stored in the environment. To prevent a 884 saveenv on all reboots, the environment variable 885 "upgrade_available" is used. If "upgrade_available" is 886 0, "bootcount" is always 0, if "upgrade_available" is 887 1 "bootcount" is incremented in the environment. 888 So the Userspace Applikation must set the "upgrade_available" 889 and "bootcount" variable to 0, if a boot was successfully. 890 891- Pre-Boot Commands: 892 CONFIG_PREBOOT 893 894 When this option is #defined, the existence of the 895 environment variable "preboot" will be checked 896 immediately before starting the CONFIG_BOOTDELAY 897 countdown and/or running the auto-boot command resp. 898 entering interactive mode. 899 900 This feature is especially useful when "preboot" is 901 automatically generated or modified. For an example 902 see the LWMON board specific code: here "preboot" is 903 modified when the user holds down a certain 904 combination of keys on the (special) keyboard when 905 booting the systems 906 907- Serial Download Echo Mode: 908 CONFIG_LOADS_ECHO 909 If defined to 1, all characters received during a 910 serial download (using the "loads" command) are 911 echoed back. This might be needed by some terminal 912 emulations (like "cu"), but may as well just take 913 time on others. This setting #define's the initial 914 value of the "loads_echo" environment variable. 915 916- Kgdb Serial Baudrate: (if CONFIG_CMD_KGDB is defined) 917 CONFIG_KGDB_BAUDRATE 918 Select one of the baudrates listed in 919 CONFIG_SYS_BAUDRATE_TABLE, see below. 920 921- Monitor Functions: 922 Monitor commands can be included or excluded 923 from the build by using the #include files 924 <config_cmd_all.h> and #undef'ing unwanted 925 commands, or adding #define's for wanted commands. 926 927 The default command configuration includes all commands 928 except those marked below with a "*". 929 930 CONFIG_CMD_AES AES 128 CBC encrypt/decrypt 931 CONFIG_CMD_ASKENV * ask for env variable 932 CONFIG_CMD_BDI bdinfo 933 CONFIG_CMD_BEDBUG * Include BedBug Debugger 934 CONFIG_CMD_BMP * BMP support 935 CONFIG_CMD_BSP * Board specific commands 936 CONFIG_CMD_BOOTD bootd 937 CONFIG_CMD_BOOTI * ARM64 Linux kernel Image support 938 CONFIG_CMD_CACHE * icache, dcache 939 CONFIG_CMD_CLK * clock command support 940 CONFIG_CMD_CONSOLE coninfo 941 CONFIG_CMD_CRC32 * crc32 942 CONFIG_CMD_DATE * support for RTC, date/time... 943 CONFIG_CMD_DHCP * DHCP support 944 CONFIG_CMD_DIAG * Diagnostics 945 CONFIG_CMD_DS4510 * ds4510 I2C gpio commands 946 CONFIG_CMD_DS4510_INFO * ds4510 I2C info command 947 CONFIG_CMD_DS4510_MEM * ds4510 I2C eeprom/sram commansd 948 CONFIG_CMD_DS4510_RST * ds4510 I2C rst command 949 CONFIG_CMD_DTT * Digital Therm and Thermostat 950 CONFIG_CMD_ECHO echo arguments 951 CONFIG_CMD_EDITENV edit env variable 952 CONFIG_CMD_EEPROM * EEPROM read/write support 953 CONFIG_CMD_EEPROM_LAYOUT* EEPROM layout aware commands 954 CONFIG_CMD_ELF * bootelf, bootvx 955 CONFIG_CMD_ENV_CALLBACK * display details about env callbacks 956 CONFIG_CMD_ENV_FLAGS * display details about env flags 957 CONFIG_CMD_ENV_EXISTS * check existence of env variable 958 CONFIG_CMD_EXPORTENV * export the environment 959 CONFIG_CMD_EXT2 * ext2 command support 960 CONFIG_CMD_EXT4 * ext4 command support 961 CONFIG_CMD_FS_GENERIC * filesystem commands (e.g. load, ls) 962 that work for multiple fs types 963 CONFIG_CMD_FS_UUID * Look up a filesystem UUID 964 CONFIG_CMD_SAVEENV saveenv 965 CONFIG_CMD_FDC * Floppy Disk Support 966 CONFIG_CMD_FAT * FAT command support 967 CONFIG_CMD_FLASH flinfo, erase, protect 968 CONFIG_CMD_FPGA FPGA device initialization support 969 CONFIG_CMD_FUSE * Device fuse support 970 CONFIG_CMD_GETTIME * Get time since boot 971 CONFIG_CMD_GO * the 'go' command (exec code) 972 CONFIG_CMD_GREPENV * search environment 973 CONFIG_CMD_HASH * calculate hash / digest 974 CONFIG_CMD_I2C * I2C serial bus support 975 CONFIG_CMD_IDE * IDE harddisk support 976 CONFIG_CMD_IMI iminfo 977 CONFIG_CMD_IMLS List all images found in NOR flash 978 CONFIG_CMD_IMLS_NAND * List all images found in NAND flash 979 CONFIG_CMD_IMMAP * IMMR dump support 980 CONFIG_CMD_IOTRACE * I/O tracing for debugging 981 CONFIG_CMD_IMPORTENV * import an environment 982 CONFIG_CMD_INI * import data from an ini file into the env 983 CONFIG_CMD_IRQ * irqinfo 984 CONFIG_CMD_ITEST Integer/string test of 2 values 985 CONFIG_CMD_JFFS2 * JFFS2 Support 986 CONFIG_CMD_KGDB * kgdb 987 CONFIG_CMD_LDRINFO * ldrinfo (display Blackfin loader) 988 CONFIG_CMD_LINK_LOCAL * link-local IP address auto-configuration 989 (169.254.*.*) 990 CONFIG_CMD_LOADB loadb 991 CONFIG_CMD_LOADS loads 992 CONFIG_CMD_MD5SUM * print md5 message digest 993 (requires CONFIG_CMD_MEMORY and CONFIG_MD5) 994 CONFIG_CMD_MEMINFO * Display detailed memory information 995 CONFIG_CMD_MEMORY md, mm, nm, mw, cp, cmp, crc, base, 996 loop, loopw 997 CONFIG_CMD_MEMTEST * mtest 998 CONFIG_CMD_MISC Misc functions like sleep etc 999 CONFIG_CMD_MMC * MMC memory mapped support 1000 CONFIG_CMD_MII * MII utility commands 1001 CONFIG_CMD_MTDPARTS * MTD partition support 1002 CONFIG_CMD_NAND * NAND support 1003 CONFIG_CMD_NET bootp, tftpboot, rarpboot 1004 CONFIG_CMD_NFS NFS support 1005 CONFIG_CMD_PCA953X * PCA953x I2C gpio commands 1006 CONFIG_CMD_PCA953X_INFO * PCA953x I2C gpio info command 1007 CONFIG_CMD_PCI * pciinfo 1008 CONFIG_CMD_PCMCIA * PCMCIA support 1009 CONFIG_CMD_PING * send ICMP ECHO_REQUEST to network 1010 host 1011 CONFIG_CMD_PORTIO * Port I/O 1012 CONFIG_CMD_READ * Read raw data from partition 1013 CONFIG_CMD_REGINFO * Register dump 1014 CONFIG_CMD_RUN run command in env variable 1015 CONFIG_CMD_SANDBOX * sb command to access sandbox features 1016 CONFIG_CMD_SAVES * save S record dump 1017 CONFIG_SCSI * SCSI Support 1018 CONFIG_CMD_SDRAM * print SDRAM configuration information 1019 (requires CONFIG_CMD_I2C) 1020 CONFIG_CMD_SETGETDCR Support for DCR Register access 1021 (4xx only) 1022 CONFIG_CMD_SF * Read/write/erase SPI NOR flash 1023 CONFIG_CMD_SHA1SUM * print sha1 memory digest 1024 (requires CONFIG_CMD_MEMORY) 1025 CONFIG_CMD_SOFTSWITCH * Soft switch setting command for BF60x 1026 CONFIG_CMD_SOURCE "source" command Support 1027 CONFIG_CMD_SPI * SPI serial bus support 1028 CONFIG_CMD_TFTPSRV * TFTP transfer in server mode 1029 CONFIG_CMD_TFTPPUT * TFTP put command (upload) 1030 CONFIG_CMD_TIME * run command and report execution time (ARM specific) 1031 CONFIG_CMD_TIMER * access to the system tick timer 1032 CONFIG_CMD_USB * USB support 1033 CONFIG_CMD_CDP * Cisco Discover Protocol support 1034 CONFIG_CMD_MFSL * Microblaze FSL support 1035 CONFIG_CMD_XIMG Load part of Multi Image 1036 CONFIG_CMD_UUID * Generate random UUID or GUID string 1037 1038 EXAMPLE: If you want all functions except of network 1039 support you can write: 1040 1041 #include "config_cmd_all.h" 1042 #undef CONFIG_CMD_NET 1043 1044 Other Commands: 1045 fdt (flattened device tree) command: CONFIG_OF_LIBFDT 1046 1047 Note: Don't enable the "icache" and "dcache" commands 1048 (configuration option CONFIG_CMD_CACHE) unless you know 1049 what you (and your U-Boot users) are doing. Data 1050 cache cannot be enabled on systems like the 8xx or 1051 8260 (where accesses to the IMMR region must be 1052 uncached), and it cannot be disabled on all other 1053 systems where we (mis-) use the data cache to hold an 1054 initial stack and some data. 1055 1056 1057 XXX - this list needs to get updated! 1058 1059- Removal of commands 1060 If no commands are needed to boot, you can disable 1061 CONFIG_CMDLINE to remove them. In this case, the command line 1062 will not be available, and when U-Boot wants to execute the 1063 boot command (on start-up) it will call board_run_command() 1064 instead. This can reduce image size significantly for very 1065 simple boot procedures. 1066 1067- Regular expression support: 1068 CONFIG_REGEX 1069 If this variable is defined, U-Boot is linked against 1070 the SLRE (Super Light Regular Expression) library, 1071 which adds regex support to some commands, as for 1072 example "env grep" and "setexpr". 1073 1074- Device tree: 1075 CONFIG_OF_CONTROL 1076 If this variable is defined, U-Boot will use a device tree 1077 to configure its devices, instead of relying on statically 1078 compiled #defines in the board file. This option is 1079 experimental and only available on a few boards. The device 1080 tree is available in the global data as gd->fdt_blob. 1081 1082 U-Boot needs to get its device tree from somewhere. This can 1083 be done using one of the two options below: 1084 1085 CONFIG_OF_EMBED 1086 If this variable is defined, U-Boot will embed a device tree 1087 binary in its image. This device tree file should be in the 1088 board directory and called <soc>-<board>.dts. The binary file 1089 is then picked up in board_init_f() and made available through 1090 the global data structure as gd->blob. 1091 1092 CONFIG_OF_SEPARATE 1093 If this variable is defined, U-Boot will build a device tree 1094 binary. It will be called u-boot.dtb. Architecture-specific 1095 code will locate it at run-time. Generally this works by: 1096 1097 cat u-boot.bin u-boot.dtb >image.bin 1098 1099 and in fact, U-Boot does this for you, creating a file called 1100 u-boot-dtb.bin which is useful in the common case. You can 1101 still use the individual files if you need something more 1102 exotic. 1103 1104- Watchdog: 1105 CONFIG_WATCHDOG 1106 If this variable is defined, it enables watchdog 1107 support for the SoC. There must be support in the SoC 1108 specific code for a watchdog. For the 8xx and 8260 1109 CPUs, the SIU Watchdog feature is enabled in the SYPCR 1110 register. When supported for a specific SoC is 1111 available, then no further board specific code should 1112 be needed to use it. 1113 1114 CONFIG_HW_WATCHDOG 1115 When using a watchdog circuitry external to the used 1116 SoC, then define this variable and provide board 1117 specific code for the "hw_watchdog_reset" function. 1118 1119 CONFIG_AT91_HW_WDT_TIMEOUT 1120 specify the timeout in seconds. default 2 seconds. 1121 1122- U-Boot Version: 1123 CONFIG_VERSION_VARIABLE 1124 If this variable is defined, an environment variable 1125 named "ver" is created by U-Boot showing the U-Boot 1126 version as printed by the "version" command. 1127 Any change to this variable will be reverted at the 1128 next reset. 1129 1130- Real-Time Clock: 1131 1132 When CONFIG_CMD_DATE is selected, the type of the RTC 1133 has to be selected, too. Define exactly one of the 1134 following options: 1135 1136 CONFIG_RTC_MPC8xx - use internal RTC of MPC8xx 1137 CONFIG_RTC_PCF8563 - use Philips PCF8563 RTC 1138 CONFIG_RTC_MC13XXX - use MC13783 or MC13892 RTC 1139 CONFIG_RTC_MC146818 - use MC146818 RTC 1140 CONFIG_RTC_DS1307 - use Maxim, Inc. DS1307 RTC 1141 CONFIG_RTC_DS1337 - use Maxim, Inc. DS1337 RTC 1142 CONFIG_RTC_DS1338 - use Maxim, Inc. DS1338 RTC 1143 CONFIG_RTC_DS1339 - use Maxim, Inc. DS1339 RTC 1144 CONFIG_RTC_DS164x - use Dallas DS164x RTC 1145 CONFIG_RTC_ISL1208 - use Intersil ISL1208 RTC 1146 CONFIG_RTC_MAX6900 - use Maxim, Inc. MAX6900 RTC 1147 CONFIG_SYS_RTC_DS1337_NOOSC - Turn off the OSC output for DS1337 1148 CONFIG_SYS_RV3029_TCR - enable trickle charger on 1149 RV3029 RTC. 1150 1151 Note that if the RTC uses I2C, then the I2C interface 1152 must also be configured. See I2C Support, below. 1153 1154- GPIO Support: 1155 CONFIG_PCA953X - use NXP's PCA953X series I2C GPIO 1156 1157 The CONFIG_SYS_I2C_PCA953X_WIDTH option specifies a list of 1158 chip-ngpio pairs that tell the PCA953X driver the number of 1159 pins supported by a particular chip. 1160 1161 Note that if the GPIO device uses I2C, then the I2C interface 1162 must also be configured. See I2C Support, below. 1163 1164- I/O tracing: 1165 When CONFIG_IO_TRACE is selected, U-Boot intercepts all I/O 1166 accesses and can checksum them or write a list of them out 1167 to memory. See the 'iotrace' command for details. This is 1168 useful for testing device drivers since it can confirm that 1169 the driver behaves the same way before and after a code 1170 change. Currently this is supported on sandbox and arm. To 1171 add support for your architecture, add '#include <iotrace.h>' 1172 to the bottom of arch/<arch>/include/asm/io.h and test. 1173 1174 Example output from the 'iotrace stats' command is below. 1175 Note that if the trace buffer is exhausted, the checksum will 1176 still continue to operate. 1177 1178 iotrace is enabled 1179 Start: 10000000 (buffer start address) 1180 Size: 00010000 (buffer size) 1181 Offset: 00000120 (current buffer offset) 1182 Output: 10000120 (start + offset) 1183 Count: 00000018 (number of trace records) 1184 CRC32: 9526fb66 (CRC32 of all trace records) 1185 1186- Timestamp Support: 1187 1188 When CONFIG_TIMESTAMP is selected, the timestamp 1189 (date and time) of an image is printed by image 1190 commands like bootm or iminfo. This option is 1191 automatically enabled when you select CONFIG_CMD_DATE . 1192 1193- Partition Labels (disklabels) Supported: 1194 Zero or more of the following: 1195 CONFIG_MAC_PARTITION Apple's MacOS partition table. 1196 CONFIG_DOS_PARTITION MS Dos partition table, traditional on the 1197 Intel architecture, USB sticks, etc. 1198 CONFIG_ISO_PARTITION ISO partition table, used on CDROM etc. 1199 CONFIG_EFI_PARTITION GPT partition table, common when EFI is the 1200 bootloader. Note 2TB partition limit; see 1201 disk/part_efi.c 1202 CONFIG_MTD_PARTITIONS Memory Technology Device partition table. 1203 1204 If IDE or SCSI support is enabled (CONFIG_CMD_IDE or 1205 CONFIG_SCSI) you must configure support for at 1206 least one non-MTD partition type as well. 1207 1208- IDE Reset method: 1209 CONFIG_IDE_RESET_ROUTINE - this is defined in several 1210 board configurations files but used nowhere! 1211 1212 CONFIG_IDE_RESET - is this is defined, IDE Reset will 1213 be performed by calling the function 1214 ide_set_reset(int reset) 1215 which has to be defined in a board specific file 1216 1217- ATAPI Support: 1218 CONFIG_ATAPI 1219 1220 Set this to enable ATAPI support. 1221 1222- LBA48 Support 1223 CONFIG_LBA48 1224 1225 Set this to enable support for disks larger than 137GB 1226 Also look at CONFIG_SYS_64BIT_LBA. 1227 Whithout these , LBA48 support uses 32bit variables and will 'only' 1228 support disks up to 2.1TB. 1229 1230 CONFIG_SYS_64BIT_LBA: 1231 When enabled, makes the IDE subsystem use 64bit sector addresses. 1232 Default is 32bit. 1233 1234- SCSI Support: 1235 At the moment only there is only support for the 1236 SYM53C8XX SCSI controller; define 1237 CONFIG_SCSI_SYM53C8XX to enable it. 1238 1239 CONFIG_SYS_SCSI_MAX_LUN [8], CONFIG_SYS_SCSI_MAX_SCSI_ID [7] and 1240 CONFIG_SYS_SCSI_MAX_DEVICE [CONFIG_SYS_SCSI_MAX_SCSI_ID * 1241 CONFIG_SYS_SCSI_MAX_LUN] can be adjusted to define the 1242 maximum numbers of LUNs, SCSI ID's and target 1243 devices. 1244 CONFIG_SYS_SCSI_SYM53C8XX_CCF to fix clock timing (80Mhz) 1245 1246 The environment variable 'scsidevs' is set to the number of 1247 SCSI devices found during the last scan. 1248 1249- NETWORK Support (PCI): 1250 CONFIG_E1000 1251 Support for Intel 8254x/8257x gigabit chips. 1252 1253 CONFIG_E1000_SPI 1254 Utility code for direct access to the SPI bus on Intel 8257x. 1255 This does not do anything useful unless you set at least one 1256 of CONFIG_CMD_E1000 or CONFIG_E1000_SPI_GENERIC. 1257 1258 CONFIG_E1000_SPI_GENERIC 1259 Allow generic access to the SPI bus on the Intel 8257x, for 1260 example with the "sspi" command. 1261 1262 CONFIG_CMD_E1000 1263 Management command for E1000 devices. When used on devices 1264 with SPI support you can reprogram the EEPROM from U-Boot. 1265 1266 CONFIG_EEPRO100 1267 Support for Intel 82557/82559/82559ER chips. 1268 Optional CONFIG_EEPRO100_SROM_WRITE enables EEPROM 1269 write routine for first time initialisation. 1270 1271 CONFIG_TULIP 1272 Support for Digital 2114x chips. 1273 Optional CONFIG_TULIP_SELECT_MEDIA for board specific 1274 modem chip initialisation (KS8761/QS6611). 1275 1276 CONFIG_NATSEMI 1277 Support for National dp83815 chips. 1278 1279 CONFIG_NS8382X 1280 Support for National dp8382[01] gigabit chips. 1281 1282- NETWORK Support (other): 1283 1284 CONFIG_DRIVER_AT91EMAC 1285 Support for AT91RM9200 EMAC. 1286 1287 CONFIG_RMII 1288 Define this to use reduced MII inteface 1289 1290 CONFIG_DRIVER_AT91EMAC_QUIET 1291 If this defined, the driver is quiet. 1292 The driver doen't show link status messages. 1293 1294 CONFIG_CALXEDA_XGMAC 1295 Support for the Calxeda XGMAC device 1296 1297 CONFIG_LAN91C96 1298 Support for SMSC's LAN91C96 chips. 1299 1300 CONFIG_LAN91C96_USE_32_BIT 1301 Define this to enable 32 bit addressing 1302 1303 CONFIG_SMC91111 1304 Support for SMSC's LAN91C111 chip 1305 1306 CONFIG_SMC91111_BASE 1307 Define this to hold the physical address 1308 of the device (I/O space) 1309 1310 CONFIG_SMC_USE_32_BIT 1311 Define this if data bus is 32 bits 1312 1313 CONFIG_SMC_USE_IOFUNCS 1314 Define this to use i/o functions instead of macros 1315 (some hardware wont work with macros) 1316 1317 CONFIG_DRIVER_TI_EMAC 1318 Support for davinci emac 1319 1320 CONFIG_SYS_DAVINCI_EMAC_PHY_COUNT 1321 Define this if you have more then 3 PHYs. 1322 1323 CONFIG_FTGMAC100 1324 Support for Faraday's FTGMAC100 Gigabit SoC Ethernet 1325 1326 CONFIG_FTGMAC100_EGIGA 1327 Define this to use GE link update with gigabit PHY. 1328 Define this if FTGMAC100 is connected to gigabit PHY. 1329 If your system has 10/100 PHY only, it might not occur 1330 wrong behavior. Because PHY usually return timeout or 1331 useless data when polling gigabit status and gigabit 1332 control registers. This behavior won't affect the 1333 correctnessof 10/100 link speed update. 1334 1335 CONFIG_SMC911X 1336 Support for SMSC's LAN911x and LAN921x chips 1337 1338 CONFIG_SMC911X_BASE 1339 Define this to hold the physical address 1340 of the device (I/O space) 1341 1342 CONFIG_SMC911X_32_BIT 1343 Define this if data bus is 32 bits 1344 1345 CONFIG_SMC911X_16_BIT 1346 Define this if data bus is 16 bits. If your processor 1347 automatically converts one 32 bit word to two 16 bit 1348 words you may also try CONFIG_SMC911X_32_BIT. 1349 1350 CONFIG_SH_ETHER 1351 Support for Renesas on-chip Ethernet controller 1352 1353 CONFIG_SH_ETHER_USE_PORT 1354 Define the number of ports to be used 1355 1356 CONFIG_SH_ETHER_PHY_ADDR 1357 Define the ETH PHY's address 1358 1359 CONFIG_SH_ETHER_CACHE_WRITEBACK 1360 If this option is set, the driver enables cache flush. 1361 1362- PWM Support: 1363 CONFIG_PWM_IMX 1364 Support for PWM module on the imx6. 1365 1366- TPM Support: 1367 CONFIG_TPM 1368 Support TPM devices. 1369 1370 CONFIG_TPM_TIS_INFINEON 1371 Support for Infineon i2c bus TPM devices. Only one device 1372 per system is supported at this time. 1373 1374 CONFIG_TPM_TIS_I2C_BURST_LIMITATION 1375 Define the burst count bytes upper limit 1376 1377 CONFIG_TPM_ST33ZP24 1378 Support for STMicroelectronics TPM devices. Requires DM_TPM support. 1379 1380 CONFIG_TPM_ST33ZP24_I2C 1381 Support for STMicroelectronics ST33ZP24 I2C devices. 1382 Requires TPM_ST33ZP24 and I2C. 1383 1384 CONFIG_TPM_ST33ZP24_SPI 1385 Support for STMicroelectronics ST33ZP24 SPI devices. 1386 Requires TPM_ST33ZP24 and SPI. 1387 1388 CONFIG_TPM_ATMEL_TWI 1389 Support for Atmel TWI TPM device. Requires I2C support. 1390 1391 CONFIG_TPM_TIS_LPC 1392 Support for generic parallel port TPM devices. Only one device 1393 per system is supported at this time. 1394 1395 CONFIG_TPM_TIS_BASE_ADDRESS 1396 Base address where the generic TPM device is mapped 1397 to. Contemporary x86 systems usually map it at 1398 0xfed40000. 1399 1400 CONFIG_CMD_TPM 1401 Add tpm monitor functions. 1402 Requires CONFIG_TPM. If CONFIG_TPM_AUTH_SESSIONS is set, also 1403 provides monitor access to authorized functions. 1404 1405 CONFIG_TPM 1406 Define this to enable the TPM support library which provides 1407 functional interfaces to some TPM commands. 1408 Requires support for a TPM device. 1409 1410 CONFIG_TPM_AUTH_SESSIONS 1411 Define this to enable authorized functions in the TPM library. 1412 Requires CONFIG_TPM and CONFIG_SHA1. 1413 1414- USB Support: 1415 At the moment only the UHCI host controller is 1416 supported (PIP405, MIP405, MPC5200); define 1417 CONFIG_USB_UHCI to enable it. 1418 define CONFIG_USB_KEYBOARD to enable the USB Keyboard 1419 and define CONFIG_USB_STORAGE to enable the USB 1420 storage devices. 1421 Note: 1422 Supported are USB Keyboards and USB Floppy drives 1423 (TEAC FD-05PUB). 1424 MPC5200 USB requires additional defines: 1425 CONFIG_USB_CLOCK 1426 for 528 MHz Clock: 0x0001bbbb 1427 CONFIG_PSC3_USB 1428 for USB on PSC3 1429 CONFIG_USB_CONFIG 1430 for differential drivers: 0x00001000 1431 for single ended drivers: 0x00005000 1432 for differential drivers on PSC3: 0x00000100 1433 for single ended drivers on PSC3: 0x00004100 1434 CONFIG_SYS_USB_EVENT_POLL 1435 May be defined to allow interrupt polling 1436 instead of using asynchronous interrupts 1437 1438 CONFIG_USB_EHCI_TXFIFO_THRESH enables setting of the 1439 txfilltuning field in the EHCI controller on reset. 1440 1441 CONFIG_USB_DWC2_REG_ADDR the physical CPU address of the DWC2 1442 HW module registers. 1443 1444- USB Device: 1445 Define the below if you wish to use the USB console. 1446 Once firmware is rebuilt from a serial console issue the 1447 command "setenv stdin usbtty; setenv stdout usbtty" and 1448 attach your USB cable. The Unix command "dmesg" should print 1449 it has found a new device. The environment variable usbtty 1450 can be set to gserial or cdc_acm to enable your device to 1451 appear to a USB host as a Linux gserial device or a 1452 Common Device Class Abstract Control Model serial device. 1453 If you select usbtty = gserial you should be able to enumerate 1454 a Linux host by 1455 # modprobe usbserial vendor=0xVendorID product=0xProductID 1456 else if using cdc_acm, simply setting the environment 1457 variable usbtty to be cdc_acm should suffice. The following 1458 might be defined in YourBoardName.h 1459 1460 CONFIG_USB_DEVICE 1461 Define this to build a UDC device 1462 1463 CONFIG_USB_TTY 1464 Define this to have a tty type of device available to 1465 talk to the UDC device 1466 1467 CONFIG_USBD_HS 1468 Define this to enable the high speed support for usb 1469 device and usbtty. If this feature is enabled, a routine 1470 int is_usbd_high_speed(void) 1471 also needs to be defined by the driver to dynamically poll 1472 whether the enumeration has succeded at high speed or full 1473 speed. 1474 1475 CONFIG_SYS_CONSOLE_IS_IN_ENV 1476 Define this if you want stdin, stdout &/or stderr to 1477 be set to usbtty. 1478 1479 mpc8xx: 1480 CONFIG_SYS_USB_EXTC_CLK 0xBLAH 1481 Derive USB clock from external clock "blah" 1482 - CONFIG_SYS_USB_EXTC_CLK 0x02 1483 1484 If you have a USB-IF assigned VendorID then you may wish to 1485 define your own vendor specific values either in BoardName.h 1486 or directly in usbd_vendor_info.h. If you don't define 1487 CONFIG_USBD_MANUFACTURER, CONFIG_USBD_PRODUCT_NAME, 1488 CONFIG_USBD_VENDORID and CONFIG_USBD_PRODUCTID, then U-Boot 1489 should pretend to be a Linux device to it's target host. 1490 1491 CONFIG_USBD_MANUFACTURER 1492 Define this string as the name of your company for 1493 - CONFIG_USBD_MANUFACTURER "my company" 1494 1495 CONFIG_USBD_PRODUCT_NAME 1496 Define this string as the name of your product 1497 - CONFIG_USBD_PRODUCT_NAME "acme usb device" 1498 1499 CONFIG_USBD_VENDORID 1500 Define this as your assigned Vendor ID from the USB 1501 Implementors Forum. This *must* be a genuine Vendor ID 1502 to avoid polluting the USB namespace. 1503 - CONFIG_USBD_VENDORID 0xFFFF 1504 1505 CONFIG_USBD_PRODUCTID 1506 Define this as the unique Product ID 1507 for your device 1508 - CONFIG_USBD_PRODUCTID 0xFFFF 1509 1510- ULPI Layer Support: 1511 The ULPI (UTMI Low Pin (count) Interface) PHYs are supported via 1512 the generic ULPI layer. The generic layer accesses the ULPI PHY 1513 via the platform viewport, so you need both the genric layer and 1514 the viewport enabled. Currently only Chipidea/ARC based 1515 viewport is supported. 1516 To enable the ULPI layer support, define CONFIG_USB_ULPI and 1517 CONFIG_USB_ULPI_VIEWPORT in your board configuration file. 1518 If your ULPI phy needs a different reference clock than the 1519 standard 24 MHz then you have to define CONFIG_ULPI_REF_CLK to 1520 the appropriate value in Hz. 1521 1522- MMC Support: 1523 The MMC controller on the Intel PXA is supported. To 1524 enable this define CONFIG_MMC. The MMC can be 1525 accessed from the boot prompt by mapping the device 1526 to physical memory similar to flash. Command line is 1527 enabled with CONFIG_CMD_MMC. The MMC driver also works with 1528 the FAT fs. This is enabled with CONFIG_CMD_FAT. 1529 1530 CONFIG_SH_MMCIF 1531 Support for Renesas on-chip MMCIF controller 1532 1533 CONFIG_SH_MMCIF_ADDR 1534 Define the base address of MMCIF registers 1535 1536 CONFIG_SH_MMCIF_CLK 1537 Define the clock frequency for MMCIF 1538 1539 CONFIG_GENERIC_MMC 1540 Enable the generic MMC driver 1541 1542 CONFIG_SUPPORT_EMMC_BOOT 1543 Enable some additional features of the eMMC boot partitions. 1544 1545 CONFIG_SUPPORT_EMMC_RPMB 1546 Enable the commands for reading, writing and programming the 1547 key for the Replay Protection Memory Block partition in eMMC. 1548 1549- USB Device Firmware Update (DFU) class support: 1550 CONFIG_USB_FUNCTION_DFU 1551 This enables the USB portion of the DFU USB class 1552 1553 CONFIG_CMD_DFU 1554 This enables the command "dfu" which is used to have 1555 U-Boot create a DFU class device via USB. This command 1556 requires that the "dfu_alt_info" environment variable be 1557 set and define the alt settings to expose to the host. 1558 1559 CONFIG_DFU_MMC 1560 This enables support for exposing (e)MMC devices via DFU. 1561 1562 CONFIG_DFU_NAND 1563 This enables support for exposing NAND devices via DFU. 1564 1565 CONFIG_DFU_RAM 1566 This enables support for exposing RAM via DFU. 1567 Note: DFU spec refer to non-volatile memory usage, but 1568 allow usages beyond the scope of spec - here RAM usage, 1569 one that would help mostly the developer. 1570 1571 CONFIG_SYS_DFU_DATA_BUF_SIZE 1572 Dfu transfer uses a buffer before writing data to the 1573 raw storage device. Make the size (in bytes) of this buffer 1574 configurable. The size of this buffer is also configurable 1575 through the "dfu_bufsiz" environment variable. 1576 1577 CONFIG_SYS_DFU_MAX_FILE_SIZE 1578 When updating files rather than the raw storage device, 1579 we use a static buffer to copy the file into and then write 1580 the buffer once we've been given the whole file. Define 1581 this to the maximum filesize (in bytes) for the buffer. 1582 Default is 4 MiB if undefined. 1583 1584 DFU_DEFAULT_POLL_TIMEOUT 1585 Poll timeout [ms], is the timeout a device can send to the 1586 host. The host must wait for this timeout before sending 1587 a subsequent DFU_GET_STATUS request to the device. 1588 1589 DFU_MANIFEST_POLL_TIMEOUT 1590 Poll timeout [ms], which the device sends to the host when 1591 entering dfuMANIFEST state. Host waits this timeout, before 1592 sending again an USB request to the device. 1593 1594- USB Device Android Fastboot support: 1595 CONFIG_USB_FUNCTION_FASTBOOT 1596 This enables the USB part of the fastboot gadget 1597 1598 CONFIG_CMD_FASTBOOT 1599 This enables the command "fastboot" which enables the Android 1600 fastboot mode for the platform's USB device. Fastboot is a USB 1601 protocol for downloading images, flashing and device control 1602 used on Android devices. 1603 See doc/README.android-fastboot for more information. 1604 1605 CONFIG_ANDROID_BOOT_IMAGE 1606 This enables support for booting images which use the Android 1607 image format header. 1608 1609 CONFIG_FASTBOOT_BUF_ADDR 1610 The fastboot protocol requires a large memory buffer for 1611 downloads. Define this to the starting RAM address to use for 1612 downloaded images. 1613 1614 CONFIG_FASTBOOT_BUF_SIZE 1615 The fastboot protocol requires a large memory buffer for 1616 downloads. This buffer should be as large as possible for a 1617 platform. Define this to the size available RAM for fastboot. 1618 1619 CONFIG_FASTBOOT_FLASH 1620 The fastboot protocol includes a "flash" command for writing 1621 the downloaded image to a non-volatile storage device. Define 1622 this to enable the "fastboot flash" command. 1623 1624 CONFIG_FASTBOOT_FLASH_MMC_DEV 1625 The fastboot "flash" command requires additional information 1626 regarding the non-volatile storage device. Define this to 1627 the eMMC device that fastboot should use to store the image. 1628 1629 CONFIG_FASTBOOT_GPT_NAME 1630 The fastboot "flash" command supports writing the downloaded 1631 image to the Protective MBR and the Primary GUID Partition 1632 Table. (Additionally, this downloaded image is post-processed 1633 to generate and write the Backup GUID Partition Table.) 1634 This occurs when the specified "partition name" on the 1635 "fastboot flash" command line matches this value. 1636 The default is "gpt" if undefined. 1637 1638 CONFIG_FASTBOOT_MBR_NAME 1639 The fastboot "flash" command supports writing the downloaded 1640 image to DOS MBR. 1641 This occurs when the "partition name" specified on the 1642 "fastboot flash" command line matches this value. 1643 If not defined the default value "mbr" is used. 1644 1645- Journaling Flash filesystem support: 1646 CONFIG_JFFS2_NAND 1647 Define these for a default partition on a NAND device 1648 1649 CONFIG_SYS_JFFS2_FIRST_SECTOR, 1650 CONFIG_SYS_JFFS2_FIRST_BANK, CONFIG_SYS_JFFS2_NUM_BANKS 1651 Define these for a default partition on a NOR device 1652 1653- FAT(File Allocation Table) filesystem write function support: 1654 CONFIG_FAT_WRITE 1655 1656 Define this to enable support for saving memory data as a 1657 file in FAT formatted partition. 1658 1659 This will also enable the command "fatwrite" enabling the 1660 user to write files to FAT. 1661 1662CBFS (Coreboot Filesystem) support 1663 CONFIG_CMD_CBFS 1664 1665 Define this to enable support for reading from a Coreboot 1666 filesystem. Available commands are cbfsinit, cbfsinfo, cbfsls 1667 and cbfsload. 1668 1669- FAT(File Allocation Table) filesystem cluster size: 1670 CONFIG_FS_FAT_MAX_CLUSTSIZE 1671 1672 Define the max cluster size for fat operations else 1673 a default value of 65536 will be defined. 1674 1675- Keyboard Support: 1676 See Kconfig help for available keyboard drivers. 1677 1678 CONFIG_KEYBOARD 1679 1680 Define this to enable a custom keyboard support. 1681 This simply calls drv_keyboard_init() which must be 1682 defined in your board-specific files. This option is deprecated 1683 and is only used by novena. For new boards, use driver model 1684 instead. 1685 1686- Video support: 1687 CONFIG_VIDEO 1688 1689 Define this to enable video support (for output to 1690 video). 1691 1692 CONFIG_VIDEO_CT69000 1693 1694 Enable Chips & Technologies 69000 Video chip 1695 1696 CONFIG_VIDEO_SMI_LYNXEM 1697 Enable Silicon Motion SMI 712/710/810 Video chip. The 1698 video output is selected via environment 'videoout' 1699 (1 = LCD and 2 = CRT). If videoout is undefined, CRT is 1700 assumed. 1701 1702 For the CT69000 and SMI_LYNXEM drivers, videomode is 1703 selected via environment 'videomode'. Two different ways 1704 are possible: 1705 - "videomode=num" 'num' is a standard LiLo mode numbers. 1706 Following standard modes are supported (* is default): 1707 1708 Colors 640x480 800x600 1024x768 1152x864 1280x1024 1709 -------------+--------------------------------------------- 1710 8 bits | 0x301* 0x303 0x305 0x161 0x307 1711 15 bits | 0x310 0x313 0x316 0x162 0x319 1712 16 bits | 0x311 0x314 0x317 0x163 0x31A 1713 24 bits | 0x312 0x315 0x318 ? 0x31B 1714 -------------+--------------------------------------------- 1715 (i.e. setenv videomode 317; saveenv; reset;) 1716 1717 - "videomode=bootargs" all the video parameters are parsed 1718 from the bootargs. (See drivers/video/videomodes.c) 1719 1720 1721 CONFIG_VIDEO_SED13806 1722 Enable Epson SED13806 driver. This driver supports 8bpp 1723 and 16bpp modes defined by CONFIG_VIDEO_SED13806_8BPP 1724 or CONFIG_VIDEO_SED13806_16BPP 1725 1726 CONFIG_FSL_DIU_FB 1727 Enable the Freescale DIU video driver. Reference boards for 1728 SOCs that have a DIU should define this macro to enable DIU 1729 support, and should also define these other macros: 1730 1731 CONFIG_SYS_DIU_ADDR 1732 CONFIG_VIDEO 1733 CONFIG_CMD_BMP 1734 CONFIG_CFB_CONSOLE 1735 CONFIG_VIDEO_SW_CURSOR 1736 CONFIG_VGA_AS_SINGLE_DEVICE 1737 CONFIG_VIDEO_LOGO 1738 CONFIG_VIDEO_BMP_LOGO 1739 1740 The DIU driver will look for the 'video-mode' environment 1741 variable, and if defined, enable the DIU as a console during 1742 boot. See the documentation file doc/README.video for a 1743 description of this variable. 1744 1745- LCD Support: CONFIG_LCD 1746 1747 Define this to enable LCD support (for output to LCD 1748 display); also select one of the supported displays 1749 by defining one of these: 1750 1751 CONFIG_ATMEL_LCD: 1752 1753 HITACHI TX09D70VM1CCA, 3.5", 240x320. 1754 1755 CONFIG_NEC_NL6448AC33: 1756 1757 NEC NL6448AC33-18. Active, color, single scan. 1758 1759 CONFIG_NEC_NL6448BC20 1760 1761 NEC NL6448BC20-08. 6.5", 640x480. 1762 Active, color, single scan. 1763 1764 CONFIG_NEC_NL6448BC33_54 1765 1766 NEC NL6448BC33-54. 10.4", 640x480. 1767 Active, color, single scan. 1768 1769 CONFIG_SHARP_16x9 1770 1771 Sharp 320x240. Active, color, single scan. 1772 It isn't 16x9, and I am not sure what it is. 1773 1774 CONFIG_SHARP_LQ64D341 1775 1776 Sharp LQ64D341 display, 640x480. 1777 Active, color, single scan. 1778 1779 CONFIG_HLD1045 1780 1781 HLD1045 display, 640x480. 1782 Active, color, single scan. 1783 1784 CONFIG_OPTREX_BW 1785 1786 Optrex CBL50840-2 NF-FW 99 22 M5 1787 or 1788 Hitachi LMG6912RPFC-00T 1789 or 1790 Hitachi SP14Q002 1791 1792 320x240. Black & white. 1793 1794 Normally display is black on white background; define 1795 CONFIG_SYS_WHITE_ON_BLACK to get it inverted. 1796 1797 CONFIG_LCD_ALIGNMENT 1798 1799 Normally the LCD is page-aligned (typically 4KB). If this is 1800 defined then the LCD will be aligned to this value instead. 1801 For ARM it is sometimes useful to use MMU_SECTION_SIZE 1802 here, since it is cheaper to change data cache settings on 1803 a per-section basis. 1804 1805 CONFIG_CONSOLE_SCROLL_LINES 1806 1807 When the console need to be scrolled, this is the number of 1808 lines to scroll by. It defaults to 1. Increasing this makes 1809 the console jump but can help speed up operation when scrolling 1810 is slow. 1811 1812 CONFIG_LCD_ROTATION 1813 1814 Sometimes, for example if the display is mounted in portrait 1815 mode or even if it's mounted landscape but rotated by 180degree, 1816 we need to rotate our content of the display relative to the 1817 framebuffer, so that user can read the messages which are 1818 printed out. 1819 Once CONFIG_LCD_ROTATION is defined, the lcd_console will be 1820 initialized with a given rotation from "vl_rot" out of 1821 "vidinfo_t" which is provided by the board specific code. 1822 The value for vl_rot is coded as following (matching to 1823 fbcon=rotate:<n> linux-kernel commandline): 1824 0 = no rotation respectively 0 degree 1825 1 = 90 degree rotation 1826 2 = 180 degree rotation 1827 3 = 270 degree rotation 1828 1829 If CONFIG_LCD_ROTATION is not defined, the console will be 1830 initialized with 0degree rotation. 1831 1832 CONFIG_LCD_BMP_RLE8 1833 1834 Support drawing of RLE8-compressed bitmaps on the LCD. 1835 1836 CONFIG_I2C_EDID 1837 1838 Enables an 'i2c edid' command which can read EDID 1839 information over I2C from an attached LCD display. 1840 1841- Splash Screen Support: CONFIG_SPLASH_SCREEN 1842 1843 If this option is set, the environment is checked for 1844 a variable "splashimage". If found, the usual display 1845 of logo, copyright and system information on the LCD 1846 is suppressed and the BMP image at the address 1847 specified in "splashimage" is loaded instead. The 1848 console is redirected to the "nulldev", too. This 1849 allows for a "silent" boot where a splash screen is 1850 loaded very quickly after power-on. 1851 1852 CONFIG_SPLASHIMAGE_GUARD 1853 1854 If this option is set, then U-Boot will prevent the environment 1855 variable "splashimage" from being set to a problematic address 1856 (see doc/README.displaying-bmps). 1857 This option is useful for targets where, due to alignment 1858 restrictions, an improperly aligned BMP image will cause a data 1859 abort. If you think you will not have problems with unaligned 1860 accesses (for example because your toolchain prevents them) 1861 there is no need to set this option. 1862 1863 CONFIG_SPLASH_SCREEN_ALIGN 1864 1865 If this option is set the splash image can be freely positioned 1866 on the screen. Environment variable "splashpos" specifies the 1867 position as "x,y". If a positive number is given it is used as 1868 number of pixel from left/top. If a negative number is given it 1869 is used as number of pixel from right/bottom. You can also 1870 specify 'm' for centering the image. 1871 1872 Example: 1873 setenv splashpos m,m 1874 => image at center of screen 1875 1876 setenv splashpos 30,20 1877 => image at x = 30 and y = 20 1878 1879 setenv splashpos -10,m 1880 => vertically centered image 1881 at x = dspWidth - bmpWidth - 9 1882 1883- Gzip compressed BMP image support: CONFIG_VIDEO_BMP_GZIP 1884 1885 If this option is set, additionally to standard BMP 1886 images, gzipped BMP images can be displayed via the 1887 splashscreen support or the bmp command. 1888 1889- Run length encoded BMP image (RLE8) support: CONFIG_VIDEO_BMP_RLE8 1890 1891 If this option is set, 8-bit RLE compressed BMP images 1892 can be displayed via the splashscreen support or the 1893 bmp command. 1894 1895- Do compressing for memory range: 1896 CONFIG_CMD_ZIP 1897 1898 If this option is set, it would use zlib deflate method 1899 to compress the specified memory at its best effort. 1900 1901- Compression support: 1902 CONFIG_GZIP 1903 1904 Enabled by default to support gzip compressed images. 1905 1906 CONFIG_BZIP2 1907 1908 If this option is set, support for bzip2 compressed 1909 images is included. If not, only uncompressed and gzip 1910 compressed images are supported. 1911 1912 NOTE: the bzip2 algorithm requires a lot of RAM, so 1913 the malloc area (as defined by CONFIG_SYS_MALLOC_LEN) should 1914 be at least 4MB. 1915 1916 CONFIG_LZMA 1917 1918 If this option is set, support for lzma compressed 1919 images is included. 1920 1921 Note: The LZMA algorithm adds between 2 and 4KB of code and it 1922 requires an amount of dynamic memory that is given by the 1923 formula: 1924 1925 (1846 + 768 << (lc + lp)) * sizeof(uint16) 1926 1927 Where lc and lp stand for, respectively, Literal context bits 1928 and Literal pos bits. 1929 1930 This value is upper-bounded by 14MB in the worst case. Anyway, 1931 for a ~4MB large kernel image, we have lc=3 and lp=0 for a 1932 total amount of (1846 + 768 << (3 + 0)) * 2 = ~41KB... that is 1933 a very small buffer. 1934 1935 Use the lzmainfo tool to determinate the lc and lp values and 1936 then calculate the amount of needed dynamic memory (ensuring 1937 the appropriate CONFIG_SYS_MALLOC_LEN value). 1938 1939 CONFIG_LZO 1940 1941 If this option is set, support for LZO compressed images 1942 is included. 1943 1944- MII/PHY support: 1945 CONFIG_PHY_ADDR 1946 1947 The address of PHY on MII bus. 1948 1949 CONFIG_PHY_CLOCK_FREQ (ppc4xx) 1950 1951 The clock frequency of the MII bus 1952 1953 CONFIG_PHY_GIGE 1954 1955 If this option is set, support for speed/duplex 1956 detection of gigabit PHY is included. 1957 1958 CONFIG_PHY_RESET_DELAY 1959 1960 Some PHY like Intel LXT971A need extra delay after 1961 reset before any MII register access is possible. 1962 For such PHY, set this option to the usec delay 1963 required. (minimum 300usec for LXT971A) 1964 1965 CONFIG_PHY_CMD_DELAY (ppc4xx) 1966 1967 Some PHY like Intel LXT971A need extra delay after 1968 command issued before MII status register can be read 1969 1970- IP address: 1971 CONFIG_IPADDR 1972 1973 Define a default value for the IP address to use for 1974 the default Ethernet interface, in case this is not 1975 determined through e.g. bootp. 1976 (Environment variable "ipaddr") 1977 1978- Server IP address: 1979 CONFIG_SERVERIP 1980 1981 Defines a default value for the IP address of a TFTP 1982 server to contact when using the "tftboot" command. 1983 (Environment variable "serverip") 1984 1985 CONFIG_KEEP_SERVERADDR 1986 1987 Keeps the server's MAC address, in the env 'serveraddr' 1988 for passing to bootargs (like Linux's netconsole option) 1989 1990- Gateway IP address: 1991 CONFIG_GATEWAYIP 1992 1993 Defines a default value for the IP address of the 1994 default router where packets to other networks are 1995 sent to. 1996 (Environment variable "gatewayip") 1997 1998- Subnet mask: 1999 CONFIG_NETMASK 2000 2001 Defines a default value for the subnet mask (or 2002 routing prefix) which is used to determine if an IP 2003 address belongs to the local subnet or needs to be 2004 forwarded through a router. 2005 (Environment variable "netmask") 2006 2007- Multicast TFTP Mode: 2008 CONFIG_MCAST_TFTP 2009 2010 Defines whether you want to support multicast TFTP as per 2011 rfc-2090; for example to work with atftp. Lets lots of targets 2012 tftp down the same boot image concurrently. Note: the Ethernet 2013 driver in use must provide a function: mcast() to join/leave a 2014 multicast group. 2015 2016- BOOTP Recovery Mode: 2017 CONFIG_BOOTP_RANDOM_DELAY 2018 2019 If you have many targets in a network that try to 2020 boot using BOOTP, you may want to avoid that all 2021 systems send out BOOTP requests at precisely the same 2022 moment (which would happen for instance at recovery 2023 from a power failure, when all systems will try to 2024 boot, thus flooding the BOOTP server. Defining 2025 CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be 2026 inserted before sending out BOOTP requests. The 2027 following delays are inserted then: 2028 2029 1st BOOTP request: delay 0 ... 1 sec 2030 2nd BOOTP request: delay 0 ... 2 sec 2031 3rd BOOTP request: delay 0 ... 4 sec 2032 4th and following 2033 BOOTP requests: delay 0 ... 8 sec 2034 2035 CONFIG_BOOTP_ID_CACHE_SIZE 2036 2037 BOOTP packets are uniquely identified using a 32-bit ID. The 2038 server will copy the ID from client requests to responses and 2039 U-Boot will use this to determine if it is the destination of 2040 an incoming response. Some servers will check that addresses 2041 aren't in use before handing them out (usually using an ARP 2042 ping) and therefore take up to a few hundred milliseconds to 2043 respond. Network congestion may also influence the time it 2044 takes for a response to make it back to the client. If that 2045 time is too long, U-Boot will retransmit requests. In order 2046 to allow earlier responses to still be accepted after these 2047 retransmissions, U-Boot's BOOTP client keeps a small cache of 2048 IDs. The CONFIG_BOOTP_ID_CACHE_SIZE controls the size of this 2049 cache. The default is to keep IDs for up to four outstanding 2050 requests. Increasing this will allow U-Boot to accept offers 2051 from a BOOTP client in networks with unusually high latency. 2052 2053- DHCP Advanced Options: 2054 You can fine tune the DHCP functionality by defining 2055 CONFIG_BOOTP_* symbols: 2056 2057 CONFIG_BOOTP_SUBNETMASK 2058 CONFIG_BOOTP_GATEWAY 2059 CONFIG_BOOTP_HOSTNAME 2060 CONFIG_BOOTP_NISDOMAIN 2061 CONFIG_BOOTP_BOOTPATH 2062 CONFIG_BOOTP_BOOTFILESIZE 2063 CONFIG_BOOTP_DNS 2064 CONFIG_BOOTP_DNS2 2065 CONFIG_BOOTP_SEND_HOSTNAME 2066 CONFIG_BOOTP_NTPSERVER 2067 CONFIG_BOOTP_TIMEOFFSET 2068 CONFIG_BOOTP_VENDOREX 2069 CONFIG_BOOTP_MAY_FAIL 2070 2071 CONFIG_BOOTP_SERVERIP - TFTP server will be the serverip 2072 environment variable, not the BOOTP server. 2073 2074 CONFIG_BOOTP_MAY_FAIL - If the DHCP server is not found 2075 after the configured retry count, the call will fail 2076 instead of starting over. This can be used to fail over 2077 to Link-local IP address configuration if the DHCP server 2078 is not available. 2079 2080 CONFIG_BOOTP_DNS2 - If a DHCP client requests the DNS 2081 serverip from a DHCP server, it is possible that more 2082 than one DNS serverip is offered to the client. 2083 If CONFIG_BOOTP_DNS2 is enabled, the secondary DNS 2084 serverip will be stored in the additional environment 2085 variable "dnsip2". The first DNS serverip is always 2086 stored in the variable "dnsip", when CONFIG_BOOTP_DNS 2087 is defined. 2088 2089 CONFIG_BOOTP_SEND_HOSTNAME - Some DHCP servers are capable 2090 to do a dynamic update of a DNS server. To do this, they 2091 need the hostname of the DHCP requester. 2092 If CONFIG_BOOTP_SEND_HOSTNAME is defined, the content 2093 of the "hostname" environment variable is passed as 2094 option 12 to the DHCP server. 2095 2096 CONFIG_BOOTP_DHCP_REQUEST_DELAY 2097 2098 A 32bit value in microseconds for a delay between 2099 receiving a "DHCP Offer" and sending the "DHCP Request". 2100 This fixes a problem with certain DHCP servers that don't 2101 respond 100% of the time to a "DHCP request". E.g. On an 2102 AT91RM9200 processor running at 180MHz, this delay needed 2103 to be *at least* 15,000 usec before a Windows Server 2003 2104 DHCP server would reply 100% of the time. I recommend at 2105 least 50,000 usec to be safe. The alternative is to hope 2106 that one of the retries will be successful but note that 2107 the DHCP timeout and retry process takes a longer than 2108 this delay. 2109 2110 - Link-local IP address negotiation: 2111 Negotiate with other link-local clients on the local network 2112 for an address that doesn't require explicit configuration. 2113 This is especially useful if a DHCP server cannot be guaranteed 2114 to exist in all environments that the device must operate. 2115 2116 See doc/README.link-local for more information. 2117 2118 - CDP Options: 2119 CONFIG_CDP_DEVICE_ID 2120 2121 The device id used in CDP trigger frames. 2122 2123 CONFIG_CDP_DEVICE_ID_PREFIX 2124 2125 A two character string which is prefixed to the MAC address 2126 of the device. 2127 2128 CONFIG_CDP_PORT_ID 2129 2130 A printf format string which contains the ascii name of 2131 the port. Normally is set to "eth%d" which sets 2132 eth0 for the first Ethernet, eth1 for the second etc. 2133 2134 CONFIG_CDP_CAPABILITIES 2135 2136 A 32bit integer which indicates the device capabilities; 2137 0x00000010 for a normal host which does not forwards. 2138 2139 CONFIG_CDP_VERSION 2140 2141 An ascii string containing the version of the software. 2142 2143 CONFIG_CDP_PLATFORM 2144 2145 An ascii string containing the name of the platform. 2146 2147 CONFIG_CDP_TRIGGER 2148 2149 A 32bit integer sent on the trigger. 2150 2151 CONFIG_CDP_POWER_CONSUMPTION 2152 2153 A 16bit integer containing the power consumption of the 2154 device in .1 of milliwatts. 2155 2156 CONFIG_CDP_APPLIANCE_VLAN_TYPE 2157 2158 A byte containing the id of the VLAN. 2159 2160- Status LED: CONFIG_STATUS_LED 2161 2162 Several configurations allow to display the current 2163 status using a LED. For instance, the LED will blink 2164 fast while running U-Boot code, stop blinking as 2165 soon as a reply to a BOOTP request was received, and 2166 start blinking slow once the Linux kernel is running 2167 (supported by a status LED driver in the Linux 2168 kernel). Defining CONFIG_STATUS_LED enables this 2169 feature in U-Boot. 2170 2171 Additional options: 2172 2173 CONFIG_GPIO_LED 2174 The status LED can be connected to a GPIO pin. 2175 In such cases, the gpio_led driver can be used as a 2176 status LED backend implementation. Define CONFIG_GPIO_LED 2177 to include the gpio_led driver in the U-Boot binary. 2178 2179 CONFIG_GPIO_LED_INVERTED_TABLE 2180 Some GPIO connected LEDs may have inverted polarity in which 2181 case the GPIO high value corresponds to LED off state and 2182 GPIO low value corresponds to LED on state. 2183 In such cases CONFIG_GPIO_LED_INVERTED_TABLE may be defined 2184 with a list of GPIO LEDs that have inverted polarity. 2185 2186- CAN Support: CONFIG_CAN_DRIVER 2187 2188 Defining CONFIG_CAN_DRIVER enables CAN driver support 2189 on those systems that support this (optional) 2190 feature, like the TQM8xxL modules. 2191 2192- I2C Support: CONFIG_SYS_I2C 2193 2194 This enable the NEW i2c subsystem, and will allow you to use 2195 i2c commands at the u-boot command line (as long as you set 2196 CONFIG_CMD_I2C in CONFIG_COMMANDS) and communicate with i2c 2197 based realtime clock chips or other i2c devices. See 2198 common/cmd_i2c.c for a description of the command line 2199 interface. 2200 2201 ported i2c driver to the new framework: 2202 - drivers/i2c/soft_i2c.c: 2203 - activate first bus with CONFIG_SYS_I2C_SOFT define 2204 CONFIG_SYS_I2C_SOFT_SPEED and CONFIG_SYS_I2C_SOFT_SLAVE 2205 for defining speed and slave address 2206 - activate second bus with I2C_SOFT_DECLARATIONS2 define 2207 CONFIG_SYS_I2C_SOFT_SPEED_2 and CONFIG_SYS_I2C_SOFT_SLAVE_2 2208 for defining speed and slave address 2209 - activate third bus with I2C_SOFT_DECLARATIONS3 define 2210 CONFIG_SYS_I2C_SOFT_SPEED_3 and CONFIG_SYS_I2C_SOFT_SLAVE_3 2211 for defining speed and slave address 2212 - activate fourth bus with I2C_SOFT_DECLARATIONS4 define 2213 CONFIG_SYS_I2C_SOFT_SPEED_4 and CONFIG_SYS_I2C_SOFT_SLAVE_4 2214 for defining speed and slave address 2215 2216 - drivers/i2c/fsl_i2c.c: 2217 - activate i2c driver with CONFIG_SYS_I2C_FSL 2218 define CONFIG_SYS_FSL_I2C_OFFSET for setting the register 2219 offset CONFIG_SYS_FSL_I2C_SPEED for the i2c speed and 2220 CONFIG_SYS_FSL_I2C_SLAVE for the slave addr of the first 2221 bus. 2222 - If your board supports a second fsl i2c bus, define 2223 CONFIG_SYS_FSL_I2C2_OFFSET for the register offset 2224 CONFIG_SYS_FSL_I2C2_SPEED for the speed and 2225 CONFIG_SYS_FSL_I2C2_SLAVE for the slave address of the 2226 second bus. 2227 2228 - drivers/i2c/tegra_i2c.c: 2229 - activate this driver with CONFIG_SYS_I2C_TEGRA 2230 - This driver adds 4 i2c buses with a fix speed from 2231 100000 and the slave addr 0! 2232 2233 - drivers/i2c/ppc4xx_i2c.c 2234 - activate this driver with CONFIG_SYS_I2C_PPC4XX 2235 - CONFIG_SYS_I2C_PPC4XX_CH0 activate hardware channel 0 2236 - CONFIG_SYS_I2C_PPC4XX_CH1 activate hardware channel 1 2237 2238 - drivers/i2c/i2c_mxc.c 2239 - activate this driver with CONFIG_SYS_I2C_MXC 2240 - enable bus 1 with CONFIG_SYS_I2C_MXC_I2C1 2241 - enable bus 2 with CONFIG_SYS_I2C_MXC_I2C2 2242 - enable bus 3 with CONFIG_SYS_I2C_MXC_I2C3 2243 - enable bus 4 with CONFIG_SYS_I2C_MXC_I2C4 2244 - define speed for bus 1 with CONFIG_SYS_MXC_I2C1_SPEED 2245 - define slave for bus 1 with CONFIG_SYS_MXC_I2C1_SLAVE 2246 - define speed for bus 2 with CONFIG_SYS_MXC_I2C2_SPEED 2247 - define slave for bus 2 with CONFIG_SYS_MXC_I2C2_SLAVE 2248 - define speed for bus 3 with CONFIG_SYS_MXC_I2C3_SPEED 2249 - define slave for bus 3 with CONFIG_SYS_MXC_I2C3_SLAVE 2250 - define speed for bus 4 with CONFIG_SYS_MXC_I2C4_SPEED 2251 - define slave for bus 4 with CONFIG_SYS_MXC_I2C4_SLAVE 2252 If those defines are not set, default value is 100000 2253 for speed, and 0 for slave. 2254 2255 - drivers/i2c/rcar_i2c.c: 2256 - activate this driver with CONFIG_SYS_I2C_RCAR 2257 - This driver adds 4 i2c buses 2258 2259 - CONFIG_SYS_RCAR_I2C0_BASE for setting the register channel 0 2260 - CONFIG_SYS_RCAR_I2C0_SPEED for for the speed channel 0 2261 - CONFIG_SYS_RCAR_I2C1_BASE for setting the register channel 1 2262 - CONFIG_SYS_RCAR_I2C1_SPEED for for the speed channel 1 2263 - CONFIG_SYS_RCAR_I2C2_BASE for setting the register channel 2 2264 - CONFIG_SYS_RCAR_I2C2_SPEED for for the speed channel 2 2265 - CONFIG_SYS_RCAR_I2C3_BASE for setting the register channel 3 2266 - CONFIG_SYS_RCAR_I2C3_SPEED for for the speed channel 3 2267 - CONFIF_SYS_RCAR_I2C_NUM_CONTROLLERS for number of i2c buses 2268 2269 - drivers/i2c/sh_i2c.c: 2270 - activate this driver with CONFIG_SYS_I2C_SH 2271 - This driver adds from 2 to 5 i2c buses 2272 2273 - CONFIG_SYS_I2C_SH_BASE0 for setting the register channel 0 2274 - CONFIG_SYS_I2C_SH_SPEED0 for for the speed channel 0 2275 - CONFIG_SYS_I2C_SH_BASE1 for setting the register channel 1 2276 - CONFIG_SYS_I2C_SH_SPEED1 for for the speed channel 1 2277 - CONFIG_SYS_I2C_SH_BASE2 for setting the register channel 2 2278 - CONFIG_SYS_I2C_SH_SPEED2 for for the speed channel 2 2279 - CONFIG_SYS_I2C_SH_BASE3 for setting the register channel 3 2280 - CONFIG_SYS_I2C_SH_SPEED3 for for the speed channel 3 2281 - CONFIG_SYS_I2C_SH_BASE4 for setting the register channel 4 2282 - CONFIG_SYS_I2C_SH_SPEED4 for for the speed channel 4 2283 - CONFIG_SYS_I2C_SH_NUM_CONTROLLERS for number of i2c buses 2284 2285 - drivers/i2c/omap24xx_i2c.c 2286 - activate this driver with CONFIG_SYS_I2C_OMAP24XX 2287 - CONFIG_SYS_OMAP24_I2C_SPEED speed channel 0 2288 - CONFIG_SYS_OMAP24_I2C_SLAVE slave addr channel 0 2289 - CONFIG_SYS_OMAP24_I2C_SPEED1 speed channel 1 2290 - CONFIG_SYS_OMAP24_I2C_SLAVE1 slave addr channel 1 2291 - CONFIG_SYS_OMAP24_I2C_SPEED2 speed channel 2 2292 - CONFIG_SYS_OMAP24_I2C_SLAVE2 slave addr channel 2 2293 - CONFIG_SYS_OMAP24_I2C_SPEED3 speed channel 3 2294 - CONFIG_SYS_OMAP24_I2C_SLAVE3 slave addr channel 3 2295 - CONFIG_SYS_OMAP24_I2C_SPEED4 speed channel 4 2296 - CONFIG_SYS_OMAP24_I2C_SLAVE4 slave addr channel 4 2297 2298 - drivers/i2c/zynq_i2c.c 2299 - activate this driver with CONFIG_SYS_I2C_ZYNQ 2300 - set CONFIG_SYS_I2C_ZYNQ_SPEED for speed setting 2301 - set CONFIG_SYS_I2C_ZYNQ_SLAVE for slave addr 2302 2303 - drivers/i2c/s3c24x0_i2c.c: 2304 - activate this driver with CONFIG_SYS_I2C_S3C24X0 2305 - This driver adds i2c buses (11 for Exynos5250, Exynos5420 2306 9 i2c buses for Exynos4 and 1 for S3C24X0 SoCs from Samsung) 2307 with a fix speed from 100000 and the slave addr 0! 2308 2309 - drivers/i2c/ihs_i2c.c 2310 - activate this driver with CONFIG_SYS_I2C_IHS 2311 - CONFIG_SYS_I2C_IHS_CH0 activate hardware channel 0 2312 - CONFIG_SYS_I2C_IHS_SPEED_0 speed channel 0 2313 - CONFIG_SYS_I2C_IHS_SLAVE_0 slave addr channel 0 2314 - CONFIG_SYS_I2C_IHS_CH1 activate hardware channel 1 2315 - CONFIG_SYS_I2C_IHS_SPEED_1 speed channel 1 2316 - CONFIG_SYS_I2C_IHS_SLAVE_1 slave addr channel 1 2317 - CONFIG_SYS_I2C_IHS_CH2 activate hardware channel 2 2318 - CONFIG_SYS_I2C_IHS_SPEED_2 speed channel 2 2319 - CONFIG_SYS_I2C_IHS_SLAVE_2 slave addr channel 2 2320 - CONFIG_SYS_I2C_IHS_CH3 activate hardware channel 3 2321 - CONFIG_SYS_I2C_IHS_SPEED_3 speed channel 3 2322 - CONFIG_SYS_I2C_IHS_SLAVE_3 slave addr channel 3 2323 - activate dual channel with CONFIG_SYS_I2C_IHS_DUAL 2324 - CONFIG_SYS_I2C_IHS_SPEED_0_1 speed channel 0_1 2325 - CONFIG_SYS_I2C_IHS_SLAVE_0_1 slave addr channel 0_1 2326 - CONFIG_SYS_I2C_IHS_SPEED_1_1 speed channel 1_1 2327 - CONFIG_SYS_I2C_IHS_SLAVE_1_1 slave addr channel 1_1 2328 - CONFIG_SYS_I2C_IHS_SPEED_2_1 speed channel 2_1 2329 - CONFIG_SYS_I2C_IHS_SLAVE_2_1 slave addr channel 2_1 2330 - CONFIG_SYS_I2C_IHS_SPEED_3_1 speed channel 3_1 2331 - CONFIG_SYS_I2C_IHS_SLAVE_3_1 slave addr channel 3_1 2332 2333 additional defines: 2334 2335 CONFIG_SYS_NUM_I2C_BUSES 2336 Hold the number of i2c buses you want to use. 2337 2338 CONFIG_SYS_I2C_DIRECT_BUS 2339 define this, if you don't use i2c muxes on your hardware. 2340 if CONFIG_SYS_I2C_MAX_HOPS is not defined or == 0 you can 2341 omit this define. 2342 2343 CONFIG_SYS_I2C_MAX_HOPS 2344 define how many muxes are maximal consecutively connected 2345 on one i2c bus. If you not use i2c muxes, omit this 2346 define. 2347 2348 CONFIG_SYS_I2C_BUSES 2349 hold a list of buses you want to use, only used if 2350 CONFIG_SYS_I2C_DIRECT_BUS is not defined, for example 2351 a board with CONFIG_SYS_I2C_MAX_HOPS = 1 and 2352 CONFIG_SYS_NUM_I2C_BUSES = 9: 2353 2354 CONFIG_SYS_I2C_BUSES {{0, {I2C_NULL_HOP}}, \ 2355 {0, {{I2C_MUX_PCA9547, 0x70, 1}}}, \ 2356 {0, {{I2C_MUX_PCA9547, 0x70, 2}}}, \ 2357 {0, {{I2C_MUX_PCA9547, 0x70, 3}}}, \ 2358 {0, {{I2C_MUX_PCA9547, 0x70, 4}}}, \ 2359 {0, {{I2C_MUX_PCA9547, 0x70, 5}}}, \ 2360 {1, {I2C_NULL_HOP}}, \ 2361 {1, {{I2C_MUX_PCA9544, 0x72, 1}}}, \ 2362 {1, {{I2C_MUX_PCA9544, 0x72, 2}}}, \ 2363 } 2364 2365 which defines 2366 bus 0 on adapter 0 without a mux 2367 bus 1 on adapter 0 with a PCA9547 on address 0x70 port 1 2368 bus 2 on adapter 0 with a PCA9547 on address 0x70 port 2 2369 bus 3 on adapter 0 with a PCA9547 on address 0x70 port 3 2370 bus 4 on adapter 0 with a PCA9547 on address 0x70 port 4 2371 bus 5 on adapter 0 with a PCA9547 on address 0x70 port 5 2372 bus 6 on adapter 1 without a mux 2373 bus 7 on adapter 1 with a PCA9544 on address 0x72 port 1 2374 bus 8 on adapter 1 with a PCA9544 on address 0x72 port 2 2375 2376 If you do not have i2c muxes on your board, omit this define. 2377 2378- Legacy I2C Support: CONFIG_HARD_I2C 2379 2380 NOTE: It is intended to move drivers to CONFIG_SYS_I2C which 2381 provides the following compelling advantages: 2382 2383 - more than one i2c adapter is usable 2384 - approved multibus support 2385 - better i2c mux support 2386 2387 ** Please consider updating your I2C driver now. ** 2388 2389 These enable legacy I2C serial bus commands. Defining 2390 CONFIG_HARD_I2C will include the appropriate I2C driver 2391 for the selected CPU. 2392 2393 This will allow you to use i2c commands at the u-boot 2394 command line (as long as you set CONFIG_CMD_I2C in 2395 CONFIG_COMMANDS) and communicate with i2c based realtime 2396 clock chips. See common/cmd_i2c.c for a description of the 2397 command line interface. 2398 2399 CONFIG_HARD_I2C selects a hardware I2C controller. 2400 2401 There are several other quantities that must also be 2402 defined when you define CONFIG_HARD_I2C. 2403 2404 In both cases you will need to define CONFIG_SYS_I2C_SPEED 2405 to be the frequency (in Hz) at which you wish your i2c bus 2406 to run and CONFIG_SYS_I2C_SLAVE to be the address of this node (ie 2407 the CPU's i2c node address). 2408 2409 Now, the u-boot i2c code for the mpc8xx 2410 (arch/powerpc/cpu/mpc8xx/i2c.c) sets the CPU up as a master node 2411 and so its address should therefore be cleared to 0 (See, 2412 eg, MPC823e User's Manual p.16-473). So, set 2413 CONFIG_SYS_I2C_SLAVE to 0. 2414 2415 CONFIG_SYS_I2C_INIT_MPC5XXX 2416 2417 When a board is reset during an i2c bus transfer 2418 chips might think that the current transfer is still 2419 in progress. Reset the slave devices by sending start 2420 commands until the slave device responds. 2421 2422 That's all that's required for CONFIG_HARD_I2C. 2423 2424 If you use the software i2c interface (CONFIG_SYS_I2C_SOFT) 2425 then the following macros need to be defined (examples are 2426 from include/configs/lwmon.h): 2427 2428 I2C_INIT 2429 2430 (Optional). Any commands necessary to enable the I2C 2431 controller or configure ports. 2432 2433 eg: #define I2C_INIT (immr->im_cpm.cp_pbdir |= PB_SCL) 2434 2435 I2C_PORT 2436 2437 (Only for MPC8260 CPU). The I/O port to use (the code 2438 assumes both bits are on the same port). Valid values 2439 are 0..3 for ports A..D. 2440 2441 I2C_ACTIVE 2442 2443 The code necessary to make the I2C data line active 2444 (driven). If the data line is open collector, this 2445 define can be null. 2446 2447 eg: #define I2C_ACTIVE (immr->im_cpm.cp_pbdir |= PB_SDA) 2448 2449 I2C_TRISTATE 2450 2451 The code necessary to make the I2C data line tri-stated 2452 (inactive). If the data line is open collector, this 2453 define can be null. 2454 2455 eg: #define I2C_TRISTATE (immr->im_cpm.cp_pbdir &= ~PB_SDA) 2456 2457 I2C_READ 2458 2459 Code that returns true if the I2C data line is high, 2460 false if it is low. 2461 2462 eg: #define I2C_READ ((immr->im_cpm.cp_pbdat & PB_SDA) != 0) 2463 2464 I2C_SDA(bit) 2465 2466 If <bit> is true, sets the I2C data line high. If it 2467 is false, it clears it (low). 2468 2469 eg: #define I2C_SDA(bit) \ 2470 if(bit) immr->im_cpm.cp_pbdat |= PB_SDA; \ 2471 else immr->im_cpm.cp_pbdat &= ~PB_SDA 2472 2473 I2C_SCL(bit) 2474 2475 If <bit> is true, sets the I2C clock line high. If it 2476 is false, it clears it (low). 2477 2478 eg: #define I2C_SCL(bit) \ 2479 if(bit) immr->im_cpm.cp_pbdat |= PB_SCL; \ 2480 else immr->im_cpm.cp_pbdat &= ~PB_SCL 2481 2482 I2C_DELAY 2483 2484 This delay is invoked four times per clock cycle so this 2485 controls the rate of data transfer. The data rate thus 2486 is 1 / (I2C_DELAY * 4). Often defined to be something 2487 like: 2488 2489 #define I2C_DELAY udelay(2) 2490 2491 CONFIG_SOFT_I2C_GPIO_SCL / CONFIG_SOFT_I2C_GPIO_SDA 2492 2493 If your arch supports the generic GPIO framework (asm/gpio.h), 2494 then you may alternatively define the two GPIOs that are to be 2495 used as SCL / SDA. Any of the previous I2C_xxx macros will 2496 have GPIO-based defaults assigned to them as appropriate. 2497 2498 You should define these to the GPIO value as given directly to 2499 the generic GPIO functions. 2500 2501 CONFIG_SYS_I2C_INIT_BOARD 2502 2503 When a board is reset during an i2c bus transfer 2504 chips might think that the current transfer is still 2505 in progress. On some boards it is possible to access 2506 the i2c SCLK line directly, either by using the 2507 processor pin as a GPIO or by having a second pin 2508 connected to the bus. If this option is defined a 2509 custom i2c_init_board() routine in boards/xxx/board.c 2510 is run early in the boot sequence. 2511 2512 CONFIG_SYS_I2C_BOARD_LATE_INIT 2513 2514 An alternative to CONFIG_SYS_I2C_INIT_BOARD. If this option is 2515 defined a custom i2c_board_late_init() routine in 2516 boards/xxx/board.c is run AFTER the operations in i2c_init() 2517 is completed. This callpoint can be used to unreset i2c bus 2518 using CPU i2c controller register accesses for CPUs whose i2c 2519 controller provide such a method. It is called at the end of 2520 i2c_init() to allow i2c_init operations to setup the i2c bus 2521 controller on the CPU (e.g. setting bus speed & slave address). 2522 2523 CONFIG_I2CFAST (PPC405GP|PPC405EP only) 2524 2525 This option enables configuration of bi_iic_fast[] flags 2526 in u-boot bd_info structure based on u-boot environment 2527 variable "i2cfast". (see also i2cfast) 2528 2529 CONFIG_I2C_MULTI_BUS 2530 2531 This option allows the use of multiple I2C buses, each of which 2532 must have a controller. At any point in time, only one bus is 2533 active. To switch to a different bus, use the 'i2c dev' command. 2534 Note that bus numbering is zero-based. 2535 2536 CONFIG_SYS_I2C_NOPROBES 2537 2538 This option specifies a list of I2C devices that will be skipped 2539 when the 'i2c probe' command is issued. If CONFIG_I2C_MULTI_BUS 2540 is set, specify a list of bus-device pairs. Otherwise, specify 2541 a 1D array of device addresses 2542 2543 e.g. 2544 #undef CONFIG_I2C_MULTI_BUS 2545 #define CONFIG_SYS_I2C_NOPROBES {0x50,0x68} 2546 2547 will skip addresses 0x50 and 0x68 on a board with one I2C bus 2548 2549 #define CONFIG_I2C_MULTI_BUS 2550 #define CONFIG_SYS_I2C_NOPROBES {{0,0x50},{0,0x68},{1,0x54}} 2551 2552 will skip addresses 0x50 and 0x68 on bus 0 and address 0x54 on bus 1 2553 2554 CONFIG_SYS_SPD_BUS_NUM 2555 2556 If defined, then this indicates the I2C bus number for DDR SPD. 2557 If not defined, then U-Boot assumes that SPD is on I2C bus 0. 2558 2559 CONFIG_SYS_RTC_BUS_NUM 2560 2561 If defined, then this indicates the I2C bus number for the RTC. 2562 If not defined, then U-Boot assumes that RTC is on I2C bus 0. 2563 2564 CONFIG_SYS_DTT_BUS_NUM 2565 2566 If defined, then this indicates the I2C bus number for the DTT. 2567 If not defined, then U-Boot assumes that DTT is on I2C bus 0. 2568 2569 CONFIG_SYS_I2C_DTT_ADDR: 2570 2571 If defined, specifies the I2C address of the DTT device. 2572 If not defined, then U-Boot uses predefined value for 2573 specified DTT device. 2574 2575 CONFIG_SOFT_I2C_READ_REPEATED_START 2576 2577 defining this will force the i2c_read() function in 2578 the soft_i2c driver to perform an I2C repeated start 2579 between writing the address pointer and reading the 2580 data. If this define is omitted the default behaviour 2581 of doing a stop-start sequence will be used. Most I2C 2582 devices can use either method, but some require one or 2583 the other. 2584 2585- SPI Support: CONFIG_SPI 2586 2587 Enables SPI driver (so far only tested with 2588 SPI EEPROM, also an instance works with Crystal A/D and 2589 D/As on the SACSng board) 2590 2591 CONFIG_SH_SPI 2592 2593 Enables the driver for SPI controller on SuperH. Currently 2594 only SH7757 is supported. 2595 2596 CONFIG_SOFT_SPI 2597 2598 Enables a software (bit-bang) SPI driver rather than 2599 using hardware support. This is a general purpose 2600 driver that only requires three general I/O port pins 2601 (two outputs, one input) to function. If this is 2602 defined, the board configuration must define several 2603 SPI configuration items (port pins to use, etc). For 2604 an example, see include/configs/sacsng.h. 2605 2606 CONFIG_HARD_SPI 2607 2608 Enables a hardware SPI driver for general-purpose reads 2609 and writes. As with CONFIG_SOFT_SPI, the board configuration 2610 must define a list of chip-select function pointers. 2611 Currently supported on some MPC8xxx processors. For an 2612 example, see include/configs/mpc8349emds.h. 2613 2614 CONFIG_MXC_SPI 2615 2616 Enables the driver for the SPI controllers on i.MX and MXC 2617 SoCs. Currently i.MX31/35/51 are supported. 2618 2619 CONFIG_SYS_SPI_MXC_WAIT 2620 Timeout for waiting until spi transfer completed. 2621 default: (CONFIG_SYS_HZ/100) /* 10 ms */ 2622 2623- FPGA Support: CONFIG_FPGA 2624 2625 Enables FPGA subsystem. 2626 2627 CONFIG_FPGA_<vendor> 2628 2629 Enables support for specific chip vendors. 2630 (ALTERA, XILINX) 2631 2632 CONFIG_FPGA_<family> 2633 2634 Enables support for FPGA family. 2635 (SPARTAN2, SPARTAN3, VIRTEX2, CYCLONE2, ACEX1K, ACEX) 2636 2637 CONFIG_FPGA_COUNT 2638 2639 Specify the number of FPGA devices to support. 2640 2641 CONFIG_CMD_FPGA_LOADMK 2642 2643 Enable support for fpga loadmk command 2644 2645 CONFIG_CMD_FPGA_LOADP 2646 2647 Enable support for fpga loadp command - load partial bitstream 2648 2649 CONFIG_CMD_FPGA_LOADBP 2650 2651 Enable support for fpga loadbp command - load partial bitstream 2652 (Xilinx only) 2653 2654 CONFIG_SYS_FPGA_PROG_FEEDBACK 2655 2656 Enable printing of hash marks during FPGA configuration. 2657 2658 CONFIG_SYS_FPGA_CHECK_BUSY 2659 2660 Enable checks on FPGA configuration interface busy 2661 status by the configuration function. This option 2662 will require a board or device specific function to 2663 be written. 2664 2665 CONFIG_FPGA_DELAY 2666 2667 If defined, a function that provides delays in the FPGA 2668 configuration driver. 2669 2670 CONFIG_SYS_FPGA_CHECK_CTRLC 2671 Allow Control-C to interrupt FPGA configuration 2672 2673 CONFIG_SYS_FPGA_CHECK_ERROR 2674 2675 Check for configuration errors during FPGA bitfile 2676 loading. For example, abort during Virtex II 2677 configuration if the INIT_B line goes low (which 2678 indicated a CRC error). 2679 2680 CONFIG_SYS_FPGA_WAIT_INIT 2681 2682 Maximum time to wait for the INIT_B line to de-assert 2683 after PROB_B has been de-asserted during a Virtex II 2684 FPGA configuration sequence. The default time is 500 2685 ms. 2686 2687 CONFIG_SYS_FPGA_WAIT_BUSY 2688 2689 Maximum time to wait for BUSY to de-assert during 2690 Virtex II FPGA configuration. The default is 5 ms. 2691 2692 CONFIG_SYS_FPGA_WAIT_CONFIG 2693 2694 Time to wait after FPGA configuration. The default is 2695 200 ms. 2696 2697- Configuration Management: 2698 CONFIG_BUILD_TARGET 2699 2700 Some SoCs need special image types (e.g. U-Boot binary 2701 with a special header) as build targets. By defining 2702 CONFIG_BUILD_TARGET in the SoC / board header, this 2703 special image will be automatically built upon calling 2704 make / buildman. 2705 2706 CONFIG_IDENT_STRING 2707 2708 If defined, this string will be added to the U-Boot 2709 version information (U_BOOT_VERSION) 2710 2711- Vendor Parameter Protection: 2712 2713 U-Boot considers the values of the environment 2714 variables "serial#" (Board Serial Number) and 2715 "ethaddr" (Ethernet Address) to be parameters that 2716 are set once by the board vendor / manufacturer, and 2717 protects these variables from casual modification by 2718 the user. Once set, these variables are read-only, 2719 and write or delete attempts are rejected. You can 2720 change this behaviour: 2721 2722 If CONFIG_ENV_OVERWRITE is #defined in your config 2723 file, the write protection for vendor parameters is 2724 completely disabled. Anybody can change or delete 2725 these parameters. 2726 2727 Alternatively, if you define _both_ an ethaddr in the 2728 default env _and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default 2729 Ethernet address is installed in the environment, 2730 which can be changed exactly ONCE by the user. [The 2731 serial# is unaffected by this, i. e. it remains 2732 read-only.] 2733 2734 The same can be accomplished in a more flexible way 2735 for any variable by configuring the type of access 2736 to allow for those variables in the ".flags" variable 2737 or define CONFIG_ENV_FLAGS_LIST_STATIC. 2738 2739- Protected RAM: 2740 CONFIG_PRAM 2741 2742 Define this variable to enable the reservation of 2743 "protected RAM", i. e. RAM which is not overwritten 2744 by U-Boot. Define CONFIG_PRAM to hold the number of 2745 kB you want to reserve for pRAM. You can overwrite 2746 this default value by defining an environment 2747 variable "pram" to the number of kB you want to 2748 reserve. Note that the board info structure will 2749 still show the full amount of RAM. If pRAM is 2750 reserved, a new environment variable "mem" will 2751 automatically be defined to hold the amount of 2752 remaining RAM in a form that can be passed as boot 2753 argument to Linux, for instance like that: 2754 2755 setenv bootargs ... mem=\${mem} 2756 saveenv 2757 2758 This way you can tell Linux not to use this memory, 2759 either, which results in a memory region that will 2760 not be affected by reboots. 2761 2762 *WARNING* If your board configuration uses automatic 2763 detection of the RAM size, you must make sure that 2764 this memory test is non-destructive. So far, the 2765 following board configurations are known to be 2766 "pRAM-clean": 2767 2768 IVMS8, IVML24, SPD8xx, TQM8xxL, 2769 HERMES, IP860, RPXlite, LWMON, 2770 FLAGADM, TQM8260 2771 2772- Access to physical memory region (> 4GB) 2773 Some basic support is provided for operations on memory not 2774 normally accessible to U-Boot - e.g. some architectures 2775 support access to more than 4GB of memory on 32-bit 2776 machines using physical address extension or similar. 2777 Define CONFIG_PHYSMEM to access this basic support, which 2778 currently only supports clearing the memory. 2779 2780- Error Recovery: 2781 CONFIG_PANIC_HANG 2782 2783 Define this variable to stop the system in case of a 2784 fatal error, so that you have to reset it manually. 2785 This is probably NOT a good idea for an embedded 2786 system where you want the system to reboot 2787 automatically as fast as possible, but it may be 2788 useful during development since you can try to debug 2789 the conditions that lead to the situation. 2790 2791 CONFIG_NET_RETRY_COUNT 2792 2793 This variable defines the number of retries for 2794 network operations like ARP, RARP, TFTP, or BOOTP 2795 before giving up the operation. If not defined, a 2796 default value of 5 is used. 2797 2798 CONFIG_ARP_TIMEOUT 2799 2800 Timeout waiting for an ARP reply in milliseconds. 2801 2802 CONFIG_NFS_TIMEOUT 2803 2804 Timeout in milliseconds used in NFS protocol. 2805 If you encounter "ERROR: Cannot umount" in nfs command, 2806 try longer timeout such as 2807 #define CONFIG_NFS_TIMEOUT 10000UL 2808 2809- Command Interpreter: 2810 CONFIG_AUTO_COMPLETE 2811 2812 Enable auto completion of commands using TAB. 2813 2814 CONFIG_SYS_PROMPT_HUSH_PS2 2815 2816 This defines the secondary prompt string, which is 2817 printed when the command interpreter needs more input 2818 to complete a command. Usually "> ". 2819 2820 Note: 2821 2822 In the current implementation, the local variables 2823 space and global environment variables space are 2824 separated. Local variables are those you define by 2825 simply typing `name=value'. To access a local 2826 variable later on, you have write `$name' or 2827 `${name}'; to execute the contents of a variable 2828 directly type `$name' at the command prompt. 2829 2830 Global environment variables are those you use 2831 setenv/printenv to work with. To run a command stored 2832 in such a variable, you need to use the run command, 2833 and you must not use the '$' sign to access them. 2834 2835 To store commands and special characters in a 2836 variable, please use double quotation marks 2837 surrounding the whole text of the variable, instead 2838 of the backslashes before semicolons and special 2839 symbols. 2840 2841- Command Line Editing and History: 2842 CONFIG_CMDLINE_EDITING 2843 2844 Enable editing and History functions for interactive 2845 command line input operations 2846 2847- Command Line PS1/PS2 support: 2848 CONFIG_CMDLINE_PS_SUPPORT 2849 2850 Enable support for changing the command prompt string 2851 at run-time. Only static string is supported so far. 2852 The string is obtained from environment variables PS1 2853 and PS2. 2854 2855- Default Environment: 2856 CONFIG_EXTRA_ENV_SETTINGS 2857 2858 Define this to contain any number of null terminated 2859 strings (variable = value pairs) that will be part of 2860 the default environment compiled into the boot image. 2861 2862 For example, place something like this in your 2863 board's config file: 2864 2865 #define CONFIG_EXTRA_ENV_SETTINGS \ 2866 "myvar1=value1\0" \ 2867 "myvar2=value2\0" 2868 2869 Warning: This method is based on knowledge about the 2870 internal format how the environment is stored by the 2871 U-Boot code. This is NOT an official, exported 2872 interface! Although it is unlikely that this format 2873 will change soon, there is no guarantee either. 2874 You better know what you are doing here. 2875 2876 Note: overly (ab)use of the default environment is 2877 discouraged. Make sure to check other ways to preset 2878 the environment like the "source" command or the 2879 boot command first. 2880 2881 CONFIG_ENV_VARS_UBOOT_CONFIG 2882 2883 Define this in order to add variables describing the 2884 U-Boot build configuration to the default environment. 2885 These will be named arch, cpu, board, vendor, and soc. 2886 2887 Enabling this option will cause the following to be defined: 2888 2889 - CONFIG_SYS_ARCH 2890 - CONFIG_SYS_CPU 2891 - CONFIG_SYS_BOARD 2892 - CONFIG_SYS_VENDOR 2893 - CONFIG_SYS_SOC 2894 2895 CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG 2896 2897 Define this in order to add variables describing certain 2898 run-time determined information about the hardware to the 2899 environment. These will be named board_name, board_rev. 2900 2901 CONFIG_DELAY_ENVIRONMENT 2902 2903 Normally the environment is loaded when the board is 2904 initialised so that it is available to U-Boot. This inhibits 2905 that so that the environment is not available until 2906 explicitly loaded later by U-Boot code. With CONFIG_OF_CONTROL 2907 this is instead controlled by the value of 2908 /config/load-environment. 2909 2910- Parallel Flash support: 2911 CONFIG_SYS_NO_FLASH 2912 2913 Traditionally U-Boot was run on systems with parallel NOR 2914 flash. This option is used to disable support for parallel NOR 2915 flash. This option should be defined if the board does not have 2916 parallel flash. 2917 2918 If this option is not defined one of the generic flash drivers 2919 (e.g. CONFIG_FLASH_CFI_DRIVER or CONFIG_ST_SMI) must be 2920 selected or the board must provide an implementation of the 2921 flash API (see include/flash.h). 2922 2923- DataFlash Support: 2924 CONFIG_HAS_DATAFLASH 2925 2926 Defining this option enables DataFlash features and 2927 allows to read/write in Dataflash via the standard 2928 commands cp, md... 2929 2930- Serial Flash support 2931 CONFIG_CMD_SF 2932 2933 Defining this option enables SPI flash commands 2934 'sf probe/read/write/erase/update'. 2935 2936 Usage requires an initial 'probe' to define the serial 2937 flash parameters, followed by read/write/erase/update 2938 commands. 2939 2940 The following defaults may be provided by the platform 2941 to handle the common case when only a single serial 2942 flash is present on the system. 2943 2944 CONFIG_SF_DEFAULT_BUS Bus identifier 2945 CONFIG_SF_DEFAULT_CS Chip-select 2946 CONFIG_SF_DEFAULT_MODE (see include/spi.h) 2947 CONFIG_SF_DEFAULT_SPEED in Hz 2948 2949 CONFIG_CMD_SF_TEST 2950 2951 Define this option to include a destructive SPI flash 2952 test ('sf test'). 2953 2954 CONFIG_SF_DUAL_FLASH Dual flash memories 2955 2956 Define this option to use dual flash support where two flash 2957 memories can be connected with a given cs line. 2958 Currently Xilinx Zynq qspi supports these type of connections. 2959 2960- SystemACE Support: 2961 CONFIG_SYSTEMACE 2962 2963 Adding this option adds support for Xilinx SystemACE 2964 chips attached via some sort of local bus. The address 2965 of the chip must also be defined in the 2966 CONFIG_SYS_SYSTEMACE_BASE macro. For example: 2967 2968 #define CONFIG_SYSTEMACE 2969 #define CONFIG_SYS_SYSTEMACE_BASE 0xf0000000 2970 2971 When SystemACE support is added, the "ace" device type 2972 becomes available to the fat commands, i.e. fatls. 2973 2974- TFTP Fixed UDP Port: 2975 CONFIG_TFTP_PORT 2976 2977 If this is defined, the environment variable tftpsrcp 2978 is used to supply the TFTP UDP source port value. 2979 If tftpsrcp isn't defined, the normal pseudo-random port 2980 number generator is used. 2981 2982 Also, the environment variable tftpdstp is used to supply 2983 the TFTP UDP destination port value. If tftpdstp isn't 2984 defined, the normal port 69 is used. 2985 2986 The purpose for tftpsrcp is to allow a TFTP server to 2987 blindly start the TFTP transfer using the pre-configured 2988 target IP address and UDP port. This has the effect of 2989 "punching through" the (Windows XP) firewall, allowing 2990 the remainder of the TFTP transfer to proceed normally. 2991 A better solution is to properly configure the firewall, 2992 but sometimes that is not allowed. 2993 2994- Hashing support: 2995 CONFIG_CMD_HASH 2996 2997 This enables a generic 'hash' command which can produce 2998 hashes / digests from a few algorithms (e.g. SHA1, SHA256). 2999 3000 CONFIG_HASH_VERIFY 3001 3002 Enable the hash verify command (hash -v). This adds to code 3003 size a little. 3004 3005 CONFIG_SHA1 - This option enables support of hashing using SHA1 3006 algorithm. The hash is calculated in software. 3007 CONFIG_SHA256 - This option enables support of hashing using 3008 SHA256 algorithm. The hash is calculated in software. 3009 CONFIG_SHA_HW_ACCEL - This option enables hardware acceleration 3010 for SHA1/SHA256 hashing. 3011 This affects the 'hash' command and also the 3012 hash_lookup_algo() function. 3013 CONFIG_SHA_PROG_HW_ACCEL - This option enables 3014 hardware-acceleration for SHA1/SHA256 progressive hashing. 3015 Data can be streamed in a block at a time and the hashing 3016 is performed in hardware. 3017 3018 Note: There is also a sha1sum command, which should perhaps 3019 be deprecated in favour of 'hash sha1'. 3020 3021- Freescale i.MX specific commands: 3022 CONFIG_CMD_HDMIDETECT 3023 This enables 'hdmidet' command which returns true if an 3024 HDMI monitor is detected. This command is i.MX 6 specific. 3025 3026 CONFIG_CMD_BMODE 3027 This enables the 'bmode' (bootmode) command for forcing 3028 a boot from specific media. 3029 3030 This is useful for forcing the ROM's usb downloader to 3031 activate upon a watchdog reset which is nice when iterating 3032 on U-Boot. Using the reset button or running bmode normal 3033 will set it back to normal. This command currently 3034 supports i.MX53 and i.MX6. 3035 3036- bootcount support: 3037 CONFIG_BOOTCOUNT_LIMIT 3038 3039 This enables the bootcounter support, see: 3040 http://www.denx.de/wiki/DULG/UBootBootCountLimit 3041 3042 CONFIG_AT91SAM9XE 3043 enable special bootcounter support on at91sam9xe based boards. 3044 CONFIG_BLACKFIN 3045 enable special bootcounter support on blackfin based boards. 3046 CONFIG_SOC_DA8XX 3047 enable special bootcounter support on da850 based boards. 3048 CONFIG_BOOTCOUNT_RAM 3049 enable support for the bootcounter in RAM 3050 CONFIG_BOOTCOUNT_I2C 3051 enable support for the bootcounter on an i2c (like RTC) device. 3052 CONFIG_SYS_I2C_RTC_ADDR = i2c chip address 3053 CONFIG_SYS_BOOTCOUNT_ADDR = i2c addr which is used for 3054 the bootcounter. 3055 CONFIG_BOOTCOUNT_ALEN = address len 3056 3057- Show boot progress: 3058 CONFIG_SHOW_BOOT_PROGRESS 3059 3060 Defining this option allows to add some board- 3061 specific code (calling a user-provided function 3062 "show_boot_progress(int)") that enables you to show 3063 the system's boot progress on some display (for 3064 example, some LED's) on your board. At the moment, 3065 the following checkpoints are implemented: 3066 3067 3068Legacy uImage format: 3069 3070 Arg Where When 3071 1 common/cmd_bootm.c before attempting to boot an image 3072 -1 common/cmd_bootm.c Image header has bad magic number 3073 2 common/cmd_bootm.c Image header has correct magic number 3074 -2 common/cmd_bootm.c Image header has bad checksum 3075 3 common/cmd_bootm.c Image header has correct checksum 3076 -3 common/cmd_bootm.c Image data has bad checksum 3077 4 common/cmd_bootm.c Image data has correct checksum 3078 -4 common/cmd_bootm.c Image is for unsupported architecture 3079 5 common/cmd_bootm.c Architecture check OK 3080 -5 common/cmd_bootm.c Wrong Image Type (not kernel, multi) 3081 6 common/cmd_bootm.c Image Type check OK 3082 -6 common/cmd_bootm.c gunzip uncompression error 3083 -7 common/cmd_bootm.c Unimplemented compression type 3084 7 common/cmd_bootm.c Uncompression OK 3085 8 common/cmd_bootm.c No uncompress/copy overwrite error 3086 -9 common/cmd_bootm.c Unsupported OS (not Linux, BSD, VxWorks, QNX) 3087 3088 9 common/image.c Start initial ramdisk verification 3089 -10 common/image.c Ramdisk header has bad magic number 3090 -11 common/image.c Ramdisk header has bad checksum 3091 10 common/image.c Ramdisk header is OK 3092 -12 common/image.c Ramdisk data has bad checksum 3093 11 common/image.c Ramdisk data has correct checksum 3094 12 common/image.c Ramdisk verification complete, start loading 3095 -13 common/image.c Wrong Image Type (not PPC Linux ramdisk) 3096 13 common/image.c Start multifile image verification 3097 14 common/image.c No initial ramdisk, no multifile, continue. 3098 3099 15 arch/<arch>/lib/bootm.c All preparation done, transferring control to OS 3100 3101 -30 arch/powerpc/lib/board.c Fatal error, hang the system 3102 -31 post/post.c POST test failed, detected by post_output_backlog() 3103 -32 post/post.c POST test failed, detected by post_run_single() 3104 3105 34 common/cmd_doc.c before loading a Image from a DOC device 3106 -35 common/cmd_doc.c Bad usage of "doc" command 3107 35 common/cmd_doc.c correct usage of "doc" command 3108 -36 common/cmd_doc.c No boot device 3109 36 common/cmd_doc.c correct boot device 3110 -37 common/cmd_doc.c Unknown Chip ID on boot device 3111 37 common/cmd_doc.c correct chip ID found, device available 3112 -38 common/cmd_doc.c Read Error on boot device 3113 38 common/cmd_doc.c reading Image header from DOC device OK 3114 -39 common/cmd_doc.c Image header has bad magic number 3115 39 common/cmd_doc.c Image header has correct magic number 3116 -40 common/cmd_doc.c Error reading Image from DOC device 3117 40 common/cmd_doc.c Image header has correct magic number 3118 41 common/cmd_ide.c before loading a Image from a IDE device 3119 -42 common/cmd_ide.c Bad usage of "ide" command 3120 42 common/cmd_ide.c correct usage of "ide" command 3121 -43 common/cmd_ide.c No boot device 3122 43 common/cmd_ide.c boot device found 3123 -44 common/cmd_ide.c Device not available 3124 44 common/cmd_ide.c Device available 3125 -45 common/cmd_ide.c wrong partition selected 3126 45 common/cmd_ide.c partition selected 3127 -46 common/cmd_ide.c Unknown partition table 3128 46 common/cmd_ide.c valid partition table found 3129 -47 common/cmd_ide.c Invalid partition type 3130 47 common/cmd_ide.c correct partition type 3131 -48 common/cmd_ide.c Error reading Image Header on boot device 3132 48 common/cmd_ide.c reading Image Header from IDE device OK 3133 -49 common/cmd_ide.c Image header has bad magic number 3134 49 common/cmd_ide.c Image header has correct magic number 3135 -50 common/cmd_ide.c Image header has bad checksum 3136 50 common/cmd_ide.c Image header has correct checksum 3137 -51 common/cmd_ide.c Error reading Image from IDE device 3138 51 common/cmd_ide.c reading Image from IDE device OK 3139 52 common/cmd_nand.c before loading a Image from a NAND device 3140 -53 common/cmd_nand.c Bad usage of "nand" command 3141 53 common/cmd_nand.c correct usage of "nand" command 3142 -54 common/cmd_nand.c No boot device 3143 54 common/cmd_nand.c boot device found 3144 -55 common/cmd_nand.c Unknown Chip ID on boot device 3145 55 common/cmd_nand.c correct chip ID found, device available 3146 -56 common/cmd_nand.c Error reading Image Header on boot device 3147 56 common/cmd_nand.c reading Image Header from NAND device OK 3148 -57 common/cmd_nand.c Image header has bad magic number 3149 57 common/cmd_nand.c Image header has correct magic number 3150 -58 common/cmd_nand.c Error reading Image from NAND device 3151 58 common/cmd_nand.c reading Image from NAND device OK 3152 3153 -60 common/env_common.c Environment has a bad CRC, using default 3154 3155 64 net/eth.c starting with Ethernet configuration. 3156 -64 net/eth.c no Ethernet found. 3157 65 net/eth.c Ethernet found. 3158 3159 -80 common/cmd_net.c usage wrong 3160 80 common/cmd_net.c before calling net_loop() 3161 -81 common/cmd_net.c some error in net_loop() occurred 3162 81 common/cmd_net.c net_loop() back without error 3163 -82 common/cmd_net.c size == 0 (File with size 0 loaded) 3164 82 common/cmd_net.c trying automatic boot 3165 83 common/cmd_net.c running "source" command 3166 -83 common/cmd_net.c some error in automatic boot or "source" command 3167 84 common/cmd_net.c end without errors 3168 3169FIT uImage format: 3170 3171 Arg Where When 3172 100 common/cmd_bootm.c Kernel FIT Image has correct format 3173 -100 common/cmd_bootm.c Kernel FIT Image has incorrect format 3174 101 common/cmd_bootm.c No Kernel subimage unit name, using configuration 3175 -101 common/cmd_bootm.c Can't get configuration for kernel subimage 3176 102 common/cmd_bootm.c Kernel unit name specified 3177 -103 common/cmd_bootm.c Can't get kernel subimage node offset 3178 103 common/cmd_bootm.c Found configuration node 3179 104 common/cmd_bootm.c Got kernel subimage node offset 3180 -104 common/cmd_bootm.c Kernel subimage hash verification failed 3181 105 common/cmd_bootm.c Kernel subimage hash verification OK 3182 -105 common/cmd_bootm.c Kernel subimage is for unsupported architecture 3183 106 common/cmd_bootm.c Architecture check OK 3184 -106 common/cmd_bootm.c Kernel subimage has wrong type 3185 107 common/cmd_bootm.c Kernel subimage type OK 3186 -107 common/cmd_bootm.c Can't get kernel subimage data/size 3187 108 common/cmd_bootm.c Got kernel subimage data/size 3188 -108 common/cmd_bootm.c Wrong image type (not legacy, FIT) 3189 -109 common/cmd_bootm.c Can't get kernel subimage type 3190 -110 common/cmd_bootm.c Can't get kernel subimage comp 3191 -111 common/cmd_bootm.c Can't get kernel subimage os 3192 -112 common/cmd_bootm.c Can't get kernel subimage load address 3193 -113 common/cmd_bootm.c Image uncompress/copy overwrite error 3194 3195 120 common/image.c Start initial ramdisk verification 3196 -120 common/image.c Ramdisk FIT image has incorrect format 3197 121 common/image.c Ramdisk FIT image has correct format 3198 122 common/image.c No ramdisk subimage unit name, using configuration 3199 -122 common/image.c Can't get configuration for ramdisk subimage 3200 123 common/image.c Ramdisk unit name specified 3201 -124 common/image.c Can't get ramdisk subimage node offset 3202 125 common/image.c Got ramdisk subimage node offset 3203 -125 common/image.c Ramdisk subimage hash verification failed 3204 126 common/image.c Ramdisk subimage hash verification OK 3205 -126 common/image.c Ramdisk subimage for unsupported architecture 3206 127 common/image.c Architecture check OK 3207 -127 common/image.c Can't get ramdisk subimage data/size 3208 128 common/image.c Got ramdisk subimage data/size 3209 129 common/image.c Can't get ramdisk load address 3210 -129 common/image.c Got ramdisk load address 3211 3212 -130 common/cmd_doc.c Incorrect FIT image format 3213 131 common/cmd_doc.c FIT image format OK 3214 3215 -140 common/cmd_ide.c Incorrect FIT image format 3216 141 common/cmd_ide.c FIT image format OK 3217 3218 -150 common/cmd_nand.c Incorrect FIT image format 3219 151 common/cmd_nand.c FIT image format OK 3220 3221- legacy image format: 3222 CONFIG_IMAGE_FORMAT_LEGACY 3223 enables the legacy image format support in U-Boot. 3224 3225 Default: 3226 enabled if CONFIG_FIT_SIGNATURE is not defined. 3227 3228 CONFIG_DISABLE_IMAGE_LEGACY 3229 disable the legacy image format 3230 3231 This define is introduced, as the legacy image format is 3232 enabled per default for backward compatibility. 3233 3234- FIT image support: 3235 CONFIG_FIT_DISABLE_SHA256 3236 Supporting SHA256 hashes has quite an impact on binary size. 3237 For constrained systems sha256 hash support can be disabled 3238 with this option. 3239 3240 TODO(sjg@chromium.org): Adjust this option to be positive, 3241 and move it to Kconfig 3242 3243- Standalone program support: 3244 CONFIG_STANDALONE_LOAD_ADDR 3245 3246 This option defines a board specific value for the 3247 address where standalone program gets loaded, thus 3248 overwriting the architecture dependent default 3249 settings. 3250 3251- Frame Buffer Address: 3252 CONFIG_FB_ADDR 3253 3254 Define CONFIG_FB_ADDR if you want to use specific 3255 address for frame buffer. This is typically the case 3256 when using a graphics controller has separate video 3257 memory. U-Boot will then place the frame buffer at 3258 the given address instead of dynamically reserving it 3259 in system RAM by calling lcd_setmem(), which grabs 3260 the memory for the frame buffer depending on the 3261 configured panel size. 3262 3263 Please see board_init_f function. 3264 3265- Automatic software updates via TFTP server 3266 CONFIG_UPDATE_TFTP 3267 CONFIG_UPDATE_TFTP_CNT_MAX 3268 CONFIG_UPDATE_TFTP_MSEC_MAX 3269 3270 These options enable and control the auto-update feature; 3271 for a more detailed description refer to doc/README.update. 3272 3273- MTD Support (mtdparts command, UBI support) 3274 CONFIG_MTD_DEVICE 3275 3276 Adds the MTD device infrastructure from the Linux kernel. 3277 Needed for mtdparts command support. 3278 3279 CONFIG_MTD_PARTITIONS 3280 3281 Adds the MTD partitioning infrastructure from the Linux 3282 kernel. Needed for UBI support. 3283 3284- UBI support 3285 CONFIG_CMD_UBI 3286 3287 Adds commands for interacting with MTD partitions formatted 3288 with the UBI flash translation layer 3289 3290 Requires also defining CONFIG_RBTREE 3291 3292 CONFIG_UBI_SILENCE_MSG 3293 3294 Make the verbose messages from UBI stop printing. This leaves 3295 warnings and errors enabled. 3296 3297 3298 CONFIG_MTD_UBI_WL_THRESHOLD 3299 This parameter defines the maximum difference between the highest 3300 erase counter value and the lowest erase counter value of eraseblocks 3301 of UBI devices. When this threshold is exceeded, UBI starts performing 3302 wear leveling by means of moving data from eraseblock with low erase 3303 counter to eraseblocks with high erase counter. 3304 3305 The default value should be OK for SLC NAND flashes, NOR flashes and 3306 other flashes which have eraseblock life-cycle 100000 or more. 3307 However, in case of MLC NAND flashes which typically have eraseblock 3308 life-cycle less than 10000, the threshold should be lessened (e.g., 3309 to 128 or 256, although it does not have to be power of 2). 3310 3311 default: 4096 3312 3313 CONFIG_MTD_UBI_BEB_LIMIT 3314 This option specifies the maximum bad physical eraseblocks UBI 3315 expects on the MTD device (per 1024 eraseblocks). If the 3316 underlying flash does not admit of bad eraseblocks (e.g. NOR 3317 flash), this value is ignored. 3318 3319 NAND datasheets often specify the minimum and maximum NVM 3320 (Number of Valid Blocks) for the flashes' endurance lifetime. 3321 The maximum expected bad eraseblocks per 1024 eraseblocks 3322 then can be calculated as "1024 * (1 - MinNVB / MaxNVB)", 3323 which gives 20 for most NANDs (MaxNVB is basically the total 3324 count of eraseblocks on the chip). 3325 3326 To put it differently, if this value is 20, UBI will try to 3327 reserve about 1.9% of physical eraseblocks for bad blocks 3328 handling. And that will be 1.9% of eraseblocks on the entire 3329 NAND chip, not just the MTD partition UBI attaches. This means 3330 that if you have, say, a NAND flash chip admits maximum 40 bad 3331 eraseblocks, and it is split on two MTD partitions of the same 3332 size, UBI will reserve 40 eraseblocks when attaching a 3333 partition. 3334 3335 default: 20 3336 3337 CONFIG_MTD_UBI_FASTMAP 3338 Fastmap is a mechanism which allows attaching an UBI device 3339 in nearly constant time. Instead of scanning the whole MTD device it 3340 only has to locate a checkpoint (called fastmap) on the device. 3341 The on-flash fastmap contains all information needed to attach 3342 the device. Using fastmap makes only sense on large devices where 3343 attaching by scanning takes long. UBI will not automatically install 3344 a fastmap on old images, but you can set the UBI parameter 3345 CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT to 1 if you want so. Please note 3346 that fastmap-enabled images are still usable with UBI implementations 3347 without fastmap support. On typical flash devices the whole fastmap 3348 fits into one PEB. UBI will reserve PEBs to hold two fastmaps. 3349 3350 CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 3351 Set this parameter to enable fastmap automatically on images 3352 without a fastmap. 3353 default: 0 3354 3355 CONFIG_MTD_UBI_FM_DEBUG 3356 Enable UBI fastmap debug 3357 default: 0 3358 3359- UBIFS support 3360 CONFIG_CMD_UBIFS 3361 3362 Adds commands for interacting with UBI volumes formatted as 3363 UBIFS. UBIFS is read-only in u-boot. 3364 3365 Requires UBI support as well as CONFIG_LZO 3366 3367 CONFIG_UBIFS_SILENCE_MSG 3368 3369 Make the verbose messages from UBIFS stop printing. This leaves 3370 warnings and errors enabled. 3371 3372- SPL framework 3373 CONFIG_SPL 3374 Enable building of SPL globally. 3375 3376 CONFIG_SPL_LDSCRIPT 3377 LDSCRIPT for linking the SPL binary. 3378 3379 CONFIG_SPL_MAX_FOOTPRINT 3380 Maximum size in memory allocated to the SPL, BSS included. 3381 When defined, the linker checks that the actual memory 3382 used by SPL from _start to __bss_end does not exceed it. 3383 CONFIG_SPL_MAX_FOOTPRINT and CONFIG_SPL_BSS_MAX_SIZE 3384 must not be both defined at the same time. 3385 3386 CONFIG_SPL_MAX_SIZE 3387 Maximum size of the SPL image (text, data, rodata, and 3388 linker lists sections), BSS excluded. 3389 When defined, the linker checks that the actual size does 3390 not exceed it. 3391 3392 CONFIG_SPL_TEXT_BASE 3393 TEXT_BASE for linking the SPL binary. 3394 3395 CONFIG_SPL_RELOC_TEXT_BASE 3396 Address to relocate to. If unspecified, this is equal to 3397 CONFIG_SPL_TEXT_BASE (i.e. no relocation is done). 3398 3399 CONFIG_SPL_BSS_START_ADDR 3400 Link address for the BSS within the SPL binary. 3401 3402 CONFIG_SPL_BSS_MAX_SIZE 3403 Maximum size in memory allocated to the SPL BSS. 3404 When defined, the linker checks that the actual memory used 3405 by SPL from __bss_start to __bss_end does not exceed it. 3406 CONFIG_SPL_MAX_FOOTPRINT and CONFIG_SPL_BSS_MAX_SIZE 3407 must not be both defined at the same time. 3408 3409 CONFIG_SPL_STACK 3410 Adress of the start of the stack SPL will use 3411 3412 CONFIG_SPL_PANIC_ON_RAW_IMAGE 3413 When defined, SPL will panic() if the image it has 3414 loaded does not have a signature. 3415 Defining this is useful when code which loads images 3416 in SPL cannot guarantee that absolutely all read errors 3417 will be caught. 3418 An example is the LPC32XX MLC NAND driver, which will 3419 consider that a completely unreadable NAND block is bad, 3420 and thus should be skipped silently. 3421 3422 CONFIG_SPL_ABORT_ON_RAW_IMAGE 3423 When defined, SPL will proceed to another boot method 3424 if the image it has loaded does not have a signature. 3425 3426 CONFIG_SPL_RELOC_STACK 3427 Adress of the start of the stack SPL will use after 3428 relocation. If unspecified, this is equal to 3429 CONFIG_SPL_STACK. 3430 3431 CONFIG_SYS_SPL_MALLOC_START 3432 Starting address of the malloc pool used in SPL. 3433 When this option is set the full malloc is used in SPL and 3434 it is set up by spl_init() and before that, the simple malloc() 3435 can be used if CONFIG_SYS_MALLOC_F is defined. 3436 3437 CONFIG_SYS_SPL_MALLOC_SIZE 3438 The size of the malloc pool used in SPL. 3439 3440 CONFIG_SPL_FRAMEWORK 3441 Enable the SPL framework under common/. This framework 3442 supports MMC, NAND and YMODEM loading of U-Boot and NAND 3443 NAND loading of the Linux Kernel. 3444 3445 CONFIG_SPL_OS_BOOT 3446 Enable booting directly to an OS from SPL. 3447 See also: doc/README.falcon 3448 3449 CONFIG_SPL_DISPLAY_PRINT 3450 For ARM, enable an optional function to print more information 3451 about the running system. 3452 3453 CONFIG_SPL_INIT_MINIMAL 3454 Arch init code should be built for a very small image 3455 3456 CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR, 3457 CONFIG_SYS_U_BOOT_MAX_SIZE_SECTORS, 3458 Address and partition on the MMC to load U-Boot from 3459 when the MMC is being used in raw mode. 3460 3461 CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_PARTITION 3462 Partition on the MMC to load U-Boot from when the MMC is being 3463 used in raw mode 3464 3465 CONFIG_SYS_MMCSD_RAW_MODE_KERNEL_SECTOR 3466 Sector to load kernel uImage from when MMC is being 3467 used in raw mode (for Falcon mode) 3468 3469 CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTOR, 3470 CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTORS 3471 Sector and number of sectors to load kernel argument 3472 parameters from when MMC is being used in raw mode 3473 (for falcon mode) 3474 3475 CONFIG_SYS_MMCSD_FS_BOOT_PARTITION 3476 Partition on the MMC to load U-Boot from when the MMC is being 3477 used in fs mode 3478 3479 CONFIG_SPL_FS_LOAD_PAYLOAD_NAME 3480 Filename to read to load U-Boot when reading from filesystem 3481 3482 CONFIG_SPL_FS_LOAD_KERNEL_NAME 3483 Filename to read to load kernel uImage when reading 3484 from filesystem (for Falcon mode) 3485 3486 CONFIG_SPL_FS_LOAD_ARGS_NAME 3487 Filename to read to load kernel argument parameters 3488 when reading from filesystem (for Falcon mode) 3489 3490 CONFIG_SPL_MPC83XX_WAIT_FOR_NAND 3491 Set this for NAND SPL on PPC mpc83xx targets, so that 3492 start.S waits for the rest of the SPL to load before 3493 continuing (the hardware starts execution after just 3494 loading the first page rather than the full 4K). 3495 3496 CONFIG_SPL_SKIP_RELOCATE 3497 Avoid SPL relocation 3498 3499 CONFIG_SPL_NAND_BASE 3500 Include nand_base.c in the SPL. Requires 3501 CONFIG_SPL_NAND_DRIVERS. 3502 3503 CONFIG_SPL_NAND_DRIVERS 3504 SPL uses normal NAND drivers, not minimal drivers. 3505 3506 CONFIG_SPL_NAND_ECC 3507 Include standard software ECC in the SPL 3508 3509 CONFIG_SPL_NAND_SIMPLE 3510 Support for NAND boot using simple NAND drivers that 3511 expose the cmd_ctrl() interface. 3512 3513 CONFIG_SPL_UBI 3514 Support for a lightweight UBI (fastmap) scanner and 3515 loader 3516 3517 CONFIG_SPL_NAND_RAW_ONLY 3518 Support to boot only raw u-boot.bin images. Use this only 3519 if you need to save space. 3520 3521 CONFIG_SPL_COMMON_INIT_DDR 3522 Set for common ddr init with serial presence detect in 3523 SPL binary. 3524 3525 CONFIG_SYS_NAND_5_ADDR_CYCLE, CONFIG_SYS_NAND_PAGE_COUNT, 3526 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE, 3527 CONFIG_SYS_NAND_BLOCK_SIZE, CONFIG_SYS_NAND_BAD_BLOCK_POS, 3528 CONFIG_SYS_NAND_ECCPOS, CONFIG_SYS_NAND_ECCSIZE, 3529 CONFIG_SYS_NAND_ECCBYTES 3530 Defines the size and behavior of the NAND that SPL uses 3531 to read U-Boot 3532 3533 CONFIG_SPL_NAND_BOOT 3534 Add support NAND boot 3535 3536 CONFIG_SYS_NAND_U_BOOT_OFFS 3537 Location in NAND to read U-Boot from 3538 3539 CONFIG_SYS_NAND_U_BOOT_DST 3540 Location in memory to load U-Boot to 3541 3542 CONFIG_SYS_NAND_U_BOOT_SIZE 3543 Size of image to load 3544 3545 CONFIG_SYS_NAND_U_BOOT_START 3546 Entry point in loaded image to jump to 3547 3548 CONFIG_SYS_NAND_HW_ECC_OOBFIRST 3549 Define this if you need to first read the OOB and then the 3550 data. This is used, for example, on davinci platforms. 3551 3552 CONFIG_SPL_OMAP3_ID_NAND 3553 Support for an OMAP3-specific set of functions to return the 3554 ID and MFR of the first attached NAND chip, if present. 3555 3556 CONFIG_SPL_RAM_DEVICE 3557 Support for running image already present in ram, in SPL binary 3558 3559 CONFIG_SPL_PAD_TO 3560 Image offset to which the SPL should be padded before appending 3561 the SPL payload. By default, this is defined as 3562 CONFIG_SPL_MAX_SIZE, or 0 if CONFIG_SPL_MAX_SIZE is undefined. 3563 CONFIG_SPL_PAD_TO must be either 0, meaning to append the SPL 3564 payload without any padding, or >= CONFIG_SPL_MAX_SIZE. 3565 3566 CONFIG_SPL_TARGET 3567 Final target image containing SPL and payload. Some SPLs 3568 use an arch-specific makefile fragment instead, for 3569 example if more than one image needs to be produced. 3570 3571 CONFIG_FIT_SPL_PRINT 3572 Printing information about a FIT image adds quite a bit of 3573 code to SPL. So this is normally disabled in SPL. Use this 3574 option to re-enable it. This will affect the output of the 3575 bootm command when booting a FIT image. 3576 3577- TPL framework 3578 CONFIG_TPL 3579 Enable building of TPL globally. 3580 3581 CONFIG_TPL_PAD_TO 3582 Image offset to which the TPL should be padded before appending 3583 the TPL payload. By default, this is defined as 3584 CONFIG_SPL_MAX_SIZE, or 0 if CONFIG_SPL_MAX_SIZE is undefined. 3585 CONFIG_SPL_PAD_TO must be either 0, meaning to append the SPL 3586 payload without any padding, or >= CONFIG_SPL_MAX_SIZE. 3587 3588- Interrupt support (PPC): 3589 3590 There are common interrupt_init() and timer_interrupt() 3591 for all PPC archs. interrupt_init() calls interrupt_init_cpu() 3592 for CPU specific initialization. interrupt_init_cpu() 3593 should set decrementer_count to appropriate value. If 3594 CPU resets decrementer automatically after interrupt 3595 (ppc4xx) it should set decrementer_count to zero. 3596 timer_interrupt() calls timer_interrupt_cpu() for CPU 3597 specific handling. If board has watchdog / status_led 3598 / other_activity_monitor it works automatically from 3599 general timer_interrupt(). 3600 3601 3602Board initialization settings: 3603------------------------------ 3604 3605During Initialization u-boot calls a number of board specific functions 3606to allow the preparation of board specific prerequisites, e.g. pin setup 3607before drivers are initialized. To enable these callbacks the 3608following configuration macros have to be defined. Currently this is 3609architecture specific, so please check arch/your_architecture/lib/board.c 3610typically in board_init_f() and board_init_r(). 3611 3612- CONFIG_BOARD_EARLY_INIT_F: Call board_early_init_f() 3613- CONFIG_BOARD_EARLY_INIT_R: Call board_early_init_r() 3614- CONFIG_BOARD_LATE_INIT: Call board_late_init() 3615- CONFIG_BOARD_POSTCLK_INIT: Call board_postclk_init() 3616 3617Configuration Settings: 3618----------------------- 3619 3620- CONFIG_SYS_SUPPORT_64BIT_DATA: Defined automatically if compiled as 64-bit. 3621 Optionally it can be defined to support 64-bit memory commands. 3622 3623- CONFIG_SYS_LONGHELP: Defined when you want long help messages included; 3624 undefine this when you're short of memory. 3625 3626- CONFIG_SYS_HELP_CMD_WIDTH: Defined when you want to override the default 3627 width of the commands listed in the 'help' command output. 3628 3629- CONFIG_SYS_PROMPT: This is what U-Boot prints on the console to 3630 prompt for user input. 3631 3632- CONFIG_SYS_CBSIZE: Buffer size for input from the Console 3633 3634- CONFIG_SYS_PBSIZE: Buffer size for Console output 3635 3636- CONFIG_SYS_MAXARGS: max. Number of arguments accepted for monitor commands 3637 3638- CONFIG_SYS_BARGSIZE: Buffer size for Boot Arguments which are passed to 3639 the application (usually a Linux kernel) when it is 3640 booted 3641 3642- CONFIG_SYS_BAUDRATE_TABLE: 3643 List of legal baudrate settings for this board. 3644 3645- CONFIG_SYS_CONSOLE_INFO_QUIET 3646 Suppress display of console information at boot. 3647 3648- CONFIG_SYS_CONSOLE_IS_IN_ENV 3649 If the board specific function 3650 extern int overwrite_console (void); 3651 returns 1, the stdin, stderr and stdout are switched to the 3652 serial port, else the settings in the environment are used. 3653 3654- CONFIG_SYS_CONSOLE_OVERWRITE_ROUTINE 3655 Enable the call to overwrite_console(). 3656 3657- CONFIG_SYS_CONSOLE_ENV_OVERWRITE 3658 Enable overwrite of previous console environment settings. 3659 3660- CONFIG_SYS_MEMTEST_START, CONFIG_SYS_MEMTEST_END: 3661 Begin and End addresses of the area used by the 3662 simple memory test. 3663 3664- CONFIG_SYS_ALT_MEMTEST: 3665 Enable an alternate, more extensive memory test. 3666 3667- CONFIG_SYS_MEMTEST_SCRATCH: 3668 Scratch address used by the alternate memory test 3669 You only need to set this if address zero isn't writeable 3670 3671- CONFIG_SYS_MEM_RESERVE_SECURE 3672 Only implemented for ARMv8 for now. 3673 If defined, the size of CONFIG_SYS_MEM_RESERVE_SECURE memory 3674 is substracted from total RAM and won't be reported to OS. 3675 This memory can be used as secure memory. A variable 3676 gd->arch.secure_ram is used to track the location. In systems 3677 the RAM base is not zero, or RAM is divided into banks, 3678 this variable needs to be recalcuated to get the address. 3679 3680- CONFIG_SYS_MEM_TOP_HIDE: 3681 If CONFIG_SYS_MEM_TOP_HIDE is defined in the board config header, 3682 this specified memory area will get subtracted from the top 3683 (end) of RAM and won't get "touched" at all by U-Boot. By 3684 fixing up gd->ram_size the Linux kernel should gets passed 3685 the now "corrected" memory size and won't touch it either. 3686 This should work for arch/ppc and arch/powerpc. Only Linux 3687 board ports in arch/powerpc with bootwrapper support that 3688 recalculate the memory size from the SDRAM controller setup 3689 will have to get fixed in Linux additionally. 3690 3691 This option can be used as a workaround for the 440EPx/GRx 3692 CHIP 11 errata where the last 256 bytes in SDRAM shouldn't 3693 be touched. 3694 3695 WARNING: Please make sure that this value is a multiple of 3696 the Linux page size (normally 4k). If this is not the case, 3697 then the end address of the Linux memory will be located at a 3698 non page size aligned address and this could cause major 3699 problems. 3700 3701- CONFIG_SYS_LOADS_BAUD_CHANGE: 3702 Enable temporary baudrate change while serial download 3703 3704- CONFIG_SYS_SDRAM_BASE: 3705 Physical start address of SDRAM. _Must_ be 0 here. 3706 3707- CONFIG_SYS_FLASH_BASE: 3708 Physical start address of Flash memory. 3709 3710- CONFIG_SYS_MONITOR_BASE: 3711 Physical start address of boot monitor code (set by 3712 make config files to be same as the text base address 3713 (CONFIG_SYS_TEXT_BASE) used when linking) - same as 3714 CONFIG_SYS_FLASH_BASE when booting from flash. 3715 3716- CONFIG_SYS_MONITOR_LEN: 3717 Size of memory reserved for monitor code, used to 3718 determine _at_compile_time_ (!) if the environment is 3719 embedded within the U-Boot image, or in a separate 3720 flash sector. 3721 3722- CONFIG_SYS_MALLOC_LEN: 3723 Size of DRAM reserved for malloc() use. 3724 3725- CONFIG_SYS_MALLOC_F_LEN 3726 Size of the malloc() pool for use before relocation. If 3727 this is defined, then a very simple malloc() implementation 3728 will become available before relocation. The address is just 3729 below the global data, and the stack is moved down to make 3730 space. 3731 3732 This feature allocates regions with increasing addresses 3733 within the region. calloc() is supported, but realloc() 3734 is not available. free() is supported but does nothing. 3735 The memory will be freed (or in fact just forgotten) when 3736 U-Boot relocates itself. 3737 3738- CONFIG_SYS_MALLOC_SIMPLE 3739 Provides a simple and small malloc() and calloc() for those 3740 boards which do not use the full malloc in SPL (which is 3741 enabled with CONFIG_SYS_SPL_MALLOC_START). 3742 3743- CONFIG_SYS_NONCACHED_MEMORY: 3744 Size of non-cached memory area. This area of memory will be 3745 typically located right below the malloc() area and mapped 3746 uncached in the MMU. This is useful for drivers that would 3747 otherwise require a lot of explicit cache maintenance. For 3748 some drivers it's also impossible to properly maintain the 3749 cache. For example if the regions that need to be flushed 3750 are not a multiple of the cache-line size, *and* padding 3751 cannot be allocated between the regions to align them (i.e. 3752 if the HW requires a contiguous array of regions, and the 3753 size of each region is not cache-aligned), then a flush of 3754 one region may result in overwriting data that hardware has 3755 written to another region in the same cache-line. This can 3756 happen for example in network drivers where descriptors for 3757 buffers are typically smaller than the CPU cache-line (e.g. 3758 16 bytes vs. 32 or 64 bytes). 3759 3760 Non-cached memory is only supported on 32-bit ARM at present. 3761 3762- CONFIG_SYS_BOOTM_LEN: 3763 Normally compressed uImages are limited to an 3764 uncompressed size of 8 MBytes. If this is not enough, 3765 you can define CONFIG_SYS_BOOTM_LEN in your board config file 3766 to adjust this setting to your needs. 3767 3768- CONFIG_SYS_BOOTMAPSZ: 3769 Maximum size of memory mapped by the startup code of 3770 the Linux kernel; all data that must be processed by 3771 the Linux kernel (bd_info, boot arguments, FDT blob if 3772 used) must be put below this limit, unless "bootm_low" 3773 environment variable is defined and non-zero. In such case 3774 all data for the Linux kernel must be between "bootm_low" 3775 and "bootm_low" + CONFIG_SYS_BOOTMAPSZ. The environment 3776 variable "bootm_mapsize" will override the value of 3777 CONFIG_SYS_BOOTMAPSZ. If CONFIG_SYS_BOOTMAPSZ is undefined, 3778 then the value in "bootm_size" will be used instead. 3779 3780- CONFIG_SYS_BOOT_RAMDISK_HIGH: 3781 Enable initrd_high functionality. If defined then the 3782 initrd_high feature is enabled and the bootm ramdisk subcommand 3783 is enabled. 3784 3785- CONFIG_SYS_BOOT_GET_CMDLINE: 3786 Enables allocating and saving kernel cmdline in space between 3787 "bootm_low" and "bootm_low" + BOOTMAPSZ. 3788 3789- CONFIG_SYS_BOOT_GET_KBD: 3790 Enables allocating and saving a kernel copy of the bd_info in 3791 space between "bootm_low" and "bootm_low" + BOOTMAPSZ. 3792 3793- CONFIG_SYS_MAX_FLASH_BANKS: 3794 Max number of Flash memory banks 3795 3796- CONFIG_SYS_MAX_FLASH_SECT: 3797 Max number of sectors on a Flash chip 3798 3799- CONFIG_SYS_FLASH_ERASE_TOUT: 3800 Timeout for Flash erase operations (in ms) 3801 3802- CONFIG_SYS_FLASH_WRITE_TOUT: 3803 Timeout for Flash write operations (in ms) 3804 3805- CONFIG_SYS_FLASH_LOCK_TOUT 3806 Timeout for Flash set sector lock bit operation (in ms) 3807 3808- CONFIG_SYS_FLASH_UNLOCK_TOUT 3809 Timeout for Flash clear lock bits operation (in ms) 3810 3811- CONFIG_SYS_FLASH_PROTECTION 3812 If defined, hardware flash sectors protection is used 3813 instead of U-Boot software protection. 3814 3815- CONFIG_SYS_DIRECT_FLASH_TFTP: 3816 3817 Enable TFTP transfers directly to flash memory; 3818 without this option such a download has to be 3819 performed in two steps: (1) download to RAM, and (2) 3820 copy from RAM to flash. 3821 3822 The two-step approach is usually more reliable, since 3823 you can check if the download worked before you erase 3824 the flash, but in some situations (when system RAM is 3825 too limited to allow for a temporary copy of the 3826 downloaded image) this option may be very useful. 3827 3828- CONFIG_SYS_FLASH_CFI: 3829 Define if the flash driver uses extra elements in the 3830 common flash structure for storing flash geometry. 3831 3832- CONFIG_FLASH_CFI_DRIVER 3833 This option also enables the building of the cfi_flash driver 3834 in the drivers directory 3835 3836- CONFIG_FLASH_CFI_MTD 3837 This option enables the building of the cfi_mtd driver 3838 in the drivers directory. The driver exports CFI flash 3839 to the MTD layer. 3840 3841- CONFIG_SYS_FLASH_USE_BUFFER_WRITE 3842 Use buffered writes to flash. 3843 3844- CONFIG_FLASH_SPANSION_S29WS_N 3845 s29ws-n MirrorBit flash has non-standard addresses for buffered 3846 write commands. 3847 3848- CONFIG_SYS_FLASH_QUIET_TEST 3849 If this option is defined, the common CFI flash doesn't 3850 print it's warning upon not recognized FLASH banks. This 3851 is useful, if some of the configured banks are only 3852 optionally available. 3853 3854- CONFIG_FLASH_SHOW_PROGRESS 3855 If defined (must be an integer), print out countdown 3856 digits and dots. Recommended value: 45 (9..1) for 80 3857 column displays, 15 (3..1) for 40 column displays. 3858 3859- CONFIG_FLASH_VERIFY 3860 If defined, the content of the flash (destination) is compared 3861 against the source after the write operation. An error message 3862 will be printed when the contents are not identical. 3863 Please note that this option is useless in nearly all cases, 3864 since such flash programming errors usually are detected earlier 3865 while unprotecting/erasing/programming. Please only enable 3866 this option if you really know what you are doing. 3867 3868- CONFIG_SYS_RX_ETH_BUFFER: 3869 Defines the number of Ethernet receive buffers. On some 3870 Ethernet controllers it is recommended to set this value 3871 to 8 or even higher (EEPRO100 or 405 EMAC), since all 3872 buffers can be full shortly after enabling the interface 3873 on high Ethernet traffic. 3874 Defaults to 4 if not defined. 3875 3876- CONFIG_ENV_MAX_ENTRIES 3877 3878 Maximum number of entries in the hash table that is used 3879 internally to store the environment settings. The default 3880 setting is supposed to be generous and should work in most 3881 cases. This setting can be used to tune behaviour; see 3882 lib/hashtable.c for details. 3883 3884- CONFIG_ENV_FLAGS_LIST_DEFAULT 3885- CONFIG_ENV_FLAGS_LIST_STATIC 3886 Enable validation of the values given to environment variables when 3887 calling env set. Variables can be restricted to only decimal, 3888 hexadecimal, or boolean. If CONFIG_CMD_NET is also defined, 3889 the variables can also be restricted to IP address or MAC address. 3890 3891 The format of the list is: 3892 type_attribute = [s|d|x|b|i|m] 3893 access_attribute = [a|r|o|c] 3894 attributes = type_attribute[access_attribute] 3895 entry = variable_name[:attributes] 3896 list = entry[,list] 3897 3898 The type attributes are: 3899 s - String (default) 3900 d - Decimal 3901 x - Hexadecimal 3902 b - Boolean ([1yYtT|0nNfF]) 3903 i - IP address 3904 m - MAC address 3905 3906 The access attributes are: 3907 a - Any (default) 3908 r - Read-only 3909 o - Write-once 3910 c - Change-default 3911 3912 - CONFIG_ENV_FLAGS_LIST_DEFAULT 3913 Define this to a list (string) to define the ".flags" 3914 environment variable in the default or embedded environment. 3915 3916 - CONFIG_ENV_FLAGS_LIST_STATIC 3917 Define this to a list (string) to define validation that 3918 should be done if an entry is not found in the ".flags" 3919 environment variable. To override a setting in the static 3920 list, simply add an entry for the same variable name to the 3921 ".flags" variable. 3922 3923 If CONFIG_REGEX is defined, the variable_name above is evaluated as a 3924 regular expression. This allows multiple variables to define the same 3925 flags without explicitly listing them for each variable. 3926 3927- CONFIG_ENV_ACCESS_IGNORE_FORCE 3928 If defined, don't allow the -f switch to env set override variable 3929 access flags. 3930 3931- CONFIG_OMAP_PLATFORM_RESET_TIME_MAX_USEC (OMAP only) 3932 This is set by OMAP boards for the max time that reset should 3933 be asserted. See doc/README.omap-reset-time for details on how 3934 the value can be calculated on a given board. 3935 3936- CONFIG_USE_STDINT 3937 If stdint.h is available with your toolchain you can define this 3938 option to enable it. You can provide option 'USE_STDINT=1' when 3939 building U-Boot to enable this. 3940 3941The following definitions that deal with the placement and management 3942of environment data (variable area); in general, we support the 3943following configurations: 3944 3945- CONFIG_BUILD_ENVCRC: 3946 3947 Builds up envcrc with the target environment so that external utils 3948 may easily extract it and embed it in final U-Boot images. 3949 3950- CONFIG_ENV_IS_IN_FLASH: 3951 3952 Define this if the environment is in flash memory. 3953 3954 a) The environment occupies one whole flash sector, which is 3955 "embedded" in the text segment with the U-Boot code. This 3956 happens usually with "bottom boot sector" or "top boot 3957 sector" type flash chips, which have several smaller 3958 sectors at the start or the end. For instance, such a 3959 layout can have sector sizes of 8, 2x4, 16, Nx32 kB. In 3960 such a case you would place the environment in one of the 3961 4 kB sectors - with U-Boot code before and after it. With 3962 "top boot sector" type flash chips, you would put the 3963 environment in one of the last sectors, leaving a gap 3964 between U-Boot and the environment. 3965 3966 - CONFIG_ENV_OFFSET: 3967 3968 Offset of environment data (variable area) to the 3969 beginning of flash memory; for instance, with bottom boot 3970 type flash chips the second sector can be used: the offset 3971 for this sector is given here. 3972 3973 CONFIG_ENV_OFFSET is used relative to CONFIG_SYS_FLASH_BASE. 3974 3975 - CONFIG_ENV_ADDR: 3976 3977 This is just another way to specify the start address of 3978 the flash sector containing the environment (instead of 3979 CONFIG_ENV_OFFSET). 3980 3981 - CONFIG_ENV_SECT_SIZE: 3982 3983 Size of the sector containing the environment. 3984 3985 3986 b) Sometimes flash chips have few, equal sized, BIG sectors. 3987 In such a case you don't want to spend a whole sector for 3988 the environment. 3989 3990 - CONFIG_ENV_SIZE: 3991 3992 If you use this in combination with CONFIG_ENV_IS_IN_FLASH 3993 and CONFIG_ENV_SECT_SIZE, you can specify to use only a part 3994 of this flash sector for the environment. This saves 3995 memory for the RAM copy of the environment. 3996 3997 It may also save flash memory if you decide to use this 3998 when your environment is "embedded" within U-Boot code, 3999 since then the remainder of the flash sector could be used 4000 for U-Boot code. It should be pointed out that this is 4001 STRONGLY DISCOURAGED from a robustness point of view: 4002 updating the environment in flash makes it always 4003 necessary to erase the WHOLE sector. If something goes 4004 wrong before the contents has been restored from a copy in 4005 RAM, your target system will be dead. 4006 4007 - CONFIG_ENV_ADDR_REDUND 4008 CONFIG_ENV_SIZE_REDUND 4009 4010 These settings describe a second storage area used to hold 4011 a redundant copy of the environment data, so that there is 4012 a valid backup copy in case there is a power failure during 4013 a "saveenv" operation. 4014 4015BE CAREFUL! Any changes to the flash layout, and some changes to the 4016source code will make it necessary to adapt <board>/u-boot.lds* 4017accordingly! 4018 4019 4020- CONFIG_ENV_IS_IN_NVRAM: 4021 4022 Define this if you have some non-volatile memory device 4023 (NVRAM, battery buffered SRAM) which you want to use for the 4024 environment. 4025 4026 - CONFIG_ENV_ADDR: 4027 - CONFIG_ENV_SIZE: 4028 4029 These two #defines are used to determine the memory area you 4030 want to use for environment. It is assumed that this memory 4031 can just be read and written to, without any special 4032 provision. 4033 4034BE CAREFUL! The first access to the environment happens quite early 4035in U-Boot initialization (when we try to get the setting of for the 4036console baudrate). You *MUST* have mapped your NVRAM area then, or 4037U-Boot will hang. 4038 4039Please note that even with NVRAM we still use a copy of the 4040environment in RAM: we could work on NVRAM directly, but we want to 4041keep settings there always unmodified except somebody uses "saveenv" 4042to save the current settings. 4043 4044 4045- CONFIG_ENV_IS_IN_EEPROM: 4046 4047 Use this if you have an EEPROM or similar serial access 4048 device and a driver for it. 4049 4050 - CONFIG_ENV_OFFSET: 4051 - CONFIG_ENV_SIZE: 4052 4053 These two #defines specify the offset and size of the 4054 environment area within the total memory of your EEPROM. 4055 4056 - CONFIG_SYS_I2C_EEPROM_ADDR: 4057 If defined, specified the chip address of the EEPROM device. 4058 The default address is zero. 4059 4060 - CONFIG_SYS_I2C_EEPROM_BUS: 4061 If defined, specified the i2c bus of the EEPROM device. 4062 4063 - CONFIG_SYS_EEPROM_PAGE_WRITE_BITS: 4064 If defined, the number of bits used to address bytes in a 4065 single page in the EEPROM device. A 64 byte page, for example 4066 would require six bits. 4067 4068 - CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS: 4069 If defined, the number of milliseconds to delay between 4070 page writes. The default is zero milliseconds. 4071 4072 - CONFIG_SYS_I2C_EEPROM_ADDR_LEN: 4073 The length in bytes of the EEPROM memory array address. Note 4074 that this is NOT the chip address length! 4075 4076 - CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW: 4077 EEPROM chips that implement "address overflow" are ones 4078 like Catalyst 24WC04/08/16 which has 9/10/11 bits of 4079 address and the extra bits end up in the "chip address" bit 4080 slots. This makes a 24WC08 (1Kbyte) chip look like four 256 4081 byte chips. 4082 4083 Note that we consider the length of the address field to 4084 still be one byte because the extra address bits are hidden 4085 in the chip address. 4086 4087 - CONFIG_SYS_EEPROM_SIZE: 4088 The size in bytes of the EEPROM device. 4089 4090 - CONFIG_ENV_EEPROM_IS_ON_I2C 4091 define this, if you have I2C and SPI activated, and your 4092 EEPROM, which holds the environment, is on the I2C bus. 4093 4094 - CONFIG_I2C_ENV_EEPROM_BUS 4095 if you have an Environment on an EEPROM reached over 4096 I2C muxes, you can define here, how to reach this 4097 EEPROM. For example: 4098 4099 #define CONFIG_I2C_ENV_EEPROM_BUS 1 4100 4101 EEPROM which holds the environment, is reached over 4102 a pca9547 i2c mux with address 0x70, channel 3. 4103 4104- CONFIG_ENV_IS_IN_DATAFLASH: 4105 4106 Define this if you have a DataFlash memory device which you 4107 want to use for the environment. 4108 4109 - CONFIG_ENV_OFFSET: 4110 - CONFIG_ENV_ADDR: 4111 - CONFIG_ENV_SIZE: 4112 4113 These three #defines specify the offset and size of the 4114 environment area within the total memory of your DataFlash placed 4115 at the specified address. 4116 4117- CONFIG_ENV_IS_IN_SPI_FLASH: 4118 4119 Define this if you have a SPI Flash memory device which you 4120 want to use for the environment. 4121 4122 - CONFIG_ENV_OFFSET: 4123 - CONFIG_ENV_SIZE: 4124 4125 These two #defines specify the offset and size of the 4126 environment area within the SPI Flash. CONFIG_ENV_OFFSET must be 4127 aligned to an erase sector boundary. 4128 4129 - CONFIG_ENV_SECT_SIZE: 4130 4131 Define the SPI flash's sector size. 4132 4133 - CONFIG_ENV_OFFSET_REDUND (optional): 4134 4135 This setting describes a second storage area of CONFIG_ENV_SIZE 4136 size used to hold a redundant copy of the environment data, so 4137 that there is a valid backup copy in case there is a power failure 4138 during a "saveenv" operation. CONFIG_ENV_OFFSET_REDUND must be 4139 aligned to an erase sector boundary. 4140 4141 - CONFIG_ENV_SPI_BUS (optional): 4142 - CONFIG_ENV_SPI_CS (optional): 4143 4144 Define the SPI bus and chip select. If not defined they will be 0. 4145 4146 - CONFIG_ENV_SPI_MAX_HZ (optional): 4147 4148 Define the SPI max work clock. If not defined then use 1MHz. 4149 4150 - CONFIG_ENV_SPI_MODE (optional): 4151 4152 Define the SPI work mode. If not defined then use SPI_MODE_3. 4153 4154- CONFIG_ENV_IS_IN_REMOTE: 4155 4156 Define this if you have a remote memory space which you 4157 want to use for the local device's environment. 4158 4159 - CONFIG_ENV_ADDR: 4160 - CONFIG_ENV_SIZE: 4161 4162 These two #defines specify the address and size of the 4163 environment area within the remote memory space. The 4164 local device can get the environment from remote memory 4165 space by SRIO or PCIE links. 4166 4167BE CAREFUL! For some special cases, the local device can not use 4168"saveenv" command. For example, the local device will get the 4169environment stored in a remote NOR flash by SRIO or PCIE link, 4170but it can not erase, write this NOR flash by SRIO or PCIE interface. 4171 4172- CONFIG_ENV_IS_IN_NAND: 4173 4174 Define this if you have a NAND device which you want to use 4175 for the environment. 4176 4177 - CONFIG_ENV_OFFSET: 4178 - CONFIG_ENV_SIZE: 4179 4180 These two #defines specify the offset and size of the environment 4181 area within the first NAND device. CONFIG_ENV_OFFSET must be 4182 aligned to an erase block boundary. 4183 4184 - CONFIG_ENV_OFFSET_REDUND (optional): 4185 4186 This setting describes a second storage area of CONFIG_ENV_SIZE 4187 size used to hold a redundant copy of the environment data, so 4188 that there is a valid backup copy in case there is a power failure 4189 during a "saveenv" operation. CONFIG_ENV_OFFSET_REDUND must be 4190 aligned to an erase block boundary. 4191 4192 - CONFIG_ENV_RANGE (optional): 4193 4194 Specifies the length of the region in which the environment 4195 can be written. This should be a multiple of the NAND device's 4196 block size. Specifying a range with more erase blocks than 4197 are needed to hold CONFIG_ENV_SIZE allows bad blocks within 4198 the range to be avoided. 4199 4200 - CONFIG_ENV_OFFSET_OOB (optional): 4201 4202 Enables support for dynamically retrieving the offset of the 4203 environment from block zero's out-of-band data. The 4204 "nand env.oob" command can be used to record this offset. 4205 Currently, CONFIG_ENV_OFFSET_REDUND is not supported when 4206 using CONFIG_ENV_OFFSET_OOB. 4207 4208- CONFIG_NAND_ENV_DST 4209 4210 Defines address in RAM to which the nand_spl code should copy the 4211 environment. If redundant environment is used, it will be copied to 4212 CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE. 4213 4214- CONFIG_ENV_IS_IN_UBI: 4215 4216 Define this if you have an UBI volume that you want to use for the 4217 environment. This has the benefit of wear-leveling the environment 4218 accesses, which is important on NAND. 4219 4220 - CONFIG_ENV_UBI_PART: 4221 4222 Define this to a string that is the mtd partition containing the UBI. 4223 4224 - CONFIG_ENV_UBI_VOLUME: 4225 4226 Define this to the name of the volume that you want to store the 4227 environment in. 4228 4229 - CONFIG_ENV_UBI_VOLUME_REDUND: 4230 4231 Define this to the name of another volume to store a second copy of 4232 the environment in. This will enable redundant environments in UBI. 4233 It is assumed that both volumes are in the same MTD partition. 4234 4235 - CONFIG_UBI_SILENCE_MSG 4236 - CONFIG_UBIFS_SILENCE_MSG 4237 4238 You will probably want to define these to avoid a really noisy system 4239 when storing the env in UBI. 4240 4241- CONFIG_ENV_IS_IN_FAT: 4242 Define this if you want to use the FAT file system for the environment. 4243 4244 - FAT_ENV_INTERFACE: 4245 4246 Define this to a string that is the name of the block device. 4247 4248 - FAT_ENV_DEV_AND_PART: 4249 4250 Define this to a string to specify the partition of the device. It can 4251 be as following: 4252 4253 "D:P", "D:0", "D", "D:" or "D:auto" (D, P are integers. And P >= 1) 4254 - "D:P": device D partition P. Error occurs if device D has no 4255 partition table. 4256 - "D:0": device D. 4257 - "D" or "D:": device D partition 1 if device D has partition 4258 table, or the whole device D if has no partition 4259 table. 4260 - "D:auto": first partition in device D with bootable flag set. 4261 If none, first valid partition in device D. If no 4262 partition table then means device D. 4263 4264 - FAT_ENV_FILE: 4265 4266 It's a string of the FAT file name. This file use to store the 4267 environment. 4268 4269 - CONFIG_FAT_WRITE: 4270 This should be defined. Otherwise it cannot save the environment file. 4271 4272- CONFIG_ENV_IS_IN_MMC: 4273 4274 Define this if you have an MMC device which you want to use for the 4275 environment. 4276 4277 - CONFIG_SYS_MMC_ENV_DEV: 4278 4279 Specifies which MMC device the environment is stored in. 4280 4281 - CONFIG_SYS_MMC_ENV_PART (optional): 4282 4283 Specifies which MMC partition the environment is stored in. If not 4284 set, defaults to partition 0, the user area. Common values might be 4285 1 (first MMC boot partition), 2 (second MMC boot partition). 4286 4287 - CONFIG_ENV_OFFSET: 4288 - CONFIG_ENV_SIZE: 4289 4290 These two #defines specify the offset and size of the environment 4291 area within the specified MMC device. 4292 4293 If offset is positive (the usual case), it is treated as relative to 4294 the start of the MMC partition. If offset is negative, it is treated 4295 as relative to the end of the MMC partition. This can be useful if 4296 your board may be fitted with different MMC devices, which have 4297 different sizes for the MMC partitions, and you always want the 4298 environment placed at the very end of the partition, to leave the 4299 maximum possible space before it, to store other data. 4300 4301 These two values are in units of bytes, but must be aligned to an 4302 MMC sector boundary. 4303 4304 - CONFIG_ENV_OFFSET_REDUND (optional): 4305 4306 Specifies a second storage area, of CONFIG_ENV_SIZE size, used to 4307 hold a redundant copy of the environment data. This provides a 4308 valid backup copy in case the other copy is corrupted, e.g. due 4309 to a power failure during a "saveenv" operation. 4310 4311 This value may also be positive or negative; this is handled in the 4312 same way as CONFIG_ENV_OFFSET. 4313 4314 This value is also in units of bytes, but must also be aligned to 4315 an MMC sector boundary. 4316 4317 - CONFIG_ENV_SIZE_REDUND (optional): 4318 4319 This value need not be set, even when CONFIG_ENV_OFFSET_REDUND is 4320 set. If this value is set, it must be set to the same value as 4321 CONFIG_ENV_SIZE. 4322 4323- CONFIG_SYS_SPI_INIT_OFFSET 4324 4325 Defines offset to the initial SPI buffer area in DPRAM. The 4326 area is used at an early stage (ROM part) if the environment 4327 is configured to reside in the SPI EEPROM: We need a 520 byte 4328 scratch DPRAM area. It is used between the two initialization 4329 calls (spi_init_f() and spi_init_r()). A value of 0xB00 seems 4330 to be a good choice since it makes it far enough from the 4331 start of the data area as well as from the stack pointer. 4332 4333Please note that the environment is read-only until the monitor 4334has been relocated to RAM and a RAM copy of the environment has been 4335created; also, when using EEPROM you will have to use getenv_f() 4336until then to read environment variables. 4337 4338The environment is protected by a CRC32 checksum. Before the monitor 4339is relocated into RAM, as a result of a bad CRC you will be working 4340with the compiled-in default environment - *silently*!!! [This is 4341necessary, because the first environment variable we need is the 4342"baudrate" setting for the console - if we have a bad CRC, we don't 4343have any device yet where we could complain.] 4344 4345Note: once the monitor has been relocated, then it will complain if 4346the default environment is used; a new CRC is computed as soon as you 4347use the "saveenv" command to store a valid environment. 4348 4349- CONFIG_SYS_FAULT_ECHO_LINK_DOWN: 4350 Echo the inverted Ethernet link state to the fault LED. 4351 4352 Note: If this option is active, then CONFIG_SYS_FAULT_MII_ADDR 4353 also needs to be defined. 4354 4355- CONFIG_SYS_FAULT_MII_ADDR: 4356 MII address of the PHY to check for the Ethernet link state. 4357 4358- CONFIG_NS16550_MIN_FUNCTIONS: 4359 Define this if you desire to only have use of the NS16550_init 4360 and NS16550_putc functions for the serial driver located at 4361 drivers/serial/ns16550.c. This option is useful for saving 4362 space for already greatly restricted images, including but not 4363 limited to NAND_SPL configurations. 4364 4365- CONFIG_DISPLAY_BOARDINFO 4366 Display information about the board that U-Boot is running on 4367 when U-Boot starts up. The board function checkboard() is called 4368 to do this. 4369 4370- CONFIG_DISPLAY_BOARDINFO_LATE 4371 Similar to the previous option, but display this information 4372 later, once stdio is running and output goes to the LCD, if 4373 present. 4374 4375- CONFIG_BOARD_SIZE_LIMIT: 4376 Maximum size of the U-Boot image. When defined, the 4377 build system checks that the actual size does not 4378 exceed it. 4379 4380Low Level (hardware related) configuration options: 4381--------------------------------------------------- 4382 4383- CONFIG_SYS_CACHELINE_SIZE: 4384 Cache Line Size of the CPU. 4385 4386- CONFIG_SYS_DEFAULT_IMMR: 4387 Default address of the IMMR after system reset. 4388 4389 Needed on some 8260 systems (MPC8260ADS, PQ2FADS-ZU, 4390 and RPXsuper) to be able to adjust the position of 4391 the IMMR register after a reset. 4392 4393- CONFIG_SYS_CCSRBAR_DEFAULT: 4394 Default (power-on reset) physical address of CCSR on Freescale 4395 PowerPC SOCs. 4396 4397- CONFIG_SYS_CCSRBAR: 4398 Virtual address of CCSR. On a 32-bit build, this is typically 4399 the same value as CONFIG_SYS_CCSRBAR_DEFAULT. 4400 4401 CONFIG_SYS_DEFAULT_IMMR must also be set to this value, 4402 for cross-platform code that uses that macro instead. 4403 4404- CONFIG_SYS_CCSRBAR_PHYS: 4405 Physical address of CCSR. CCSR can be relocated to a new 4406 physical address, if desired. In this case, this macro should 4407 be set to that address. Otherwise, it should be set to the 4408 same value as CONFIG_SYS_CCSRBAR_DEFAULT. For example, CCSR 4409 is typically relocated on 36-bit builds. It is recommended 4410 that this macro be defined via the _HIGH and _LOW macros: 4411 4412 #define CONFIG_SYS_CCSRBAR_PHYS ((CONFIG_SYS_CCSRBAR_PHYS_HIGH 4413 * 1ull) << 32 | CONFIG_SYS_CCSRBAR_PHYS_LOW) 4414 4415- CONFIG_SYS_CCSRBAR_PHYS_HIGH: 4416 Bits 33-36 of CONFIG_SYS_CCSRBAR_PHYS. This value is typically 4417 either 0 (32-bit build) or 0xF (36-bit build). This macro is 4418 used in assembly code, so it must not contain typecasts or 4419 integer size suffixes (e.g. "ULL"). 4420 4421- CONFIG_SYS_CCSRBAR_PHYS_LOW: 4422 Lower 32-bits of CONFIG_SYS_CCSRBAR_PHYS. This macro is 4423 used in assembly code, so it must not contain typecasts or 4424 integer size suffixes (e.g. "ULL"). 4425 4426- CONFIG_SYS_CCSR_DO_NOT_RELOCATE: 4427 If this macro is defined, then CONFIG_SYS_CCSRBAR_PHYS will be 4428 forced to a value that ensures that CCSR is not relocated. 4429 4430- Floppy Disk Support: 4431 CONFIG_SYS_FDC_DRIVE_NUMBER 4432 4433 the default drive number (default value 0) 4434 4435 CONFIG_SYS_ISA_IO_STRIDE 4436 4437 defines the spacing between FDC chipset registers 4438 (default value 1) 4439 4440 CONFIG_SYS_ISA_IO_OFFSET 4441 4442 defines the offset of register from address. It 4443 depends on which part of the data bus is connected to 4444 the FDC chipset. (default value 0) 4445 4446 If CONFIG_SYS_ISA_IO_STRIDE CONFIG_SYS_ISA_IO_OFFSET and 4447 CONFIG_SYS_FDC_DRIVE_NUMBER are undefined, they take their 4448 default value. 4449 4450 if CONFIG_SYS_FDC_HW_INIT is defined, then the function 4451 fdc_hw_init() is called at the beginning of the FDC 4452 setup. fdc_hw_init() must be provided by the board 4453 source code. It is used to make hardware-dependent 4454 initializations. 4455 4456- CONFIG_IDE_AHB: 4457 Most IDE controllers were designed to be connected with PCI 4458 interface. Only few of them were designed for AHB interface. 4459 When software is doing ATA command and data transfer to 4460 IDE devices through IDE-AHB controller, some additional 4461 registers accessing to these kind of IDE-AHB controller 4462 is required. 4463 4464- CONFIG_SYS_IMMR: Physical address of the Internal Memory. 4465 DO NOT CHANGE unless you know exactly what you're 4466 doing! (11-4) [MPC8xx/82xx systems only] 4467 4468- CONFIG_SYS_INIT_RAM_ADDR: 4469 4470 Start address of memory area that can be used for 4471 initial data and stack; please note that this must be 4472 writable memory that is working WITHOUT special 4473 initialization, i. e. you CANNOT use normal RAM which 4474 will become available only after programming the 4475 memory controller and running certain initialization 4476 sequences. 4477 4478 U-Boot uses the following memory types: 4479 - MPC8xx and MPC8260: IMMR (internal memory of the CPU) 4480 - MPC824X: data cache 4481 - PPC4xx: data cache 4482 4483- CONFIG_SYS_GBL_DATA_OFFSET: 4484 4485 Offset of the initial data structure in the memory 4486 area defined by CONFIG_SYS_INIT_RAM_ADDR. Usually 4487 CONFIG_SYS_GBL_DATA_OFFSET is chosen such that the initial 4488 data is located at the end of the available space 4489 (sometimes written as (CONFIG_SYS_INIT_RAM_SIZE - 4490 GENERATED_GBL_DATA_SIZE), and the initial stack is just 4491 below that area (growing from (CONFIG_SYS_INIT_RAM_ADDR + 4492 CONFIG_SYS_GBL_DATA_OFFSET) downward. 4493 4494 Note: 4495 On the MPC824X (or other systems that use the data 4496 cache for initial memory) the address chosen for 4497 CONFIG_SYS_INIT_RAM_ADDR is basically arbitrary - it must 4498 point to an otherwise UNUSED address space between 4499 the top of RAM and the start of the PCI space. 4500 4501- CONFIG_SYS_SIUMCR: SIU Module Configuration (11-6) 4502 4503- CONFIG_SYS_SYPCR: System Protection Control (11-9) 4504 4505- CONFIG_SYS_TBSCR: Time Base Status and Control (11-26) 4506 4507- CONFIG_SYS_PISCR: Periodic Interrupt Status and Control (11-31) 4508 4509- CONFIG_SYS_PLPRCR: PLL, Low-Power, and Reset Control Register (15-30) 4510 4511- CONFIG_SYS_SCCR: System Clock and reset Control Register (15-27) 4512 4513- CONFIG_SYS_OR_TIMING_SDRAM: 4514 SDRAM timing 4515 4516- CONFIG_SYS_MAMR_PTA: 4517 periodic timer for refresh 4518 4519- CONFIG_SYS_DER: Debug Event Register (37-47) 4520 4521- FLASH_BASE0_PRELIM, FLASH_BASE1_PRELIM, CONFIG_SYS_REMAP_OR_AM, 4522 CONFIG_SYS_PRELIM_OR_AM, CONFIG_SYS_OR_TIMING_FLASH, CONFIG_SYS_OR0_REMAP, 4523 CONFIG_SYS_OR0_PRELIM, CONFIG_SYS_BR0_PRELIM, CONFIG_SYS_OR1_REMAP, CONFIG_SYS_OR1_PRELIM, 4524 CONFIG_SYS_BR1_PRELIM: 4525 Memory Controller Definitions: BR0/1 and OR0/1 (FLASH) 4526 4527- SDRAM_BASE2_PRELIM, SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE, 4528 CONFIG_SYS_OR_TIMING_SDRAM, CONFIG_SYS_OR2_PRELIM, CONFIG_SYS_BR2_PRELIM, 4529 CONFIG_SYS_OR3_PRELIM, CONFIG_SYS_BR3_PRELIM: 4530 Memory Controller Definitions: BR2/3 and OR2/3 (SDRAM) 4531 4532- CONFIG_SYS_MAMR_PTA, CONFIG_SYS_MPTPR_2BK_4K, CONFIG_SYS_MPTPR_1BK_4K, CONFIG_SYS_MPTPR_2BK_8K, 4533 CONFIG_SYS_MPTPR_1BK_8K, CONFIG_SYS_MAMR_8COL, CONFIG_SYS_MAMR_9COL: 4534 Machine Mode Register and Memory Periodic Timer 4535 Prescaler definitions (SDRAM timing) 4536 4537- CONFIG_SYS_I2C_UCODE_PATCH, CONFIG_SYS_I2C_DPMEM_OFFSET [0x1FC0]: 4538 enable I2C microcode relocation patch (MPC8xx); 4539 define relocation offset in DPRAM [DSP2] 4540 4541- CONFIG_SYS_SMC_UCODE_PATCH, CONFIG_SYS_SMC_DPMEM_OFFSET [0x1FC0]: 4542 enable SMC microcode relocation patch (MPC8xx); 4543 define relocation offset in DPRAM [SMC1] 4544 4545- CONFIG_SYS_SPI_UCODE_PATCH, CONFIG_SYS_SPI_DPMEM_OFFSET [0x1FC0]: 4546 enable SPI microcode relocation patch (MPC8xx); 4547 define relocation offset in DPRAM [SCC4] 4548 4549- CONFIG_SYS_CPM_POST_WORD_ADDR: (MPC8xx, MPC8260 only) 4550 Offset of the bootmode word in DPRAM used by post 4551 (Power On Self Tests). This definition overrides 4552 #define'd default value in commproc.h resp. 4553 cpm_8260.h. 4554 4555- CONFIG_SYS_PCI_SLV_MEM_LOCAL, CONFIG_SYS_PCI_SLV_MEM_BUS, CONFIG_SYS_PICMR0_MASK_ATTRIB, 4556 CONFIG_SYS_PCI_MSTR0_LOCAL, CONFIG_SYS_PCIMSK0_MASK, CONFIG_SYS_PCI_MSTR1_LOCAL, 4557 CONFIG_SYS_PCIMSK1_MASK, CONFIG_SYS_PCI_MSTR_MEM_LOCAL, CONFIG_SYS_PCI_MSTR_MEM_BUS, 4558 CONFIG_SYS_CPU_PCI_MEM_START, CONFIG_SYS_PCI_MSTR_MEM_SIZE, CONFIG_SYS_POCMR0_MASK_ATTRIB, 4559 CONFIG_SYS_PCI_MSTR_MEMIO_LOCAL, CONFIG_SYS_PCI_MSTR_MEMIO_BUS, CPU_PCI_MEMIO_START, 4560 CONFIG_SYS_PCI_MSTR_MEMIO_SIZE, CONFIG_SYS_POCMR1_MASK_ATTRIB, CONFIG_SYS_PCI_MSTR_IO_LOCAL, 4561 CONFIG_SYS_PCI_MSTR_IO_BUS, CONFIG_SYS_CPU_PCI_IO_START, CONFIG_SYS_PCI_MSTR_IO_SIZE, 4562 CONFIG_SYS_POCMR2_MASK_ATTRIB: (MPC826x only) 4563 Overrides the default PCI memory map in arch/powerpc/cpu/mpc8260/pci.c if set. 4564 4565- CONFIG_PCI_DISABLE_PCIE: 4566 Disable PCI-Express on systems where it is supported but not 4567 required. 4568 4569- CONFIG_PCI_ENUM_ONLY 4570 Only scan through and get the devices on the buses. 4571 Don't do any setup work, presumably because someone or 4572 something has already done it, and we don't need to do it 4573 a second time. Useful for platforms that are pre-booted 4574 by coreboot or similar. 4575 4576- CONFIG_PCI_INDIRECT_BRIDGE: 4577 Enable support for indirect PCI bridges. 4578 4579- CONFIG_SYS_SRIO: 4580 Chip has SRIO or not 4581 4582- CONFIG_SRIO1: 4583 Board has SRIO 1 port available 4584 4585- CONFIG_SRIO2: 4586 Board has SRIO 2 port available 4587 4588- CONFIG_SRIO_PCIE_BOOT_MASTER 4589 Board can support master function for Boot from SRIO and PCIE 4590 4591- CONFIG_SYS_SRIOn_MEM_VIRT: 4592 Virtual Address of SRIO port 'n' memory region 4593 4594- CONFIG_SYS_SRIOn_MEM_PHYS: 4595 Physical Address of SRIO port 'n' memory region 4596 4597- CONFIG_SYS_SRIOn_MEM_SIZE: 4598 Size of SRIO port 'n' memory region 4599 4600- CONFIG_SYS_NAND_BUSWIDTH_16BIT 4601 Defined to tell the NAND controller that the NAND chip is using 4602 a 16 bit bus. 4603 Not all NAND drivers use this symbol. 4604 Example of drivers that use it: 4605 - drivers/mtd/nand/ndfc.c 4606 - drivers/mtd/nand/mxc_nand.c 4607 4608- CONFIG_SYS_NDFC_EBC0_CFG 4609 Sets the EBC0_CFG register for the NDFC. If not defined 4610 a default value will be used. 4611 4612- CONFIG_SPD_EEPROM 4613 Get DDR timing information from an I2C EEPROM. Common 4614 with pluggable memory modules such as SODIMMs 4615 4616 SPD_EEPROM_ADDRESS 4617 I2C address of the SPD EEPROM 4618 4619- CONFIG_SYS_SPD_BUS_NUM 4620 If SPD EEPROM is on an I2C bus other than the first 4621 one, specify here. Note that the value must resolve 4622 to something your driver can deal with. 4623 4624- CONFIG_SYS_DDR_RAW_TIMING 4625 Get DDR timing information from other than SPD. Common with 4626 soldered DDR chips onboard without SPD. DDR raw timing 4627 parameters are extracted from datasheet and hard-coded into 4628 header files or board specific files. 4629 4630- CONFIG_FSL_DDR_INTERACTIVE 4631 Enable interactive DDR debugging. See doc/README.fsl-ddr. 4632 4633- CONFIG_FSL_DDR_SYNC_REFRESH 4634 Enable sync of refresh for multiple controllers. 4635 4636- CONFIG_FSL_DDR_BIST 4637 Enable built-in memory test for Freescale DDR controllers. 4638 4639- CONFIG_SYS_83XX_DDR_USES_CS0 4640 Only for 83xx systems. If specified, then DDR should 4641 be configured using CS0 and CS1 instead of CS2 and CS3. 4642 4643- CONFIG_ETHER_ON_FEC[12] 4644 Define to enable FEC[12] on a 8xx series processor. 4645 4646- CONFIG_FEC[12]_PHY 4647 Define to the hardcoded PHY address which corresponds 4648 to the given FEC; i. e. 4649 #define CONFIG_FEC1_PHY 4 4650 means that the PHY with address 4 is connected to FEC1 4651 4652 When set to -1, means to probe for first available. 4653 4654- CONFIG_FEC[12]_PHY_NORXERR 4655 The PHY does not have a RXERR line (RMII only). 4656 (so program the FEC to ignore it). 4657 4658- CONFIG_RMII 4659 Enable RMII mode for all FECs. 4660 Note that this is a global option, we can't 4661 have one FEC in standard MII mode and another in RMII mode. 4662 4663- CONFIG_CRC32_VERIFY 4664 Add a verify option to the crc32 command. 4665 The syntax is: 4666 4667 => crc32 -v <address> <count> <crc32> 4668 4669 Where address/count indicate a memory area 4670 and crc32 is the correct crc32 which the 4671 area should have. 4672 4673- CONFIG_LOOPW 4674 Add the "loopw" memory command. This only takes effect if 4675 the memory commands are activated globally (CONFIG_CMD_MEM). 4676 4677- CONFIG_MX_CYCLIC 4678 Add the "mdc" and "mwc" memory commands. These are cyclic 4679 "md/mw" commands. 4680 Examples: 4681 4682 => mdc.b 10 4 500 4683 This command will print 4 bytes (10,11,12,13) each 500 ms. 4684 4685 => mwc.l 100 12345678 10 4686 This command will write 12345678 to address 100 all 10 ms. 4687 4688 This only takes effect if the memory commands are activated 4689 globally (CONFIG_CMD_MEM). 4690 4691- CONFIG_SKIP_LOWLEVEL_INIT 4692 [ARM, NDS32, MIPS only] If this variable is defined, then certain 4693 low level initializations (like setting up the memory 4694 controller) are omitted and/or U-Boot does not 4695 relocate itself into RAM. 4696 4697 Normally this variable MUST NOT be defined. The only 4698 exception is when U-Boot is loaded (to RAM) by some 4699 other boot loader or by a debugger which performs 4700 these initializations itself. 4701 4702- CONFIG_SKIP_LOWLEVEL_INIT_ONLY 4703 [ARM926EJ-S only] This allows just the call to lowlevel_init() 4704 to be skipped. The normal CP15 init (such as enabling the 4705 instruction cache) is still performed. 4706 4707- CONFIG_SPL_BUILD 4708 Modifies the behaviour of start.S when compiling a loader 4709 that is executed before the actual U-Boot. E.g. when 4710 compiling a NAND SPL. 4711 4712- CONFIG_TPL_BUILD 4713 Modifies the behaviour of start.S when compiling a loader 4714 that is executed after the SPL and before the actual U-Boot. 4715 It is loaded by the SPL. 4716 4717- CONFIG_SYS_MPC85XX_NO_RESETVEC 4718 Only for 85xx systems. If this variable is specified, the section 4719 .resetvec is not kept and the section .bootpg is placed in the 4720 previous 4k of the .text section. 4721 4722- CONFIG_ARCH_MAP_SYSMEM 4723 Generally U-Boot (and in particular the md command) uses 4724 effective address. It is therefore not necessary to regard 4725 U-Boot address as virtual addresses that need to be translated 4726 to physical addresses. However, sandbox requires this, since 4727 it maintains its own little RAM buffer which contains all 4728 addressable memory. This option causes some memory accesses 4729 to be mapped through map_sysmem() / unmap_sysmem(). 4730 4731- CONFIG_USE_ARCH_MEMCPY 4732 CONFIG_USE_ARCH_MEMSET 4733 If these options are used a optimized version of memcpy/memset will 4734 be used if available. These functions may be faster under some 4735 conditions but may increase the binary size. 4736 4737- CONFIG_X86_RESET_VECTOR 4738 If defined, the x86 reset vector code is included. This is not 4739 needed when U-Boot is running from Coreboot. 4740 4741- CONFIG_SYS_MPUCLK 4742 Defines the MPU clock speed (in MHz). 4743 4744 NOTE : currently only supported on AM335x platforms. 4745 4746- CONFIG_SPL_AM33XX_ENABLE_RTC32K_OSC: 4747 Enables the RTC32K OSC on AM33xx based plattforms 4748 4749- CONFIG_SYS_NAND_NO_SUBPAGE_WRITE 4750 Option to disable subpage write in NAND driver 4751 driver that uses this: 4752 drivers/mtd/nand/davinci_nand.c 4753 4754Freescale QE/FMAN Firmware Support: 4755----------------------------------- 4756 4757The Freescale QUICCEngine (QE) and Frame Manager (FMAN) both support the 4758loading of "firmware", which is encoded in the QE firmware binary format. 4759This firmware often needs to be loaded during U-Boot booting, so macros 4760are used to identify the storage device (NOR flash, SPI, etc) and the address 4761within that device. 4762 4763- CONFIG_SYS_FMAN_FW_ADDR 4764 The address in the storage device where the FMAN microcode is located. The 4765 meaning of this address depends on which CONFIG_SYS_QE_FW_IN_xxx macro 4766 is also specified. 4767 4768- CONFIG_SYS_QE_FW_ADDR 4769 The address in the storage device where the QE microcode is located. The 4770 meaning of this address depends on which CONFIG_SYS_QE_FW_IN_xxx macro 4771 is also specified. 4772 4773- CONFIG_SYS_QE_FMAN_FW_LENGTH 4774 The maximum possible size of the firmware. The firmware binary format 4775 has a field that specifies the actual size of the firmware, but it 4776 might not be possible to read any part of the firmware unless some 4777 local storage is allocated to hold the entire firmware first. 4778 4779- CONFIG_SYS_QE_FMAN_FW_IN_NOR 4780 Specifies that QE/FMAN firmware is located in NOR flash, mapped as 4781 normal addressable memory via the LBC. CONFIG_SYS_FMAN_FW_ADDR is the 4782 virtual address in NOR flash. 4783 4784- CONFIG_SYS_QE_FMAN_FW_IN_NAND 4785 Specifies that QE/FMAN firmware is located in NAND flash. 4786 CONFIG_SYS_FMAN_FW_ADDR is the offset within NAND flash. 4787 4788- CONFIG_SYS_QE_FMAN_FW_IN_MMC 4789 Specifies that QE/FMAN firmware is located on the primary SD/MMC 4790 device. CONFIG_SYS_FMAN_FW_ADDR is the byte offset on that device. 4791 4792- CONFIG_SYS_QE_FMAN_FW_IN_REMOTE 4793 Specifies that QE/FMAN firmware is located in the remote (master) 4794 memory space. CONFIG_SYS_FMAN_FW_ADDR is a virtual address which 4795 can be mapped from slave TLB->slave LAW->slave SRIO or PCIE outbound 4796 window->master inbound window->master LAW->the ucode address in 4797 master's memory space. 4798 4799Freescale Layerscape Management Complex Firmware Support: 4800--------------------------------------------------------- 4801The Freescale Layerscape Management Complex (MC) supports the loading of 4802"firmware". 4803This firmware often needs to be loaded during U-Boot booting, so macros 4804are used to identify the storage device (NOR flash, SPI, etc) and the address 4805within that device. 4806 4807- CONFIG_FSL_MC_ENET 4808 Enable the MC driver for Layerscape SoCs. 4809 4810Freescale Layerscape Debug Server Support: 4811------------------------------------------- 4812The Freescale Layerscape Debug Server Support supports the loading of 4813"Debug Server firmware" and triggering SP boot-rom. 4814This firmware often needs to be loaded during U-Boot booting. 4815 4816- CONFIG_SYS_MC_RSV_MEM_ALIGN 4817 Define alignment of reserved memory MC requires 4818 4819Reproducible builds 4820------------------- 4821 4822In order to achieve reproducible builds, timestamps used in the U-Boot build 4823process have to be set to a fixed value. 4824 4825This is done using the SOURCE_DATE_EPOCH environment variable. 4826SOURCE_DATE_EPOCH is to be set on the build host's shell, not as a configuration 4827option for U-Boot or an environment variable in U-Boot. 4828 4829SOURCE_DATE_EPOCH should be set to a number of seconds since the epoch, in UTC. 4830 4831Building the Software: 4832====================== 4833 4834Building U-Boot has been tested in several native build environments 4835and in many different cross environments. Of course we cannot support 4836all possibly existing versions of cross development tools in all 4837(potentially obsolete) versions. In case of tool chain problems we 4838recommend to use the ELDK (see http://www.denx.de/wiki/DULG/ELDK) 4839which is extensively used to build and test U-Boot. 4840 4841If you are not using a native environment, it is assumed that you 4842have GNU cross compiling tools available in your path. In this case, 4843you must set the environment variable CROSS_COMPILE in your shell. 4844Note that no changes to the Makefile or any other source files are 4845necessary. For example using the ELDK on a 4xx CPU, please enter: 4846 4847 $ CROSS_COMPILE=ppc_4xx- 4848 $ export CROSS_COMPILE 4849 4850Note: If you wish to generate Windows versions of the utilities in 4851 the tools directory you can use the MinGW toolchain 4852 (http://www.mingw.org). Set your HOST tools to the MinGW 4853 toolchain and execute 'make tools'. For example: 4854 4855 $ make HOSTCC=i586-mingw32msvc-gcc HOSTSTRIP=i586-mingw32msvc-strip tools 4856 4857 Binaries such as tools/mkimage.exe will be created which can 4858 be executed on computers running Windows. 4859 4860U-Boot is intended to be simple to build. After installing the 4861sources you must configure U-Boot for one specific board type. This 4862is done by typing: 4863 4864 make NAME_defconfig 4865 4866where "NAME_defconfig" is the name of one of the existing configu- 4867rations; see boards.cfg for supported names. 4868 4869Note: for some board special configuration names may exist; check if 4870 additional information is available from the board vendor; for 4871 instance, the TQM823L systems are available without (standard) 4872 or with LCD support. You can select such additional "features" 4873 when choosing the configuration, i. e. 4874 4875 make TQM823L_defconfig 4876 - will configure for a plain TQM823L, i. e. no LCD support 4877 4878 make TQM823L_LCD_defconfig 4879 - will configure for a TQM823L with U-Boot console on LCD 4880 4881 etc. 4882 4883 4884Finally, type "make all", and you should get some working U-Boot 4885images ready for download to / installation on your system: 4886 4887- "u-boot.bin" is a raw binary image 4888- "u-boot" is an image in ELF binary format 4889- "u-boot.srec" is in Motorola S-Record format 4890 4891By default the build is performed locally and the objects are saved 4892in the source directory. One of the two methods can be used to change 4893this behavior and build U-Boot to some external directory: 4894 48951. Add O= to the make command line invocations: 4896 4897 make O=/tmp/build distclean 4898 make O=/tmp/build NAME_defconfig 4899 make O=/tmp/build all 4900 49012. Set environment variable KBUILD_OUTPUT to point to the desired location: 4902 4903 export KBUILD_OUTPUT=/tmp/build 4904 make distclean 4905 make NAME_defconfig 4906 make all 4907 4908Note that the command line "O=" setting overrides the KBUILD_OUTPUT environment 4909variable. 4910 4911 4912Please be aware that the Makefiles assume you are using GNU make, so 4913for instance on NetBSD you might need to use "gmake" instead of 4914native "make". 4915 4916 4917If the system board that you have is not listed, then you will need 4918to port U-Boot to your hardware platform. To do this, follow these 4919steps: 4920 49211. Create a new directory to hold your board specific code. Add any 4922 files you need. In your board directory, you will need at least 4923 the "Makefile" and a "<board>.c". 49242. Create a new configuration file "include/configs/<board>.h" for 4925 your board. 49263. If you're porting U-Boot to a new CPU, then also create a new 4927 directory to hold your CPU specific code. Add any files you need. 49284. Run "make <board>_defconfig" with your new name. 49295. Type "make", and you should get a working "u-boot.srec" file 4930 to be installed on your target system. 49316. Debug and solve any problems that might arise. 4932 [Of course, this last step is much harder than it sounds.] 4933 4934 4935Testing of U-Boot Modifications, Ports to New Hardware, etc.: 4936============================================================== 4937 4938If you have modified U-Boot sources (for instance added a new board 4939or support for new devices, a new CPU, etc.) you are expected to 4940provide feedback to the other developers. The feedback normally takes 4941the form of a "patch", i. e. a context diff against a certain (latest 4942official or latest in the git repository) version of U-Boot sources. 4943 4944But before you submit such a patch, please verify that your modifi- 4945cation did not break existing code. At least make sure that *ALL* of 4946the supported boards compile WITHOUT ANY compiler warnings. To do so, 4947just run the buildman script (tools/buildman/buildman), which will 4948configure and build U-Boot for ALL supported system. Be warned, this 4949will take a while. Please see the buildman README, or run 'buildman -H' 4950for documentation. 4951 4952 4953See also "U-Boot Porting Guide" below. 4954 4955 4956Monitor Commands - Overview: 4957============================ 4958 4959go - start application at address 'addr' 4960run - run commands in an environment variable 4961bootm - boot application image from memory 4962bootp - boot image via network using BootP/TFTP protocol 4963bootz - boot zImage from memory 4964tftpboot- boot image via network using TFTP protocol 4965 and env variables "ipaddr" and "serverip" 4966 (and eventually "gatewayip") 4967tftpput - upload a file via network using TFTP protocol 4968rarpboot- boot image via network using RARP/TFTP protocol 4969diskboot- boot from IDE devicebootd - boot default, i.e., run 'bootcmd' 4970loads - load S-Record file over serial line 4971loadb - load binary file over serial line (kermit mode) 4972md - memory display 4973mm - memory modify (auto-incrementing) 4974nm - memory modify (constant address) 4975mw - memory write (fill) 4976cp - memory copy 4977cmp - memory compare 4978crc32 - checksum calculation 4979i2c - I2C sub-system 4980sspi - SPI utility commands 4981base - print or set address offset 4982printenv- print environment variables 4983setenv - set environment variables 4984saveenv - save environment variables to persistent storage 4985protect - enable or disable FLASH write protection 4986erase - erase FLASH memory 4987flinfo - print FLASH memory information 4988nand - NAND memory operations (see doc/README.nand) 4989bdinfo - print Board Info structure 4990iminfo - print header information for application image 4991coninfo - print console devices and informations 4992ide - IDE sub-system 4993loop - infinite loop on address range 4994loopw - infinite write loop on address range 4995mtest - simple RAM test 4996icache - enable or disable instruction cache 4997dcache - enable or disable data cache 4998reset - Perform RESET of the CPU 4999echo - echo args to console 5000version - print monitor version 5001help - print online help 5002? - alias for 'help' 5003 5004 5005Monitor Commands - Detailed Description: 5006======================================== 5007 5008TODO. 5009 5010For now: just type "help <command>". 5011 5012 5013Environment Variables: 5014====================== 5015 5016U-Boot supports user configuration using Environment Variables which 5017can be made persistent by saving to Flash memory. 5018 5019Environment Variables are set using "setenv", printed using 5020"printenv", and saved to Flash using "saveenv". Using "setenv" 5021without a value can be used to delete a variable from the 5022environment. As long as you don't save the environment you are 5023working with an in-memory copy. In case the Flash area containing the 5024environment is erased by accident, a default environment is provided. 5025 5026Some configuration options can be set using Environment Variables. 5027 5028List of environment variables (most likely not complete): 5029 5030 baudrate - see CONFIG_BAUDRATE 5031 5032 bootdelay - see CONFIG_BOOTDELAY 5033 5034 bootcmd - see CONFIG_BOOTCOMMAND 5035 5036 bootargs - Boot arguments when booting an RTOS image 5037 5038 bootfile - Name of the image to load with TFTP 5039 5040 bootm_low - Memory range available for image processing in the bootm 5041 command can be restricted. This variable is given as 5042 a hexadecimal number and defines lowest address allowed 5043 for use by the bootm command. See also "bootm_size" 5044 environment variable. Address defined by "bootm_low" is 5045 also the base of the initial memory mapping for the Linux 5046 kernel -- see the description of CONFIG_SYS_BOOTMAPSZ and 5047 bootm_mapsize. 5048 5049 bootm_mapsize - Size of the initial memory mapping for the Linux kernel. 5050 This variable is given as a hexadecimal number and it 5051 defines the size of the memory region starting at base 5052 address bootm_low that is accessible by the Linux kernel 5053 during early boot. If unset, CONFIG_SYS_BOOTMAPSZ is used 5054 as the default value if it is defined, and bootm_size is 5055 used otherwise. 5056 5057 bootm_size - Memory range available for image processing in the bootm 5058 command can be restricted. This variable is given as 5059 a hexadecimal number and defines the size of the region 5060 allowed for use by the bootm command. See also "bootm_low" 5061 environment variable. 5062 5063 updatefile - Location of the software update file on a TFTP server, used 5064 by the automatic software update feature. Please refer to 5065 documentation in doc/README.update for more details. 5066 5067 autoload - if set to "no" (any string beginning with 'n'), 5068 "bootp" will just load perform a lookup of the 5069 configuration from the BOOTP server, but not try to 5070 load any image using TFTP 5071 5072 autostart - if set to "yes", an image loaded using the "bootp", 5073 "rarpboot", "tftpboot" or "diskboot" commands will 5074 be automatically started (by internally calling 5075 "bootm") 5076 5077 If set to "no", a standalone image passed to the 5078 "bootm" command will be copied to the load address 5079 (and eventually uncompressed), but NOT be started. 5080 This can be used to load and uncompress arbitrary 5081 data. 5082 5083 fdt_high - if set this restricts the maximum address that the 5084 flattened device tree will be copied into upon boot. 5085 For example, if you have a system with 1 GB memory 5086 at physical address 0x10000000, while Linux kernel 5087 only recognizes the first 704 MB as low memory, you 5088 may need to set fdt_high as 0x3C000000 to have the 5089 device tree blob be copied to the maximum address 5090 of the 704 MB low memory, so that Linux kernel can 5091 access it during the boot procedure. 5092 5093 If this is set to the special value 0xFFFFFFFF then 5094 the fdt will not be copied at all on boot. For this 5095 to work it must reside in writable memory, have 5096 sufficient padding on the end of it for u-boot to 5097 add the information it needs into it, and the memory 5098 must be accessible by the kernel. 5099 5100 fdtcontroladdr- if set this is the address of the control flattened 5101 device tree used by U-Boot when CONFIG_OF_CONTROL is 5102 defined. 5103 5104 i2cfast - (PPC405GP|PPC405EP only) 5105 if set to 'y' configures Linux I2C driver for fast 5106 mode (400kHZ). This environment variable is used in 5107 initialization code. So, for changes to be effective 5108 it must be saved and board must be reset. 5109 5110 initrd_high - restrict positioning of initrd images: 5111 If this variable is not set, initrd images will be 5112 copied to the highest possible address in RAM; this 5113 is usually what you want since it allows for 5114 maximum initrd size. If for some reason you want to 5115 make sure that the initrd image is loaded below the 5116 CONFIG_SYS_BOOTMAPSZ limit, you can set this environment 5117 variable to a value of "no" or "off" or "0". 5118 Alternatively, you can set it to a maximum upper 5119 address to use (U-Boot will still check that it 5120 does not overwrite the U-Boot stack and data). 5121 5122 For instance, when you have a system with 16 MB 5123 RAM, and want to reserve 4 MB from use by Linux, 5124 you can do this by adding "mem=12M" to the value of 5125 the "bootargs" variable. However, now you must make 5126 sure that the initrd image is placed in the first 5127 12 MB as well - this can be done with 5128 5129 setenv initrd_high 00c00000 5130 5131 If you set initrd_high to 0xFFFFFFFF, this is an 5132 indication to U-Boot that all addresses are legal 5133 for the Linux kernel, including addresses in flash 5134 memory. In this case U-Boot will NOT COPY the 5135 ramdisk at all. This may be useful to reduce the 5136 boot time on your system, but requires that this 5137 feature is supported by your Linux kernel. 5138 5139 ipaddr - IP address; needed for tftpboot command 5140 5141 loadaddr - Default load address for commands like "bootp", 5142 "rarpboot", "tftpboot", "loadb" or "diskboot" 5143 5144 loads_echo - see CONFIG_LOADS_ECHO 5145 5146 serverip - TFTP server IP address; needed for tftpboot command 5147 5148 bootretry - see CONFIG_BOOT_RETRY_TIME 5149 5150 bootdelaykey - see CONFIG_AUTOBOOT_DELAY_STR 5151 5152 bootstopkey - see CONFIG_AUTOBOOT_STOP_STR 5153 5154 ethprime - controls which interface is used first. 5155 5156 ethact - controls which interface is currently active. 5157 For example you can do the following 5158 5159 => setenv ethact FEC 5160 => ping 192.168.0.1 # traffic sent on FEC 5161 => setenv ethact SCC 5162 => ping 10.0.0.1 # traffic sent on SCC 5163 5164 ethrotate - When set to "no" U-Boot does not go through all 5165 available network interfaces. 5166 It just stays at the currently selected interface. 5167 5168 netretry - When set to "no" each network operation will 5169 either succeed or fail without retrying. 5170 When set to "once" the network operation will 5171 fail when all the available network interfaces 5172 are tried once without success. 5173 Useful on scripts which control the retry operation 5174 themselves. 5175 5176 npe_ucode - set load address for the NPE microcode 5177 5178 silent_linux - If set then Linux will be told to boot silently, by 5179 changing the console to be empty. If "yes" it will be 5180 made silent. If "no" it will not be made silent. If 5181 unset, then it will be made silent if the U-Boot console 5182 is silent. 5183 5184 tftpsrcp - If this is set, the value is used for TFTP's 5185 UDP source port. 5186 5187 tftpdstp - If this is set, the value is used for TFTP's UDP 5188 destination port instead of the Well Know Port 69. 5189 5190 tftpblocksize - Block size to use for TFTP transfers; if not set, 5191 we use the TFTP server's default block size 5192 5193 tftptimeout - Retransmission timeout for TFTP packets (in milli- 5194 seconds, minimum value is 1000 = 1 second). Defines 5195 when a packet is considered to be lost so it has to 5196 be retransmitted. The default is 5000 = 5 seconds. 5197 Lowering this value may make downloads succeed 5198 faster in networks with high packet loss rates or 5199 with unreliable TFTP servers. 5200 5201 tftptimeoutcountmax - maximum count of TFTP timeouts (no 5202 unit, minimum value = 0). Defines how many timeouts 5203 can happen during a single file transfer before that 5204 transfer is aborted. The default is 10, and 0 means 5205 'no timeouts allowed'. Increasing this value may help 5206 downloads succeed with high packet loss rates, or with 5207 unreliable TFTP servers or client hardware. 5208 5209 vlan - When set to a value < 4095 the traffic over 5210 Ethernet is encapsulated/received over 802.1q 5211 VLAN tagged frames. 5212 5213 bootpretryperiod - Period during which BOOTP/DHCP sends retries. 5214 Unsigned value, in milliseconds. If not set, the period will 5215 be either the default (28000), or a value based on 5216 CONFIG_NET_RETRY_COUNT, if defined. This value has 5217 precedence over the valu based on CONFIG_NET_RETRY_COUNT. 5218 5219The following image location variables contain the location of images 5220used in booting. The "Image" column gives the role of the image and is 5221not an environment variable name. The other columns are environment 5222variable names. "File Name" gives the name of the file on a TFTP 5223server, "RAM Address" gives the location in RAM the image will be 5224loaded to, and "Flash Location" gives the image's address in NOR 5225flash or offset in NAND flash. 5226 5227*Note* - these variables don't have to be defined for all boards, some 5228boards currently use other variables for these purposes, and some 5229boards use these variables for other purposes. 5230 5231Image File Name RAM Address Flash Location 5232----- --------- ----------- -------------- 5233u-boot u-boot u-boot_addr_r u-boot_addr 5234Linux kernel bootfile kernel_addr_r kernel_addr 5235device tree blob fdtfile fdt_addr_r fdt_addr 5236ramdisk ramdiskfile ramdisk_addr_r ramdisk_addr 5237 5238The following environment variables may be used and automatically 5239updated by the network boot commands ("bootp" and "rarpboot"), 5240depending the information provided by your boot server: 5241 5242 bootfile - see above 5243 dnsip - IP address of your Domain Name Server 5244 dnsip2 - IP address of your secondary Domain Name Server 5245 gatewayip - IP address of the Gateway (Router) to use 5246 hostname - Target hostname 5247 ipaddr - see above 5248 netmask - Subnet Mask 5249 rootpath - Pathname of the root filesystem on the NFS server 5250 serverip - see above 5251 5252 5253There are two special Environment Variables: 5254 5255 serial# - contains hardware identification information such 5256 as type string and/or serial number 5257 ethaddr - Ethernet address 5258 5259These variables can be set only once (usually during manufacturing of 5260the board). U-Boot refuses to delete or overwrite these variables 5261once they have been set once. 5262 5263 5264Further special Environment Variables: 5265 5266 ver - Contains the U-Boot version string as printed 5267 with the "version" command. This variable is 5268 readonly (see CONFIG_VERSION_VARIABLE). 5269 5270 5271Please note that changes to some configuration parameters may take 5272only effect after the next boot (yes, that's just like Windoze :-). 5273 5274 5275Callback functions for environment variables: 5276--------------------------------------------- 5277 5278For some environment variables, the behavior of u-boot needs to change 5279when their values are changed. This functionality allows functions to 5280be associated with arbitrary variables. On creation, overwrite, or 5281deletion, the callback will provide the opportunity for some side 5282effect to happen or for the change to be rejected. 5283 5284The callbacks are named and associated with a function using the 5285U_BOOT_ENV_CALLBACK macro in your board or driver code. 5286 5287These callbacks are associated with variables in one of two ways. The 5288static list can be added to by defining CONFIG_ENV_CALLBACK_LIST_STATIC 5289in the board configuration to a string that defines a list of 5290associations. The list must be in the following format: 5291 5292 entry = variable_name[:callback_name] 5293 list = entry[,list] 5294 5295If the callback name is not specified, then the callback is deleted. 5296Spaces are also allowed anywhere in the list. 5297 5298Callbacks can also be associated by defining the ".callbacks" variable 5299with the same list format above. Any association in ".callbacks" will 5300override any association in the static list. You can define 5301CONFIG_ENV_CALLBACK_LIST_DEFAULT to a list (string) to define the 5302".callbacks" environment variable in the default or embedded environment. 5303 5304If CONFIG_REGEX is defined, the variable_name above is evaluated as a 5305regular expression. This allows multiple variables to be connected to 5306the same callback without explicitly listing them all out. 5307 5308 5309Command Line Parsing: 5310===================== 5311 5312There are two different command line parsers available with U-Boot: 5313the old "simple" one, and the much more powerful "hush" shell: 5314 5315Old, simple command line parser: 5316-------------------------------- 5317 5318- supports environment variables (through setenv / saveenv commands) 5319- several commands on one line, separated by ';' 5320- variable substitution using "... ${name} ..." syntax 5321- special characters ('$', ';') can be escaped by prefixing with '\', 5322 for example: 5323 setenv bootcmd bootm \${address} 5324- You can also escape text by enclosing in single apostrophes, for example: 5325 setenv addip 'setenv bootargs $bootargs ip=$ipaddr:$serverip:$gatewayip:$netmask:$hostname::off' 5326 5327Hush shell: 5328----------- 5329 5330- similar to Bourne shell, with control structures like 5331 if...then...else...fi, for...do...done; while...do...done, 5332 until...do...done, ... 5333- supports environment ("global") variables (through setenv / saveenv 5334 commands) and local shell variables (through standard shell syntax 5335 "name=value"); only environment variables can be used with "run" 5336 command 5337 5338General rules: 5339-------------- 5340 5341(1) If a command line (or an environment variable executed by a "run" 5342 command) contains several commands separated by semicolon, and 5343 one of these commands fails, then the remaining commands will be 5344 executed anyway. 5345 5346(2) If you execute several variables with one call to run (i. e. 5347 calling run with a list of variables as arguments), any failing 5348 command will cause "run" to terminate, i. e. the remaining 5349 variables are not executed. 5350 5351Note for Redundant Ethernet Interfaces: 5352======================================= 5353 5354Some boards come with redundant Ethernet interfaces; U-Boot supports 5355such configurations and is capable of automatic selection of a 5356"working" interface when needed. MAC assignment works as follows: 5357 5358Network interfaces are numbered eth0, eth1, eth2, ... Corresponding 5359MAC addresses can be stored in the environment as "ethaddr" (=>eth0), 5360"eth1addr" (=>eth1), "eth2addr", ... 5361 5362If the network interface stores some valid MAC address (for instance 5363in SROM), this is used as default address if there is NO correspon- 5364ding setting in the environment; if the corresponding environment 5365variable is set, this overrides the settings in the card; that means: 5366 5367o If the SROM has a valid MAC address, and there is no address in the 5368 environment, the SROM's address is used. 5369 5370o If there is no valid address in the SROM, and a definition in the 5371 environment exists, then the value from the environment variable is 5372 used. 5373 5374o If both the SROM and the environment contain a MAC address, and 5375 both addresses are the same, this MAC address is used. 5376 5377o If both the SROM and the environment contain a MAC address, and the 5378 addresses differ, the value from the environment is used and a 5379 warning is printed. 5380 5381o If neither SROM nor the environment contain a MAC address, an error 5382 is raised. If CONFIG_NET_RANDOM_ETHADDR is defined, then in this case 5383 a random, locally-assigned MAC is used. 5384 5385If Ethernet drivers implement the 'write_hwaddr' function, valid MAC addresses 5386will be programmed into hardware as part of the initialization process. This 5387may be skipped by setting the appropriate 'ethmacskip' environment variable. 5388The naming convention is as follows: 5389"ethmacskip" (=>eth0), "eth1macskip" (=>eth1) etc. 5390 5391Image Formats: 5392============== 5393 5394U-Boot is capable of booting (and performing other auxiliary operations on) 5395images in two formats: 5396 5397New uImage format (FIT) 5398----------------------- 5399 5400Flexible and powerful format based on Flattened Image Tree -- FIT (similar 5401to Flattened Device Tree). It allows the use of images with multiple 5402components (several kernels, ramdisks, etc.), with contents protected by 5403SHA1, MD5 or CRC32. More details are found in the doc/uImage.FIT directory. 5404 5405 5406Old uImage format 5407----------------- 5408 5409Old image format is based on binary files which can be basically anything, 5410preceded by a special header; see the definitions in include/image.h for 5411details; basically, the header defines the following image properties: 5412 5413* Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD, 5414 4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, 5415 LynxOS, pSOS, QNX, RTEMS, INTEGRITY; 5416 Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, LynxOS, 5417 INTEGRITY). 5418* Target CPU Architecture (Provisions for Alpha, ARM, AVR32, Intel x86, 5419 IA64, MIPS, NDS32, Nios II, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit; 5420 Currently supported: ARM, AVR32, Intel x86, MIPS, NDS32, Nios II, PowerPC). 5421* Compression Type (uncompressed, gzip, bzip2) 5422* Load Address 5423* Entry Point 5424* Image Name 5425* Image Timestamp 5426 5427The header is marked by a special Magic Number, and both the header 5428and the data portions of the image are secured against corruption by 5429CRC32 checksums. 5430 5431 5432Linux Support: 5433============== 5434 5435Although U-Boot should support any OS or standalone application 5436easily, the main focus has always been on Linux during the design of 5437U-Boot. 5438 5439U-Boot includes many features that so far have been part of some 5440special "boot loader" code within the Linux kernel. Also, any 5441"initrd" images to be used are no longer part of one big Linux image; 5442instead, kernel and "initrd" are separate images. This implementation 5443serves several purposes: 5444 5445- the same features can be used for other OS or standalone 5446 applications (for instance: using compressed images to reduce the 5447 Flash memory footprint) 5448 5449- it becomes much easier to port new Linux kernel versions because 5450 lots of low-level, hardware dependent stuff are done by U-Boot 5451 5452- the same Linux kernel image can now be used with different "initrd" 5453 images; of course this also means that different kernel images can 5454 be run with the same "initrd". This makes testing easier (you don't 5455 have to build a new "zImage.initrd" Linux image when you just 5456 change a file in your "initrd"). Also, a field-upgrade of the 5457 software is easier now. 5458 5459 5460Linux HOWTO: 5461============ 5462 5463Porting Linux to U-Boot based systems: 5464--------------------------------------- 5465 5466U-Boot cannot save you from doing all the necessary modifications to 5467configure the Linux device drivers for use with your target hardware 5468(no, we don't intend to provide a full virtual machine interface to 5469Linux :-). 5470 5471But now you can ignore ALL boot loader code (in arch/powerpc/mbxboot). 5472 5473Just make sure your machine specific header file (for instance 5474include/asm-ppc/tqm8xx.h) includes the same definition of the Board 5475Information structure as we define in include/asm-<arch>/u-boot.h, 5476and make sure that your definition of IMAP_ADDR uses the same value 5477as your U-Boot configuration in CONFIG_SYS_IMMR. 5478 5479Note that U-Boot now has a driver model, a unified model for drivers. 5480If you are adding a new driver, plumb it into driver model. If there 5481is no uclass available, you are encouraged to create one. See 5482doc/driver-model. 5483 5484 5485Configuring the Linux kernel: 5486----------------------------- 5487 5488No specific requirements for U-Boot. Make sure you have some root 5489device (initial ramdisk, NFS) for your target system. 5490 5491 5492Building a Linux Image: 5493----------------------- 5494 5495With U-Boot, "normal" build targets like "zImage" or "bzImage" are 5496not used. If you use recent kernel source, a new build target 5497"uImage" will exist which automatically builds an image usable by 5498U-Boot. Most older kernels also have support for a "pImage" target, 5499which was introduced for our predecessor project PPCBoot and uses a 5500100% compatible format. 5501 5502Example: 5503 5504 make TQM850L_defconfig 5505 make oldconfig 5506 make dep 5507 make uImage 5508 5509The "uImage" build target uses a special tool (in 'tools/mkimage') to 5510encapsulate a compressed Linux kernel image with header information, 5511CRC32 checksum etc. for use with U-Boot. This is what we are doing: 5512 5513* build a standard "vmlinux" kernel image (in ELF binary format): 5514 5515* convert the kernel into a raw binary image: 5516 5517 ${CROSS_COMPILE}-objcopy -O binary \ 5518 -R .note -R .comment \ 5519 -S vmlinux linux.bin 5520 5521* compress the binary image: 5522 5523 gzip -9 linux.bin 5524 5525* package compressed binary image for U-Boot: 5526 5527 mkimage -A ppc -O linux -T kernel -C gzip \ 5528 -a 0 -e 0 -n "Linux Kernel Image" \ 5529 -d linux.bin.gz uImage 5530 5531 5532The "mkimage" tool can also be used to create ramdisk images for use 5533with U-Boot, either separated from the Linux kernel image, or 5534combined into one file. "mkimage" encapsulates the images with a 64 5535byte header containing information about target architecture, 5536operating system, image type, compression method, entry points, time 5537stamp, CRC32 checksums, etc. 5538 5539"mkimage" can be called in two ways: to verify existing images and 5540print the header information, or to build new images. 5541 5542In the first form (with "-l" option) mkimage lists the information 5543contained in the header of an existing U-Boot image; this includes 5544checksum verification: 5545 5546 tools/mkimage -l image 5547 -l ==> list image header information 5548 5549The second form (with "-d" option) is used to build a U-Boot image 5550from a "data file" which is used as image payload: 5551 5552 tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \ 5553 -n name -d data_file image 5554 -A ==> set architecture to 'arch' 5555 -O ==> set operating system to 'os' 5556 -T ==> set image type to 'type' 5557 -C ==> set compression type 'comp' 5558 -a ==> set load address to 'addr' (hex) 5559 -e ==> set entry point to 'ep' (hex) 5560 -n ==> set image name to 'name' 5561 -d ==> use image data from 'datafile' 5562 5563Right now, all Linux kernels for PowerPC systems use the same load 5564address (0x00000000), but the entry point address depends on the 5565kernel version: 5566 5567- 2.2.x kernels have the entry point at 0x0000000C, 5568- 2.3.x and later kernels have the entry point at 0x00000000. 5569 5570So a typical call to build a U-Boot image would read: 5571 5572 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \ 5573 > -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \ 5574 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz \ 5575 > examples/uImage.TQM850L 5576 Image Name: 2.4.4 kernel for TQM850L 5577 Created: Wed Jul 19 02:34:59 2000 5578 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5579 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB 5580 Load Address: 0x00000000 5581 Entry Point: 0x00000000 5582 5583To verify the contents of the image (or check for corruption): 5584 5585 -> tools/mkimage -l examples/uImage.TQM850L 5586 Image Name: 2.4.4 kernel for TQM850L 5587 Created: Wed Jul 19 02:34:59 2000 5588 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5589 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB 5590 Load Address: 0x00000000 5591 Entry Point: 0x00000000 5592 5593NOTE: for embedded systems where boot time is critical you can trade 5594speed for memory and install an UNCOMPRESSED image instead: this 5595needs more space in Flash, but boots much faster since it does not 5596need to be uncompressed: 5597 5598 -> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz 5599 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \ 5600 > -A ppc -O linux -T kernel -C none -a 0 -e 0 \ 5601 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux \ 5602 > examples/uImage.TQM850L-uncompressed 5603 Image Name: 2.4.4 kernel for TQM850L 5604 Created: Wed Jul 19 02:34:59 2000 5605 Image Type: PowerPC Linux Kernel Image (uncompressed) 5606 Data Size: 792160 Bytes = 773.59 kB = 0.76 MB 5607 Load Address: 0x00000000 5608 Entry Point: 0x00000000 5609 5610 5611Similar you can build U-Boot images from a 'ramdisk.image.gz' file 5612when your kernel is intended to use an initial ramdisk: 5613 5614 -> tools/mkimage -n 'Simple Ramdisk Image' \ 5615 > -A ppc -O linux -T ramdisk -C gzip \ 5616 > -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd 5617 Image Name: Simple Ramdisk Image 5618 Created: Wed Jan 12 14:01:50 2000 5619 Image Type: PowerPC Linux RAMDisk Image (gzip compressed) 5620 Data Size: 566530 Bytes = 553.25 kB = 0.54 MB 5621 Load Address: 0x00000000 5622 Entry Point: 0x00000000 5623 5624The "dumpimage" is a tool to disassemble images built by mkimage. Its "-i" 5625option performs the converse operation of the mkimage's second form (the "-d" 5626option). Given an image built by mkimage, the dumpimage extracts a "data file" 5627from the image: 5628 5629 tools/dumpimage -i image -T type -p position data_file 5630 -i ==> extract from the 'image' a specific 'data_file' 5631 -T ==> set image type to 'type' 5632 -p ==> 'position' (starting at 0) of the 'data_file' inside the 'image' 5633 5634 5635Installing a Linux Image: 5636------------------------- 5637 5638To downloading a U-Boot image over the serial (console) interface, 5639you must convert the image to S-Record format: 5640 5641 objcopy -I binary -O srec examples/image examples/image.srec 5642 5643The 'objcopy' does not understand the information in the U-Boot 5644image header, so the resulting S-Record file will be relative to 5645address 0x00000000. To load it to a given address, you need to 5646specify the target address as 'offset' parameter with the 'loads' 5647command. 5648 5649Example: install the image to address 0x40100000 (which on the 5650TQM8xxL is in the first Flash bank): 5651 5652 => erase 40100000 401FFFFF 5653 5654 .......... done 5655 Erased 8 sectors 5656 5657 => loads 40100000 5658 ## Ready for S-Record download ... 5659 ~>examples/image.srec 5660 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 5661 ... 5662 15989 15990 15991 15992 5663 [file transfer complete] 5664 [connected] 5665 ## Start Addr = 0x00000000 5666 5667 5668You can check the success of the download using the 'iminfo' command; 5669this includes a checksum verification so you can be sure no data 5670corruption happened: 5671 5672 => imi 40100000 5673 5674 ## Checking Image at 40100000 ... 5675 Image Name: 2.2.13 for initrd on TQM850L 5676 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5677 Data Size: 335725 Bytes = 327 kB = 0 MB 5678 Load Address: 00000000 5679 Entry Point: 0000000c 5680 Verifying Checksum ... OK 5681 5682 5683Boot Linux: 5684----------- 5685 5686The "bootm" command is used to boot an application that is stored in 5687memory (RAM or Flash). In case of a Linux kernel image, the contents 5688of the "bootargs" environment variable is passed to the kernel as 5689parameters. You can check and modify this variable using the 5690"printenv" and "setenv" commands: 5691 5692 5693 => printenv bootargs 5694 bootargs=root=/dev/ram 5695 5696 => setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2 5697 5698 => printenv bootargs 5699 bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2 5700 5701 => bootm 40020000 5702 ## Booting Linux kernel at 40020000 ... 5703 Image Name: 2.2.13 for NFS on TQM850L 5704 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5705 Data Size: 381681 Bytes = 372 kB = 0 MB 5706 Load Address: 00000000 5707 Entry Point: 0000000c 5708 Verifying Checksum ... OK 5709 Uncompressing Kernel Image ... OK 5710 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:35:17 MEST 2000 5711 Boot arguments: root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2 5712 time_init: decrementer frequency = 187500000/60 5713 Calibrating delay loop... 49.77 BogoMIPS 5714 Memory: 15208k available (700k kernel code, 444k data, 32k init) [c0000000,c1000000] 5715 ... 5716 5717If you want to boot a Linux kernel with initial RAM disk, you pass 5718the memory addresses of both the kernel and the initrd image (PPBCOOT 5719format!) to the "bootm" command: 5720 5721 => imi 40100000 40200000 5722 5723 ## Checking Image at 40100000 ... 5724 Image Name: 2.2.13 for initrd on TQM850L 5725 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5726 Data Size: 335725 Bytes = 327 kB = 0 MB 5727 Load Address: 00000000 5728 Entry Point: 0000000c 5729 Verifying Checksum ... OK 5730 5731 ## Checking Image at 40200000 ... 5732 Image Name: Simple Ramdisk Image 5733 Image Type: PowerPC Linux RAMDisk Image (gzip compressed) 5734 Data Size: 566530 Bytes = 553 kB = 0 MB 5735 Load Address: 00000000 5736 Entry Point: 00000000 5737 Verifying Checksum ... OK 5738 5739 => bootm 40100000 40200000 5740 ## Booting Linux kernel at 40100000 ... 5741 Image Name: 2.2.13 for initrd on TQM850L 5742 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5743 Data Size: 335725 Bytes = 327 kB = 0 MB 5744 Load Address: 00000000 5745 Entry Point: 0000000c 5746 Verifying Checksum ... OK 5747 Uncompressing Kernel Image ... OK 5748 ## Loading RAMDisk Image at 40200000 ... 5749 Image Name: Simple Ramdisk Image 5750 Image Type: PowerPC Linux RAMDisk Image (gzip compressed) 5751 Data Size: 566530 Bytes = 553 kB = 0 MB 5752 Load Address: 00000000 5753 Entry Point: 00000000 5754 Verifying Checksum ... OK 5755 Loading Ramdisk ... OK 5756 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:32:08 MEST 2000 5757 Boot arguments: root=/dev/ram 5758 time_init: decrementer frequency = 187500000/60 5759 Calibrating delay loop... 49.77 BogoMIPS 5760 ... 5761 RAMDISK: Compressed image found at block 0 5762 VFS: Mounted root (ext2 filesystem). 5763 5764 bash# 5765 5766Boot Linux and pass a flat device tree: 5767----------- 5768 5769First, U-Boot must be compiled with the appropriate defines. See the section 5770titled "Linux Kernel Interface" above for a more in depth explanation. The 5771following is an example of how to start a kernel and pass an updated 5772flat device tree: 5773 5774=> print oftaddr 5775oftaddr=0x300000 5776=> print oft 5777oft=oftrees/mpc8540ads.dtb 5778=> tftp $oftaddr $oft 5779Speed: 1000, full duplex 5780Using TSEC0 device 5781TFTP from server 192.168.1.1; our IP address is 192.168.1.101 5782Filename 'oftrees/mpc8540ads.dtb'. 5783Load address: 0x300000 5784Loading: # 5785done 5786Bytes transferred = 4106 (100a hex) 5787=> tftp $loadaddr $bootfile 5788Speed: 1000, full duplex 5789Using TSEC0 device 5790TFTP from server 192.168.1.1; our IP address is 192.168.1.2 5791Filename 'uImage'. 5792Load address: 0x200000 5793Loading:############ 5794done 5795Bytes transferred = 1029407 (fb51f hex) 5796=> print loadaddr 5797loadaddr=200000 5798=> print oftaddr 5799oftaddr=0x300000 5800=> bootm $loadaddr - $oftaddr 5801## Booting image at 00200000 ... 5802 Image Name: Linux-2.6.17-dirty 5803 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5804 Data Size: 1029343 Bytes = 1005.2 kB 5805 Load Address: 00000000 5806 Entry Point: 00000000 5807 Verifying Checksum ... OK 5808 Uncompressing Kernel Image ... OK 5809Booting using flat device tree at 0x300000 5810Using MPC85xx ADS machine description 5811Memory CAM mapping: CAM0=256Mb, CAM1=256Mb, CAM2=0Mb residual: 0Mb 5812[snip] 5813 5814 5815More About U-Boot Image Types: 5816------------------------------ 5817 5818U-Boot supports the following image types: 5819 5820 "Standalone Programs" are directly runnable in the environment 5821 provided by U-Boot; it is expected that (if they behave 5822 well) you can continue to work in U-Boot after return from 5823 the Standalone Program. 5824 "OS Kernel Images" are usually images of some Embedded OS which 5825 will take over control completely. Usually these programs 5826 will install their own set of exception handlers, device 5827 drivers, set up the MMU, etc. - this means, that you cannot 5828 expect to re-enter U-Boot except by resetting the CPU. 5829 "RAMDisk Images" are more or less just data blocks, and their 5830 parameters (address, size) are passed to an OS kernel that is 5831 being started. 5832 "Multi-File Images" contain several images, typically an OS 5833 (Linux) kernel image and one or more data images like 5834 RAMDisks. This construct is useful for instance when you want 5835 to boot over the network using BOOTP etc., where the boot 5836 server provides just a single image file, but you want to get 5837 for instance an OS kernel and a RAMDisk image. 5838 5839 "Multi-File Images" start with a list of image sizes, each 5840 image size (in bytes) specified by an "uint32_t" in network 5841 byte order. This list is terminated by an "(uint32_t)0". 5842 Immediately after the terminating 0 follow the images, one by 5843 one, all aligned on "uint32_t" boundaries (size rounded up to 5844 a multiple of 4 bytes). 5845 5846 "Firmware Images" are binary images containing firmware (like 5847 U-Boot or FPGA images) which usually will be programmed to 5848 flash memory. 5849 5850 "Script files" are command sequences that will be executed by 5851 U-Boot's command interpreter; this feature is especially 5852 useful when you configure U-Boot to use a real shell (hush) 5853 as command interpreter. 5854 5855Booting the Linux zImage: 5856------------------------- 5857 5858On some platforms, it's possible to boot Linux zImage. This is done 5859using the "bootz" command. The syntax of "bootz" command is the same 5860as the syntax of "bootm" command. 5861 5862Note, defining the CONFIG_SUPPORT_RAW_INITRD allows user to supply 5863kernel with raw initrd images. The syntax is slightly different, the 5864address of the initrd must be augmented by it's size, in the following 5865format: "<initrd addres>:<initrd size>". 5866 5867 5868Standalone HOWTO: 5869================= 5870 5871One of the features of U-Boot is that you can dynamically load and 5872run "standalone" applications, which can use some resources of 5873U-Boot like console I/O functions or interrupt services. 5874 5875Two simple examples are included with the sources: 5876 5877"Hello World" Demo: 5878------------------- 5879 5880'examples/hello_world.c' contains a small "Hello World" Demo 5881application; it is automatically compiled when you build U-Boot. 5882It's configured to run at address 0x00040004, so you can play with it 5883like that: 5884 5885 => loads 5886 ## Ready for S-Record download ... 5887 ~>examples/hello_world.srec 5888 1 2 3 4 5 6 7 8 9 10 11 ... 5889 [file transfer complete] 5890 [connected] 5891 ## Start Addr = 0x00040004 5892 5893 => go 40004 Hello World! This is a test. 5894 ## Starting application at 0x00040004 ... 5895 Hello World 5896 argc = 7 5897 argv[0] = "40004" 5898 argv[1] = "Hello" 5899 argv[2] = "World!" 5900 argv[3] = "This" 5901 argv[4] = "is" 5902 argv[5] = "a" 5903 argv[6] = "test." 5904 argv[7] = "<NULL>" 5905 Hit any key to exit ... 5906 5907 ## Application terminated, rc = 0x0 5908 5909Another example, which demonstrates how to register a CPM interrupt 5910handler with the U-Boot code, can be found in 'examples/timer.c'. 5911Here, a CPM timer is set up to generate an interrupt every second. 5912The interrupt service routine is trivial, just printing a '.' 5913character, but this is just a demo program. The application can be 5914controlled by the following keys: 5915 5916 ? - print current values og the CPM Timer registers 5917 b - enable interrupts and start timer 5918 e - stop timer and disable interrupts 5919 q - quit application 5920 5921 => loads 5922 ## Ready for S-Record download ... 5923 ~>examples/timer.srec 5924 1 2 3 4 5 6 7 8 9 10 11 ... 5925 [file transfer complete] 5926 [connected] 5927 ## Start Addr = 0x00040004 5928 5929 => go 40004 5930 ## Starting application at 0x00040004 ... 5931 TIMERS=0xfff00980 5932 Using timer 1 5933 tgcr @ 0xfff00980, tmr @ 0xfff00990, trr @ 0xfff00994, tcr @ 0xfff00998, tcn @ 0xfff0099c, ter @ 0xfff009b0 5934 5935Hit 'b': 5936 [q, b, e, ?] Set interval 1000000 us 5937 Enabling timer 5938Hit '?': 5939 [q, b, e, ?] ........ 5940 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0xef6, ter=0x0 5941Hit '?': 5942 [q, b, e, ?] . 5943 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x2ad4, ter=0x0 5944Hit '?': 5945 [q, b, e, ?] . 5946 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x1efc, ter=0x0 5947Hit '?': 5948 [q, b, e, ?] . 5949 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x169d, ter=0x0 5950Hit 'e': 5951 [q, b, e, ?] ...Stopping timer 5952Hit 'q': 5953 [q, b, e, ?] ## Application terminated, rc = 0x0 5954 5955 5956Minicom warning: 5957================ 5958 5959Over time, many people have reported problems when trying to use the 5960"minicom" terminal emulation program for serial download. I (wd) 5961consider minicom to be broken, and recommend not to use it. Under 5962Unix, I recommend to use C-Kermit for general purpose use (and 5963especially for kermit binary protocol download ("loadb" command), and 5964use "cu" for S-Record download ("loads" command). See 5965http://www.denx.de/wiki/view/DULG/SystemSetup#Section_4.3. 5966for help with kermit. 5967 5968 5969Nevertheless, if you absolutely want to use it try adding this 5970configuration to your "File transfer protocols" section: 5971 5972 Name Program Name U/D FullScr IO-Red. Multi 5973 X kermit /usr/bin/kermit -i -l %l -s Y U Y N N 5974 Y kermit /usr/bin/kermit -i -l %l -r N D Y N N 5975 5976 5977NetBSD Notes: 5978============= 5979 5980Starting at version 0.9.2, U-Boot supports NetBSD both as host 5981(build U-Boot) and target system (boots NetBSD/mpc8xx). 5982 5983Building requires a cross environment; it is known to work on 5984NetBSD/i386 with the cross-powerpc-netbsd-1.3 package (you will also 5985need gmake since the Makefiles are not compatible with BSD make). 5986Note that the cross-powerpc package does not install include files; 5987attempting to build U-Boot will fail because <machine/ansi.h> is 5988missing. This file has to be installed and patched manually: 5989 5990 # cd /usr/pkg/cross/powerpc-netbsd/include 5991 # mkdir powerpc 5992 # ln -s powerpc machine 5993 # cp /usr/src/sys/arch/powerpc/include/ansi.h powerpc/ansi.h 5994 # ${EDIT} powerpc/ansi.h ## must remove __va_list, _BSD_VA_LIST 5995 5996Native builds *don't* work due to incompatibilities between native 5997and U-Boot include files. 5998 5999Booting assumes that (the first part of) the image booted is a 6000stage-2 loader which in turn loads and then invokes the kernel 6001proper. Loader sources will eventually appear in the NetBSD source 6002tree (probably in sys/arc/mpc8xx/stand/u-boot_stage2/); in the 6003meantime, see ftp://ftp.denx.de/pub/u-boot/ppcboot_stage2.tar.gz 6004 6005 6006Implementation Internals: 6007========================= 6008 6009The following is not intended to be a complete description of every 6010implementation detail. However, it should help to understand the 6011inner workings of U-Boot and make it easier to port it to custom 6012hardware. 6013 6014 6015Initial Stack, Global Data: 6016--------------------------- 6017 6018The implementation of U-Boot is complicated by the fact that U-Boot 6019starts running out of ROM (flash memory), usually without access to 6020system RAM (because the memory controller is not initialized yet). 6021This means that we don't have writable Data or BSS segments, and BSS 6022is not initialized as zero. To be able to get a C environment working 6023at all, we have to allocate at least a minimal stack. Implementation 6024options for this are defined and restricted by the CPU used: Some CPU 6025models provide on-chip memory (like the IMMR area on MPC8xx and 6026MPC826x processors), on others (parts of) the data cache can be 6027locked as (mis-) used as memory, etc. 6028 6029 Chris Hallinan posted a good summary of these issues to the 6030 U-Boot mailing list: 6031 6032 Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)? 6033 From: "Chris Hallinan" <clh@net1plus.com> 6034 Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET) 6035 ... 6036 6037 Correct me if I'm wrong, folks, but the way I understand it 6038 is this: Using DCACHE as initial RAM for Stack, etc, does not 6039 require any physical RAM backing up the cache. The cleverness 6040 is that the cache is being used as a temporary supply of 6041 necessary storage before the SDRAM controller is setup. It's 6042 beyond the scope of this list to explain the details, but you 6043 can see how this works by studying the cache architecture and 6044 operation in the architecture and processor-specific manuals. 6045 6046 OCM is On Chip Memory, which I believe the 405GP has 4K. It 6047 is another option for the system designer to use as an 6048 initial stack/RAM area prior to SDRAM being available. Either 6049 option should work for you. Using CS 4 should be fine if your 6050 board designers haven't used it for something that would 6051 cause you grief during the initial boot! It is frequently not 6052 used. 6053 6054 CONFIG_SYS_INIT_RAM_ADDR should be somewhere that won't interfere 6055 with your processor/board/system design. The default value 6056 you will find in any recent u-boot distribution in 6057 walnut.h should work for you. I'd set it to a value larger 6058 than your SDRAM module. If you have a 64MB SDRAM module, set 6059 it above 400_0000. Just make sure your board has no resources 6060 that are supposed to respond to that address! That code in 6061 start.S has been around a while and should work as is when 6062 you get the config right. 6063 6064 -Chris Hallinan 6065 DS4.COM, Inc. 6066 6067It is essential to remember this, since it has some impact on the C 6068code for the initialization procedures: 6069 6070* Initialized global data (data segment) is read-only. Do not attempt 6071 to write it. 6072 6073* Do not use any uninitialized global data (or implicitly initialized 6074 as zero data - BSS segment) at all - this is undefined, initiali- 6075 zation is performed later (when relocating to RAM). 6076 6077* Stack space is very limited. Avoid big data buffers or things like 6078 that. 6079 6080Having only the stack as writable memory limits means we cannot use 6081normal global data to share information between the code. But it 6082turned out that the implementation of U-Boot can be greatly 6083simplified by making a global data structure (gd_t) available to all 6084functions. We could pass a pointer to this data as argument to _all_ 6085functions, but this would bloat the code. Instead we use a feature of 6086the GCC compiler (Global Register Variables) to share the data: we 6087place a pointer (gd) to the global data into a register which we 6088reserve for this purpose. 6089 6090When choosing a register for such a purpose we are restricted by the 6091relevant (E)ABI specifications for the current architecture, and by 6092GCC's implementation. 6093 6094For PowerPC, the following registers have specific use: 6095 R1: stack pointer 6096 R2: reserved for system use 6097 R3-R4: parameter passing and return values 6098 R5-R10: parameter passing 6099 R13: small data area pointer 6100 R30: GOT pointer 6101 R31: frame pointer 6102 6103 (U-Boot also uses R12 as internal GOT pointer. r12 6104 is a volatile register so r12 needs to be reset when 6105 going back and forth between asm and C) 6106 6107 ==> U-Boot will use R2 to hold a pointer to the global data 6108 6109 Note: on PPC, we could use a static initializer (since the 6110 address of the global data structure is known at compile time), 6111 but it turned out that reserving a register results in somewhat 6112 smaller code - although the code savings are not that big (on 6113 average for all boards 752 bytes for the whole U-Boot image, 6114 624 text + 127 data). 6115 6116On Blackfin, the normal C ABI (except for P3) is followed as documented here: 6117 http://docs.blackfin.uclinux.org/doku.php?id=application_binary_interface 6118 6119 ==> U-Boot will use P3 to hold a pointer to the global data 6120 6121On ARM, the following registers are used: 6122 6123 R0: function argument word/integer result 6124 R1-R3: function argument word 6125 R9: platform specific 6126 R10: stack limit (used only if stack checking is enabled) 6127 R11: argument (frame) pointer 6128 R12: temporary workspace 6129 R13: stack pointer 6130 R14: link register 6131 R15: program counter 6132 6133 ==> U-Boot will use R9 to hold a pointer to the global data 6134 6135 Note: on ARM, only R_ARM_RELATIVE relocations are supported. 6136 6137On Nios II, the ABI is documented here: 6138 http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf 6139 6140 ==> U-Boot will use gp to hold a pointer to the global data 6141 6142 Note: on Nios II, we give "-G0" option to gcc and don't use gp 6143 to access small data sections, so gp is free. 6144 6145On NDS32, the following registers are used: 6146 6147 R0-R1: argument/return 6148 R2-R5: argument 6149 R15: temporary register for assembler 6150 R16: trampoline register 6151 R28: frame pointer (FP) 6152 R29: global pointer (GP) 6153 R30: link register (LP) 6154 R31: stack pointer (SP) 6155 PC: program counter (PC) 6156 6157 ==> U-Boot will use R10 to hold a pointer to the global data 6158 6159NOTE: DECLARE_GLOBAL_DATA_PTR must be used with file-global scope, 6160or current versions of GCC may "optimize" the code too much. 6161 6162Memory Management: 6163------------------ 6164 6165U-Boot runs in system state and uses physical addresses, i.e. the 6166MMU is not used either for address mapping nor for memory protection. 6167 6168The available memory is mapped to fixed addresses using the memory 6169controller. In this process, a contiguous block is formed for each 6170memory type (Flash, SDRAM, SRAM), even when it consists of several 6171physical memory banks. 6172 6173U-Boot is installed in the first 128 kB of the first Flash bank (on 6174TQM8xxL modules this is the range 0x40000000 ... 0x4001FFFF). After 6175booting and sizing and initializing DRAM, the code relocates itself 6176to the upper end of DRAM. Immediately below the U-Boot code some 6177memory is reserved for use by malloc() [see CONFIG_SYS_MALLOC_LEN 6178configuration setting]. Below that, a structure with global Board 6179Info data is placed, followed by the stack (growing downward). 6180 6181Additionally, some exception handler code is copied to the low 8 kB 6182of DRAM (0x00000000 ... 0x00001FFF). 6183 6184So a typical memory configuration with 16 MB of DRAM could look like 6185this: 6186 6187 0x0000 0000 Exception Vector code 6188 : 6189 0x0000 1FFF 6190 0x0000 2000 Free for Application Use 6191 : 6192 : 6193 6194 : 6195 : 6196 0x00FB FF20 Monitor Stack (Growing downward) 6197 0x00FB FFAC Board Info Data and permanent copy of global data 6198 0x00FC 0000 Malloc Arena 6199 : 6200 0x00FD FFFF 6201 0x00FE 0000 RAM Copy of Monitor Code 6202 ... eventually: LCD or video framebuffer 6203 ... eventually: pRAM (Protected RAM - unchanged by reset) 6204 0x00FF FFFF [End of RAM] 6205 6206 6207System Initialization: 6208---------------------- 6209 6210In the reset configuration, U-Boot starts at the reset entry point 6211(on most PowerPC systems at address 0x00000100). Because of the reset 6212configuration for CS0# this is a mirror of the on board Flash memory. 6213To be able to re-map memory U-Boot then jumps to its link address. 6214To be able to implement the initialization code in C, a (small!) 6215initial stack is set up in the internal Dual Ported RAM (in case CPUs 6216which provide such a feature like MPC8xx or MPC8260), or in a locked 6217part of the data cache. After that, U-Boot initializes the CPU core, 6218the caches and the SIU. 6219 6220Next, all (potentially) available memory banks are mapped using a 6221preliminary mapping. For example, we put them on 512 MB boundaries 6222(multiples of 0x20000000: SDRAM on 0x00000000 and 0x20000000, Flash 6223on 0x40000000 and 0x60000000, SRAM on 0x80000000). Then UPM A is 6224programmed for SDRAM access. Using the temporary configuration, a 6225simple memory test is run that determines the size of the SDRAM 6226banks. 6227 6228When there is more than one SDRAM bank, and the banks are of 6229different size, the largest is mapped first. For equal size, the first 6230bank (CS2#) is mapped first. The first mapping is always for address 62310x00000000, with any additional banks following immediately to create 6232contiguous memory starting from 0. 6233 6234Then, the monitor installs itself at the upper end of the SDRAM area 6235and allocates memory for use by malloc() and for the global Board 6236Info data; also, the exception vector code is copied to the low RAM 6237pages, and the final stack is set up. 6238 6239Only after this relocation will you have a "normal" C environment; 6240until that you are restricted in several ways, mostly because you are 6241running from ROM, and because the code will have to be relocated to a 6242new address in RAM. 6243 6244 6245U-Boot Porting Guide: 6246---------------------- 6247 6248[Based on messages by Jerry Van Baren in the U-Boot-Users mailing 6249list, October 2002] 6250 6251 6252int main(int argc, char *argv[]) 6253{ 6254 sighandler_t no_more_time; 6255 6256 signal(SIGALRM, no_more_time); 6257 alarm(PROJECT_DEADLINE - toSec (3 * WEEK)); 6258 6259 if (available_money > available_manpower) { 6260 Pay consultant to port U-Boot; 6261 return 0; 6262 } 6263 6264 Download latest U-Boot source; 6265 6266 Subscribe to u-boot mailing list; 6267 6268 if (clueless) 6269 email("Hi, I am new to U-Boot, how do I get started?"); 6270 6271 while (learning) { 6272 Read the README file in the top level directory; 6273 Read http://www.denx.de/twiki/bin/view/DULG/Manual; 6274 Read applicable doc/*.README; 6275 Read the source, Luke; 6276 /* find . -name "*.[chS]" | xargs grep -i <keyword> */ 6277 } 6278 6279 if (available_money > toLocalCurrency ($2500)) 6280 Buy a BDI3000; 6281 else 6282 Add a lot of aggravation and time; 6283 6284 if (a similar board exists) { /* hopefully... */ 6285 cp -a board/<similar> board/<myboard> 6286 cp include/configs/<similar>.h include/configs/<myboard>.h 6287 } else { 6288 Create your own board support subdirectory; 6289 Create your own board include/configs/<myboard>.h file; 6290 } 6291 Edit new board/<myboard> files 6292 Edit new include/configs/<myboard>.h 6293 6294 while (!accepted) { 6295 while (!running) { 6296 do { 6297 Add / modify source code; 6298 } until (compiles); 6299 Debug; 6300 if (clueless) 6301 email("Hi, I am having problems..."); 6302 } 6303 Send patch file to the U-Boot email list; 6304 if (reasonable critiques) 6305 Incorporate improvements from email list code review; 6306 else 6307 Defend code as written; 6308 } 6309 6310 return 0; 6311} 6312 6313void no_more_time (int sig) 6314{ 6315 hire_a_guru(); 6316} 6317 6318 6319Coding Standards: 6320----------------- 6321 6322All contributions to U-Boot should conform to the Linux kernel 6323coding style; see the file "Documentation/CodingStyle" and the script 6324"scripts/Lindent" in your Linux kernel source directory. 6325 6326Source files originating from a different project (for example the 6327MTD subsystem) are generally exempt from these guidelines and are not 6328reformatted to ease subsequent migration to newer versions of those 6329sources. 6330 6331Please note that U-Boot is implemented in C (and to some small parts in 6332Assembler); no C++ is used, so please do not use C++ style comments (//) 6333in your code. 6334 6335Please also stick to the following formatting rules: 6336- remove any trailing white space 6337- use TAB characters for indentation and vertical alignment, not spaces 6338- make sure NOT to use DOS '\r\n' line feeds 6339- do not add more than 2 consecutive empty lines to source files 6340- do not add trailing empty lines to source files 6341 6342Submissions which do not conform to the standards may be returned 6343with a request to reformat the changes. 6344 6345 6346Submitting Patches: 6347------------------- 6348 6349Since the number of patches for U-Boot is growing, we need to 6350establish some rules. Submissions which do not conform to these rules 6351may be rejected, even when they contain important and valuable stuff. 6352 6353Please see http://www.denx.de/wiki/U-Boot/Patches for details. 6354 6355Patches shall be sent to the u-boot mailing list <u-boot@lists.denx.de>; 6356see http://lists.denx.de/mailman/listinfo/u-boot 6357 6358When you send a patch, please include the following information with 6359it: 6360 6361* For bug fixes: a description of the bug and how your patch fixes 6362 this bug. Please try to include a way of demonstrating that the 6363 patch actually fixes something. 6364 6365* For new features: a description of the feature and your 6366 implementation. 6367 6368* A CHANGELOG entry as plaintext (separate from the patch) 6369 6370* For major contributions, add a MAINTAINERS file with your 6371 information and associated file and directory references. 6372 6373* When you add support for a new board, don't forget to add a 6374 maintainer e-mail address to the boards.cfg file, too. 6375 6376* If your patch adds new configuration options, don't forget to 6377 document these in the README file. 6378 6379* The patch itself. If you are using git (which is *strongly* 6380 recommended) you can easily generate the patch using the 6381 "git format-patch". If you then use "git send-email" to send it to 6382 the U-Boot mailing list, you will avoid most of the common problems 6383 with some other mail clients. 6384 6385 If you cannot use git, use "diff -purN OLD NEW". If your version of 6386 diff does not support these options, then get the latest version of 6387 GNU diff. 6388 6389 The current directory when running this command shall be the parent 6390 directory of the U-Boot source tree (i. e. please make sure that 6391 your patch includes sufficient directory information for the 6392 affected files). 6393 6394 We prefer patches as plain text. MIME attachments are discouraged, 6395 and compressed attachments must not be used. 6396 6397* If one logical set of modifications affects or creates several 6398 files, all these changes shall be submitted in a SINGLE patch file. 6399 6400* Changesets that contain different, unrelated modifications shall be 6401 submitted as SEPARATE patches, one patch per changeset. 6402 6403 6404Notes: 6405 6406* Before sending the patch, run the buildman script on your patched 6407 source tree and make sure that no errors or warnings are reported 6408 for any of the boards. 6409 6410* Keep your modifications to the necessary minimum: A patch 6411 containing several unrelated changes or arbitrary reformats will be 6412 returned with a request to re-formatting / split it. 6413 6414* If you modify existing code, make sure that your new code does not 6415 add to the memory footprint of the code ;-) Small is beautiful! 6416 When adding new features, these should compile conditionally only 6417 (using #ifdef), and the resulting code with the new feature 6418 disabled must not need more memory than the old code without your 6419 modification. 6420 6421* Remember that there is a size limit of 100 kB per message on the 6422 u-boot mailing list. Bigger patches will be moderated. If they are 6423 reasonable and not too big, they will be acknowledged. But patches 6424 bigger than the size limit should be avoided. 6425