1# 2# (C) Copyright 2000 - 2013 3# Wolfgang Denk, DENX Software Engineering, wd@denx.de. 4# 5# SPDX-License-Identifier: GPL-2.0+ 6# 7 8Summary: 9======== 10 11This directory contains the source code for U-Boot, a boot loader for 12Embedded boards based on PowerPC, ARM, MIPS and several other 13processors, which can be installed in a boot ROM and used to 14initialize and test the hardware or to download and run application 15code. 16 17The development of U-Boot is closely related to Linux: some parts of 18the source code originate in the Linux source tree, we have some 19header files in common, and special provision has been made to 20support booting of Linux images. 21 22Some attention has been paid to make this software easily 23configurable and extendable. For instance, all monitor commands are 24implemented with the same call interface, so that it's very easy to 25add new commands. Also, instead of permanently adding rarely used 26code (for instance hardware test utilities) to the monitor, you can 27load and run it dynamically. 28 29 30Status: 31======= 32 33In general, all boards for which a configuration option exists in the 34Makefile have been tested to some extent and can be considered 35"working". In fact, many of them are used in production systems. 36 37In case of problems see the CHANGELOG file to find out who contributed 38the specific port. In addition, there are various MAINTAINERS files 39scattered throughout the U-Boot source identifying the people or 40companies responsible for various boards and subsystems. 41 42Note: As of August, 2010, there is no longer a CHANGELOG file in the 43actual U-Boot source tree; however, it can be created dynamically 44from the Git log using: 45 46 make CHANGELOG 47 48 49Where to get help: 50================== 51 52In case you have questions about, problems with or contributions for 53U-Boot, you should send a message to the U-Boot mailing list at 54<u-boot@lists.denx.de>. There is also an archive of previous traffic 55on the mailing list - please search the archive before asking FAQ's. 56Please see http://lists.denx.de/pipermail/u-boot and 57http://dir.gmane.org/gmane.comp.boot-loaders.u-boot 58 59 60Where to get source code: 61========================= 62 63The U-Boot source code is maintained in the Git repository at 64git://www.denx.de/git/u-boot.git ; you can browse it online at 65http://www.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary 66 67The "snapshot" links on this page allow you to download tarballs of 68any version you might be interested in. Official releases are also 69available for FTP download from the ftp://ftp.denx.de/pub/u-boot/ 70directory. 71 72Pre-built (and tested) images are available from 73ftp://ftp.denx.de/pub/u-boot/images/ 74 75 76Where we come from: 77=================== 78 79- start from 8xxrom sources 80- create PPCBoot project (http://sourceforge.net/projects/ppcboot) 81- clean up code 82- make it easier to add custom boards 83- make it possible to add other [PowerPC] CPUs 84- extend functions, especially: 85 * Provide extended interface to Linux boot loader 86 * S-Record download 87 * network boot 88 * PCMCIA / CompactFlash / ATA disk / SCSI ... boot 89- create ARMBoot project (http://sourceforge.net/projects/armboot) 90- add other CPU families (starting with ARM) 91- create U-Boot project (http://sourceforge.net/projects/u-boot) 92- current project page: see http://www.denx.de/wiki/U-Boot 93 94 95Names and Spelling: 96=================== 97 98The "official" name of this project is "Das U-Boot". The spelling 99"U-Boot" shall be used in all written text (documentation, comments 100in source files etc.). Example: 101 102 This is the README file for the U-Boot project. 103 104File names etc. shall be based on the string "u-boot". Examples: 105 106 include/asm-ppc/u-boot.h 107 108 #include <asm/u-boot.h> 109 110Variable names, preprocessor constants etc. shall be either based on 111the string "u_boot" or on "U_BOOT". Example: 112 113 U_BOOT_VERSION u_boot_logo 114 IH_OS_U_BOOT u_boot_hush_start 115 116 117Versioning: 118=========== 119 120Starting with the release in October 2008, the names of the releases 121were changed from numerical release numbers without deeper meaning 122into a time stamp based numbering. Regular releases are identified by 123names consisting of the calendar year and month of the release date. 124Additional fields (if present) indicate release candidates or bug fix 125releases in "stable" maintenance trees. 126 127Examples: 128 U-Boot v2009.11 - Release November 2009 129 U-Boot v2009.11.1 - Release 1 in version November 2009 stable tree 130 U-Boot v2010.09-rc1 - Release candidate 1 for September 2010 release 131 132 133Directory Hierarchy: 134==================== 135 136/arch Architecture specific files 137 /arc Files generic to ARC architecture 138 /arm Files generic to ARM architecture 139 /avr32 Files generic to AVR32 architecture 140 /m68k Files generic to m68k architecture 141 /microblaze Files generic to microblaze architecture 142 /mips Files generic to MIPS architecture 143 /nds32 Files generic to NDS32 architecture 144 /nios2 Files generic to Altera NIOS2 architecture 145 /openrisc Files generic to OpenRISC architecture 146 /powerpc Files generic to PowerPC architecture 147 /sandbox Files generic to HW-independent "sandbox" 148 /sh Files generic to SH architecture 149 /x86 Files generic to x86 architecture 150/api Machine/arch independent API for external apps 151/board Board dependent files 152/cmd U-Boot commands functions 153/common Misc architecture independent functions 154/configs Board default configuration files 155/disk Code for disk drive partition handling 156/doc Documentation (don't expect too much) 157/drivers Commonly used device drivers 158/dts Contains Makefile for building internal U-Boot fdt. 159/examples Example code for standalone applications, etc. 160/fs Filesystem code (cramfs, ext2, jffs2, etc.) 161/include Header Files 162/lib Library routines generic to all architectures 163/Licenses Various license files 164/net Networking code 165/post Power On Self Test 166/scripts Various build scripts and Makefiles 167/test Various unit test files 168/tools Tools to build S-Record or U-Boot images, etc. 169 170Software Configuration: 171======================= 172 173Configuration is usually done using C preprocessor defines; the 174rationale behind that is to avoid dead code whenever possible. 175 176There are two classes of configuration variables: 177 178* Configuration _OPTIONS_: 179 These are selectable by the user and have names beginning with 180 "CONFIG_". 181 182* Configuration _SETTINGS_: 183 These depend on the hardware etc. and should not be meddled with if 184 you don't know what you're doing; they have names beginning with 185 "CONFIG_SYS_". 186 187Previously, all configuration was done by hand, which involved creating 188symbolic links and editing configuration files manually. More recently, 189U-Boot has added the Kbuild infrastructure used by the Linux kernel, 190allowing you to use the "make menuconfig" command to configure your 191build. 192 193 194Selection of Processor Architecture and Board Type: 195--------------------------------------------------- 196 197For all supported boards there are ready-to-use default 198configurations available; just type "make <board_name>_defconfig". 199 200Example: For a TQM823L module type: 201 202 cd u-boot 203 make TQM823L_defconfig 204 205Note: If you're looking for the default configuration file for a board 206you're sure used to be there but is now missing, check the file 207doc/README.scrapyard for a list of no longer supported boards. 208 209Sandbox Environment: 210-------------------- 211 212U-Boot can be built natively to run on a Linux host using the 'sandbox' 213board. This allows feature development which is not board- or architecture- 214specific to be undertaken on a native platform. The sandbox is also used to 215run some of U-Boot's tests. 216 217See board/sandbox/README.sandbox for more details. 218 219 220Board Initialisation Flow: 221-------------------------- 222 223This is the intended start-up flow for boards. This should apply for both 224SPL and U-Boot proper (i.e. they both follow the same rules). 225 226Note: "SPL" stands for "Secondary Program Loader," which is explained in 227more detail later in this file. 228 229At present, SPL mostly uses a separate code path, but the function names 230and roles of each function are the same. Some boards or architectures 231may not conform to this. At least most ARM boards which use 232CONFIG_SPL_FRAMEWORK conform to this. 233 234Execution typically starts with an architecture-specific (and possibly 235CPU-specific) start.S file, such as: 236 237 - arch/arm/cpu/armv7/start.S 238 - arch/powerpc/cpu/mpc83xx/start.S 239 - arch/mips/cpu/start.S 240 241and so on. From there, three functions are called; the purpose and 242limitations of each of these functions are described below. 243 244lowlevel_init(): 245 - purpose: essential init to permit execution to reach board_init_f() 246 - no global_data or BSS 247 - there is no stack (ARMv7 may have one but it will soon be removed) 248 - must not set up SDRAM or use console 249 - must only do the bare minimum to allow execution to continue to 250 board_init_f() 251 - this is almost never needed 252 - return normally from this function 253 254board_init_f(): 255 - purpose: set up the machine ready for running board_init_r(): 256 i.e. SDRAM and serial UART 257 - global_data is available 258 - stack is in SRAM 259 - BSS is not available, so you cannot use global/static variables, 260 only stack variables and global_data 261 262 Non-SPL-specific notes: 263 - dram_init() is called to set up DRAM. If already done in SPL this 264 can do nothing 265 266 SPL-specific notes: 267 - you can override the entire board_init_f() function with your own 268 version as needed. 269 - preloader_console_init() can be called here in extremis 270 - should set up SDRAM, and anything needed to make the UART work 271 - these is no need to clear BSS, it will be done by crt0.S 272 - must return normally from this function (don't call board_init_r() 273 directly) 274 275Here the BSS is cleared. For SPL, if CONFIG_SPL_STACK_R is defined, then at 276this point the stack and global_data are relocated to below 277CONFIG_SPL_STACK_R_ADDR. For non-SPL, U-Boot is relocated to run at the top of 278memory. 279 280board_init_r(): 281 - purpose: main execution, common code 282 - global_data is available 283 - SDRAM is available 284 - BSS is available, all static/global variables can be used 285 - execution eventually continues to main_loop() 286 287 Non-SPL-specific notes: 288 - U-Boot is relocated to the top of memory and is now running from 289 there. 290 291 SPL-specific notes: 292 - stack is optionally in SDRAM, if CONFIG_SPL_STACK_R is defined and 293 CONFIG_SPL_STACK_R_ADDR points into SDRAM 294 - preloader_console_init() can be called here - typically this is 295 done by selecting CONFIG_SPL_BOARD_INIT and then supplying a 296 spl_board_init() function containing this call 297 - loads U-Boot or (in falcon mode) Linux 298 299 300 301Configuration Options: 302---------------------- 303 304Configuration depends on the combination of board and CPU type; all 305such information is kept in a configuration file 306"include/configs/<board_name>.h". 307 308Example: For a TQM823L module, all configuration settings are in 309"include/configs/TQM823L.h". 310 311 312Many of the options are named exactly as the corresponding Linux 313kernel configuration options. The intention is to make it easier to 314build a config tool - later. 315 316 317The following options need to be configured: 318 319- CPU Type: Define exactly one, e.g. CONFIG_MPC85XX. 320 321- Board Type: Define exactly one, e.g. CONFIG_MPC8540ADS. 322 323- CPU Daughterboard Type: (if CONFIG_ATSTK1000 is defined) 324 Define exactly one, e.g. CONFIG_ATSTK1002 325 326- Marvell Family Member 327 CONFIG_SYS_MVFS - define it if you want to enable 328 multiple fs option at one time 329 for marvell soc family 330 331- 8xx CPU Options: (if using an MPC8xx CPU) 332 CONFIG_8xx_GCLK_FREQ - deprecated: CPU clock if 333 get_gclk_freq() cannot work 334 e.g. if there is no 32KHz 335 reference PIT/RTC clock 336 CONFIG_8xx_OSCLK - PLL input clock (either EXTCLK 337 or XTAL/EXTAL) 338 339- 859/866/885 CPU options: (if using a MPC859 or MPC866 or MPC885 CPU): 340 CONFIG_SYS_8xx_CPUCLK_MIN 341 CONFIG_SYS_8xx_CPUCLK_MAX 342 CONFIG_8xx_CPUCLK_DEFAULT 343 See doc/README.MPC866 344 345 CONFIG_SYS_MEASURE_CPUCLK 346 347 Define this to measure the actual CPU clock instead 348 of relying on the correctness of the configured 349 values. Mostly useful for board bringup to make sure 350 the PLL is locked at the intended frequency. Note 351 that this requires a (stable) reference clock (32 kHz 352 RTC clock or CONFIG_SYS_8XX_XIN) 353 354 CONFIG_SYS_DELAYED_ICACHE 355 356 Define this option if you want to enable the 357 ICache only when Code runs from RAM. 358 359- 85xx CPU Options: 360 CONFIG_SYS_PPC64 361 362 Specifies that the core is a 64-bit PowerPC implementation (implements 363 the "64" category of the Power ISA). This is necessary for ePAPR 364 compliance, among other possible reasons. 365 366 CONFIG_SYS_FSL_TBCLK_DIV 367 368 Defines the core time base clock divider ratio compared to the 369 system clock. On most PQ3 devices this is 8, on newer QorIQ 370 devices it can be 16 or 32. The ratio varies from SoC to Soc. 371 372 CONFIG_SYS_FSL_PCIE_COMPAT 373 374 Defines the string to utilize when trying to match PCIe device 375 tree nodes for the given platform. 376 377 CONFIG_SYS_FSL_ERRATUM_A004510 378 379 Enables a workaround for erratum A004510. If set, 380 then CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV and 381 CONFIG_SYS_FSL_CORENET_SNOOPVEC_COREONLY must be set. 382 383 CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV 384 CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV2 (optional) 385 386 Defines one or two SoC revisions (low 8 bits of SVR) 387 for which the A004510 workaround should be applied. 388 389 The rest of SVR is either not relevant to the decision 390 of whether the erratum is present (e.g. p2040 versus 391 p2041) or is implied by the build target, which controls 392 whether CONFIG_SYS_FSL_ERRATUM_A004510 is set. 393 394 See Freescale App Note 4493 for more information about 395 this erratum. 396 397 CONFIG_A003399_NOR_WORKAROUND 398 Enables a workaround for IFC erratum A003399. It is only 399 required during NOR boot. 400 401 CONFIG_A008044_WORKAROUND 402 Enables a workaround for T1040/T1042 erratum A008044. It is only 403 required during NAND boot and valid for Rev 1.0 SoC revision 404 405 CONFIG_SYS_FSL_CORENET_SNOOPVEC_COREONLY 406 407 This is the value to write into CCSR offset 0x18600 408 according to the A004510 workaround. 409 410 CONFIG_SYS_FSL_DSP_DDR_ADDR 411 This value denotes start offset of DDR memory which is 412 connected exclusively to the DSP cores. 413 414 CONFIG_SYS_FSL_DSP_M2_RAM_ADDR 415 This value denotes start offset of M2 memory 416 which is directly connected to the DSP core. 417 418 CONFIG_SYS_FSL_DSP_M3_RAM_ADDR 419 This value denotes start offset of M3 memory which is directly 420 connected to the DSP core. 421 422 CONFIG_SYS_FSL_DSP_CCSRBAR_DEFAULT 423 This value denotes start offset of DSP CCSR space. 424 425 CONFIG_SYS_FSL_SINGLE_SOURCE_CLK 426 Single Source Clock is clocking mode present in some of FSL SoC's. 427 In this mode, a single differential clock is used to supply 428 clocks to the sysclock, ddrclock and usbclock. 429 430 CONFIG_SYS_CPC_REINIT_F 431 This CONFIG is defined when the CPC is configured as SRAM at the 432 time of U-Boot entry and is required to be re-initialized. 433 434 CONFIG_DEEP_SLEEP 435 Indicates this SoC supports deep sleep feature. If deep sleep is 436 supported, core will start to execute uboot when wakes up. 437 438- Generic CPU options: 439 CONFIG_SYS_GENERIC_GLOBAL_DATA 440 Defines global data is initialized in generic board board_init_f(). 441 If this macro is defined, global data is created and cleared in 442 generic board board_init_f(). Without this macro, architecture/board 443 should initialize global data before calling board_init_f(). 444 445 CONFIG_SYS_BIG_ENDIAN, CONFIG_SYS_LITTLE_ENDIAN 446 447 Defines the endianess of the CPU. Implementation of those 448 values is arch specific. 449 450 CONFIG_SYS_FSL_DDR 451 Freescale DDR driver in use. This type of DDR controller is 452 found in mpc83xx, mpc85xx, mpc86xx as well as some ARM core 453 SoCs. 454 455 CONFIG_SYS_FSL_DDR_ADDR 456 Freescale DDR memory-mapped register base. 457 458 CONFIG_SYS_FSL_DDR_EMU 459 Specify emulator support for DDR. Some DDR features such as 460 deskew training are not available. 461 462 CONFIG_SYS_FSL_DDRC_GEN1 463 Freescale DDR1 controller. 464 465 CONFIG_SYS_FSL_DDRC_GEN2 466 Freescale DDR2 controller. 467 468 CONFIG_SYS_FSL_DDRC_GEN3 469 Freescale DDR3 controller. 470 471 CONFIG_SYS_FSL_DDRC_GEN4 472 Freescale DDR4 controller. 473 474 CONFIG_SYS_FSL_DDRC_ARM_GEN3 475 Freescale DDR3 controller for ARM-based SoCs. 476 477 CONFIG_SYS_FSL_DDR1 478 Board config to use DDR1. It can be enabled for SoCs with 479 Freescale DDR1 or DDR2 controllers, depending on the board 480 implemetation. 481 482 CONFIG_SYS_FSL_DDR2 483 Board config to use DDR2. It can be enabled for SoCs with 484 Freescale DDR2 or DDR3 controllers, depending on the board 485 implementation. 486 487 CONFIG_SYS_FSL_DDR3 488 Board config to use DDR3. It can be enabled for SoCs with 489 Freescale DDR3 or DDR3L controllers. 490 491 CONFIG_SYS_FSL_DDR3L 492 Board config to use DDR3L. It can be enabled for SoCs with 493 DDR3L controllers. 494 495 CONFIG_SYS_FSL_DDR4 496 Board config to use DDR4. It can be enabled for SoCs with 497 DDR4 controllers. 498 499 CONFIG_SYS_FSL_IFC_BE 500 Defines the IFC controller register space as Big Endian 501 502 CONFIG_SYS_FSL_IFC_LE 503 Defines the IFC controller register space as Little Endian 504 505 CONFIG_SYS_FSL_IFC_CLK_DIV 506 Defines divider of platform clock(clock input to IFC controller). 507 508 CONFIG_SYS_FSL_LBC_CLK_DIV 509 Defines divider of platform clock(clock input to eLBC controller). 510 511 CONFIG_SYS_FSL_PBL_PBI 512 It enables addition of RCW (Power on reset configuration) in built image. 513 Please refer doc/README.pblimage for more details 514 515 CONFIG_SYS_FSL_PBL_RCW 516 It adds PBI(pre-boot instructions) commands in u-boot build image. 517 PBI commands can be used to configure SoC before it starts the execution. 518 Please refer doc/README.pblimage for more details 519 520 CONFIG_SPL_FSL_PBL 521 It adds a target to create boot binary having SPL binary in PBI format 522 concatenated with u-boot binary. 523 524 CONFIG_SYS_FSL_DDR_BE 525 Defines the DDR controller register space as Big Endian 526 527 CONFIG_SYS_FSL_DDR_LE 528 Defines the DDR controller register space as Little Endian 529 530 CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY 531 Physical address from the view of DDR controllers. It is the 532 same as CONFIG_SYS_DDR_SDRAM_BASE for all Power SoCs. But 533 it could be different for ARM SoCs. 534 535 CONFIG_SYS_FSL_DDR_INTLV_256B 536 DDR controller interleaving on 256-byte. This is a special 537 interleaving mode, handled by Dickens for Freescale layerscape 538 SoCs with ARM core. 539 540 CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS 541 Number of controllers used as main memory. 542 543 CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS 544 Number of controllers used for other than main memory. 545 546 CONFIG_SYS_FSL_HAS_DP_DDR 547 Defines the SoC has DP-DDR used for DPAA. 548 549 CONFIG_SYS_FSL_SEC_BE 550 Defines the SEC controller register space as Big Endian 551 552 CONFIG_SYS_FSL_SEC_LE 553 Defines the SEC controller register space as Little Endian 554 555- MIPS CPU options: 556 CONFIG_SYS_INIT_SP_OFFSET 557 558 Offset relative to CONFIG_SYS_SDRAM_BASE for initial stack 559 pointer. This is needed for the temporary stack before 560 relocation. 561 562 CONFIG_SYS_MIPS_CACHE_MODE 563 564 Cache operation mode for the MIPS CPU. 565 See also arch/mips/include/asm/mipsregs.h. 566 Possible values are: 567 CONF_CM_CACHABLE_NO_WA 568 CONF_CM_CACHABLE_WA 569 CONF_CM_UNCACHED 570 CONF_CM_CACHABLE_NONCOHERENT 571 CONF_CM_CACHABLE_CE 572 CONF_CM_CACHABLE_COW 573 CONF_CM_CACHABLE_CUW 574 CONF_CM_CACHABLE_ACCELERATED 575 576 CONFIG_SYS_XWAY_EBU_BOOTCFG 577 578 Special option for Lantiq XWAY SoCs for booting from NOR flash. 579 See also arch/mips/cpu/mips32/start.S. 580 581 CONFIG_XWAY_SWAP_BYTES 582 583 Enable compilation of tools/xway-swap-bytes needed for Lantiq 584 XWAY SoCs for booting from NOR flash. The U-Boot image needs to 585 be swapped if a flash programmer is used. 586 587- ARM options: 588 CONFIG_SYS_EXCEPTION_VECTORS_HIGH 589 590 Select high exception vectors of the ARM core, e.g., do not 591 clear the V bit of the c1 register of CP15. 592 593 COUNTER_FREQUENCY 594 Generic timer clock source frequency. 595 596 COUNTER_FREQUENCY_REAL 597 Generic timer clock source frequency if the real clock is 598 different from COUNTER_FREQUENCY, and can only be determined 599 at run time. 600 601- Tegra SoC options: 602 CONFIG_TEGRA_SUPPORT_NON_SECURE 603 604 Support executing U-Boot in non-secure (NS) mode. Certain 605 impossible actions will be skipped if the CPU is in NS mode, 606 such as ARM architectural timer initialization. 607 608- Linux Kernel Interface: 609 CONFIG_CLOCKS_IN_MHZ 610 611 U-Boot stores all clock information in Hz 612 internally. For binary compatibility with older Linux 613 kernels (which expect the clocks passed in the 614 bd_info data to be in MHz) the environment variable 615 "clocks_in_mhz" can be defined so that U-Boot 616 converts clock data to MHZ before passing it to the 617 Linux kernel. 618 When CONFIG_CLOCKS_IN_MHZ is defined, a definition of 619 "clocks_in_mhz=1" is automatically included in the 620 default environment. 621 622 CONFIG_MEMSIZE_IN_BYTES [relevant for MIPS only] 623 624 When transferring memsize parameter to Linux, some versions 625 expect it to be in bytes, others in MB. 626 Define CONFIG_MEMSIZE_IN_BYTES to make it in bytes. 627 628 CONFIG_OF_LIBFDT 629 630 New kernel versions are expecting firmware settings to be 631 passed using flattened device trees (based on open firmware 632 concepts). 633 634 CONFIG_OF_LIBFDT 635 * New libfdt-based support 636 * Adds the "fdt" command 637 * The bootm command automatically updates the fdt 638 639 OF_CPU - The proper name of the cpus node (only required for 640 MPC512X and MPC5xxx based boards). 641 OF_SOC - The proper name of the soc node (only required for 642 MPC512X and MPC5xxx based boards). 643 OF_TBCLK - The timebase frequency. 644 OF_STDOUT_PATH - The path to the console device 645 646 boards with QUICC Engines require OF_QE to set UCC MAC 647 addresses 648 649 CONFIG_OF_BOARD_SETUP 650 651 Board code has addition modification that it wants to make 652 to the flat device tree before handing it off to the kernel 653 654 CONFIG_OF_SYSTEM_SETUP 655 656 Other code has addition modification that it wants to make 657 to the flat device tree before handing it off to the kernel. 658 This causes ft_system_setup() to be called before booting 659 the kernel. 660 661 CONFIG_OF_IDE_FIXUP 662 663 U-Boot can detect if an IDE device is present or not. 664 If not, and this new config option is activated, U-Boot 665 removes the ATA node from the DTS before booting Linux, 666 so the Linux IDE driver does not probe the device and 667 crash. This is needed for buggy hardware (uc101) where 668 no pull down resistor is connected to the signal IDE5V_DD7. 669 670 CONFIG_MACH_TYPE [relevant for ARM only][mandatory] 671 672 This setting is mandatory for all boards that have only one 673 machine type and must be used to specify the machine type 674 number as it appears in the ARM machine registry 675 (see http://www.arm.linux.org.uk/developer/machines/). 676 Only boards that have multiple machine types supported 677 in a single configuration file and the machine type is 678 runtime discoverable, do not have to use this setting. 679 680- vxWorks boot parameters: 681 682 bootvx constructs a valid bootline using the following 683 environments variables: bootdev, bootfile, ipaddr, netmask, 684 serverip, gatewayip, hostname, othbootargs. 685 It loads the vxWorks image pointed bootfile. 686 687 Note: If a "bootargs" environment is defined, it will overwride 688 the defaults discussed just above. 689 690- Cache Configuration: 691 CONFIG_SYS_ICACHE_OFF - Do not enable instruction cache in U-Boot 692 CONFIG_SYS_DCACHE_OFF - Do not enable data cache in U-Boot 693 CONFIG_SYS_L2CACHE_OFF- Do not enable L2 cache in U-Boot 694 695- Cache Configuration for ARM: 696 CONFIG_SYS_L2_PL310 - Enable support for ARM PL310 L2 cache 697 controller 698 CONFIG_SYS_PL310_BASE - Physical base address of PL310 699 controller register space 700 701- Serial Ports: 702 CONFIG_PL010_SERIAL 703 704 Define this if you want support for Amba PrimeCell PL010 UARTs. 705 706 CONFIG_PL011_SERIAL 707 708 Define this if you want support for Amba PrimeCell PL011 UARTs. 709 710 CONFIG_PL011_CLOCK 711 712 If you have Amba PrimeCell PL011 UARTs, set this variable to 713 the clock speed of the UARTs. 714 715 CONFIG_PL01x_PORTS 716 717 If you have Amba PrimeCell PL010 or PL011 UARTs on your board, 718 define this to a list of base addresses for each (supported) 719 port. See e.g. include/configs/versatile.h 720 721 CONFIG_SERIAL_HW_FLOW_CONTROL 722 723 Define this variable to enable hw flow control in serial driver. 724 Current user of this option is drivers/serial/nsl16550.c driver 725 726- Console Interface: 727 Depending on board, define exactly one serial port 728 (like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2, 729 CONFIG_8xx_CONS_SCC1, ...), or switch off the serial 730 console by defining CONFIG_8xx_CONS_NONE 731 732 Note: if CONFIG_8xx_CONS_NONE is defined, the serial 733 port routines must be defined elsewhere 734 (i.e. serial_init(), serial_getc(), ...) 735 736- Console Baudrate: 737 CONFIG_BAUDRATE - in bps 738 Select one of the baudrates listed in 739 CONFIG_SYS_BAUDRATE_TABLE, see below. 740 CONFIG_SYS_BRGCLK_PRESCALE, baudrate prescale 741 742- Console Rx buffer length 743 With CONFIG_SYS_SMC_RXBUFLEN it is possible to define 744 the maximum receive buffer length for the SMC. 745 This option is actual only for 82xx and 8xx possible. 746 If using CONFIG_SYS_SMC_RXBUFLEN also CONFIG_SYS_MAXIDLE 747 must be defined, to setup the maximum idle timeout for 748 the SMC. 749 750- Autoboot Command: 751 CONFIG_BOOTCOMMAND 752 Only needed when CONFIG_BOOTDELAY is enabled; 753 define a command string that is automatically executed 754 when no character is read on the console interface 755 within "Boot Delay" after reset. 756 757 CONFIG_BOOTARGS 758 This can be used to pass arguments to the bootm 759 command. The value of CONFIG_BOOTARGS goes into the 760 environment value "bootargs". 761 762 CONFIG_RAMBOOT and CONFIG_NFSBOOT 763 The value of these goes into the environment as 764 "ramboot" and "nfsboot" respectively, and can be used 765 as a convenience, when switching between booting from 766 RAM and NFS. 767 768- Bootcount: 769 CONFIG_BOOTCOUNT_LIMIT 770 Implements a mechanism for detecting a repeating reboot 771 cycle, see: 772 http://www.denx.de/wiki/view/DULG/UBootBootCountLimit 773 774 CONFIG_BOOTCOUNT_ENV 775 If no softreset save registers are found on the hardware 776 "bootcount" is stored in the environment. To prevent a 777 saveenv on all reboots, the environment variable 778 "upgrade_available" is used. If "upgrade_available" is 779 0, "bootcount" is always 0, if "upgrade_available" is 780 1 "bootcount" is incremented in the environment. 781 So the Userspace Applikation must set the "upgrade_available" 782 and "bootcount" variable to 0, if a boot was successfully. 783 784- Pre-Boot Commands: 785 CONFIG_PREBOOT 786 787 When this option is #defined, the existence of the 788 environment variable "preboot" will be checked 789 immediately before starting the CONFIG_BOOTDELAY 790 countdown and/or running the auto-boot command resp. 791 entering interactive mode. 792 793 This feature is especially useful when "preboot" is 794 automatically generated or modified. For an example 795 see the LWMON board specific code: here "preboot" is 796 modified when the user holds down a certain 797 combination of keys on the (special) keyboard when 798 booting the systems 799 800- Serial Download Echo Mode: 801 CONFIG_LOADS_ECHO 802 If defined to 1, all characters received during a 803 serial download (using the "loads" command) are 804 echoed back. This might be needed by some terminal 805 emulations (like "cu"), but may as well just take 806 time on others. This setting #define's the initial 807 value of the "loads_echo" environment variable. 808 809- Kgdb Serial Baudrate: (if CONFIG_CMD_KGDB is defined) 810 CONFIG_KGDB_BAUDRATE 811 Select one of the baudrates listed in 812 CONFIG_SYS_BAUDRATE_TABLE, see below. 813 814- Monitor Functions: 815 Monitor commands can be included or excluded 816 from the build by using the #include files 817 <config_cmd_all.h> and #undef'ing unwanted 818 commands, or adding #define's for wanted commands. 819 820 The default command configuration includes all commands 821 except those marked below with a "*". 822 823 CONFIG_CMD_AES AES 128 CBC encrypt/decrypt 824 CONFIG_CMD_ASKENV * ask for env variable 825 CONFIG_CMD_BDI bdinfo 826 CONFIG_CMD_BOOTD bootd 827 CONFIG_CMD_BOOTI * ARM64 Linux kernel Image support 828 CONFIG_CMD_CACHE * icache, dcache 829 CONFIG_CMD_CONSOLE coninfo 830 CONFIG_CMD_CRC32 * crc32 831 CONFIG_CMD_DHCP * DHCP support 832 CONFIG_CMD_DIAG * Diagnostics 833 CONFIG_CMD_ECHO echo arguments 834 CONFIG_CMD_EDITENV edit env variable 835 CONFIG_CMD_ELF * bootelf, bootvx 836 CONFIG_CMD_ENV_EXISTS * check existence of env variable 837 CONFIG_CMD_EXPORTENV * export the environment 838 CONFIG_CMD_EXT2 * ext2 command support 839 CONFIG_CMD_EXT4 * ext4 command support 840 CONFIG_CMD_FS_GENERIC * filesystem commands (e.g. load, ls) 841 that work for multiple fs types 842 CONFIG_CMD_FS_UUID * Look up a filesystem UUID 843 CONFIG_CMD_SAVEENV saveenv 844 CONFIG_CMD_FAT * FAT command support 845 CONFIG_CMD_FLASH flinfo, erase, protect 846 CONFIG_CMD_FPGA FPGA device initialization support 847 CONFIG_CMD_GO * the 'go' command (exec code) 848 CONFIG_CMD_GREPENV * search environment 849 CONFIG_CMD_I2C * I2C serial bus support 850 CONFIG_CMD_IDE * IDE harddisk support 851 CONFIG_CMD_IMI iminfo 852 CONFIG_CMD_IMLS List all images found in NOR flash 853 CONFIG_CMD_IMLS_NAND * List all images found in NAND flash 854 CONFIG_CMD_IMMAP * IMMR dump support 855 CONFIG_CMD_IOTRACE * I/O tracing for debugging 856 CONFIG_CMD_IMPORTENV * import an environment 857 CONFIG_CMD_INI * import data from an ini file into the env 858 CONFIG_CMD_IRQ * irqinfo 859 CONFIG_CMD_ITEST Integer/string test of 2 values 860 CONFIG_CMD_JFFS2 * JFFS2 Support 861 CONFIG_CMD_KGDB * kgdb 862 CONFIG_CMD_LDRINFO * ldrinfo (display Blackfin loader) 863 CONFIG_CMD_LINK_LOCAL * link-local IP address auto-configuration 864 (169.254.*.*) 865 CONFIG_CMD_LOADB loadb 866 CONFIG_CMD_LOADS loads 867 CONFIG_CMD_MD5SUM * print md5 message digest 868 (requires CONFIG_CMD_MEMORY and CONFIG_MD5) 869 CONFIG_CMD_MEMINFO * Display detailed memory information 870 CONFIG_CMD_MEMORY md, mm, nm, mw, cp, cmp, crc, base, 871 loop, loopw 872 CONFIG_CMD_MEMTEST * mtest 873 CONFIG_CMD_MISC Misc functions like sleep etc 874 CONFIG_CMD_MMC * MMC memory mapped support 875 CONFIG_CMD_MII * MII utility commands 876 CONFIG_CMD_MTDPARTS * MTD partition support 877 CONFIG_CMD_NAND * NAND support 878 CONFIG_CMD_NET bootp, tftpboot, rarpboot 879 CONFIG_CMD_NFS NFS support 880 CONFIG_CMD_PCA953X * PCA953x I2C gpio commands 881 CONFIG_CMD_PCA953X_INFO * PCA953x I2C gpio info command 882 CONFIG_CMD_PCI * pciinfo 883 CONFIG_CMD_PCMCIA * PCMCIA support 884 CONFIG_CMD_PING * send ICMP ECHO_REQUEST to network 885 host 886 CONFIG_CMD_PORTIO * Port I/O 887 CONFIG_CMD_READ * Read raw data from partition 888 CONFIG_CMD_REGINFO * Register dump 889 CONFIG_CMD_RUN run command in env variable 890 CONFIG_CMD_SANDBOX * sb command to access sandbox features 891 CONFIG_CMD_SAVES * save S record dump 892 CONFIG_SCSI * SCSI Support 893 CONFIG_CMD_SDRAM * print SDRAM configuration information 894 (requires CONFIG_CMD_I2C) 895 CONFIG_CMD_SETGETDCR Support for DCR Register access 896 (4xx only) 897 CONFIG_CMD_SF * Read/write/erase SPI NOR flash 898 CONFIG_CMD_SHA1SUM * print sha1 memory digest 899 (requires CONFIG_CMD_MEMORY) 900 CONFIG_CMD_SOFTSWITCH * Soft switch setting command for BF60x 901 CONFIG_CMD_SOURCE "source" command Support 902 CONFIG_CMD_SPI * SPI serial bus support 903 CONFIG_CMD_TFTPSRV * TFTP transfer in server mode 904 CONFIG_CMD_TFTPPUT * TFTP put command (upload) 905 CONFIG_CMD_TIME * run command and report execution time (ARM specific) 906 CONFIG_CMD_TIMER * access to the system tick timer 907 CONFIG_CMD_USB * USB support 908 CONFIG_CMD_CDP * Cisco Discover Protocol support 909 CONFIG_CMD_MFSL * Microblaze FSL support 910 CONFIG_CMD_XIMG Load part of Multi Image 911 CONFIG_CMD_UUID * Generate random UUID or GUID string 912 913 EXAMPLE: If you want all functions except of network 914 support you can write: 915 916 #include "config_cmd_all.h" 917 #undef CONFIG_CMD_NET 918 919 Other Commands: 920 fdt (flattened device tree) command: CONFIG_OF_LIBFDT 921 922 Note: Don't enable the "icache" and "dcache" commands 923 (configuration option CONFIG_CMD_CACHE) unless you know 924 what you (and your U-Boot users) are doing. Data 925 cache cannot be enabled on systems like the 8xx or 926 8260 (where accesses to the IMMR region must be 927 uncached), and it cannot be disabled on all other 928 systems where we (mis-) use the data cache to hold an 929 initial stack and some data. 930 931 932 XXX - this list needs to get updated! 933 934- Removal of commands 935 If no commands are needed to boot, you can disable 936 CONFIG_CMDLINE to remove them. In this case, the command line 937 will not be available, and when U-Boot wants to execute the 938 boot command (on start-up) it will call board_run_command() 939 instead. This can reduce image size significantly for very 940 simple boot procedures. 941 942- Regular expression support: 943 CONFIG_REGEX 944 If this variable is defined, U-Boot is linked against 945 the SLRE (Super Light Regular Expression) library, 946 which adds regex support to some commands, as for 947 example "env grep" and "setexpr". 948 949- Device tree: 950 CONFIG_OF_CONTROL 951 If this variable is defined, U-Boot will use a device tree 952 to configure its devices, instead of relying on statically 953 compiled #defines in the board file. This option is 954 experimental and only available on a few boards. The device 955 tree is available in the global data as gd->fdt_blob. 956 957 U-Boot needs to get its device tree from somewhere. This can 958 be done using one of the three options below: 959 960 CONFIG_OF_EMBED 961 If this variable is defined, U-Boot will embed a device tree 962 binary in its image. This device tree file should be in the 963 board directory and called <soc>-<board>.dts. The binary file 964 is then picked up in board_init_f() and made available through 965 the global data structure as gd->blob. 966 967 CONFIG_OF_SEPARATE 968 If this variable is defined, U-Boot will build a device tree 969 binary. It will be called u-boot.dtb. Architecture-specific 970 code will locate it at run-time. Generally this works by: 971 972 cat u-boot.bin u-boot.dtb >image.bin 973 974 and in fact, U-Boot does this for you, creating a file called 975 u-boot-dtb.bin which is useful in the common case. You can 976 still use the individual files if you need something more 977 exotic. 978 979 CONFIG_OF_BOARD 980 If this variable is defined, U-Boot will use the device tree 981 provided by the board at runtime instead of embedding one with 982 the image. Only boards defining board_fdt_blob_setup() support 983 this option (see include/fdtdec.h file). 984 985- Watchdog: 986 CONFIG_WATCHDOG 987 If this variable is defined, it enables watchdog 988 support for the SoC. There must be support in the SoC 989 specific code for a watchdog. For the 8xx and 8260 990 CPUs, the SIU Watchdog feature is enabled in the SYPCR 991 register. When supported for a specific SoC is 992 available, then no further board specific code should 993 be needed to use it. 994 995 CONFIG_HW_WATCHDOG 996 When using a watchdog circuitry external to the used 997 SoC, then define this variable and provide board 998 specific code for the "hw_watchdog_reset" function. 999 1000 CONFIG_AT91_HW_WDT_TIMEOUT 1001 specify the timeout in seconds. default 2 seconds. 1002 1003- U-Boot Version: 1004 CONFIG_VERSION_VARIABLE 1005 If this variable is defined, an environment variable 1006 named "ver" is created by U-Boot showing the U-Boot 1007 version as printed by the "version" command. 1008 Any change to this variable will be reverted at the 1009 next reset. 1010 1011- Real-Time Clock: 1012 1013 When CONFIG_CMD_DATE is selected, the type of the RTC 1014 has to be selected, too. Define exactly one of the 1015 following options: 1016 1017 CONFIG_RTC_MPC8xx - use internal RTC of MPC8xx 1018 CONFIG_RTC_PCF8563 - use Philips PCF8563 RTC 1019 CONFIG_RTC_MC13XXX - use MC13783 or MC13892 RTC 1020 CONFIG_RTC_MC146818 - use MC146818 RTC 1021 CONFIG_RTC_DS1307 - use Maxim, Inc. DS1307 RTC 1022 CONFIG_RTC_DS1337 - use Maxim, Inc. DS1337 RTC 1023 CONFIG_RTC_DS1338 - use Maxim, Inc. DS1338 RTC 1024 CONFIG_RTC_DS1339 - use Maxim, Inc. DS1339 RTC 1025 CONFIG_RTC_DS164x - use Dallas DS164x RTC 1026 CONFIG_RTC_ISL1208 - use Intersil ISL1208 RTC 1027 CONFIG_RTC_MAX6900 - use Maxim, Inc. MAX6900 RTC 1028 CONFIG_SYS_RTC_DS1337_NOOSC - Turn off the OSC output for DS1337 1029 CONFIG_SYS_RV3029_TCR - enable trickle charger on 1030 RV3029 RTC. 1031 1032 Note that if the RTC uses I2C, then the I2C interface 1033 must also be configured. See I2C Support, below. 1034 1035- GPIO Support: 1036 CONFIG_PCA953X - use NXP's PCA953X series I2C GPIO 1037 1038 The CONFIG_SYS_I2C_PCA953X_WIDTH option specifies a list of 1039 chip-ngpio pairs that tell the PCA953X driver the number of 1040 pins supported by a particular chip. 1041 1042 Note that if the GPIO device uses I2C, then the I2C interface 1043 must also be configured. See I2C Support, below. 1044 1045- I/O tracing: 1046 When CONFIG_IO_TRACE is selected, U-Boot intercepts all I/O 1047 accesses and can checksum them or write a list of them out 1048 to memory. See the 'iotrace' command for details. This is 1049 useful for testing device drivers since it can confirm that 1050 the driver behaves the same way before and after a code 1051 change. Currently this is supported on sandbox and arm. To 1052 add support for your architecture, add '#include <iotrace.h>' 1053 to the bottom of arch/<arch>/include/asm/io.h and test. 1054 1055 Example output from the 'iotrace stats' command is below. 1056 Note that if the trace buffer is exhausted, the checksum will 1057 still continue to operate. 1058 1059 iotrace is enabled 1060 Start: 10000000 (buffer start address) 1061 Size: 00010000 (buffer size) 1062 Offset: 00000120 (current buffer offset) 1063 Output: 10000120 (start + offset) 1064 Count: 00000018 (number of trace records) 1065 CRC32: 9526fb66 (CRC32 of all trace records) 1066 1067- Timestamp Support: 1068 1069 When CONFIG_TIMESTAMP is selected, the timestamp 1070 (date and time) of an image is printed by image 1071 commands like bootm or iminfo. This option is 1072 automatically enabled when you select CONFIG_CMD_DATE . 1073 1074- Partition Labels (disklabels) Supported: 1075 Zero or more of the following: 1076 CONFIG_MAC_PARTITION Apple's MacOS partition table. 1077 CONFIG_DOS_PARTITION MS Dos partition table, traditional on the 1078 Intel architecture, USB sticks, etc. 1079 CONFIG_ISO_PARTITION ISO partition table, used on CDROM etc. 1080 CONFIG_EFI_PARTITION GPT partition table, common when EFI is the 1081 bootloader. Note 2TB partition limit; see 1082 disk/part_efi.c 1083 CONFIG_MTD_PARTITIONS Memory Technology Device partition table. 1084 1085 If IDE or SCSI support is enabled (CONFIG_CMD_IDE or 1086 CONFIG_SCSI) you must configure support for at 1087 least one non-MTD partition type as well. 1088 1089- IDE Reset method: 1090 CONFIG_IDE_RESET_ROUTINE - this is defined in several 1091 board configurations files but used nowhere! 1092 1093 CONFIG_IDE_RESET - is this is defined, IDE Reset will 1094 be performed by calling the function 1095 ide_set_reset(int reset) 1096 which has to be defined in a board specific file 1097 1098- ATAPI Support: 1099 CONFIG_ATAPI 1100 1101 Set this to enable ATAPI support. 1102 1103- LBA48 Support 1104 CONFIG_LBA48 1105 1106 Set this to enable support for disks larger than 137GB 1107 Also look at CONFIG_SYS_64BIT_LBA. 1108 Whithout these , LBA48 support uses 32bit variables and will 'only' 1109 support disks up to 2.1TB. 1110 1111 CONFIG_SYS_64BIT_LBA: 1112 When enabled, makes the IDE subsystem use 64bit sector addresses. 1113 Default is 32bit. 1114 1115- SCSI Support: 1116 At the moment only there is only support for the 1117 SYM53C8XX SCSI controller; define 1118 CONFIG_SCSI_SYM53C8XX to enable it. 1119 1120 CONFIG_SYS_SCSI_MAX_LUN [8], CONFIG_SYS_SCSI_MAX_SCSI_ID [7] and 1121 CONFIG_SYS_SCSI_MAX_DEVICE [CONFIG_SYS_SCSI_MAX_SCSI_ID * 1122 CONFIG_SYS_SCSI_MAX_LUN] can be adjusted to define the 1123 maximum numbers of LUNs, SCSI ID's and target 1124 devices. 1125 CONFIG_SYS_SCSI_SYM53C8XX_CCF to fix clock timing (80Mhz) 1126 1127 The environment variable 'scsidevs' is set to the number of 1128 SCSI devices found during the last scan. 1129 1130- NETWORK Support (PCI): 1131 CONFIG_E1000 1132 Support for Intel 8254x/8257x gigabit chips. 1133 1134 CONFIG_E1000_SPI 1135 Utility code for direct access to the SPI bus on Intel 8257x. 1136 This does not do anything useful unless you set at least one 1137 of CONFIG_CMD_E1000 or CONFIG_E1000_SPI_GENERIC. 1138 1139 CONFIG_E1000_SPI_GENERIC 1140 Allow generic access to the SPI bus on the Intel 8257x, for 1141 example with the "sspi" command. 1142 1143 CONFIG_CMD_E1000 1144 Management command for E1000 devices. When used on devices 1145 with SPI support you can reprogram the EEPROM from U-Boot. 1146 1147 CONFIG_EEPRO100 1148 Support for Intel 82557/82559/82559ER chips. 1149 Optional CONFIG_EEPRO100_SROM_WRITE enables EEPROM 1150 write routine for first time initialisation. 1151 1152 CONFIG_TULIP 1153 Support for Digital 2114x chips. 1154 Optional CONFIG_TULIP_SELECT_MEDIA for board specific 1155 modem chip initialisation (KS8761/QS6611). 1156 1157 CONFIG_NATSEMI 1158 Support for National dp83815 chips. 1159 1160 CONFIG_NS8382X 1161 Support for National dp8382[01] gigabit chips. 1162 1163- NETWORK Support (other): 1164 1165 CONFIG_DRIVER_AT91EMAC 1166 Support for AT91RM9200 EMAC. 1167 1168 CONFIG_RMII 1169 Define this to use reduced MII inteface 1170 1171 CONFIG_DRIVER_AT91EMAC_QUIET 1172 If this defined, the driver is quiet. 1173 The driver doen't show link status messages. 1174 1175 CONFIG_CALXEDA_XGMAC 1176 Support for the Calxeda XGMAC device 1177 1178 CONFIG_LAN91C96 1179 Support for SMSC's LAN91C96 chips. 1180 1181 CONFIG_LAN91C96_USE_32_BIT 1182 Define this to enable 32 bit addressing 1183 1184 CONFIG_SMC91111 1185 Support for SMSC's LAN91C111 chip 1186 1187 CONFIG_SMC91111_BASE 1188 Define this to hold the physical address 1189 of the device (I/O space) 1190 1191 CONFIG_SMC_USE_32_BIT 1192 Define this if data bus is 32 bits 1193 1194 CONFIG_SMC_USE_IOFUNCS 1195 Define this to use i/o functions instead of macros 1196 (some hardware wont work with macros) 1197 1198 CONFIG_DRIVER_TI_EMAC 1199 Support for davinci emac 1200 1201 CONFIG_SYS_DAVINCI_EMAC_PHY_COUNT 1202 Define this if you have more then 3 PHYs. 1203 1204 CONFIG_FTGMAC100 1205 Support for Faraday's FTGMAC100 Gigabit SoC Ethernet 1206 1207 CONFIG_FTGMAC100_EGIGA 1208 Define this to use GE link update with gigabit PHY. 1209 Define this if FTGMAC100 is connected to gigabit PHY. 1210 If your system has 10/100 PHY only, it might not occur 1211 wrong behavior. Because PHY usually return timeout or 1212 useless data when polling gigabit status and gigabit 1213 control registers. This behavior won't affect the 1214 correctnessof 10/100 link speed update. 1215 1216 CONFIG_SMC911X 1217 Support for SMSC's LAN911x and LAN921x chips 1218 1219 CONFIG_SMC911X_BASE 1220 Define this to hold the physical address 1221 of the device (I/O space) 1222 1223 CONFIG_SMC911X_32_BIT 1224 Define this if data bus is 32 bits 1225 1226 CONFIG_SMC911X_16_BIT 1227 Define this if data bus is 16 bits. If your processor 1228 automatically converts one 32 bit word to two 16 bit 1229 words you may also try CONFIG_SMC911X_32_BIT. 1230 1231 CONFIG_SH_ETHER 1232 Support for Renesas on-chip Ethernet controller 1233 1234 CONFIG_SH_ETHER_USE_PORT 1235 Define the number of ports to be used 1236 1237 CONFIG_SH_ETHER_PHY_ADDR 1238 Define the ETH PHY's address 1239 1240 CONFIG_SH_ETHER_CACHE_WRITEBACK 1241 If this option is set, the driver enables cache flush. 1242 1243- PWM Support: 1244 CONFIG_PWM_IMX 1245 Support for PWM module on the imx6. 1246 1247- TPM Support: 1248 CONFIG_TPM 1249 Support TPM devices. 1250 1251 CONFIG_TPM_TIS_INFINEON 1252 Support for Infineon i2c bus TPM devices. Only one device 1253 per system is supported at this time. 1254 1255 CONFIG_TPM_TIS_I2C_BURST_LIMITATION 1256 Define the burst count bytes upper limit 1257 1258 CONFIG_TPM_ST33ZP24 1259 Support for STMicroelectronics TPM devices. Requires DM_TPM support. 1260 1261 CONFIG_TPM_ST33ZP24_I2C 1262 Support for STMicroelectronics ST33ZP24 I2C devices. 1263 Requires TPM_ST33ZP24 and I2C. 1264 1265 CONFIG_TPM_ST33ZP24_SPI 1266 Support for STMicroelectronics ST33ZP24 SPI devices. 1267 Requires TPM_ST33ZP24 and SPI. 1268 1269 CONFIG_TPM_ATMEL_TWI 1270 Support for Atmel TWI TPM device. Requires I2C support. 1271 1272 CONFIG_TPM_TIS_LPC 1273 Support for generic parallel port TPM devices. Only one device 1274 per system is supported at this time. 1275 1276 CONFIG_TPM_TIS_BASE_ADDRESS 1277 Base address where the generic TPM device is mapped 1278 to. Contemporary x86 systems usually map it at 1279 0xfed40000. 1280 1281 CONFIG_CMD_TPM 1282 Add tpm monitor functions. 1283 Requires CONFIG_TPM. If CONFIG_TPM_AUTH_SESSIONS is set, also 1284 provides monitor access to authorized functions. 1285 1286 CONFIG_TPM 1287 Define this to enable the TPM support library which provides 1288 functional interfaces to some TPM commands. 1289 Requires support for a TPM device. 1290 1291 CONFIG_TPM_AUTH_SESSIONS 1292 Define this to enable authorized functions in the TPM library. 1293 Requires CONFIG_TPM and CONFIG_SHA1. 1294 1295- USB Support: 1296 At the moment only the UHCI host controller is 1297 supported (PIP405, MIP405, MPC5200); define 1298 CONFIG_USB_UHCI to enable it. 1299 define CONFIG_USB_KEYBOARD to enable the USB Keyboard 1300 and define CONFIG_USB_STORAGE to enable the USB 1301 storage devices. 1302 Note: 1303 Supported are USB Keyboards and USB Floppy drives 1304 (TEAC FD-05PUB). 1305 MPC5200 USB requires additional defines: 1306 CONFIG_USB_CLOCK 1307 for 528 MHz Clock: 0x0001bbbb 1308 CONFIG_PSC3_USB 1309 for USB on PSC3 1310 CONFIG_USB_CONFIG 1311 for differential drivers: 0x00001000 1312 for single ended drivers: 0x00005000 1313 for differential drivers on PSC3: 0x00000100 1314 for single ended drivers on PSC3: 0x00004100 1315 CONFIG_SYS_USB_EVENT_POLL 1316 May be defined to allow interrupt polling 1317 instead of using asynchronous interrupts 1318 1319 CONFIG_USB_EHCI_TXFIFO_THRESH enables setting of the 1320 txfilltuning field in the EHCI controller on reset. 1321 1322 CONFIG_USB_DWC2_REG_ADDR the physical CPU address of the DWC2 1323 HW module registers. 1324 1325- USB Device: 1326 Define the below if you wish to use the USB console. 1327 Once firmware is rebuilt from a serial console issue the 1328 command "setenv stdin usbtty; setenv stdout usbtty" and 1329 attach your USB cable. The Unix command "dmesg" should print 1330 it has found a new device. The environment variable usbtty 1331 can be set to gserial or cdc_acm to enable your device to 1332 appear to a USB host as a Linux gserial device or a 1333 Common Device Class Abstract Control Model serial device. 1334 If you select usbtty = gserial you should be able to enumerate 1335 a Linux host by 1336 # modprobe usbserial vendor=0xVendorID product=0xProductID 1337 else if using cdc_acm, simply setting the environment 1338 variable usbtty to be cdc_acm should suffice. The following 1339 might be defined in YourBoardName.h 1340 1341 CONFIG_USB_DEVICE 1342 Define this to build a UDC device 1343 1344 CONFIG_USB_TTY 1345 Define this to have a tty type of device available to 1346 talk to the UDC device 1347 1348 CONFIG_USBD_HS 1349 Define this to enable the high speed support for usb 1350 device and usbtty. If this feature is enabled, a routine 1351 int is_usbd_high_speed(void) 1352 also needs to be defined by the driver to dynamically poll 1353 whether the enumeration has succeded at high speed or full 1354 speed. 1355 1356 CONFIG_SYS_CONSOLE_IS_IN_ENV 1357 Define this if you want stdin, stdout &/or stderr to 1358 be set to usbtty. 1359 1360 mpc8xx: 1361 CONFIG_SYS_USB_EXTC_CLK 0xBLAH 1362 Derive USB clock from external clock "blah" 1363 - CONFIG_SYS_USB_EXTC_CLK 0x02 1364 1365 If you have a USB-IF assigned VendorID then you may wish to 1366 define your own vendor specific values either in BoardName.h 1367 or directly in usbd_vendor_info.h. If you don't define 1368 CONFIG_USBD_MANUFACTURER, CONFIG_USBD_PRODUCT_NAME, 1369 CONFIG_USBD_VENDORID and CONFIG_USBD_PRODUCTID, then U-Boot 1370 should pretend to be a Linux device to it's target host. 1371 1372 CONFIG_USBD_MANUFACTURER 1373 Define this string as the name of your company for 1374 - CONFIG_USBD_MANUFACTURER "my company" 1375 1376 CONFIG_USBD_PRODUCT_NAME 1377 Define this string as the name of your product 1378 - CONFIG_USBD_PRODUCT_NAME "acme usb device" 1379 1380 CONFIG_USBD_VENDORID 1381 Define this as your assigned Vendor ID from the USB 1382 Implementors Forum. This *must* be a genuine Vendor ID 1383 to avoid polluting the USB namespace. 1384 - CONFIG_USBD_VENDORID 0xFFFF 1385 1386 CONFIG_USBD_PRODUCTID 1387 Define this as the unique Product ID 1388 for your device 1389 - CONFIG_USBD_PRODUCTID 0xFFFF 1390 1391- ULPI Layer Support: 1392 The ULPI (UTMI Low Pin (count) Interface) PHYs are supported via 1393 the generic ULPI layer. The generic layer accesses the ULPI PHY 1394 via the platform viewport, so you need both the genric layer and 1395 the viewport enabled. Currently only Chipidea/ARC based 1396 viewport is supported. 1397 To enable the ULPI layer support, define CONFIG_USB_ULPI and 1398 CONFIG_USB_ULPI_VIEWPORT in your board configuration file. 1399 If your ULPI phy needs a different reference clock than the 1400 standard 24 MHz then you have to define CONFIG_ULPI_REF_CLK to 1401 the appropriate value in Hz. 1402 1403- MMC Support: 1404 The MMC controller on the Intel PXA is supported. To 1405 enable this define CONFIG_MMC. The MMC can be 1406 accessed from the boot prompt by mapping the device 1407 to physical memory similar to flash. Command line is 1408 enabled with CONFIG_CMD_MMC. The MMC driver also works with 1409 the FAT fs. This is enabled with CONFIG_CMD_FAT. 1410 1411 CONFIG_SH_MMCIF 1412 Support for Renesas on-chip MMCIF controller 1413 1414 CONFIG_SH_MMCIF_ADDR 1415 Define the base address of MMCIF registers 1416 1417 CONFIG_SH_MMCIF_CLK 1418 Define the clock frequency for MMCIF 1419 1420 CONFIG_SUPPORT_EMMC_BOOT 1421 Enable some additional features of the eMMC boot partitions. 1422 1423 CONFIG_SUPPORT_EMMC_RPMB 1424 Enable the commands for reading, writing and programming the 1425 key for the Replay Protection Memory Block partition in eMMC. 1426 1427- USB Device Firmware Update (DFU) class support: 1428 CONFIG_USB_FUNCTION_DFU 1429 This enables the USB portion of the DFU USB class 1430 1431 CONFIG_CMD_DFU 1432 This enables the command "dfu" which is used to have 1433 U-Boot create a DFU class device via USB. This command 1434 requires that the "dfu_alt_info" environment variable be 1435 set and define the alt settings to expose to the host. 1436 1437 CONFIG_DFU_MMC 1438 This enables support for exposing (e)MMC devices via DFU. 1439 1440 CONFIG_DFU_NAND 1441 This enables support for exposing NAND devices via DFU. 1442 1443 CONFIG_DFU_RAM 1444 This enables support for exposing RAM via DFU. 1445 Note: DFU spec refer to non-volatile memory usage, but 1446 allow usages beyond the scope of spec - here RAM usage, 1447 one that would help mostly the developer. 1448 1449 CONFIG_SYS_DFU_DATA_BUF_SIZE 1450 Dfu transfer uses a buffer before writing data to the 1451 raw storage device. Make the size (in bytes) of this buffer 1452 configurable. The size of this buffer is also configurable 1453 through the "dfu_bufsiz" environment variable. 1454 1455 CONFIG_SYS_DFU_MAX_FILE_SIZE 1456 When updating files rather than the raw storage device, 1457 we use a static buffer to copy the file into and then write 1458 the buffer once we've been given the whole file. Define 1459 this to the maximum filesize (in bytes) for the buffer. 1460 Default is 4 MiB if undefined. 1461 1462 DFU_DEFAULT_POLL_TIMEOUT 1463 Poll timeout [ms], is the timeout a device can send to the 1464 host. The host must wait for this timeout before sending 1465 a subsequent DFU_GET_STATUS request to the device. 1466 1467 DFU_MANIFEST_POLL_TIMEOUT 1468 Poll timeout [ms], which the device sends to the host when 1469 entering dfuMANIFEST state. Host waits this timeout, before 1470 sending again an USB request to the device. 1471 1472- USB Device Android Fastboot support: 1473 CONFIG_USB_FUNCTION_FASTBOOT 1474 This enables the USB part of the fastboot gadget 1475 1476 CONFIG_CMD_FASTBOOT 1477 This enables the command "fastboot" which enables the Android 1478 fastboot mode for the platform's USB device. Fastboot is a USB 1479 protocol for downloading images, flashing and device control 1480 used on Android devices. 1481 See doc/README.android-fastboot for more information. 1482 1483 CONFIG_ANDROID_BOOT_IMAGE 1484 This enables support for booting images which use the Android 1485 image format header. 1486 1487 CONFIG_FASTBOOT_BUF_ADDR 1488 The fastboot protocol requires a large memory buffer for 1489 downloads. Define this to the starting RAM address to use for 1490 downloaded images. 1491 1492 CONFIG_FASTBOOT_BUF_SIZE 1493 The fastboot protocol requires a large memory buffer for 1494 downloads. This buffer should be as large as possible for a 1495 platform. Define this to the size available RAM for fastboot. 1496 1497 CONFIG_FASTBOOT_FLASH 1498 The fastboot protocol includes a "flash" command for writing 1499 the downloaded image to a non-volatile storage device. Define 1500 this to enable the "fastboot flash" command. 1501 1502 CONFIG_FASTBOOT_FLASH_MMC_DEV 1503 The fastboot "flash" command requires additional information 1504 regarding the non-volatile storage device. Define this to 1505 the eMMC device that fastboot should use to store the image. 1506 1507 CONFIG_FASTBOOT_GPT_NAME 1508 The fastboot "flash" command supports writing the downloaded 1509 image to the Protective MBR and the Primary GUID Partition 1510 Table. (Additionally, this downloaded image is post-processed 1511 to generate and write the Backup GUID Partition Table.) 1512 This occurs when the specified "partition name" on the 1513 "fastboot flash" command line matches this value. 1514 The default is "gpt" if undefined. 1515 1516 CONFIG_FASTBOOT_MBR_NAME 1517 The fastboot "flash" command supports writing the downloaded 1518 image to DOS MBR. 1519 This occurs when the "partition name" specified on the 1520 "fastboot flash" command line matches this value. 1521 If not defined the default value "mbr" is used. 1522 1523- Journaling Flash filesystem support: 1524 CONFIG_JFFS2_NAND 1525 Define these for a default partition on a NAND device 1526 1527 CONFIG_SYS_JFFS2_FIRST_SECTOR, 1528 CONFIG_SYS_JFFS2_FIRST_BANK, CONFIG_SYS_JFFS2_NUM_BANKS 1529 Define these for a default partition on a NOR device 1530 1531- FAT(File Allocation Table) filesystem write function support: 1532 CONFIG_FAT_WRITE 1533 1534 Define this to enable support for saving memory data as a 1535 file in FAT formatted partition. 1536 1537 This will also enable the command "fatwrite" enabling the 1538 user to write files to FAT. 1539 1540- FAT(File Allocation Table) filesystem cluster size: 1541 CONFIG_FS_FAT_MAX_CLUSTSIZE 1542 1543 Define the max cluster size for fat operations else 1544 a default value of 65536 will be defined. 1545 1546- Keyboard Support: 1547 See Kconfig help for available keyboard drivers. 1548 1549 CONFIG_KEYBOARD 1550 1551 Define this to enable a custom keyboard support. 1552 This simply calls drv_keyboard_init() which must be 1553 defined in your board-specific files. This option is deprecated 1554 and is only used by novena. For new boards, use driver model 1555 instead. 1556 1557- Video support: 1558 CONFIG_FSL_DIU_FB 1559 Enable the Freescale DIU video driver. Reference boards for 1560 SOCs that have a DIU should define this macro to enable DIU 1561 support, and should also define these other macros: 1562 1563 CONFIG_SYS_DIU_ADDR 1564 CONFIG_VIDEO 1565 CONFIG_CFB_CONSOLE 1566 CONFIG_VIDEO_SW_CURSOR 1567 CONFIG_VGA_AS_SINGLE_DEVICE 1568 CONFIG_VIDEO_LOGO 1569 CONFIG_VIDEO_BMP_LOGO 1570 1571 The DIU driver will look for the 'video-mode' environment 1572 variable, and if defined, enable the DIU as a console during 1573 boot. See the documentation file doc/README.video for a 1574 description of this variable. 1575 1576- LCD Support: CONFIG_LCD 1577 1578 Define this to enable LCD support (for output to LCD 1579 display); also select one of the supported displays 1580 by defining one of these: 1581 1582 CONFIG_ATMEL_LCD: 1583 1584 HITACHI TX09D70VM1CCA, 3.5", 240x320. 1585 1586 CONFIG_NEC_NL6448AC33: 1587 1588 NEC NL6448AC33-18. Active, color, single scan. 1589 1590 CONFIG_NEC_NL6448BC20 1591 1592 NEC NL6448BC20-08. 6.5", 640x480. 1593 Active, color, single scan. 1594 1595 CONFIG_NEC_NL6448BC33_54 1596 1597 NEC NL6448BC33-54. 10.4", 640x480. 1598 Active, color, single scan. 1599 1600 CONFIG_SHARP_16x9 1601 1602 Sharp 320x240. Active, color, single scan. 1603 It isn't 16x9, and I am not sure what it is. 1604 1605 CONFIG_SHARP_LQ64D341 1606 1607 Sharp LQ64D341 display, 640x480. 1608 Active, color, single scan. 1609 1610 CONFIG_HLD1045 1611 1612 HLD1045 display, 640x480. 1613 Active, color, single scan. 1614 1615 CONFIG_OPTREX_BW 1616 1617 Optrex CBL50840-2 NF-FW 99 22 M5 1618 or 1619 Hitachi LMG6912RPFC-00T 1620 or 1621 Hitachi SP14Q002 1622 1623 320x240. Black & white. 1624 1625 CONFIG_LCD_ALIGNMENT 1626 1627 Normally the LCD is page-aligned (typically 4KB). If this is 1628 defined then the LCD will be aligned to this value instead. 1629 For ARM it is sometimes useful to use MMU_SECTION_SIZE 1630 here, since it is cheaper to change data cache settings on 1631 a per-section basis. 1632 1633 1634 CONFIG_LCD_ROTATION 1635 1636 Sometimes, for example if the display is mounted in portrait 1637 mode or even if it's mounted landscape but rotated by 180degree, 1638 we need to rotate our content of the display relative to the 1639 framebuffer, so that user can read the messages which are 1640 printed out. 1641 Once CONFIG_LCD_ROTATION is defined, the lcd_console will be 1642 initialized with a given rotation from "vl_rot" out of 1643 "vidinfo_t" which is provided by the board specific code. 1644 The value for vl_rot is coded as following (matching to 1645 fbcon=rotate:<n> linux-kernel commandline): 1646 0 = no rotation respectively 0 degree 1647 1 = 90 degree rotation 1648 2 = 180 degree rotation 1649 3 = 270 degree rotation 1650 1651 If CONFIG_LCD_ROTATION is not defined, the console will be 1652 initialized with 0degree rotation. 1653 1654 CONFIG_LCD_BMP_RLE8 1655 1656 Support drawing of RLE8-compressed bitmaps on the LCD. 1657 1658 CONFIG_I2C_EDID 1659 1660 Enables an 'i2c edid' command which can read EDID 1661 information over I2C from an attached LCD display. 1662 1663- Splash Screen Support: CONFIG_SPLASH_SCREEN 1664 1665 If this option is set, the environment is checked for 1666 a variable "splashimage". If found, the usual display 1667 of logo, copyright and system information on the LCD 1668 is suppressed and the BMP image at the address 1669 specified in "splashimage" is loaded instead. The 1670 console is redirected to the "nulldev", too. This 1671 allows for a "silent" boot where a splash screen is 1672 loaded very quickly after power-on. 1673 1674 CONFIG_SPLASHIMAGE_GUARD 1675 1676 If this option is set, then U-Boot will prevent the environment 1677 variable "splashimage" from being set to a problematic address 1678 (see doc/README.displaying-bmps). 1679 This option is useful for targets where, due to alignment 1680 restrictions, an improperly aligned BMP image will cause a data 1681 abort. If you think you will not have problems with unaligned 1682 accesses (for example because your toolchain prevents them) 1683 there is no need to set this option. 1684 1685 CONFIG_SPLASH_SCREEN_ALIGN 1686 1687 If this option is set the splash image can be freely positioned 1688 on the screen. Environment variable "splashpos" specifies the 1689 position as "x,y". If a positive number is given it is used as 1690 number of pixel from left/top. If a negative number is given it 1691 is used as number of pixel from right/bottom. You can also 1692 specify 'm' for centering the image. 1693 1694 Example: 1695 setenv splashpos m,m 1696 => image at center of screen 1697 1698 setenv splashpos 30,20 1699 => image at x = 30 and y = 20 1700 1701 setenv splashpos -10,m 1702 => vertically centered image 1703 at x = dspWidth - bmpWidth - 9 1704 1705- Gzip compressed BMP image support: CONFIG_VIDEO_BMP_GZIP 1706 1707 If this option is set, additionally to standard BMP 1708 images, gzipped BMP images can be displayed via the 1709 splashscreen support or the bmp command. 1710 1711- Run length encoded BMP image (RLE8) support: CONFIG_VIDEO_BMP_RLE8 1712 1713 If this option is set, 8-bit RLE compressed BMP images 1714 can be displayed via the splashscreen support or the 1715 bmp command. 1716 1717- Compression support: 1718 CONFIG_GZIP 1719 1720 Enabled by default to support gzip compressed images. 1721 1722 CONFIG_BZIP2 1723 1724 If this option is set, support for bzip2 compressed 1725 images is included. If not, only uncompressed and gzip 1726 compressed images are supported. 1727 1728 NOTE: the bzip2 algorithm requires a lot of RAM, so 1729 the malloc area (as defined by CONFIG_SYS_MALLOC_LEN) should 1730 be at least 4MB. 1731 1732 CONFIG_LZMA 1733 1734 If this option is set, support for lzma compressed 1735 images is included. 1736 1737 Note: The LZMA algorithm adds between 2 and 4KB of code and it 1738 requires an amount of dynamic memory that is given by the 1739 formula: 1740 1741 (1846 + 768 << (lc + lp)) * sizeof(uint16) 1742 1743 Where lc and lp stand for, respectively, Literal context bits 1744 and Literal pos bits. 1745 1746 This value is upper-bounded by 14MB in the worst case. Anyway, 1747 for a ~4MB large kernel image, we have lc=3 and lp=0 for a 1748 total amount of (1846 + 768 << (3 + 0)) * 2 = ~41KB... that is 1749 a very small buffer. 1750 1751 Use the lzmainfo tool to determinate the lc and lp values and 1752 then calculate the amount of needed dynamic memory (ensuring 1753 the appropriate CONFIG_SYS_MALLOC_LEN value). 1754 1755 CONFIG_LZO 1756 1757 If this option is set, support for LZO compressed images 1758 is included. 1759 1760- MII/PHY support: 1761 CONFIG_PHY_ADDR 1762 1763 The address of PHY on MII bus. 1764 1765 CONFIG_PHY_CLOCK_FREQ (ppc4xx) 1766 1767 The clock frequency of the MII bus 1768 1769 CONFIG_PHY_GIGE 1770 1771 If this option is set, support for speed/duplex 1772 detection of gigabit PHY is included. 1773 1774 CONFIG_PHY_RESET_DELAY 1775 1776 Some PHY like Intel LXT971A need extra delay after 1777 reset before any MII register access is possible. 1778 For such PHY, set this option to the usec delay 1779 required. (minimum 300usec for LXT971A) 1780 1781 CONFIG_PHY_CMD_DELAY (ppc4xx) 1782 1783 Some PHY like Intel LXT971A need extra delay after 1784 command issued before MII status register can be read 1785 1786- IP address: 1787 CONFIG_IPADDR 1788 1789 Define a default value for the IP address to use for 1790 the default Ethernet interface, in case this is not 1791 determined through e.g. bootp. 1792 (Environment variable "ipaddr") 1793 1794- Server IP address: 1795 CONFIG_SERVERIP 1796 1797 Defines a default value for the IP address of a TFTP 1798 server to contact when using the "tftboot" command. 1799 (Environment variable "serverip") 1800 1801 CONFIG_KEEP_SERVERADDR 1802 1803 Keeps the server's MAC address, in the env 'serveraddr' 1804 for passing to bootargs (like Linux's netconsole option) 1805 1806- Gateway IP address: 1807 CONFIG_GATEWAYIP 1808 1809 Defines a default value for the IP address of the 1810 default router where packets to other networks are 1811 sent to. 1812 (Environment variable "gatewayip") 1813 1814- Subnet mask: 1815 CONFIG_NETMASK 1816 1817 Defines a default value for the subnet mask (or 1818 routing prefix) which is used to determine if an IP 1819 address belongs to the local subnet or needs to be 1820 forwarded through a router. 1821 (Environment variable "netmask") 1822 1823- Multicast TFTP Mode: 1824 CONFIG_MCAST_TFTP 1825 1826 Defines whether you want to support multicast TFTP as per 1827 rfc-2090; for example to work with atftp. Lets lots of targets 1828 tftp down the same boot image concurrently. Note: the Ethernet 1829 driver in use must provide a function: mcast() to join/leave a 1830 multicast group. 1831 1832- BOOTP Recovery Mode: 1833 CONFIG_BOOTP_RANDOM_DELAY 1834 1835 If you have many targets in a network that try to 1836 boot using BOOTP, you may want to avoid that all 1837 systems send out BOOTP requests at precisely the same 1838 moment (which would happen for instance at recovery 1839 from a power failure, when all systems will try to 1840 boot, thus flooding the BOOTP server. Defining 1841 CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be 1842 inserted before sending out BOOTP requests. The 1843 following delays are inserted then: 1844 1845 1st BOOTP request: delay 0 ... 1 sec 1846 2nd BOOTP request: delay 0 ... 2 sec 1847 3rd BOOTP request: delay 0 ... 4 sec 1848 4th and following 1849 BOOTP requests: delay 0 ... 8 sec 1850 1851 CONFIG_BOOTP_ID_CACHE_SIZE 1852 1853 BOOTP packets are uniquely identified using a 32-bit ID. The 1854 server will copy the ID from client requests to responses and 1855 U-Boot will use this to determine if it is the destination of 1856 an incoming response. Some servers will check that addresses 1857 aren't in use before handing them out (usually using an ARP 1858 ping) and therefore take up to a few hundred milliseconds to 1859 respond. Network congestion may also influence the time it 1860 takes for a response to make it back to the client. If that 1861 time is too long, U-Boot will retransmit requests. In order 1862 to allow earlier responses to still be accepted after these 1863 retransmissions, U-Boot's BOOTP client keeps a small cache of 1864 IDs. The CONFIG_BOOTP_ID_CACHE_SIZE controls the size of this 1865 cache. The default is to keep IDs for up to four outstanding 1866 requests. Increasing this will allow U-Boot to accept offers 1867 from a BOOTP client in networks with unusually high latency. 1868 1869- DHCP Advanced Options: 1870 You can fine tune the DHCP functionality by defining 1871 CONFIG_BOOTP_* symbols: 1872 1873 CONFIG_BOOTP_SUBNETMASK 1874 CONFIG_BOOTP_GATEWAY 1875 CONFIG_BOOTP_HOSTNAME 1876 CONFIG_BOOTP_NISDOMAIN 1877 CONFIG_BOOTP_BOOTPATH 1878 CONFIG_BOOTP_BOOTFILESIZE 1879 CONFIG_BOOTP_DNS 1880 CONFIG_BOOTP_DNS2 1881 CONFIG_BOOTP_SEND_HOSTNAME 1882 CONFIG_BOOTP_NTPSERVER 1883 CONFIG_BOOTP_TIMEOFFSET 1884 CONFIG_BOOTP_VENDOREX 1885 CONFIG_BOOTP_MAY_FAIL 1886 1887 CONFIG_BOOTP_SERVERIP - TFTP server will be the serverip 1888 environment variable, not the BOOTP server. 1889 1890 CONFIG_BOOTP_MAY_FAIL - If the DHCP server is not found 1891 after the configured retry count, the call will fail 1892 instead of starting over. This can be used to fail over 1893 to Link-local IP address configuration if the DHCP server 1894 is not available. 1895 1896 CONFIG_BOOTP_DNS2 - If a DHCP client requests the DNS 1897 serverip from a DHCP server, it is possible that more 1898 than one DNS serverip is offered to the client. 1899 If CONFIG_BOOTP_DNS2 is enabled, the secondary DNS 1900 serverip will be stored in the additional environment 1901 variable "dnsip2". The first DNS serverip is always 1902 stored in the variable "dnsip", when CONFIG_BOOTP_DNS 1903 is defined. 1904 1905 CONFIG_BOOTP_SEND_HOSTNAME - Some DHCP servers are capable 1906 to do a dynamic update of a DNS server. To do this, they 1907 need the hostname of the DHCP requester. 1908 If CONFIG_BOOTP_SEND_HOSTNAME is defined, the content 1909 of the "hostname" environment variable is passed as 1910 option 12 to the DHCP server. 1911 1912 CONFIG_BOOTP_DHCP_REQUEST_DELAY 1913 1914 A 32bit value in microseconds for a delay between 1915 receiving a "DHCP Offer" and sending the "DHCP Request". 1916 This fixes a problem with certain DHCP servers that don't 1917 respond 100% of the time to a "DHCP request". E.g. On an 1918 AT91RM9200 processor running at 180MHz, this delay needed 1919 to be *at least* 15,000 usec before a Windows Server 2003 1920 DHCP server would reply 100% of the time. I recommend at 1921 least 50,000 usec to be safe. The alternative is to hope 1922 that one of the retries will be successful but note that 1923 the DHCP timeout and retry process takes a longer than 1924 this delay. 1925 1926 - Link-local IP address negotiation: 1927 Negotiate with other link-local clients on the local network 1928 for an address that doesn't require explicit configuration. 1929 This is especially useful if a DHCP server cannot be guaranteed 1930 to exist in all environments that the device must operate. 1931 1932 See doc/README.link-local for more information. 1933 1934 - CDP Options: 1935 CONFIG_CDP_DEVICE_ID 1936 1937 The device id used in CDP trigger frames. 1938 1939 CONFIG_CDP_DEVICE_ID_PREFIX 1940 1941 A two character string which is prefixed to the MAC address 1942 of the device. 1943 1944 CONFIG_CDP_PORT_ID 1945 1946 A printf format string which contains the ascii name of 1947 the port. Normally is set to "eth%d" which sets 1948 eth0 for the first Ethernet, eth1 for the second etc. 1949 1950 CONFIG_CDP_CAPABILITIES 1951 1952 A 32bit integer which indicates the device capabilities; 1953 0x00000010 for a normal host which does not forwards. 1954 1955 CONFIG_CDP_VERSION 1956 1957 An ascii string containing the version of the software. 1958 1959 CONFIG_CDP_PLATFORM 1960 1961 An ascii string containing the name of the platform. 1962 1963 CONFIG_CDP_TRIGGER 1964 1965 A 32bit integer sent on the trigger. 1966 1967 CONFIG_CDP_POWER_CONSUMPTION 1968 1969 A 16bit integer containing the power consumption of the 1970 device in .1 of milliwatts. 1971 1972 CONFIG_CDP_APPLIANCE_VLAN_TYPE 1973 1974 A byte containing the id of the VLAN. 1975 1976- Status LED: CONFIG_LED_STATUS 1977 1978 Several configurations allow to display the current 1979 status using a LED. For instance, the LED will blink 1980 fast while running U-Boot code, stop blinking as 1981 soon as a reply to a BOOTP request was received, and 1982 start blinking slow once the Linux kernel is running 1983 (supported by a status LED driver in the Linux 1984 kernel). Defining CONFIG_LED_STATUS enables this 1985 feature in U-Boot. 1986 1987 Additional options: 1988 1989 CONFIG_LED_STATUS_GPIO 1990 The status LED can be connected to a GPIO pin. 1991 In such cases, the gpio_led driver can be used as a 1992 status LED backend implementation. Define CONFIG_LED_STATUS_GPIO 1993 to include the gpio_led driver in the U-Boot binary. 1994 1995 CONFIG_GPIO_LED_INVERTED_TABLE 1996 Some GPIO connected LEDs may have inverted polarity in which 1997 case the GPIO high value corresponds to LED off state and 1998 GPIO low value corresponds to LED on state. 1999 In such cases CONFIG_GPIO_LED_INVERTED_TABLE may be defined 2000 with a list of GPIO LEDs that have inverted polarity. 2001 2002- CAN Support: CONFIG_CAN_DRIVER 2003 2004 Defining CONFIG_CAN_DRIVER enables CAN driver support 2005 on those systems that support this (optional) 2006 feature, like the TQM8xxL modules. 2007 2008- I2C Support: CONFIG_SYS_I2C 2009 2010 This enable the NEW i2c subsystem, and will allow you to use 2011 i2c commands at the u-boot command line (as long as you set 2012 CONFIG_CMD_I2C in CONFIG_COMMANDS) and communicate with i2c 2013 based realtime clock chips or other i2c devices. See 2014 common/cmd_i2c.c for a description of the command line 2015 interface. 2016 2017 ported i2c driver to the new framework: 2018 - drivers/i2c/soft_i2c.c: 2019 - activate first bus with CONFIG_SYS_I2C_SOFT define 2020 CONFIG_SYS_I2C_SOFT_SPEED and CONFIG_SYS_I2C_SOFT_SLAVE 2021 for defining speed and slave address 2022 - activate second bus with I2C_SOFT_DECLARATIONS2 define 2023 CONFIG_SYS_I2C_SOFT_SPEED_2 and CONFIG_SYS_I2C_SOFT_SLAVE_2 2024 for defining speed and slave address 2025 - activate third bus with I2C_SOFT_DECLARATIONS3 define 2026 CONFIG_SYS_I2C_SOFT_SPEED_3 and CONFIG_SYS_I2C_SOFT_SLAVE_3 2027 for defining speed and slave address 2028 - activate fourth bus with I2C_SOFT_DECLARATIONS4 define 2029 CONFIG_SYS_I2C_SOFT_SPEED_4 and CONFIG_SYS_I2C_SOFT_SLAVE_4 2030 for defining speed and slave address 2031 2032 - drivers/i2c/fsl_i2c.c: 2033 - activate i2c driver with CONFIG_SYS_I2C_FSL 2034 define CONFIG_SYS_FSL_I2C_OFFSET for setting the register 2035 offset CONFIG_SYS_FSL_I2C_SPEED for the i2c speed and 2036 CONFIG_SYS_FSL_I2C_SLAVE for the slave addr of the first 2037 bus. 2038 - If your board supports a second fsl i2c bus, define 2039 CONFIG_SYS_FSL_I2C2_OFFSET for the register offset 2040 CONFIG_SYS_FSL_I2C2_SPEED for the speed and 2041 CONFIG_SYS_FSL_I2C2_SLAVE for the slave address of the 2042 second bus. 2043 2044 - drivers/i2c/tegra_i2c.c: 2045 - activate this driver with CONFIG_SYS_I2C_TEGRA 2046 - This driver adds 4 i2c buses with a fix speed from 2047 100000 and the slave addr 0! 2048 2049 - drivers/i2c/ppc4xx_i2c.c 2050 - activate this driver with CONFIG_SYS_I2C_PPC4XX 2051 - CONFIG_SYS_I2C_PPC4XX_CH0 activate hardware channel 0 2052 - CONFIG_SYS_I2C_PPC4XX_CH1 activate hardware channel 1 2053 2054 - drivers/i2c/i2c_mxc.c 2055 - activate this driver with CONFIG_SYS_I2C_MXC 2056 - enable bus 1 with CONFIG_SYS_I2C_MXC_I2C1 2057 - enable bus 2 with CONFIG_SYS_I2C_MXC_I2C2 2058 - enable bus 3 with CONFIG_SYS_I2C_MXC_I2C3 2059 - enable bus 4 with CONFIG_SYS_I2C_MXC_I2C4 2060 - define speed for bus 1 with CONFIG_SYS_MXC_I2C1_SPEED 2061 - define slave for bus 1 with CONFIG_SYS_MXC_I2C1_SLAVE 2062 - define speed for bus 2 with CONFIG_SYS_MXC_I2C2_SPEED 2063 - define slave for bus 2 with CONFIG_SYS_MXC_I2C2_SLAVE 2064 - define speed for bus 3 with CONFIG_SYS_MXC_I2C3_SPEED 2065 - define slave for bus 3 with CONFIG_SYS_MXC_I2C3_SLAVE 2066 - define speed for bus 4 with CONFIG_SYS_MXC_I2C4_SPEED 2067 - define slave for bus 4 with CONFIG_SYS_MXC_I2C4_SLAVE 2068 If those defines are not set, default value is 100000 2069 for speed, and 0 for slave. 2070 2071 - drivers/i2c/rcar_i2c.c: 2072 - activate this driver with CONFIG_SYS_I2C_RCAR 2073 - This driver adds 4 i2c buses 2074 2075 - CONFIG_SYS_RCAR_I2C0_BASE for setting the register channel 0 2076 - CONFIG_SYS_RCAR_I2C0_SPEED for for the speed channel 0 2077 - CONFIG_SYS_RCAR_I2C1_BASE for setting the register channel 1 2078 - CONFIG_SYS_RCAR_I2C1_SPEED for for the speed channel 1 2079 - CONFIG_SYS_RCAR_I2C2_BASE for setting the register channel 2 2080 - CONFIG_SYS_RCAR_I2C2_SPEED for for the speed channel 2 2081 - CONFIG_SYS_RCAR_I2C3_BASE for setting the register channel 3 2082 - CONFIG_SYS_RCAR_I2C3_SPEED for for the speed channel 3 2083 - CONFIF_SYS_RCAR_I2C_NUM_CONTROLLERS for number of i2c buses 2084 2085 - drivers/i2c/sh_i2c.c: 2086 - activate this driver with CONFIG_SYS_I2C_SH 2087 - This driver adds from 2 to 5 i2c buses 2088 2089 - CONFIG_SYS_I2C_SH_BASE0 for setting the register channel 0 2090 - CONFIG_SYS_I2C_SH_SPEED0 for for the speed channel 0 2091 - CONFIG_SYS_I2C_SH_BASE1 for setting the register channel 1 2092 - CONFIG_SYS_I2C_SH_SPEED1 for for the speed channel 1 2093 - CONFIG_SYS_I2C_SH_BASE2 for setting the register channel 2 2094 - CONFIG_SYS_I2C_SH_SPEED2 for for the speed channel 2 2095 - CONFIG_SYS_I2C_SH_BASE3 for setting the register channel 3 2096 - CONFIG_SYS_I2C_SH_SPEED3 for for the speed channel 3 2097 - CONFIG_SYS_I2C_SH_BASE4 for setting the register channel 4 2098 - CONFIG_SYS_I2C_SH_SPEED4 for for the speed channel 4 2099 - CONFIG_SYS_I2C_SH_NUM_CONTROLLERS for number of i2c buses 2100 2101 - drivers/i2c/omap24xx_i2c.c 2102 - activate this driver with CONFIG_SYS_I2C_OMAP24XX 2103 - CONFIG_SYS_OMAP24_I2C_SPEED speed channel 0 2104 - CONFIG_SYS_OMAP24_I2C_SLAVE slave addr channel 0 2105 - CONFIG_SYS_OMAP24_I2C_SPEED1 speed channel 1 2106 - CONFIG_SYS_OMAP24_I2C_SLAVE1 slave addr channel 1 2107 - CONFIG_SYS_OMAP24_I2C_SPEED2 speed channel 2 2108 - CONFIG_SYS_OMAP24_I2C_SLAVE2 slave addr channel 2 2109 - CONFIG_SYS_OMAP24_I2C_SPEED3 speed channel 3 2110 - CONFIG_SYS_OMAP24_I2C_SLAVE3 slave addr channel 3 2111 - CONFIG_SYS_OMAP24_I2C_SPEED4 speed channel 4 2112 - CONFIG_SYS_OMAP24_I2C_SLAVE4 slave addr channel 4 2113 2114 - drivers/i2c/zynq_i2c.c 2115 - activate this driver with CONFIG_SYS_I2C_ZYNQ 2116 - set CONFIG_SYS_I2C_ZYNQ_SPEED for speed setting 2117 - set CONFIG_SYS_I2C_ZYNQ_SLAVE for slave addr 2118 2119 - drivers/i2c/s3c24x0_i2c.c: 2120 - activate this driver with CONFIG_SYS_I2C_S3C24X0 2121 - This driver adds i2c buses (11 for Exynos5250, Exynos5420 2122 9 i2c buses for Exynos4 and 1 for S3C24X0 SoCs from Samsung) 2123 with a fix speed from 100000 and the slave addr 0! 2124 2125 - drivers/i2c/ihs_i2c.c 2126 - activate this driver with CONFIG_SYS_I2C_IHS 2127 - CONFIG_SYS_I2C_IHS_CH0 activate hardware channel 0 2128 - CONFIG_SYS_I2C_IHS_SPEED_0 speed channel 0 2129 - CONFIG_SYS_I2C_IHS_SLAVE_0 slave addr channel 0 2130 - CONFIG_SYS_I2C_IHS_CH1 activate hardware channel 1 2131 - CONFIG_SYS_I2C_IHS_SPEED_1 speed channel 1 2132 - CONFIG_SYS_I2C_IHS_SLAVE_1 slave addr channel 1 2133 - CONFIG_SYS_I2C_IHS_CH2 activate hardware channel 2 2134 - CONFIG_SYS_I2C_IHS_SPEED_2 speed channel 2 2135 - CONFIG_SYS_I2C_IHS_SLAVE_2 slave addr channel 2 2136 - CONFIG_SYS_I2C_IHS_CH3 activate hardware channel 3 2137 - CONFIG_SYS_I2C_IHS_SPEED_3 speed channel 3 2138 - CONFIG_SYS_I2C_IHS_SLAVE_3 slave addr channel 3 2139 - activate dual channel with CONFIG_SYS_I2C_IHS_DUAL 2140 - CONFIG_SYS_I2C_IHS_SPEED_0_1 speed channel 0_1 2141 - CONFIG_SYS_I2C_IHS_SLAVE_0_1 slave addr channel 0_1 2142 - CONFIG_SYS_I2C_IHS_SPEED_1_1 speed channel 1_1 2143 - CONFIG_SYS_I2C_IHS_SLAVE_1_1 slave addr channel 1_1 2144 - CONFIG_SYS_I2C_IHS_SPEED_2_1 speed channel 2_1 2145 - CONFIG_SYS_I2C_IHS_SLAVE_2_1 slave addr channel 2_1 2146 - CONFIG_SYS_I2C_IHS_SPEED_3_1 speed channel 3_1 2147 - CONFIG_SYS_I2C_IHS_SLAVE_3_1 slave addr channel 3_1 2148 2149 additional defines: 2150 2151 CONFIG_SYS_NUM_I2C_BUSES 2152 Hold the number of i2c buses you want to use. 2153 2154 CONFIG_SYS_I2C_DIRECT_BUS 2155 define this, if you don't use i2c muxes on your hardware. 2156 if CONFIG_SYS_I2C_MAX_HOPS is not defined or == 0 you can 2157 omit this define. 2158 2159 CONFIG_SYS_I2C_MAX_HOPS 2160 define how many muxes are maximal consecutively connected 2161 on one i2c bus. If you not use i2c muxes, omit this 2162 define. 2163 2164 CONFIG_SYS_I2C_BUSES 2165 hold a list of buses you want to use, only used if 2166 CONFIG_SYS_I2C_DIRECT_BUS is not defined, for example 2167 a board with CONFIG_SYS_I2C_MAX_HOPS = 1 and 2168 CONFIG_SYS_NUM_I2C_BUSES = 9: 2169 2170 CONFIG_SYS_I2C_BUSES {{0, {I2C_NULL_HOP}}, \ 2171 {0, {{I2C_MUX_PCA9547, 0x70, 1}}}, \ 2172 {0, {{I2C_MUX_PCA9547, 0x70, 2}}}, \ 2173 {0, {{I2C_MUX_PCA9547, 0x70, 3}}}, \ 2174 {0, {{I2C_MUX_PCA9547, 0x70, 4}}}, \ 2175 {0, {{I2C_MUX_PCA9547, 0x70, 5}}}, \ 2176 {1, {I2C_NULL_HOP}}, \ 2177 {1, {{I2C_MUX_PCA9544, 0x72, 1}}}, \ 2178 {1, {{I2C_MUX_PCA9544, 0x72, 2}}}, \ 2179 } 2180 2181 which defines 2182 bus 0 on adapter 0 without a mux 2183 bus 1 on adapter 0 with a PCA9547 on address 0x70 port 1 2184 bus 2 on adapter 0 with a PCA9547 on address 0x70 port 2 2185 bus 3 on adapter 0 with a PCA9547 on address 0x70 port 3 2186 bus 4 on adapter 0 with a PCA9547 on address 0x70 port 4 2187 bus 5 on adapter 0 with a PCA9547 on address 0x70 port 5 2188 bus 6 on adapter 1 without a mux 2189 bus 7 on adapter 1 with a PCA9544 on address 0x72 port 1 2190 bus 8 on adapter 1 with a PCA9544 on address 0x72 port 2 2191 2192 If you do not have i2c muxes on your board, omit this define. 2193 2194- Legacy I2C Support: 2195 If you use the software i2c interface (CONFIG_SYS_I2C_SOFT) 2196 then the following macros need to be defined (examples are 2197 from include/configs/lwmon.h): 2198 2199 I2C_INIT 2200 2201 (Optional). Any commands necessary to enable the I2C 2202 controller or configure ports. 2203 2204 eg: #define I2C_INIT (immr->im_cpm.cp_pbdir |= PB_SCL) 2205 2206 I2C_PORT 2207 2208 (Only for MPC8260 CPU). The I/O port to use (the code 2209 assumes both bits are on the same port). Valid values 2210 are 0..3 for ports A..D. 2211 2212 I2C_ACTIVE 2213 2214 The code necessary to make the I2C data line active 2215 (driven). If the data line is open collector, this 2216 define can be null. 2217 2218 eg: #define I2C_ACTIVE (immr->im_cpm.cp_pbdir |= PB_SDA) 2219 2220 I2C_TRISTATE 2221 2222 The code necessary to make the I2C data line tri-stated 2223 (inactive). If the data line is open collector, this 2224 define can be null. 2225 2226 eg: #define I2C_TRISTATE (immr->im_cpm.cp_pbdir &= ~PB_SDA) 2227 2228 I2C_READ 2229 2230 Code that returns true if the I2C data line is high, 2231 false if it is low. 2232 2233 eg: #define I2C_READ ((immr->im_cpm.cp_pbdat & PB_SDA) != 0) 2234 2235 I2C_SDA(bit) 2236 2237 If <bit> is true, sets the I2C data line high. If it 2238 is false, it clears it (low). 2239 2240 eg: #define I2C_SDA(bit) \ 2241 if(bit) immr->im_cpm.cp_pbdat |= PB_SDA; \ 2242 else immr->im_cpm.cp_pbdat &= ~PB_SDA 2243 2244 I2C_SCL(bit) 2245 2246 If <bit> is true, sets the I2C clock line high. If it 2247 is false, it clears it (low). 2248 2249 eg: #define I2C_SCL(bit) \ 2250 if(bit) immr->im_cpm.cp_pbdat |= PB_SCL; \ 2251 else immr->im_cpm.cp_pbdat &= ~PB_SCL 2252 2253 I2C_DELAY 2254 2255 This delay is invoked four times per clock cycle so this 2256 controls the rate of data transfer. The data rate thus 2257 is 1 / (I2C_DELAY * 4). Often defined to be something 2258 like: 2259 2260 #define I2C_DELAY udelay(2) 2261 2262 CONFIG_SOFT_I2C_GPIO_SCL / CONFIG_SOFT_I2C_GPIO_SDA 2263 2264 If your arch supports the generic GPIO framework (asm/gpio.h), 2265 then you may alternatively define the two GPIOs that are to be 2266 used as SCL / SDA. Any of the previous I2C_xxx macros will 2267 have GPIO-based defaults assigned to them as appropriate. 2268 2269 You should define these to the GPIO value as given directly to 2270 the generic GPIO functions. 2271 2272 CONFIG_SYS_I2C_INIT_BOARD 2273 2274 When a board is reset during an i2c bus transfer 2275 chips might think that the current transfer is still 2276 in progress. On some boards it is possible to access 2277 the i2c SCLK line directly, either by using the 2278 processor pin as a GPIO or by having a second pin 2279 connected to the bus. If this option is defined a 2280 custom i2c_init_board() routine in boards/xxx/board.c 2281 is run early in the boot sequence. 2282 2283 CONFIG_I2C_MULTI_BUS 2284 2285 This option allows the use of multiple I2C buses, each of which 2286 must have a controller. At any point in time, only one bus is 2287 active. To switch to a different bus, use the 'i2c dev' command. 2288 Note that bus numbering is zero-based. 2289 2290 CONFIG_SYS_I2C_NOPROBES 2291 2292 This option specifies a list of I2C devices that will be skipped 2293 when the 'i2c probe' command is issued. If CONFIG_I2C_MULTI_BUS 2294 is set, specify a list of bus-device pairs. Otherwise, specify 2295 a 1D array of device addresses 2296 2297 e.g. 2298 #undef CONFIG_I2C_MULTI_BUS 2299 #define CONFIG_SYS_I2C_NOPROBES {0x50,0x68} 2300 2301 will skip addresses 0x50 and 0x68 on a board with one I2C bus 2302 2303 #define CONFIG_I2C_MULTI_BUS 2304 #define CONFIG_SYS_I2C_NOPROBES {{0,0x50},{0,0x68},{1,0x54}} 2305 2306 will skip addresses 0x50 and 0x68 on bus 0 and address 0x54 on bus 1 2307 2308 CONFIG_SYS_SPD_BUS_NUM 2309 2310 If defined, then this indicates the I2C bus number for DDR SPD. 2311 If not defined, then U-Boot assumes that SPD is on I2C bus 0. 2312 2313 CONFIG_SYS_RTC_BUS_NUM 2314 2315 If defined, then this indicates the I2C bus number for the RTC. 2316 If not defined, then U-Boot assumes that RTC is on I2C bus 0. 2317 2318 CONFIG_SOFT_I2C_READ_REPEATED_START 2319 2320 defining this will force the i2c_read() function in 2321 the soft_i2c driver to perform an I2C repeated start 2322 between writing the address pointer and reading the 2323 data. If this define is omitted the default behaviour 2324 of doing a stop-start sequence will be used. Most I2C 2325 devices can use either method, but some require one or 2326 the other. 2327 2328- SPI Support: CONFIG_SPI 2329 2330 Enables SPI driver (so far only tested with 2331 SPI EEPROM, also an instance works with Crystal A/D and 2332 D/As on the SACSng board) 2333 2334 CONFIG_SH_SPI 2335 2336 Enables the driver for SPI controller on SuperH. Currently 2337 only SH7757 is supported. 2338 2339 CONFIG_SOFT_SPI 2340 2341 Enables a software (bit-bang) SPI driver rather than 2342 using hardware support. This is a general purpose 2343 driver that only requires three general I/O port pins 2344 (two outputs, one input) to function. If this is 2345 defined, the board configuration must define several 2346 SPI configuration items (port pins to use, etc). For 2347 an example, see include/configs/sacsng.h. 2348 2349 CONFIG_HARD_SPI 2350 2351 Enables a hardware SPI driver for general-purpose reads 2352 and writes. As with CONFIG_SOFT_SPI, the board configuration 2353 must define a list of chip-select function pointers. 2354 Currently supported on some MPC8xxx processors. For an 2355 example, see include/configs/mpc8349emds.h. 2356 2357 CONFIG_MXC_SPI 2358 2359 Enables the driver for the SPI controllers on i.MX and MXC 2360 SoCs. Currently i.MX31/35/51 are supported. 2361 2362 CONFIG_SYS_SPI_MXC_WAIT 2363 Timeout for waiting until spi transfer completed. 2364 default: (CONFIG_SYS_HZ/100) /* 10 ms */ 2365 2366- FPGA Support: CONFIG_FPGA 2367 2368 Enables FPGA subsystem. 2369 2370 CONFIG_FPGA_<vendor> 2371 2372 Enables support for specific chip vendors. 2373 (ALTERA, XILINX) 2374 2375 CONFIG_FPGA_<family> 2376 2377 Enables support for FPGA family. 2378 (SPARTAN2, SPARTAN3, VIRTEX2, CYCLONE2, ACEX1K, ACEX) 2379 2380 CONFIG_FPGA_COUNT 2381 2382 Specify the number of FPGA devices to support. 2383 2384 CONFIG_SYS_FPGA_PROG_FEEDBACK 2385 2386 Enable printing of hash marks during FPGA configuration. 2387 2388 CONFIG_SYS_FPGA_CHECK_BUSY 2389 2390 Enable checks on FPGA configuration interface busy 2391 status by the configuration function. This option 2392 will require a board or device specific function to 2393 be written. 2394 2395 CONFIG_FPGA_DELAY 2396 2397 If defined, a function that provides delays in the FPGA 2398 configuration driver. 2399 2400 CONFIG_SYS_FPGA_CHECK_CTRLC 2401 Allow Control-C to interrupt FPGA configuration 2402 2403 CONFIG_SYS_FPGA_CHECK_ERROR 2404 2405 Check for configuration errors during FPGA bitfile 2406 loading. For example, abort during Virtex II 2407 configuration if the INIT_B line goes low (which 2408 indicated a CRC error). 2409 2410 CONFIG_SYS_FPGA_WAIT_INIT 2411 2412 Maximum time to wait for the INIT_B line to de-assert 2413 after PROB_B has been de-asserted during a Virtex II 2414 FPGA configuration sequence. The default time is 500 2415 ms. 2416 2417 CONFIG_SYS_FPGA_WAIT_BUSY 2418 2419 Maximum time to wait for BUSY to de-assert during 2420 Virtex II FPGA configuration. The default is 5 ms. 2421 2422 CONFIG_SYS_FPGA_WAIT_CONFIG 2423 2424 Time to wait after FPGA configuration. The default is 2425 200 ms. 2426 2427- Configuration Management: 2428 CONFIG_BUILD_TARGET 2429 2430 Some SoCs need special image types (e.g. U-Boot binary 2431 with a special header) as build targets. By defining 2432 CONFIG_BUILD_TARGET in the SoC / board header, this 2433 special image will be automatically built upon calling 2434 make / buildman. 2435 2436 CONFIG_IDENT_STRING 2437 2438 If defined, this string will be added to the U-Boot 2439 version information (U_BOOT_VERSION) 2440 2441- Vendor Parameter Protection: 2442 2443 U-Boot considers the values of the environment 2444 variables "serial#" (Board Serial Number) and 2445 "ethaddr" (Ethernet Address) to be parameters that 2446 are set once by the board vendor / manufacturer, and 2447 protects these variables from casual modification by 2448 the user. Once set, these variables are read-only, 2449 and write or delete attempts are rejected. You can 2450 change this behaviour: 2451 2452 If CONFIG_ENV_OVERWRITE is #defined in your config 2453 file, the write protection for vendor parameters is 2454 completely disabled. Anybody can change or delete 2455 these parameters. 2456 2457 Alternatively, if you define _both_ an ethaddr in the 2458 default env _and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default 2459 Ethernet address is installed in the environment, 2460 which can be changed exactly ONCE by the user. [The 2461 serial# is unaffected by this, i. e. it remains 2462 read-only.] 2463 2464 The same can be accomplished in a more flexible way 2465 for any variable by configuring the type of access 2466 to allow for those variables in the ".flags" variable 2467 or define CONFIG_ENV_FLAGS_LIST_STATIC. 2468 2469- Protected RAM: 2470 CONFIG_PRAM 2471 2472 Define this variable to enable the reservation of 2473 "protected RAM", i. e. RAM which is not overwritten 2474 by U-Boot. Define CONFIG_PRAM to hold the number of 2475 kB you want to reserve for pRAM. You can overwrite 2476 this default value by defining an environment 2477 variable "pram" to the number of kB you want to 2478 reserve. Note that the board info structure will 2479 still show the full amount of RAM. If pRAM is 2480 reserved, a new environment variable "mem" will 2481 automatically be defined to hold the amount of 2482 remaining RAM in a form that can be passed as boot 2483 argument to Linux, for instance like that: 2484 2485 setenv bootargs ... mem=\${mem} 2486 saveenv 2487 2488 This way you can tell Linux not to use this memory, 2489 either, which results in a memory region that will 2490 not be affected by reboots. 2491 2492 *WARNING* If your board configuration uses automatic 2493 detection of the RAM size, you must make sure that 2494 this memory test is non-destructive. So far, the 2495 following board configurations are known to be 2496 "pRAM-clean": 2497 2498 IVMS8, IVML24, SPD8xx, TQM8xxL, 2499 HERMES, IP860, RPXlite, LWMON, 2500 FLAGADM, TQM8260 2501 2502- Access to physical memory region (> 4GB) 2503 Some basic support is provided for operations on memory not 2504 normally accessible to U-Boot - e.g. some architectures 2505 support access to more than 4GB of memory on 32-bit 2506 machines using physical address extension or similar. 2507 Define CONFIG_PHYSMEM to access this basic support, which 2508 currently only supports clearing the memory. 2509 2510- Error Recovery: 2511 CONFIG_PANIC_HANG 2512 2513 Define this variable to stop the system in case of a 2514 fatal error, so that you have to reset it manually. 2515 This is probably NOT a good idea for an embedded 2516 system where you want the system to reboot 2517 automatically as fast as possible, but it may be 2518 useful during development since you can try to debug 2519 the conditions that lead to the situation. 2520 2521 CONFIG_NET_RETRY_COUNT 2522 2523 This variable defines the number of retries for 2524 network operations like ARP, RARP, TFTP, or BOOTP 2525 before giving up the operation. If not defined, a 2526 default value of 5 is used. 2527 2528 CONFIG_ARP_TIMEOUT 2529 2530 Timeout waiting for an ARP reply in milliseconds. 2531 2532 CONFIG_NFS_TIMEOUT 2533 2534 Timeout in milliseconds used in NFS protocol. 2535 If you encounter "ERROR: Cannot umount" in nfs command, 2536 try longer timeout such as 2537 #define CONFIG_NFS_TIMEOUT 10000UL 2538 2539- Command Interpreter: 2540 CONFIG_AUTO_COMPLETE 2541 2542 Enable auto completion of commands using TAB. 2543 2544 CONFIG_SYS_PROMPT_HUSH_PS2 2545 2546 This defines the secondary prompt string, which is 2547 printed when the command interpreter needs more input 2548 to complete a command. Usually "> ". 2549 2550 Note: 2551 2552 In the current implementation, the local variables 2553 space and global environment variables space are 2554 separated. Local variables are those you define by 2555 simply typing `name=value'. To access a local 2556 variable later on, you have write `$name' or 2557 `${name}'; to execute the contents of a variable 2558 directly type `$name' at the command prompt. 2559 2560 Global environment variables are those you use 2561 setenv/printenv to work with. To run a command stored 2562 in such a variable, you need to use the run command, 2563 and you must not use the '$' sign to access them. 2564 2565 To store commands and special characters in a 2566 variable, please use double quotation marks 2567 surrounding the whole text of the variable, instead 2568 of the backslashes before semicolons and special 2569 symbols. 2570 2571- Command Line Editing and History: 2572 CONFIG_CMDLINE_EDITING 2573 2574 Enable editing and History functions for interactive 2575 command line input operations 2576 2577- Command Line PS1/PS2 support: 2578 CONFIG_CMDLINE_PS_SUPPORT 2579 2580 Enable support for changing the command prompt string 2581 at run-time. Only static string is supported so far. 2582 The string is obtained from environment variables PS1 2583 and PS2. 2584 2585- Default Environment: 2586 CONFIG_EXTRA_ENV_SETTINGS 2587 2588 Define this to contain any number of null terminated 2589 strings (variable = value pairs) that will be part of 2590 the default environment compiled into the boot image. 2591 2592 For example, place something like this in your 2593 board's config file: 2594 2595 #define CONFIG_EXTRA_ENV_SETTINGS \ 2596 "myvar1=value1\0" \ 2597 "myvar2=value2\0" 2598 2599 Warning: This method is based on knowledge about the 2600 internal format how the environment is stored by the 2601 U-Boot code. This is NOT an official, exported 2602 interface! Although it is unlikely that this format 2603 will change soon, there is no guarantee either. 2604 You better know what you are doing here. 2605 2606 Note: overly (ab)use of the default environment is 2607 discouraged. Make sure to check other ways to preset 2608 the environment like the "source" command or the 2609 boot command first. 2610 2611 CONFIG_ENV_VARS_UBOOT_CONFIG 2612 2613 Define this in order to add variables describing the 2614 U-Boot build configuration to the default environment. 2615 These will be named arch, cpu, board, vendor, and soc. 2616 2617 Enabling this option will cause the following to be defined: 2618 2619 - CONFIG_SYS_ARCH 2620 - CONFIG_SYS_CPU 2621 - CONFIG_SYS_BOARD 2622 - CONFIG_SYS_VENDOR 2623 - CONFIG_SYS_SOC 2624 2625 CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG 2626 2627 Define this in order to add variables describing certain 2628 run-time determined information about the hardware to the 2629 environment. These will be named board_name, board_rev. 2630 2631 CONFIG_DELAY_ENVIRONMENT 2632 2633 Normally the environment is loaded when the board is 2634 initialised so that it is available to U-Boot. This inhibits 2635 that so that the environment is not available until 2636 explicitly loaded later by U-Boot code. With CONFIG_OF_CONTROL 2637 this is instead controlled by the value of 2638 /config/load-environment. 2639 2640- DataFlash Support: 2641 CONFIG_HAS_DATAFLASH 2642 2643 Defining this option enables DataFlash features and 2644 allows to read/write in Dataflash via the standard 2645 commands cp, md... 2646 2647- Serial Flash support 2648 CONFIG_CMD_SF 2649 2650 Defining this option enables SPI flash commands 2651 'sf probe/read/write/erase/update'. 2652 2653 Usage requires an initial 'probe' to define the serial 2654 flash parameters, followed by read/write/erase/update 2655 commands. 2656 2657 The following defaults may be provided by the platform 2658 to handle the common case when only a single serial 2659 flash is present on the system. 2660 2661 CONFIG_SF_DEFAULT_BUS Bus identifier 2662 CONFIG_SF_DEFAULT_CS Chip-select 2663 CONFIG_SF_DEFAULT_MODE (see include/spi.h) 2664 CONFIG_SF_DEFAULT_SPEED in Hz 2665 2666 CONFIG_CMD_SF_TEST 2667 2668 Define this option to include a destructive SPI flash 2669 test ('sf test'). 2670 2671 CONFIG_SF_DUAL_FLASH Dual flash memories 2672 2673 Define this option to use dual flash support where two flash 2674 memories can be connected with a given cs line. 2675 Currently Xilinx Zynq qspi supports these type of connections. 2676 2677- SystemACE Support: 2678 CONFIG_SYSTEMACE 2679 2680 Adding this option adds support for Xilinx SystemACE 2681 chips attached via some sort of local bus. The address 2682 of the chip must also be defined in the 2683 CONFIG_SYS_SYSTEMACE_BASE macro. For example: 2684 2685 #define CONFIG_SYSTEMACE 2686 #define CONFIG_SYS_SYSTEMACE_BASE 0xf0000000 2687 2688 When SystemACE support is added, the "ace" device type 2689 becomes available to the fat commands, i.e. fatls. 2690 2691- TFTP Fixed UDP Port: 2692 CONFIG_TFTP_PORT 2693 2694 If this is defined, the environment variable tftpsrcp 2695 is used to supply the TFTP UDP source port value. 2696 If tftpsrcp isn't defined, the normal pseudo-random port 2697 number generator is used. 2698 2699 Also, the environment variable tftpdstp is used to supply 2700 the TFTP UDP destination port value. If tftpdstp isn't 2701 defined, the normal port 69 is used. 2702 2703 The purpose for tftpsrcp is to allow a TFTP server to 2704 blindly start the TFTP transfer using the pre-configured 2705 target IP address and UDP port. This has the effect of 2706 "punching through" the (Windows XP) firewall, allowing 2707 the remainder of the TFTP transfer to proceed normally. 2708 A better solution is to properly configure the firewall, 2709 but sometimes that is not allowed. 2710 2711- Hashing support: 2712 CONFIG_HASH_VERIFY 2713 2714 Enable the hash verify command (hash -v). This adds to code 2715 size a little. 2716 2717 Note: There is also a sha1sum command, which should perhaps 2718 be deprecated in favour of 'hash sha1'. 2719 2720- bootcount support: 2721 CONFIG_BOOTCOUNT_LIMIT 2722 2723 This enables the bootcounter support, see: 2724 http://www.denx.de/wiki/DULG/UBootBootCountLimit 2725 2726 CONFIG_AT91SAM9XE 2727 enable special bootcounter support on at91sam9xe based boards. 2728 CONFIG_SOC_DA8XX 2729 enable special bootcounter support on da850 based boards. 2730 CONFIG_BOOTCOUNT_RAM 2731 enable support for the bootcounter in RAM 2732 CONFIG_BOOTCOUNT_I2C 2733 enable support for the bootcounter on an i2c (like RTC) device. 2734 CONFIG_SYS_I2C_RTC_ADDR = i2c chip address 2735 CONFIG_SYS_BOOTCOUNT_ADDR = i2c addr which is used for 2736 the bootcounter. 2737 CONFIG_BOOTCOUNT_ALEN = address len 2738 2739- Show boot progress: 2740 CONFIG_SHOW_BOOT_PROGRESS 2741 2742 Defining this option allows to add some board- 2743 specific code (calling a user-provided function 2744 "show_boot_progress(int)") that enables you to show 2745 the system's boot progress on some display (for 2746 example, some LED's) on your board. At the moment, 2747 the following checkpoints are implemented: 2748 2749 2750Legacy uImage format: 2751 2752 Arg Where When 2753 1 common/cmd_bootm.c before attempting to boot an image 2754 -1 common/cmd_bootm.c Image header has bad magic number 2755 2 common/cmd_bootm.c Image header has correct magic number 2756 -2 common/cmd_bootm.c Image header has bad checksum 2757 3 common/cmd_bootm.c Image header has correct checksum 2758 -3 common/cmd_bootm.c Image data has bad checksum 2759 4 common/cmd_bootm.c Image data has correct checksum 2760 -4 common/cmd_bootm.c Image is for unsupported architecture 2761 5 common/cmd_bootm.c Architecture check OK 2762 -5 common/cmd_bootm.c Wrong Image Type (not kernel, multi) 2763 6 common/cmd_bootm.c Image Type check OK 2764 -6 common/cmd_bootm.c gunzip uncompression error 2765 -7 common/cmd_bootm.c Unimplemented compression type 2766 7 common/cmd_bootm.c Uncompression OK 2767 8 common/cmd_bootm.c No uncompress/copy overwrite error 2768 -9 common/cmd_bootm.c Unsupported OS (not Linux, BSD, VxWorks, QNX) 2769 2770 9 common/image.c Start initial ramdisk verification 2771 -10 common/image.c Ramdisk header has bad magic number 2772 -11 common/image.c Ramdisk header has bad checksum 2773 10 common/image.c Ramdisk header is OK 2774 -12 common/image.c Ramdisk data has bad checksum 2775 11 common/image.c Ramdisk data has correct checksum 2776 12 common/image.c Ramdisk verification complete, start loading 2777 -13 common/image.c Wrong Image Type (not PPC Linux ramdisk) 2778 13 common/image.c Start multifile image verification 2779 14 common/image.c No initial ramdisk, no multifile, continue. 2780 2781 15 arch/<arch>/lib/bootm.c All preparation done, transferring control to OS 2782 2783 -30 arch/powerpc/lib/board.c Fatal error, hang the system 2784 -31 post/post.c POST test failed, detected by post_output_backlog() 2785 -32 post/post.c POST test failed, detected by post_run_single() 2786 2787 34 common/cmd_doc.c before loading a Image from a DOC device 2788 -35 common/cmd_doc.c Bad usage of "doc" command 2789 35 common/cmd_doc.c correct usage of "doc" command 2790 -36 common/cmd_doc.c No boot device 2791 36 common/cmd_doc.c correct boot device 2792 -37 common/cmd_doc.c Unknown Chip ID on boot device 2793 37 common/cmd_doc.c correct chip ID found, device available 2794 -38 common/cmd_doc.c Read Error on boot device 2795 38 common/cmd_doc.c reading Image header from DOC device OK 2796 -39 common/cmd_doc.c Image header has bad magic number 2797 39 common/cmd_doc.c Image header has correct magic number 2798 -40 common/cmd_doc.c Error reading Image from DOC device 2799 40 common/cmd_doc.c Image header has correct magic number 2800 41 common/cmd_ide.c before loading a Image from a IDE device 2801 -42 common/cmd_ide.c Bad usage of "ide" command 2802 42 common/cmd_ide.c correct usage of "ide" command 2803 -43 common/cmd_ide.c No boot device 2804 43 common/cmd_ide.c boot device found 2805 -44 common/cmd_ide.c Device not available 2806 44 common/cmd_ide.c Device available 2807 -45 common/cmd_ide.c wrong partition selected 2808 45 common/cmd_ide.c partition selected 2809 -46 common/cmd_ide.c Unknown partition table 2810 46 common/cmd_ide.c valid partition table found 2811 -47 common/cmd_ide.c Invalid partition type 2812 47 common/cmd_ide.c correct partition type 2813 -48 common/cmd_ide.c Error reading Image Header on boot device 2814 48 common/cmd_ide.c reading Image Header from IDE device OK 2815 -49 common/cmd_ide.c Image header has bad magic number 2816 49 common/cmd_ide.c Image header has correct magic number 2817 -50 common/cmd_ide.c Image header has bad checksum 2818 50 common/cmd_ide.c Image header has correct checksum 2819 -51 common/cmd_ide.c Error reading Image from IDE device 2820 51 common/cmd_ide.c reading Image from IDE device OK 2821 52 common/cmd_nand.c before loading a Image from a NAND device 2822 -53 common/cmd_nand.c Bad usage of "nand" command 2823 53 common/cmd_nand.c correct usage of "nand" command 2824 -54 common/cmd_nand.c No boot device 2825 54 common/cmd_nand.c boot device found 2826 -55 common/cmd_nand.c Unknown Chip ID on boot device 2827 55 common/cmd_nand.c correct chip ID found, device available 2828 -56 common/cmd_nand.c Error reading Image Header on boot device 2829 56 common/cmd_nand.c reading Image Header from NAND device OK 2830 -57 common/cmd_nand.c Image header has bad magic number 2831 57 common/cmd_nand.c Image header has correct magic number 2832 -58 common/cmd_nand.c Error reading Image from NAND device 2833 58 common/cmd_nand.c reading Image from NAND device OK 2834 2835 -60 common/env_common.c Environment has a bad CRC, using default 2836 2837 64 net/eth.c starting with Ethernet configuration. 2838 -64 net/eth.c no Ethernet found. 2839 65 net/eth.c Ethernet found. 2840 2841 -80 common/cmd_net.c usage wrong 2842 80 common/cmd_net.c before calling net_loop() 2843 -81 common/cmd_net.c some error in net_loop() occurred 2844 81 common/cmd_net.c net_loop() back without error 2845 -82 common/cmd_net.c size == 0 (File with size 0 loaded) 2846 82 common/cmd_net.c trying automatic boot 2847 83 common/cmd_net.c running "source" command 2848 -83 common/cmd_net.c some error in automatic boot or "source" command 2849 84 common/cmd_net.c end without errors 2850 2851FIT uImage format: 2852 2853 Arg Where When 2854 100 common/cmd_bootm.c Kernel FIT Image has correct format 2855 -100 common/cmd_bootm.c Kernel FIT Image has incorrect format 2856 101 common/cmd_bootm.c No Kernel subimage unit name, using configuration 2857 -101 common/cmd_bootm.c Can't get configuration for kernel subimage 2858 102 common/cmd_bootm.c Kernel unit name specified 2859 -103 common/cmd_bootm.c Can't get kernel subimage node offset 2860 103 common/cmd_bootm.c Found configuration node 2861 104 common/cmd_bootm.c Got kernel subimage node offset 2862 -104 common/cmd_bootm.c Kernel subimage hash verification failed 2863 105 common/cmd_bootm.c Kernel subimage hash verification OK 2864 -105 common/cmd_bootm.c Kernel subimage is for unsupported architecture 2865 106 common/cmd_bootm.c Architecture check OK 2866 -106 common/cmd_bootm.c Kernel subimage has wrong type 2867 107 common/cmd_bootm.c Kernel subimage type OK 2868 -107 common/cmd_bootm.c Can't get kernel subimage data/size 2869 108 common/cmd_bootm.c Got kernel subimage data/size 2870 -108 common/cmd_bootm.c Wrong image type (not legacy, FIT) 2871 -109 common/cmd_bootm.c Can't get kernel subimage type 2872 -110 common/cmd_bootm.c Can't get kernel subimage comp 2873 -111 common/cmd_bootm.c Can't get kernel subimage os 2874 -112 common/cmd_bootm.c Can't get kernel subimage load address 2875 -113 common/cmd_bootm.c Image uncompress/copy overwrite error 2876 2877 120 common/image.c Start initial ramdisk verification 2878 -120 common/image.c Ramdisk FIT image has incorrect format 2879 121 common/image.c Ramdisk FIT image has correct format 2880 122 common/image.c No ramdisk subimage unit name, using configuration 2881 -122 common/image.c Can't get configuration for ramdisk subimage 2882 123 common/image.c Ramdisk unit name specified 2883 -124 common/image.c Can't get ramdisk subimage node offset 2884 125 common/image.c Got ramdisk subimage node offset 2885 -125 common/image.c Ramdisk subimage hash verification failed 2886 126 common/image.c Ramdisk subimage hash verification OK 2887 -126 common/image.c Ramdisk subimage for unsupported architecture 2888 127 common/image.c Architecture check OK 2889 -127 common/image.c Can't get ramdisk subimage data/size 2890 128 common/image.c Got ramdisk subimage data/size 2891 129 common/image.c Can't get ramdisk load address 2892 -129 common/image.c Got ramdisk load address 2893 2894 -130 common/cmd_doc.c Incorrect FIT image format 2895 131 common/cmd_doc.c FIT image format OK 2896 2897 -140 common/cmd_ide.c Incorrect FIT image format 2898 141 common/cmd_ide.c FIT image format OK 2899 2900 -150 common/cmd_nand.c Incorrect FIT image format 2901 151 common/cmd_nand.c FIT image format OK 2902 2903- legacy image format: 2904 CONFIG_IMAGE_FORMAT_LEGACY 2905 enables the legacy image format support in U-Boot. 2906 2907 Default: 2908 enabled if CONFIG_FIT_SIGNATURE is not defined. 2909 2910 CONFIG_DISABLE_IMAGE_LEGACY 2911 disable the legacy image format 2912 2913 This define is introduced, as the legacy image format is 2914 enabled per default for backward compatibility. 2915 2916- Standalone program support: 2917 CONFIG_STANDALONE_LOAD_ADDR 2918 2919 This option defines a board specific value for the 2920 address where standalone program gets loaded, thus 2921 overwriting the architecture dependent default 2922 settings. 2923 2924- Frame Buffer Address: 2925 CONFIG_FB_ADDR 2926 2927 Define CONFIG_FB_ADDR if you want to use specific 2928 address for frame buffer. This is typically the case 2929 when using a graphics controller has separate video 2930 memory. U-Boot will then place the frame buffer at 2931 the given address instead of dynamically reserving it 2932 in system RAM by calling lcd_setmem(), which grabs 2933 the memory for the frame buffer depending on the 2934 configured panel size. 2935 2936 Please see board_init_f function. 2937 2938- Automatic software updates via TFTP server 2939 CONFIG_UPDATE_TFTP 2940 CONFIG_UPDATE_TFTP_CNT_MAX 2941 CONFIG_UPDATE_TFTP_MSEC_MAX 2942 2943 These options enable and control the auto-update feature; 2944 for a more detailed description refer to doc/README.update. 2945 2946- MTD Support (mtdparts command, UBI support) 2947 CONFIG_MTD_DEVICE 2948 2949 Adds the MTD device infrastructure from the Linux kernel. 2950 Needed for mtdparts command support. 2951 2952 CONFIG_MTD_PARTITIONS 2953 2954 Adds the MTD partitioning infrastructure from the Linux 2955 kernel. Needed for UBI support. 2956 2957- UBI support 2958 CONFIG_CMD_UBI 2959 2960 Adds commands for interacting with MTD partitions formatted 2961 with the UBI flash translation layer 2962 2963 Requires also defining CONFIG_RBTREE 2964 2965 CONFIG_UBI_SILENCE_MSG 2966 2967 Make the verbose messages from UBI stop printing. This leaves 2968 warnings and errors enabled. 2969 2970 2971 CONFIG_MTD_UBI_WL_THRESHOLD 2972 This parameter defines the maximum difference between the highest 2973 erase counter value and the lowest erase counter value of eraseblocks 2974 of UBI devices. When this threshold is exceeded, UBI starts performing 2975 wear leveling by means of moving data from eraseblock with low erase 2976 counter to eraseblocks with high erase counter. 2977 2978 The default value should be OK for SLC NAND flashes, NOR flashes and 2979 other flashes which have eraseblock life-cycle 100000 or more. 2980 However, in case of MLC NAND flashes which typically have eraseblock 2981 life-cycle less than 10000, the threshold should be lessened (e.g., 2982 to 128 or 256, although it does not have to be power of 2). 2983 2984 default: 4096 2985 2986 CONFIG_MTD_UBI_BEB_LIMIT 2987 This option specifies the maximum bad physical eraseblocks UBI 2988 expects on the MTD device (per 1024 eraseblocks). If the 2989 underlying flash does not admit of bad eraseblocks (e.g. NOR 2990 flash), this value is ignored. 2991 2992 NAND datasheets often specify the minimum and maximum NVM 2993 (Number of Valid Blocks) for the flashes' endurance lifetime. 2994 The maximum expected bad eraseblocks per 1024 eraseblocks 2995 then can be calculated as "1024 * (1 - MinNVB / MaxNVB)", 2996 which gives 20 for most NANDs (MaxNVB is basically the total 2997 count of eraseblocks on the chip). 2998 2999 To put it differently, if this value is 20, UBI will try to 3000 reserve about 1.9% of physical eraseblocks for bad blocks 3001 handling. And that will be 1.9% of eraseblocks on the entire 3002 NAND chip, not just the MTD partition UBI attaches. This means 3003 that if you have, say, a NAND flash chip admits maximum 40 bad 3004 eraseblocks, and it is split on two MTD partitions of the same 3005 size, UBI will reserve 40 eraseblocks when attaching a 3006 partition. 3007 3008 default: 20 3009 3010 CONFIG_MTD_UBI_FASTMAP 3011 Fastmap is a mechanism which allows attaching an UBI device 3012 in nearly constant time. Instead of scanning the whole MTD device it 3013 only has to locate a checkpoint (called fastmap) on the device. 3014 The on-flash fastmap contains all information needed to attach 3015 the device. Using fastmap makes only sense on large devices where 3016 attaching by scanning takes long. UBI will not automatically install 3017 a fastmap on old images, but you can set the UBI parameter 3018 CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT to 1 if you want so. Please note 3019 that fastmap-enabled images are still usable with UBI implementations 3020 without fastmap support. On typical flash devices the whole fastmap 3021 fits into one PEB. UBI will reserve PEBs to hold two fastmaps. 3022 3023 CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 3024 Set this parameter to enable fastmap automatically on images 3025 without a fastmap. 3026 default: 0 3027 3028 CONFIG_MTD_UBI_FM_DEBUG 3029 Enable UBI fastmap debug 3030 default: 0 3031 3032- UBIFS support 3033 CONFIG_CMD_UBIFS 3034 3035 Adds commands for interacting with UBI volumes formatted as 3036 UBIFS. UBIFS is read-only in u-boot. 3037 3038 Requires UBI support as well as CONFIG_LZO 3039 3040 CONFIG_UBIFS_SILENCE_MSG 3041 3042 Make the verbose messages from UBIFS stop printing. This leaves 3043 warnings and errors enabled. 3044 3045- SPL framework 3046 CONFIG_SPL 3047 Enable building of SPL globally. 3048 3049 CONFIG_SPL_LDSCRIPT 3050 LDSCRIPT for linking the SPL binary. 3051 3052 CONFIG_SPL_MAX_FOOTPRINT 3053 Maximum size in memory allocated to the SPL, BSS included. 3054 When defined, the linker checks that the actual memory 3055 used by SPL from _start to __bss_end does not exceed it. 3056 CONFIG_SPL_MAX_FOOTPRINT and CONFIG_SPL_BSS_MAX_SIZE 3057 must not be both defined at the same time. 3058 3059 CONFIG_SPL_MAX_SIZE 3060 Maximum size of the SPL image (text, data, rodata, and 3061 linker lists sections), BSS excluded. 3062 When defined, the linker checks that the actual size does 3063 not exceed it. 3064 3065 CONFIG_SPL_TEXT_BASE 3066 TEXT_BASE for linking the SPL binary. 3067 3068 CONFIG_SPL_RELOC_TEXT_BASE 3069 Address to relocate to. If unspecified, this is equal to 3070 CONFIG_SPL_TEXT_BASE (i.e. no relocation is done). 3071 3072 CONFIG_SPL_BSS_START_ADDR 3073 Link address for the BSS within the SPL binary. 3074 3075 CONFIG_SPL_BSS_MAX_SIZE 3076 Maximum size in memory allocated to the SPL BSS. 3077 When defined, the linker checks that the actual memory used 3078 by SPL from __bss_start to __bss_end does not exceed it. 3079 CONFIG_SPL_MAX_FOOTPRINT and CONFIG_SPL_BSS_MAX_SIZE 3080 must not be both defined at the same time. 3081 3082 CONFIG_SPL_STACK 3083 Adress of the start of the stack SPL will use 3084 3085 CONFIG_SPL_PANIC_ON_RAW_IMAGE 3086 When defined, SPL will panic() if the image it has 3087 loaded does not have a signature. 3088 Defining this is useful when code which loads images 3089 in SPL cannot guarantee that absolutely all read errors 3090 will be caught. 3091 An example is the LPC32XX MLC NAND driver, which will 3092 consider that a completely unreadable NAND block is bad, 3093 and thus should be skipped silently. 3094 3095 CONFIG_SPL_RELOC_STACK 3096 Adress of the start of the stack SPL will use after 3097 relocation. If unspecified, this is equal to 3098 CONFIG_SPL_STACK. 3099 3100 CONFIG_SYS_SPL_MALLOC_START 3101 Starting address of the malloc pool used in SPL. 3102 When this option is set the full malloc is used in SPL and 3103 it is set up by spl_init() and before that, the simple malloc() 3104 can be used if CONFIG_SYS_MALLOC_F is defined. 3105 3106 CONFIG_SYS_SPL_MALLOC_SIZE 3107 The size of the malloc pool used in SPL. 3108 3109 CONFIG_SPL_FRAMEWORK 3110 Enable the SPL framework under common/. This framework 3111 supports MMC, NAND and YMODEM loading of U-Boot and NAND 3112 NAND loading of the Linux Kernel. 3113 3114 CONFIG_SPL_OS_BOOT 3115 Enable booting directly to an OS from SPL. 3116 See also: doc/README.falcon 3117 3118 CONFIG_SPL_DISPLAY_PRINT 3119 For ARM, enable an optional function to print more information 3120 about the running system. 3121 3122 CONFIG_SPL_INIT_MINIMAL 3123 Arch init code should be built for a very small image 3124 3125 CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_PARTITION 3126 Partition on the MMC to load U-Boot from when the MMC is being 3127 used in raw mode 3128 3129 CONFIG_SYS_MMCSD_RAW_MODE_KERNEL_SECTOR 3130 Sector to load kernel uImage from when MMC is being 3131 used in raw mode (for Falcon mode) 3132 3133 CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTOR, 3134 CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTORS 3135 Sector and number of sectors to load kernel argument 3136 parameters from when MMC is being used in raw mode 3137 (for falcon mode) 3138 3139 CONFIG_SYS_MMCSD_FS_BOOT_PARTITION 3140 Partition on the MMC to load U-Boot from when the MMC is being 3141 used in fs mode 3142 3143 CONFIG_SPL_FS_LOAD_PAYLOAD_NAME 3144 Filename to read to load U-Boot when reading from filesystem 3145 3146 CONFIG_SPL_FS_LOAD_KERNEL_NAME 3147 Filename to read to load kernel uImage when reading 3148 from filesystem (for Falcon mode) 3149 3150 CONFIG_SPL_FS_LOAD_ARGS_NAME 3151 Filename to read to load kernel argument parameters 3152 when reading from filesystem (for Falcon mode) 3153 3154 CONFIG_SPL_MPC83XX_WAIT_FOR_NAND 3155 Set this for NAND SPL on PPC mpc83xx targets, so that 3156 start.S waits for the rest of the SPL to load before 3157 continuing (the hardware starts execution after just 3158 loading the first page rather than the full 4K). 3159 3160 CONFIG_SPL_SKIP_RELOCATE 3161 Avoid SPL relocation 3162 3163 CONFIG_SPL_NAND_BASE 3164 Include nand_base.c in the SPL. Requires 3165 CONFIG_SPL_NAND_DRIVERS. 3166 3167 CONFIG_SPL_NAND_DRIVERS 3168 SPL uses normal NAND drivers, not minimal drivers. 3169 3170 CONFIG_SPL_NAND_ECC 3171 Include standard software ECC in the SPL 3172 3173 CONFIG_SPL_NAND_SIMPLE 3174 Support for NAND boot using simple NAND drivers that 3175 expose the cmd_ctrl() interface. 3176 3177 CONFIG_SPL_UBI 3178 Support for a lightweight UBI (fastmap) scanner and 3179 loader 3180 3181 CONFIG_SPL_NAND_RAW_ONLY 3182 Support to boot only raw u-boot.bin images. Use this only 3183 if you need to save space. 3184 3185 CONFIG_SPL_COMMON_INIT_DDR 3186 Set for common ddr init with serial presence detect in 3187 SPL binary. 3188 3189 CONFIG_SYS_NAND_5_ADDR_CYCLE, CONFIG_SYS_NAND_PAGE_COUNT, 3190 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE, 3191 CONFIG_SYS_NAND_BLOCK_SIZE, CONFIG_SYS_NAND_BAD_BLOCK_POS, 3192 CONFIG_SYS_NAND_ECCPOS, CONFIG_SYS_NAND_ECCSIZE, 3193 CONFIG_SYS_NAND_ECCBYTES 3194 Defines the size and behavior of the NAND that SPL uses 3195 to read U-Boot 3196 3197 CONFIG_SPL_NAND_BOOT 3198 Add support NAND boot 3199 3200 CONFIG_SYS_NAND_U_BOOT_OFFS 3201 Location in NAND to read U-Boot from 3202 3203 CONFIG_SYS_NAND_U_BOOT_DST 3204 Location in memory to load U-Boot to 3205 3206 CONFIG_SYS_NAND_U_BOOT_SIZE 3207 Size of image to load 3208 3209 CONFIG_SYS_NAND_U_BOOT_START 3210 Entry point in loaded image to jump to 3211 3212 CONFIG_SYS_NAND_HW_ECC_OOBFIRST 3213 Define this if you need to first read the OOB and then the 3214 data. This is used, for example, on davinci platforms. 3215 3216 CONFIG_SPL_OMAP3_ID_NAND 3217 Support for an OMAP3-specific set of functions to return the 3218 ID and MFR of the first attached NAND chip, if present. 3219 3220 CONFIG_SPL_RAM_DEVICE 3221 Support for running image already present in ram, in SPL binary 3222 3223 CONFIG_SPL_PAD_TO 3224 Image offset to which the SPL should be padded before appending 3225 the SPL payload. By default, this is defined as 3226 CONFIG_SPL_MAX_SIZE, or 0 if CONFIG_SPL_MAX_SIZE is undefined. 3227 CONFIG_SPL_PAD_TO must be either 0, meaning to append the SPL 3228 payload without any padding, or >= CONFIG_SPL_MAX_SIZE. 3229 3230 CONFIG_SPL_TARGET 3231 Final target image containing SPL and payload. Some SPLs 3232 use an arch-specific makefile fragment instead, for 3233 example if more than one image needs to be produced. 3234 3235 CONFIG_FIT_SPL_PRINT 3236 Printing information about a FIT image adds quite a bit of 3237 code to SPL. So this is normally disabled in SPL. Use this 3238 option to re-enable it. This will affect the output of the 3239 bootm command when booting a FIT image. 3240 3241- TPL framework 3242 CONFIG_TPL 3243 Enable building of TPL globally. 3244 3245 CONFIG_TPL_PAD_TO 3246 Image offset to which the TPL should be padded before appending 3247 the TPL payload. By default, this is defined as 3248 CONFIG_SPL_MAX_SIZE, or 0 if CONFIG_SPL_MAX_SIZE is undefined. 3249 CONFIG_SPL_PAD_TO must be either 0, meaning to append the SPL 3250 payload without any padding, or >= CONFIG_SPL_MAX_SIZE. 3251 3252- Interrupt support (PPC): 3253 3254 There are common interrupt_init() and timer_interrupt() 3255 for all PPC archs. interrupt_init() calls interrupt_init_cpu() 3256 for CPU specific initialization. interrupt_init_cpu() 3257 should set decrementer_count to appropriate value. If 3258 CPU resets decrementer automatically after interrupt 3259 (ppc4xx) it should set decrementer_count to zero. 3260 timer_interrupt() calls timer_interrupt_cpu() for CPU 3261 specific handling. If board has watchdog / status_led 3262 / other_activity_monitor it works automatically from 3263 general timer_interrupt(). 3264 3265 3266Board initialization settings: 3267------------------------------ 3268 3269During Initialization u-boot calls a number of board specific functions 3270to allow the preparation of board specific prerequisites, e.g. pin setup 3271before drivers are initialized. To enable these callbacks the 3272following configuration macros have to be defined. Currently this is 3273architecture specific, so please check arch/your_architecture/lib/board.c 3274typically in board_init_f() and board_init_r(). 3275 3276- CONFIG_BOARD_EARLY_INIT_F: Call board_early_init_f() 3277- CONFIG_BOARD_EARLY_INIT_R: Call board_early_init_r() 3278- CONFIG_BOARD_LATE_INIT: Call board_late_init() 3279- CONFIG_BOARD_POSTCLK_INIT: Call board_postclk_init() 3280 3281Configuration Settings: 3282----------------------- 3283 3284- CONFIG_SYS_SUPPORT_64BIT_DATA: Defined automatically if compiled as 64-bit. 3285 Optionally it can be defined to support 64-bit memory commands. 3286 3287- CONFIG_SYS_LONGHELP: Defined when you want long help messages included; 3288 undefine this when you're short of memory. 3289 3290- CONFIG_SYS_HELP_CMD_WIDTH: Defined when you want to override the default 3291 width of the commands listed in the 'help' command output. 3292 3293- CONFIG_SYS_PROMPT: This is what U-Boot prints on the console to 3294 prompt for user input. 3295 3296- CONFIG_SYS_CBSIZE: Buffer size for input from the Console 3297 3298- CONFIG_SYS_PBSIZE: Buffer size for Console output 3299 3300- CONFIG_SYS_MAXARGS: max. Number of arguments accepted for monitor commands 3301 3302- CONFIG_SYS_BARGSIZE: Buffer size for Boot Arguments which are passed to 3303 the application (usually a Linux kernel) when it is 3304 booted 3305 3306- CONFIG_SYS_BAUDRATE_TABLE: 3307 List of legal baudrate settings for this board. 3308 3309- CONFIG_SYS_MEMTEST_START, CONFIG_SYS_MEMTEST_END: 3310 Begin and End addresses of the area used by the 3311 simple memory test. 3312 3313- CONFIG_SYS_ALT_MEMTEST: 3314 Enable an alternate, more extensive memory test. 3315 3316- CONFIG_SYS_MEMTEST_SCRATCH: 3317 Scratch address used by the alternate memory test 3318 You only need to set this if address zero isn't writeable 3319 3320- CONFIG_SYS_MEM_RESERVE_SECURE 3321 Only implemented for ARMv8 for now. 3322 If defined, the size of CONFIG_SYS_MEM_RESERVE_SECURE memory 3323 is substracted from total RAM and won't be reported to OS. 3324 This memory can be used as secure memory. A variable 3325 gd->arch.secure_ram is used to track the location. In systems 3326 the RAM base is not zero, or RAM is divided into banks, 3327 this variable needs to be recalcuated to get the address. 3328 3329- CONFIG_SYS_MEM_TOP_HIDE: 3330 If CONFIG_SYS_MEM_TOP_HIDE is defined in the board config header, 3331 this specified memory area will get subtracted from the top 3332 (end) of RAM and won't get "touched" at all by U-Boot. By 3333 fixing up gd->ram_size the Linux kernel should gets passed 3334 the now "corrected" memory size and won't touch it either. 3335 This should work for arch/ppc and arch/powerpc. Only Linux 3336 board ports in arch/powerpc with bootwrapper support that 3337 recalculate the memory size from the SDRAM controller setup 3338 will have to get fixed in Linux additionally. 3339 3340 This option can be used as a workaround for the 440EPx/GRx 3341 CHIP 11 errata where the last 256 bytes in SDRAM shouldn't 3342 be touched. 3343 3344 WARNING: Please make sure that this value is a multiple of 3345 the Linux page size (normally 4k). If this is not the case, 3346 then the end address of the Linux memory will be located at a 3347 non page size aligned address and this could cause major 3348 problems. 3349 3350- CONFIG_SYS_LOADS_BAUD_CHANGE: 3351 Enable temporary baudrate change while serial download 3352 3353- CONFIG_SYS_SDRAM_BASE: 3354 Physical start address of SDRAM. _Must_ be 0 here. 3355 3356- CONFIG_SYS_FLASH_BASE: 3357 Physical start address of Flash memory. 3358 3359- CONFIG_SYS_MONITOR_BASE: 3360 Physical start address of boot monitor code (set by 3361 make config files to be same as the text base address 3362 (CONFIG_SYS_TEXT_BASE) used when linking) - same as 3363 CONFIG_SYS_FLASH_BASE when booting from flash. 3364 3365- CONFIG_SYS_MONITOR_LEN: 3366 Size of memory reserved for monitor code, used to 3367 determine _at_compile_time_ (!) if the environment is 3368 embedded within the U-Boot image, or in a separate 3369 flash sector. 3370 3371- CONFIG_SYS_MALLOC_LEN: 3372 Size of DRAM reserved for malloc() use. 3373 3374- CONFIG_SYS_MALLOC_F_LEN 3375 Size of the malloc() pool for use before relocation. If 3376 this is defined, then a very simple malloc() implementation 3377 will become available before relocation. The address is just 3378 below the global data, and the stack is moved down to make 3379 space. 3380 3381 This feature allocates regions with increasing addresses 3382 within the region. calloc() is supported, but realloc() 3383 is not available. free() is supported but does nothing. 3384 The memory will be freed (or in fact just forgotten) when 3385 U-Boot relocates itself. 3386 3387- CONFIG_SYS_MALLOC_SIMPLE 3388 Provides a simple and small malloc() and calloc() for those 3389 boards which do not use the full malloc in SPL (which is 3390 enabled with CONFIG_SYS_SPL_MALLOC_START). 3391 3392- CONFIG_SYS_NONCACHED_MEMORY: 3393 Size of non-cached memory area. This area of memory will be 3394 typically located right below the malloc() area and mapped 3395 uncached in the MMU. This is useful for drivers that would 3396 otherwise require a lot of explicit cache maintenance. For 3397 some drivers it's also impossible to properly maintain the 3398 cache. For example if the regions that need to be flushed 3399 are not a multiple of the cache-line size, *and* padding 3400 cannot be allocated between the regions to align them (i.e. 3401 if the HW requires a contiguous array of regions, and the 3402 size of each region is not cache-aligned), then a flush of 3403 one region may result in overwriting data that hardware has 3404 written to another region in the same cache-line. This can 3405 happen for example in network drivers where descriptors for 3406 buffers are typically smaller than the CPU cache-line (e.g. 3407 16 bytes vs. 32 or 64 bytes). 3408 3409 Non-cached memory is only supported on 32-bit ARM at present. 3410 3411- CONFIG_SYS_BOOTM_LEN: 3412 Normally compressed uImages are limited to an 3413 uncompressed size of 8 MBytes. If this is not enough, 3414 you can define CONFIG_SYS_BOOTM_LEN in your board config file 3415 to adjust this setting to your needs. 3416 3417- CONFIG_SYS_BOOTMAPSZ: 3418 Maximum size of memory mapped by the startup code of 3419 the Linux kernel; all data that must be processed by 3420 the Linux kernel (bd_info, boot arguments, FDT blob if 3421 used) must be put below this limit, unless "bootm_low" 3422 environment variable is defined and non-zero. In such case 3423 all data for the Linux kernel must be between "bootm_low" 3424 and "bootm_low" + CONFIG_SYS_BOOTMAPSZ. The environment 3425 variable "bootm_mapsize" will override the value of 3426 CONFIG_SYS_BOOTMAPSZ. If CONFIG_SYS_BOOTMAPSZ is undefined, 3427 then the value in "bootm_size" will be used instead. 3428 3429- CONFIG_SYS_BOOT_RAMDISK_HIGH: 3430 Enable initrd_high functionality. If defined then the 3431 initrd_high feature is enabled and the bootm ramdisk subcommand 3432 is enabled. 3433 3434- CONFIG_SYS_BOOT_GET_CMDLINE: 3435 Enables allocating and saving kernel cmdline in space between 3436 "bootm_low" and "bootm_low" + BOOTMAPSZ. 3437 3438- CONFIG_SYS_BOOT_GET_KBD: 3439 Enables allocating and saving a kernel copy of the bd_info in 3440 space between "bootm_low" and "bootm_low" + BOOTMAPSZ. 3441 3442- CONFIG_SYS_MAX_FLASH_BANKS: 3443 Max number of Flash memory banks 3444 3445- CONFIG_SYS_MAX_FLASH_SECT: 3446 Max number of sectors on a Flash chip 3447 3448- CONFIG_SYS_FLASH_ERASE_TOUT: 3449 Timeout for Flash erase operations (in ms) 3450 3451- CONFIG_SYS_FLASH_WRITE_TOUT: 3452 Timeout for Flash write operations (in ms) 3453 3454- CONFIG_SYS_FLASH_LOCK_TOUT 3455 Timeout for Flash set sector lock bit operation (in ms) 3456 3457- CONFIG_SYS_FLASH_UNLOCK_TOUT 3458 Timeout for Flash clear lock bits operation (in ms) 3459 3460- CONFIG_SYS_FLASH_PROTECTION 3461 If defined, hardware flash sectors protection is used 3462 instead of U-Boot software protection. 3463 3464- CONFIG_SYS_DIRECT_FLASH_TFTP: 3465 3466 Enable TFTP transfers directly to flash memory; 3467 without this option such a download has to be 3468 performed in two steps: (1) download to RAM, and (2) 3469 copy from RAM to flash. 3470 3471 The two-step approach is usually more reliable, since 3472 you can check if the download worked before you erase 3473 the flash, but in some situations (when system RAM is 3474 too limited to allow for a temporary copy of the 3475 downloaded image) this option may be very useful. 3476 3477- CONFIG_SYS_FLASH_CFI: 3478 Define if the flash driver uses extra elements in the 3479 common flash structure for storing flash geometry. 3480 3481- CONFIG_FLASH_CFI_DRIVER 3482 This option also enables the building of the cfi_flash driver 3483 in the drivers directory 3484 3485- CONFIG_FLASH_CFI_MTD 3486 This option enables the building of the cfi_mtd driver 3487 in the drivers directory. The driver exports CFI flash 3488 to the MTD layer. 3489 3490- CONFIG_SYS_FLASH_USE_BUFFER_WRITE 3491 Use buffered writes to flash. 3492 3493- CONFIG_FLASH_SPANSION_S29WS_N 3494 s29ws-n MirrorBit flash has non-standard addresses for buffered 3495 write commands. 3496 3497- CONFIG_SYS_FLASH_QUIET_TEST 3498 If this option is defined, the common CFI flash doesn't 3499 print it's warning upon not recognized FLASH banks. This 3500 is useful, if some of the configured banks are only 3501 optionally available. 3502 3503- CONFIG_FLASH_SHOW_PROGRESS 3504 If defined (must be an integer), print out countdown 3505 digits and dots. Recommended value: 45 (9..1) for 80 3506 column displays, 15 (3..1) for 40 column displays. 3507 3508- CONFIG_FLASH_VERIFY 3509 If defined, the content of the flash (destination) is compared 3510 against the source after the write operation. An error message 3511 will be printed when the contents are not identical. 3512 Please note that this option is useless in nearly all cases, 3513 since such flash programming errors usually are detected earlier 3514 while unprotecting/erasing/programming. Please only enable 3515 this option if you really know what you are doing. 3516 3517- CONFIG_SYS_RX_ETH_BUFFER: 3518 Defines the number of Ethernet receive buffers. On some 3519 Ethernet controllers it is recommended to set this value 3520 to 8 or even higher (EEPRO100 or 405 EMAC), since all 3521 buffers can be full shortly after enabling the interface 3522 on high Ethernet traffic. 3523 Defaults to 4 if not defined. 3524 3525- CONFIG_ENV_MAX_ENTRIES 3526 3527 Maximum number of entries in the hash table that is used 3528 internally to store the environment settings. The default 3529 setting is supposed to be generous and should work in most 3530 cases. This setting can be used to tune behaviour; see 3531 lib/hashtable.c for details. 3532 3533- CONFIG_ENV_FLAGS_LIST_DEFAULT 3534- CONFIG_ENV_FLAGS_LIST_STATIC 3535 Enable validation of the values given to environment variables when 3536 calling env set. Variables can be restricted to only decimal, 3537 hexadecimal, or boolean. If CONFIG_CMD_NET is also defined, 3538 the variables can also be restricted to IP address or MAC address. 3539 3540 The format of the list is: 3541 type_attribute = [s|d|x|b|i|m] 3542 access_attribute = [a|r|o|c] 3543 attributes = type_attribute[access_attribute] 3544 entry = variable_name[:attributes] 3545 list = entry[,list] 3546 3547 The type attributes are: 3548 s - String (default) 3549 d - Decimal 3550 x - Hexadecimal 3551 b - Boolean ([1yYtT|0nNfF]) 3552 i - IP address 3553 m - MAC address 3554 3555 The access attributes are: 3556 a - Any (default) 3557 r - Read-only 3558 o - Write-once 3559 c - Change-default 3560 3561 - CONFIG_ENV_FLAGS_LIST_DEFAULT 3562 Define this to a list (string) to define the ".flags" 3563 environment variable in the default or embedded environment. 3564 3565 - CONFIG_ENV_FLAGS_LIST_STATIC 3566 Define this to a list (string) to define validation that 3567 should be done if an entry is not found in the ".flags" 3568 environment variable. To override a setting in the static 3569 list, simply add an entry for the same variable name to the 3570 ".flags" variable. 3571 3572 If CONFIG_REGEX is defined, the variable_name above is evaluated as a 3573 regular expression. This allows multiple variables to define the same 3574 flags without explicitly listing them for each variable. 3575 3576- CONFIG_ENV_ACCESS_IGNORE_FORCE 3577 If defined, don't allow the -f switch to env set override variable 3578 access flags. 3579 3580- CONFIG_USE_STDINT 3581 If stdint.h is available with your toolchain you can define this 3582 option to enable it. You can provide option 'USE_STDINT=1' when 3583 building U-Boot to enable this. 3584 3585The following definitions that deal with the placement and management 3586of environment data (variable area); in general, we support the 3587following configurations: 3588 3589- CONFIG_BUILD_ENVCRC: 3590 3591 Builds up envcrc with the target environment so that external utils 3592 may easily extract it and embed it in final U-Boot images. 3593 3594- CONFIG_ENV_IS_IN_FLASH: 3595 3596 Define this if the environment is in flash memory. 3597 3598 a) The environment occupies one whole flash sector, which is 3599 "embedded" in the text segment with the U-Boot code. This 3600 happens usually with "bottom boot sector" or "top boot 3601 sector" type flash chips, which have several smaller 3602 sectors at the start or the end. For instance, such a 3603 layout can have sector sizes of 8, 2x4, 16, Nx32 kB. In 3604 such a case you would place the environment in one of the 3605 4 kB sectors - with U-Boot code before and after it. With 3606 "top boot sector" type flash chips, you would put the 3607 environment in one of the last sectors, leaving a gap 3608 between U-Boot and the environment. 3609 3610 - CONFIG_ENV_OFFSET: 3611 3612 Offset of environment data (variable area) to the 3613 beginning of flash memory; for instance, with bottom boot 3614 type flash chips the second sector can be used: the offset 3615 for this sector is given here. 3616 3617 CONFIG_ENV_OFFSET is used relative to CONFIG_SYS_FLASH_BASE. 3618 3619 - CONFIG_ENV_ADDR: 3620 3621 This is just another way to specify the start address of 3622 the flash sector containing the environment (instead of 3623 CONFIG_ENV_OFFSET). 3624 3625 - CONFIG_ENV_SECT_SIZE: 3626 3627 Size of the sector containing the environment. 3628 3629 3630 b) Sometimes flash chips have few, equal sized, BIG sectors. 3631 In such a case you don't want to spend a whole sector for 3632 the environment. 3633 3634 - CONFIG_ENV_SIZE: 3635 3636 If you use this in combination with CONFIG_ENV_IS_IN_FLASH 3637 and CONFIG_ENV_SECT_SIZE, you can specify to use only a part 3638 of this flash sector for the environment. This saves 3639 memory for the RAM copy of the environment. 3640 3641 It may also save flash memory if you decide to use this 3642 when your environment is "embedded" within U-Boot code, 3643 since then the remainder of the flash sector could be used 3644 for U-Boot code. It should be pointed out that this is 3645 STRONGLY DISCOURAGED from a robustness point of view: 3646 updating the environment in flash makes it always 3647 necessary to erase the WHOLE sector. If something goes 3648 wrong before the contents has been restored from a copy in 3649 RAM, your target system will be dead. 3650 3651 - CONFIG_ENV_ADDR_REDUND 3652 CONFIG_ENV_SIZE_REDUND 3653 3654 These settings describe a second storage area used to hold 3655 a redundant copy of the environment data, so that there is 3656 a valid backup copy in case there is a power failure during 3657 a "saveenv" operation. 3658 3659BE CAREFUL! Any changes to the flash layout, and some changes to the 3660source code will make it necessary to adapt <board>/u-boot.lds* 3661accordingly! 3662 3663 3664- CONFIG_ENV_IS_IN_NVRAM: 3665 3666 Define this if you have some non-volatile memory device 3667 (NVRAM, battery buffered SRAM) which you want to use for the 3668 environment. 3669 3670 - CONFIG_ENV_ADDR: 3671 - CONFIG_ENV_SIZE: 3672 3673 These two #defines are used to determine the memory area you 3674 want to use for environment. It is assumed that this memory 3675 can just be read and written to, without any special 3676 provision. 3677 3678BE CAREFUL! The first access to the environment happens quite early 3679in U-Boot initialization (when we try to get the setting of for the 3680console baudrate). You *MUST* have mapped your NVRAM area then, or 3681U-Boot will hang. 3682 3683Please note that even with NVRAM we still use a copy of the 3684environment in RAM: we could work on NVRAM directly, but we want to 3685keep settings there always unmodified except somebody uses "saveenv" 3686to save the current settings. 3687 3688 3689- CONFIG_ENV_IS_IN_EEPROM: 3690 3691 Use this if you have an EEPROM or similar serial access 3692 device and a driver for it. 3693 3694 - CONFIG_ENV_OFFSET: 3695 - CONFIG_ENV_SIZE: 3696 3697 These two #defines specify the offset and size of the 3698 environment area within the total memory of your EEPROM. 3699 3700 - CONFIG_SYS_I2C_EEPROM_ADDR: 3701 If defined, specified the chip address of the EEPROM device. 3702 The default address is zero. 3703 3704 - CONFIG_SYS_I2C_EEPROM_BUS: 3705 If defined, specified the i2c bus of the EEPROM device. 3706 3707 - CONFIG_SYS_EEPROM_PAGE_WRITE_BITS: 3708 If defined, the number of bits used to address bytes in a 3709 single page in the EEPROM device. A 64 byte page, for example 3710 would require six bits. 3711 3712 - CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS: 3713 If defined, the number of milliseconds to delay between 3714 page writes. The default is zero milliseconds. 3715 3716 - CONFIG_SYS_I2C_EEPROM_ADDR_LEN: 3717 The length in bytes of the EEPROM memory array address. Note 3718 that this is NOT the chip address length! 3719 3720 - CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW: 3721 EEPROM chips that implement "address overflow" are ones 3722 like Catalyst 24WC04/08/16 which has 9/10/11 bits of 3723 address and the extra bits end up in the "chip address" bit 3724 slots. This makes a 24WC08 (1Kbyte) chip look like four 256 3725 byte chips. 3726 3727 Note that we consider the length of the address field to 3728 still be one byte because the extra address bits are hidden 3729 in the chip address. 3730 3731 - CONFIG_SYS_EEPROM_SIZE: 3732 The size in bytes of the EEPROM device. 3733 3734 - CONFIG_ENV_EEPROM_IS_ON_I2C 3735 define this, if you have I2C and SPI activated, and your 3736 EEPROM, which holds the environment, is on the I2C bus. 3737 3738 - CONFIG_I2C_ENV_EEPROM_BUS 3739 if you have an Environment on an EEPROM reached over 3740 I2C muxes, you can define here, how to reach this 3741 EEPROM. For example: 3742 3743 #define CONFIG_I2C_ENV_EEPROM_BUS 1 3744 3745 EEPROM which holds the environment, is reached over 3746 a pca9547 i2c mux with address 0x70, channel 3. 3747 3748- CONFIG_ENV_IS_IN_DATAFLASH: 3749 3750 Define this if you have a DataFlash memory device which you 3751 want to use for the environment. 3752 3753 - CONFIG_ENV_OFFSET: 3754 - CONFIG_ENV_ADDR: 3755 - CONFIG_ENV_SIZE: 3756 3757 These three #defines specify the offset and size of the 3758 environment area within the total memory of your DataFlash placed 3759 at the specified address. 3760 3761- CONFIG_ENV_IS_IN_SPI_FLASH: 3762 3763 Define this if you have a SPI Flash memory device which you 3764 want to use for the environment. 3765 3766 - CONFIG_ENV_OFFSET: 3767 - CONFIG_ENV_SIZE: 3768 3769 These two #defines specify the offset and size of the 3770 environment area within the SPI Flash. CONFIG_ENV_OFFSET must be 3771 aligned to an erase sector boundary. 3772 3773 - CONFIG_ENV_SECT_SIZE: 3774 3775 Define the SPI flash's sector size. 3776 3777 - CONFIG_ENV_OFFSET_REDUND (optional): 3778 3779 This setting describes a second storage area of CONFIG_ENV_SIZE 3780 size used to hold a redundant copy of the environment data, so 3781 that there is a valid backup copy in case there is a power failure 3782 during a "saveenv" operation. CONFIG_ENV_OFFSET_REDUND must be 3783 aligned to an erase sector boundary. 3784 3785 - CONFIG_ENV_SPI_BUS (optional): 3786 - CONFIG_ENV_SPI_CS (optional): 3787 3788 Define the SPI bus and chip select. If not defined they will be 0. 3789 3790 - CONFIG_ENV_SPI_MAX_HZ (optional): 3791 3792 Define the SPI max work clock. If not defined then use 1MHz. 3793 3794 - CONFIG_ENV_SPI_MODE (optional): 3795 3796 Define the SPI work mode. If not defined then use SPI_MODE_3. 3797 3798- CONFIG_ENV_IS_IN_REMOTE: 3799 3800 Define this if you have a remote memory space which you 3801 want to use for the local device's environment. 3802 3803 - CONFIG_ENV_ADDR: 3804 - CONFIG_ENV_SIZE: 3805 3806 These two #defines specify the address and size of the 3807 environment area within the remote memory space. The 3808 local device can get the environment from remote memory 3809 space by SRIO or PCIE links. 3810 3811BE CAREFUL! For some special cases, the local device can not use 3812"saveenv" command. For example, the local device will get the 3813environment stored in a remote NOR flash by SRIO or PCIE link, 3814but it can not erase, write this NOR flash by SRIO or PCIE interface. 3815 3816- CONFIG_ENV_IS_IN_NAND: 3817 3818 Define this if you have a NAND device which you want to use 3819 for the environment. 3820 3821 - CONFIG_ENV_OFFSET: 3822 - CONFIG_ENV_SIZE: 3823 3824 These two #defines specify the offset and size of the environment 3825 area within the first NAND device. CONFIG_ENV_OFFSET must be 3826 aligned to an erase block boundary. 3827 3828 - CONFIG_ENV_OFFSET_REDUND (optional): 3829 3830 This setting describes a second storage area of CONFIG_ENV_SIZE 3831 size used to hold a redundant copy of the environment data, so 3832 that there is a valid backup copy in case there is a power failure 3833 during a "saveenv" operation. CONFIG_ENV_OFFSET_REDUND must be 3834 aligned to an erase block boundary. 3835 3836 - CONFIG_ENV_RANGE (optional): 3837 3838 Specifies the length of the region in which the environment 3839 can be written. This should be a multiple of the NAND device's 3840 block size. Specifying a range with more erase blocks than 3841 are needed to hold CONFIG_ENV_SIZE allows bad blocks within 3842 the range to be avoided. 3843 3844 - CONFIG_ENV_OFFSET_OOB (optional): 3845 3846 Enables support for dynamically retrieving the offset of the 3847 environment from block zero's out-of-band data. The 3848 "nand env.oob" command can be used to record this offset. 3849 Currently, CONFIG_ENV_OFFSET_REDUND is not supported when 3850 using CONFIG_ENV_OFFSET_OOB. 3851 3852- CONFIG_NAND_ENV_DST 3853 3854 Defines address in RAM to which the nand_spl code should copy the 3855 environment. If redundant environment is used, it will be copied to 3856 CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE. 3857 3858- CONFIG_ENV_IS_IN_UBI: 3859 3860 Define this if you have an UBI volume that you want to use for the 3861 environment. This has the benefit of wear-leveling the environment 3862 accesses, which is important on NAND. 3863 3864 - CONFIG_ENV_UBI_PART: 3865 3866 Define this to a string that is the mtd partition containing the UBI. 3867 3868 - CONFIG_ENV_UBI_VOLUME: 3869 3870 Define this to the name of the volume that you want to store the 3871 environment in. 3872 3873 - CONFIG_ENV_UBI_VOLUME_REDUND: 3874 3875 Define this to the name of another volume to store a second copy of 3876 the environment in. This will enable redundant environments in UBI. 3877 It is assumed that both volumes are in the same MTD partition. 3878 3879 - CONFIG_UBI_SILENCE_MSG 3880 - CONFIG_UBIFS_SILENCE_MSG 3881 3882 You will probably want to define these to avoid a really noisy system 3883 when storing the env in UBI. 3884 3885- CONFIG_ENV_IS_IN_FAT: 3886 Define this if you want to use the FAT file system for the environment. 3887 3888 - FAT_ENV_INTERFACE: 3889 3890 Define this to a string that is the name of the block device. 3891 3892 - FAT_ENV_DEVICE_AND_PART: 3893 3894 Define this to a string to specify the partition of the device. It can 3895 be as following: 3896 3897 "D:P", "D:0", "D", "D:" or "D:auto" (D, P are integers. And P >= 1) 3898 - "D:P": device D partition P. Error occurs if device D has no 3899 partition table. 3900 - "D:0": device D. 3901 - "D" or "D:": device D partition 1 if device D has partition 3902 table, or the whole device D if has no partition 3903 table. 3904 - "D:auto": first partition in device D with bootable flag set. 3905 If none, first valid partition in device D. If no 3906 partition table then means device D. 3907 3908 - FAT_ENV_FILE: 3909 3910 It's a string of the FAT file name. This file use to store the 3911 environment. 3912 3913 - CONFIG_FAT_WRITE: 3914 This should be defined. Otherwise it cannot save the environment file. 3915 3916- CONFIG_ENV_IS_IN_MMC: 3917 3918 Define this if you have an MMC device which you want to use for the 3919 environment. 3920 3921 - CONFIG_SYS_MMC_ENV_DEV: 3922 3923 Specifies which MMC device the environment is stored in. 3924 3925 - CONFIG_SYS_MMC_ENV_PART (optional): 3926 3927 Specifies which MMC partition the environment is stored in. If not 3928 set, defaults to partition 0, the user area. Common values might be 3929 1 (first MMC boot partition), 2 (second MMC boot partition). 3930 3931 - CONFIG_ENV_OFFSET: 3932 - CONFIG_ENV_SIZE: 3933 3934 These two #defines specify the offset and size of the environment 3935 area within the specified MMC device. 3936 3937 If offset is positive (the usual case), it is treated as relative to 3938 the start of the MMC partition. If offset is negative, it is treated 3939 as relative to the end of the MMC partition. This can be useful if 3940 your board may be fitted with different MMC devices, which have 3941 different sizes for the MMC partitions, and you always want the 3942 environment placed at the very end of the partition, to leave the 3943 maximum possible space before it, to store other data. 3944 3945 These two values are in units of bytes, but must be aligned to an 3946 MMC sector boundary. 3947 3948 - CONFIG_ENV_OFFSET_REDUND (optional): 3949 3950 Specifies a second storage area, of CONFIG_ENV_SIZE size, used to 3951 hold a redundant copy of the environment data. This provides a 3952 valid backup copy in case the other copy is corrupted, e.g. due 3953 to a power failure during a "saveenv" operation. 3954 3955 This value may also be positive or negative; this is handled in the 3956 same way as CONFIG_ENV_OFFSET. 3957 3958 This value is also in units of bytes, but must also be aligned to 3959 an MMC sector boundary. 3960 3961 - CONFIG_ENV_SIZE_REDUND (optional): 3962 3963 This value need not be set, even when CONFIG_ENV_OFFSET_REDUND is 3964 set. If this value is set, it must be set to the same value as 3965 CONFIG_ENV_SIZE. 3966 3967- CONFIG_SYS_SPI_INIT_OFFSET 3968 3969 Defines offset to the initial SPI buffer area in DPRAM. The 3970 area is used at an early stage (ROM part) if the environment 3971 is configured to reside in the SPI EEPROM: We need a 520 byte 3972 scratch DPRAM area. It is used between the two initialization 3973 calls (spi_init_f() and spi_init_r()). A value of 0xB00 seems 3974 to be a good choice since it makes it far enough from the 3975 start of the data area as well as from the stack pointer. 3976 3977Please note that the environment is read-only until the monitor 3978has been relocated to RAM and a RAM copy of the environment has been 3979created; also, when using EEPROM you will have to use getenv_f() 3980until then to read environment variables. 3981 3982The environment is protected by a CRC32 checksum. Before the monitor 3983is relocated into RAM, as a result of a bad CRC you will be working 3984with the compiled-in default environment - *silently*!!! [This is 3985necessary, because the first environment variable we need is the 3986"baudrate" setting for the console - if we have a bad CRC, we don't 3987have any device yet where we could complain.] 3988 3989Note: once the monitor has been relocated, then it will complain if 3990the default environment is used; a new CRC is computed as soon as you 3991use the "saveenv" command to store a valid environment. 3992 3993- CONFIG_SYS_FAULT_ECHO_LINK_DOWN: 3994 Echo the inverted Ethernet link state to the fault LED. 3995 3996 Note: If this option is active, then CONFIG_SYS_FAULT_MII_ADDR 3997 also needs to be defined. 3998 3999- CONFIG_SYS_FAULT_MII_ADDR: 4000 MII address of the PHY to check for the Ethernet link state. 4001 4002- CONFIG_NS16550_MIN_FUNCTIONS: 4003 Define this if you desire to only have use of the NS16550_init 4004 and NS16550_putc functions for the serial driver located at 4005 drivers/serial/ns16550.c. This option is useful for saving 4006 space for already greatly restricted images, including but not 4007 limited to NAND_SPL configurations. 4008 4009- CONFIG_DISPLAY_BOARDINFO 4010 Display information about the board that U-Boot is running on 4011 when U-Boot starts up. The board function checkboard() is called 4012 to do this. 4013 4014- CONFIG_DISPLAY_BOARDINFO_LATE 4015 Similar to the previous option, but display this information 4016 later, once stdio is running and output goes to the LCD, if 4017 present. 4018 4019- CONFIG_BOARD_SIZE_LIMIT: 4020 Maximum size of the U-Boot image. When defined, the 4021 build system checks that the actual size does not 4022 exceed it. 4023 4024Low Level (hardware related) configuration options: 4025--------------------------------------------------- 4026 4027- CONFIG_SYS_CACHELINE_SIZE: 4028 Cache Line Size of the CPU. 4029 4030- CONFIG_SYS_DEFAULT_IMMR: 4031 Default address of the IMMR after system reset. 4032 4033 Needed on some 8260 systems (MPC8260ADS, PQ2FADS-ZU, 4034 and RPXsuper) to be able to adjust the position of 4035 the IMMR register after a reset. 4036 4037- CONFIG_SYS_CCSRBAR_DEFAULT: 4038 Default (power-on reset) physical address of CCSR on Freescale 4039 PowerPC SOCs. 4040 4041- CONFIG_SYS_CCSRBAR: 4042 Virtual address of CCSR. On a 32-bit build, this is typically 4043 the same value as CONFIG_SYS_CCSRBAR_DEFAULT. 4044 4045 CONFIG_SYS_DEFAULT_IMMR must also be set to this value, 4046 for cross-platform code that uses that macro instead. 4047 4048- CONFIG_SYS_CCSRBAR_PHYS: 4049 Physical address of CCSR. CCSR can be relocated to a new 4050 physical address, if desired. In this case, this macro should 4051 be set to that address. Otherwise, it should be set to the 4052 same value as CONFIG_SYS_CCSRBAR_DEFAULT. For example, CCSR 4053 is typically relocated on 36-bit builds. It is recommended 4054 that this macro be defined via the _HIGH and _LOW macros: 4055 4056 #define CONFIG_SYS_CCSRBAR_PHYS ((CONFIG_SYS_CCSRBAR_PHYS_HIGH 4057 * 1ull) << 32 | CONFIG_SYS_CCSRBAR_PHYS_LOW) 4058 4059- CONFIG_SYS_CCSRBAR_PHYS_HIGH: 4060 Bits 33-36 of CONFIG_SYS_CCSRBAR_PHYS. This value is typically 4061 either 0 (32-bit build) or 0xF (36-bit build). This macro is 4062 used in assembly code, so it must not contain typecasts or 4063 integer size suffixes (e.g. "ULL"). 4064 4065- CONFIG_SYS_CCSRBAR_PHYS_LOW: 4066 Lower 32-bits of CONFIG_SYS_CCSRBAR_PHYS. This macro is 4067 used in assembly code, so it must not contain typecasts or 4068 integer size suffixes (e.g. "ULL"). 4069 4070- CONFIG_SYS_CCSR_DO_NOT_RELOCATE: 4071 If this macro is defined, then CONFIG_SYS_CCSRBAR_PHYS will be 4072 forced to a value that ensures that CCSR is not relocated. 4073 4074- Floppy Disk Support: 4075 CONFIG_SYS_FDC_DRIVE_NUMBER 4076 4077 the default drive number (default value 0) 4078 4079 CONFIG_SYS_ISA_IO_STRIDE 4080 4081 defines the spacing between FDC chipset registers 4082 (default value 1) 4083 4084 CONFIG_SYS_ISA_IO_OFFSET 4085 4086 defines the offset of register from address. It 4087 depends on which part of the data bus is connected to 4088 the FDC chipset. (default value 0) 4089 4090 If CONFIG_SYS_ISA_IO_STRIDE CONFIG_SYS_ISA_IO_OFFSET and 4091 CONFIG_SYS_FDC_DRIVE_NUMBER are undefined, they take their 4092 default value. 4093 4094 if CONFIG_SYS_FDC_HW_INIT is defined, then the function 4095 fdc_hw_init() is called at the beginning of the FDC 4096 setup. fdc_hw_init() must be provided by the board 4097 source code. It is used to make hardware-dependent 4098 initializations. 4099 4100- CONFIG_IDE_AHB: 4101 Most IDE controllers were designed to be connected with PCI 4102 interface. Only few of them were designed for AHB interface. 4103 When software is doing ATA command and data transfer to 4104 IDE devices through IDE-AHB controller, some additional 4105 registers accessing to these kind of IDE-AHB controller 4106 is required. 4107 4108- CONFIG_SYS_IMMR: Physical address of the Internal Memory. 4109 DO NOT CHANGE unless you know exactly what you're 4110 doing! (11-4) [MPC8xx/82xx systems only] 4111 4112- CONFIG_SYS_INIT_RAM_ADDR: 4113 4114 Start address of memory area that can be used for 4115 initial data and stack; please note that this must be 4116 writable memory that is working WITHOUT special 4117 initialization, i. e. you CANNOT use normal RAM which 4118 will become available only after programming the 4119 memory controller and running certain initialization 4120 sequences. 4121 4122 U-Boot uses the following memory types: 4123 - MPC8xx and MPC8260: IMMR (internal memory of the CPU) 4124 - MPC824X: data cache 4125 - PPC4xx: data cache 4126 4127- CONFIG_SYS_GBL_DATA_OFFSET: 4128 4129 Offset of the initial data structure in the memory 4130 area defined by CONFIG_SYS_INIT_RAM_ADDR. Usually 4131 CONFIG_SYS_GBL_DATA_OFFSET is chosen such that the initial 4132 data is located at the end of the available space 4133 (sometimes written as (CONFIG_SYS_INIT_RAM_SIZE - 4134 GENERATED_GBL_DATA_SIZE), and the initial stack is just 4135 below that area (growing from (CONFIG_SYS_INIT_RAM_ADDR + 4136 CONFIG_SYS_GBL_DATA_OFFSET) downward. 4137 4138 Note: 4139 On the MPC824X (or other systems that use the data 4140 cache for initial memory) the address chosen for 4141 CONFIG_SYS_INIT_RAM_ADDR is basically arbitrary - it must 4142 point to an otherwise UNUSED address space between 4143 the top of RAM and the start of the PCI space. 4144 4145- CONFIG_SYS_SIUMCR: SIU Module Configuration (11-6) 4146 4147- CONFIG_SYS_SYPCR: System Protection Control (11-9) 4148 4149- CONFIG_SYS_TBSCR: Time Base Status and Control (11-26) 4150 4151- CONFIG_SYS_PISCR: Periodic Interrupt Status and Control (11-31) 4152 4153- CONFIG_SYS_PLPRCR: PLL, Low-Power, and Reset Control Register (15-30) 4154 4155- CONFIG_SYS_SCCR: System Clock and reset Control Register (15-27) 4156 4157- CONFIG_SYS_OR_TIMING_SDRAM: 4158 SDRAM timing 4159 4160- CONFIG_SYS_MAMR_PTA: 4161 periodic timer for refresh 4162 4163- CONFIG_SYS_DER: Debug Event Register (37-47) 4164 4165- FLASH_BASE0_PRELIM, FLASH_BASE1_PRELIM, CONFIG_SYS_REMAP_OR_AM, 4166 CONFIG_SYS_PRELIM_OR_AM, CONFIG_SYS_OR_TIMING_FLASH, CONFIG_SYS_OR0_REMAP, 4167 CONFIG_SYS_OR0_PRELIM, CONFIG_SYS_BR0_PRELIM, CONFIG_SYS_OR1_REMAP, CONFIG_SYS_OR1_PRELIM, 4168 CONFIG_SYS_BR1_PRELIM: 4169 Memory Controller Definitions: BR0/1 and OR0/1 (FLASH) 4170 4171- SDRAM_BASE2_PRELIM, SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE, 4172 CONFIG_SYS_OR_TIMING_SDRAM, CONFIG_SYS_OR2_PRELIM, CONFIG_SYS_BR2_PRELIM, 4173 CONFIG_SYS_OR3_PRELIM, CONFIG_SYS_BR3_PRELIM: 4174 Memory Controller Definitions: BR2/3 and OR2/3 (SDRAM) 4175 4176- CONFIG_SYS_MAMR_PTA, CONFIG_SYS_MPTPR_2BK_4K, CONFIG_SYS_MPTPR_1BK_4K, CONFIG_SYS_MPTPR_2BK_8K, 4177 CONFIG_SYS_MPTPR_1BK_8K, CONFIG_SYS_MAMR_8COL, CONFIG_SYS_MAMR_9COL: 4178 Machine Mode Register and Memory Periodic Timer 4179 Prescaler definitions (SDRAM timing) 4180 4181- CONFIG_SYS_I2C_UCODE_PATCH, CONFIG_SYS_I2C_DPMEM_OFFSET [0x1FC0]: 4182 enable I2C microcode relocation patch (MPC8xx); 4183 define relocation offset in DPRAM [DSP2] 4184 4185- CONFIG_SYS_SMC_UCODE_PATCH, CONFIG_SYS_SMC_DPMEM_OFFSET [0x1FC0]: 4186 enable SMC microcode relocation patch (MPC8xx); 4187 define relocation offset in DPRAM [SMC1] 4188 4189- CONFIG_SYS_SPI_UCODE_PATCH, CONFIG_SYS_SPI_DPMEM_OFFSET [0x1FC0]: 4190 enable SPI microcode relocation patch (MPC8xx); 4191 define relocation offset in DPRAM [SCC4] 4192 4193- CONFIG_SYS_CPM_POST_WORD_ADDR: (MPC8xx, MPC8260 only) 4194 Offset of the bootmode word in DPRAM used by post 4195 (Power On Self Tests). This definition overrides 4196 #define'd default value in commproc.h resp. 4197 cpm_8260.h. 4198 4199- CONFIG_SYS_PCI_SLV_MEM_LOCAL, CONFIG_SYS_PCI_SLV_MEM_BUS, CONFIG_SYS_PICMR0_MASK_ATTRIB, 4200 CONFIG_SYS_PCI_MSTR0_LOCAL, CONFIG_SYS_PCIMSK0_MASK, CONFIG_SYS_PCI_MSTR1_LOCAL, 4201 CONFIG_SYS_PCIMSK1_MASK, CONFIG_SYS_PCI_MSTR_MEM_LOCAL, CONFIG_SYS_PCI_MSTR_MEM_BUS, 4202 CONFIG_SYS_CPU_PCI_MEM_START, CONFIG_SYS_PCI_MSTR_MEM_SIZE, CONFIG_SYS_POCMR0_MASK_ATTRIB, 4203 CONFIG_SYS_PCI_MSTR_MEMIO_LOCAL, CONFIG_SYS_PCI_MSTR_MEMIO_BUS, CPU_PCI_MEMIO_START, 4204 CONFIG_SYS_PCI_MSTR_MEMIO_SIZE, CONFIG_SYS_POCMR1_MASK_ATTRIB, CONFIG_SYS_PCI_MSTR_IO_LOCAL, 4205 CONFIG_SYS_PCI_MSTR_IO_BUS, CONFIG_SYS_CPU_PCI_IO_START, CONFIG_SYS_PCI_MSTR_IO_SIZE, 4206 CONFIG_SYS_POCMR2_MASK_ATTRIB: (MPC826x only) 4207 Overrides the default PCI memory map in arch/powerpc/cpu/mpc8260/pci.c if set. 4208 4209- CONFIG_PCI_DISABLE_PCIE: 4210 Disable PCI-Express on systems where it is supported but not 4211 required. 4212 4213- CONFIG_PCI_ENUM_ONLY 4214 Only scan through and get the devices on the buses. 4215 Don't do any setup work, presumably because someone or 4216 something has already done it, and we don't need to do it 4217 a second time. Useful for platforms that are pre-booted 4218 by coreboot or similar. 4219 4220- CONFIG_PCI_INDIRECT_BRIDGE: 4221 Enable support for indirect PCI bridges. 4222 4223- CONFIG_SYS_SRIO: 4224 Chip has SRIO or not 4225 4226- CONFIG_SRIO1: 4227 Board has SRIO 1 port available 4228 4229- CONFIG_SRIO2: 4230 Board has SRIO 2 port available 4231 4232- CONFIG_SRIO_PCIE_BOOT_MASTER 4233 Board can support master function for Boot from SRIO and PCIE 4234 4235- CONFIG_SYS_SRIOn_MEM_VIRT: 4236 Virtual Address of SRIO port 'n' memory region 4237 4238- CONFIG_SYS_SRIOn_MEM_PHYS: 4239 Physical Address of SRIO port 'n' memory region 4240 4241- CONFIG_SYS_SRIOn_MEM_SIZE: 4242 Size of SRIO port 'n' memory region 4243 4244- CONFIG_SYS_NAND_BUSWIDTH_16BIT 4245 Defined to tell the NAND controller that the NAND chip is using 4246 a 16 bit bus. 4247 Not all NAND drivers use this symbol. 4248 Example of drivers that use it: 4249 - drivers/mtd/nand/ndfc.c 4250 - drivers/mtd/nand/mxc_nand.c 4251 4252- CONFIG_SYS_NDFC_EBC0_CFG 4253 Sets the EBC0_CFG register for the NDFC. If not defined 4254 a default value will be used. 4255 4256- CONFIG_SPD_EEPROM 4257 Get DDR timing information from an I2C EEPROM. Common 4258 with pluggable memory modules such as SODIMMs 4259 4260 SPD_EEPROM_ADDRESS 4261 I2C address of the SPD EEPROM 4262 4263- CONFIG_SYS_SPD_BUS_NUM 4264 If SPD EEPROM is on an I2C bus other than the first 4265 one, specify here. Note that the value must resolve 4266 to something your driver can deal with. 4267 4268- CONFIG_SYS_DDR_RAW_TIMING 4269 Get DDR timing information from other than SPD. Common with 4270 soldered DDR chips onboard without SPD. DDR raw timing 4271 parameters are extracted from datasheet and hard-coded into 4272 header files or board specific files. 4273 4274- CONFIG_FSL_DDR_INTERACTIVE 4275 Enable interactive DDR debugging. See doc/README.fsl-ddr. 4276 4277- CONFIG_FSL_DDR_SYNC_REFRESH 4278 Enable sync of refresh for multiple controllers. 4279 4280- CONFIG_FSL_DDR_BIST 4281 Enable built-in memory test for Freescale DDR controllers. 4282 4283- CONFIG_SYS_83XX_DDR_USES_CS0 4284 Only for 83xx systems. If specified, then DDR should 4285 be configured using CS0 and CS1 instead of CS2 and CS3. 4286 4287- CONFIG_ETHER_ON_FEC[12] 4288 Define to enable FEC[12] on a 8xx series processor. 4289 4290- CONFIG_FEC[12]_PHY 4291 Define to the hardcoded PHY address which corresponds 4292 to the given FEC; i. e. 4293 #define CONFIG_FEC1_PHY 4 4294 means that the PHY with address 4 is connected to FEC1 4295 4296 When set to -1, means to probe for first available. 4297 4298- CONFIG_FEC[12]_PHY_NORXERR 4299 The PHY does not have a RXERR line (RMII only). 4300 (so program the FEC to ignore it). 4301 4302- CONFIG_RMII 4303 Enable RMII mode for all FECs. 4304 Note that this is a global option, we can't 4305 have one FEC in standard MII mode and another in RMII mode. 4306 4307- CONFIG_CRC32_VERIFY 4308 Add a verify option to the crc32 command. 4309 The syntax is: 4310 4311 => crc32 -v <address> <count> <crc32> 4312 4313 Where address/count indicate a memory area 4314 and crc32 is the correct crc32 which the 4315 area should have. 4316 4317- CONFIG_LOOPW 4318 Add the "loopw" memory command. This only takes effect if 4319 the memory commands are activated globally (CONFIG_CMD_MEM). 4320 4321- CONFIG_MX_CYCLIC 4322 Add the "mdc" and "mwc" memory commands. These are cyclic 4323 "md/mw" commands. 4324 Examples: 4325 4326 => mdc.b 10 4 500 4327 This command will print 4 bytes (10,11,12,13) each 500 ms. 4328 4329 => mwc.l 100 12345678 10 4330 This command will write 12345678 to address 100 all 10 ms. 4331 4332 This only takes effect if the memory commands are activated 4333 globally (CONFIG_CMD_MEM). 4334 4335- CONFIG_SKIP_LOWLEVEL_INIT 4336 [ARM, NDS32, MIPS only] If this variable is defined, then certain 4337 low level initializations (like setting up the memory 4338 controller) are omitted and/or U-Boot does not 4339 relocate itself into RAM. 4340 4341 Normally this variable MUST NOT be defined. The only 4342 exception is when U-Boot is loaded (to RAM) by some 4343 other boot loader or by a debugger which performs 4344 these initializations itself. 4345 4346- CONFIG_SKIP_LOWLEVEL_INIT_ONLY 4347 [ARM926EJ-S only] This allows just the call to lowlevel_init() 4348 to be skipped. The normal CP15 init (such as enabling the 4349 instruction cache) is still performed. 4350 4351- CONFIG_SPL_BUILD 4352 Modifies the behaviour of start.S when compiling a loader 4353 that is executed before the actual U-Boot. E.g. when 4354 compiling a NAND SPL. 4355 4356- CONFIG_TPL_BUILD 4357 Modifies the behaviour of start.S when compiling a loader 4358 that is executed after the SPL and before the actual U-Boot. 4359 It is loaded by the SPL. 4360 4361- CONFIG_SYS_MPC85XX_NO_RESETVEC 4362 Only for 85xx systems. If this variable is specified, the section 4363 .resetvec is not kept and the section .bootpg is placed in the 4364 previous 4k of the .text section. 4365 4366- CONFIG_ARCH_MAP_SYSMEM 4367 Generally U-Boot (and in particular the md command) uses 4368 effective address. It is therefore not necessary to regard 4369 U-Boot address as virtual addresses that need to be translated 4370 to physical addresses. However, sandbox requires this, since 4371 it maintains its own little RAM buffer which contains all 4372 addressable memory. This option causes some memory accesses 4373 to be mapped through map_sysmem() / unmap_sysmem(). 4374 4375- CONFIG_X86_RESET_VECTOR 4376 If defined, the x86 reset vector code is included. This is not 4377 needed when U-Boot is running from Coreboot. 4378 4379- CONFIG_SPL_AM33XX_ENABLE_RTC32K_OSC: 4380 Enables the RTC32K OSC on AM33xx based plattforms 4381 4382- CONFIG_SYS_NAND_NO_SUBPAGE_WRITE 4383 Option to disable subpage write in NAND driver 4384 driver that uses this: 4385 drivers/mtd/nand/davinci_nand.c 4386 4387Freescale QE/FMAN Firmware Support: 4388----------------------------------- 4389 4390The Freescale QUICCEngine (QE) and Frame Manager (FMAN) both support the 4391loading of "firmware", which is encoded in the QE firmware binary format. 4392This firmware often needs to be loaded during U-Boot booting, so macros 4393are used to identify the storage device (NOR flash, SPI, etc) and the address 4394within that device. 4395 4396- CONFIG_SYS_FMAN_FW_ADDR 4397 The address in the storage device where the FMAN microcode is located. The 4398 meaning of this address depends on which CONFIG_SYS_QE_FW_IN_xxx macro 4399 is also specified. 4400 4401- CONFIG_SYS_QE_FW_ADDR 4402 The address in the storage device where the QE microcode is located. The 4403 meaning of this address depends on which CONFIG_SYS_QE_FW_IN_xxx macro 4404 is also specified. 4405 4406- CONFIG_SYS_QE_FMAN_FW_LENGTH 4407 The maximum possible size of the firmware. The firmware binary format 4408 has a field that specifies the actual size of the firmware, but it 4409 might not be possible to read any part of the firmware unless some 4410 local storage is allocated to hold the entire firmware first. 4411 4412- CONFIG_SYS_QE_FMAN_FW_IN_NOR 4413 Specifies that QE/FMAN firmware is located in NOR flash, mapped as 4414 normal addressable memory via the LBC. CONFIG_SYS_FMAN_FW_ADDR is the 4415 virtual address in NOR flash. 4416 4417- CONFIG_SYS_QE_FMAN_FW_IN_NAND 4418 Specifies that QE/FMAN firmware is located in NAND flash. 4419 CONFIG_SYS_FMAN_FW_ADDR is the offset within NAND flash. 4420 4421- CONFIG_SYS_QE_FMAN_FW_IN_MMC 4422 Specifies that QE/FMAN firmware is located on the primary SD/MMC 4423 device. CONFIG_SYS_FMAN_FW_ADDR is the byte offset on that device. 4424 4425- CONFIG_SYS_QE_FMAN_FW_IN_REMOTE 4426 Specifies that QE/FMAN firmware is located in the remote (master) 4427 memory space. CONFIG_SYS_FMAN_FW_ADDR is a virtual address which 4428 can be mapped from slave TLB->slave LAW->slave SRIO or PCIE outbound 4429 window->master inbound window->master LAW->the ucode address in 4430 master's memory space. 4431 4432Freescale Layerscape Management Complex Firmware Support: 4433--------------------------------------------------------- 4434The Freescale Layerscape Management Complex (MC) supports the loading of 4435"firmware". 4436This firmware often needs to be loaded during U-Boot booting, so macros 4437are used to identify the storage device (NOR flash, SPI, etc) and the address 4438within that device. 4439 4440- CONFIG_FSL_MC_ENET 4441 Enable the MC driver for Layerscape SoCs. 4442 4443Freescale Layerscape Debug Server Support: 4444------------------------------------------- 4445The Freescale Layerscape Debug Server Support supports the loading of 4446"Debug Server firmware" and triggering SP boot-rom. 4447This firmware often needs to be loaded during U-Boot booting. 4448 4449- CONFIG_SYS_MC_RSV_MEM_ALIGN 4450 Define alignment of reserved memory MC requires 4451 4452Reproducible builds 4453------------------- 4454 4455In order to achieve reproducible builds, timestamps used in the U-Boot build 4456process have to be set to a fixed value. 4457 4458This is done using the SOURCE_DATE_EPOCH environment variable. 4459SOURCE_DATE_EPOCH is to be set on the build host's shell, not as a configuration 4460option for U-Boot or an environment variable in U-Boot. 4461 4462SOURCE_DATE_EPOCH should be set to a number of seconds since the epoch, in UTC. 4463 4464Building the Software: 4465====================== 4466 4467Building U-Boot has been tested in several native build environments 4468and in many different cross environments. Of course we cannot support 4469all possibly existing versions of cross development tools in all 4470(potentially obsolete) versions. In case of tool chain problems we 4471recommend to use the ELDK (see http://www.denx.de/wiki/DULG/ELDK) 4472which is extensively used to build and test U-Boot. 4473 4474If you are not using a native environment, it is assumed that you 4475have GNU cross compiling tools available in your path. In this case, 4476you must set the environment variable CROSS_COMPILE in your shell. 4477Note that no changes to the Makefile or any other source files are 4478necessary. For example using the ELDK on a 4xx CPU, please enter: 4479 4480 $ CROSS_COMPILE=ppc_4xx- 4481 $ export CROSS_COMPILE 4482 4483Note: If you wish to generate Windows versions of the utilities in 4484 the tools directory you can use the MinGW toolchain 4485 (http://www.mingw.org). Set your HOST tools to the MinGW 4486 toolchain and execute 'make tools'. For example: 4487 4488 $ make HOSTCC=i586-mingw32msvc-gcc HOSTSTRIP=i586-mingw32msvc-strip tools 4489 4490 Binaries such as tools/mkimage.exe will be created which can 4491 be executed on computers running Windows. 4492 4493U-Boot is intended to be simple to build. After installing the 4494sources you must configure U-Boot for one specific board type. This 4495is done by typing: 4496 4497 make NAME_defconfig 4498 4499where "NAME_defconfig" is the name of one of the existing configu- 4500rations; see boards.cfg for supported names. 4501 4502Note: for some board special configuration names may exist; check if 4503 additional information is available from the board vendor; for 4504 instance, the TQM823L systems are available without (standard) 4505 or with LCD support. You can select such additional "features" 4506 when choosing the configuration, i. e. 4507 4508 make TQM823L_defconfig 4509 - will configure for a plain TQM823L, i. e. no LCD support 4510 4511 make TQM823L_LCD_defconfig 4512 - will configure for a TQM823L with U-Boot console on LCD 4513 4514 etc. 4515 4516 4517Finally, type "make all", and you should get some working U-Boot 4518images ready for download to / installation on your system: 4519 4520- "u-boot.bin" is a raw binary image 4521- "u-boot" is an image in ELF binary format 4522- "u-boot.srec" is in Motorola S-Record format 4523 4524By default the build is performed locally and the objects are saved 4525in the source directory. One of the two methods can be used to change 4526this behavior and build U-Boot to some external directory: 4527 45281. Add O= to the make command line invocations: 4529 4530 make O=/tmp/build distclean 4531 make O=/tmp/build NAME_defconfig 4532 make O=/tmp/build all 4533 45342. Set environment variable KBUILD_OUTPUT to point to the desired location: 4535 4536 export KBUILD_OUTPUT=/tmp/build 4537 make distclean 4538 make NAME_defconfig 4539 make all 4540 4541Note that the command line "O=" setting overrides the KBUILD_OUTPUT environment 4542variable. 4543 4544 4545Please be aware that the Makefiles assume you are using GNU make, so 4546for instance on NetBSD you might need to use "gmake" instead of 4547native "make". 4548 4549 4550If the system board that you have is not listed, then you will need 4551to port U-Boot to your hardware platform. To do this, follow these 4552steps: 4553 45541. Create a new directory to hold your board specific code. Add any 4555 files you need. In your board directory, you will need at least 4556 the "Makefile" and a "<board>.c". 45572. Create a new configuration file "include/configs/<board>.h" for 4558 your board. 45593. If you're porting U-Boot to a new CPU, then also create a new 4560 directory to hold your CPU specific code. Add any files you need. 45614. Run "make <board>_defconfig" with your new name. 45625. Type "make", and you should get a working "u-boot.srec" file 4563 to be installed on your target system. 45646. Debug and solve any problems that might arise. 4565 [Of course, this last step is much harder than it sounds.] 4566 4567 4568Testing of U-Boot Modifications, Ports to New Hardware, etc.: 4569============================================================== 4570 4571If you have modified U-Boot sources (for instance added a new board 4572or support for new devices, a new CPU, etc.) you are expected to 4573provide feedback to the other developers. The feedback normally takes 4574the form of a "patch", i. e. a context diff against a certain (latest 4575official or latest in the git repository) version of U-Boot sources. 4576 4577But before you submit such a patch, please verify that your modifi- 4578cation did not break existing code. At least make sure that *ALL* of 4579the supported boards compile WITHOUT ANY compiler warnings. To do so, 4580just run the buildman script (tools/buildman/buildman), which will 4581configure and build U-Boot for ALL supported system. Be warned, this 4582will take a while. Please see the buildman README, or run 'buildman -H' 4583for documentation. 4584 4585 4586See also "U-Boot Porting Guide" below. 4587 4588 4589Monitor Commands - Overview: 4590============================ 4591 4592go - start application at address 'addr' 4593run - run commands in an environment variable 4594bootm - boot application image from memory 4595bootp - boot image via network using BootP/TFTP protocol 4596bootz - boot zImage from memory 4597tftpboot- boot image via network using TFTP protocol 4598 and env variables "ipaddr" and "serverip" 4599 (and eventually "gatewayip") 4600tftpput - upload a file via network using TFTP protocol 4601rarpboot- boot image via network using RARP/TFTP protocol 4602diskboot- boot from IDE devicebootd - boot default, i.e., run 'bootcmd' 4603loads - load S-Record file over serial line 4604loadb - load binary file over serial line (kermit mode) 4605md - memory display 4606mm - memory modify (auto-incrementing) 4607nm - memory modify (constant address) 4608mw - memory write (fill) 4609cp - memory copy 4610cmp - memory compare 4611crc32 - checksum calculation 4612i2c - I2C sub-system 4613sspi - SPI utility commands 4614base - print or set address offset 4615printenv- print environment variables 4616setenv - set environment variables 4617saveenv - save environment variables to persistent storage 4618protect - enable or disable FLASH write protection 4619erase - erase FLASH memory 4620flinfo - print FLASH memory information 4621nand - NAND memory operations (see doc/README.nand) 4622bdinfo - print Board Info structure 4623iminfo - print header information for application image 4624coninfo - print console devices and informations 4625ide - IDE sub-system 4626loop - infinite loop on address range 4627loopw - infinite write loop on address range 4628mtest - simple RAM test 4629icache - enable or disable instruction cache 4630dcache - enable or disable data cache 4631reset - Perform RESET of the CPU 4632echo - echo args to console 4633version - print monitor version 4634help - print online help 4635? - alias for 'help' 4636 4637 4638Monitor Commands - Detailed Description: 4639======================================== 4640 4641TODO. 4642 4643For now: just type "help <command>". 4644 4645 4646Environment Variables: 4647====================== 4648 4649U-Boot supports user configuration using Environment Variables which 4650can be made persistent by saving to Flash memory. 4651 4652Environment Variables are set using "setenv", printed using 4653"printenv", and saved to Flash using "saveenv". Using "setenv" 4654without a value can be used to delete a variable from the 4655environment. As long as you don't save the environment you are 4656working with an in-memory copy. In case the Flash area containing the 4657environment is erased by accident, a default environment is provided. 4658 4659Some configuration options can be set using Environment Variables. 4660 4661List of environment variables (most likely not complete): 4662 4663 baudrate - see CONFIG_BAUDRATE 4664 4665 bootdelay - see CONFIG_BOOTDELAY 4666 4667 bootcmd - see CONFIG_BOOTCOMMAND 4668 4669 bootargs - Boot arguments when booting an RTOS image 4670 4671 bootfile - Name of the image to load with TFTP 4672 4673 bootm_low - Memory range available for image processing in the bootm 4674 command can be restricted. This variable is given as 4675 a hexadecimal number and defines lowest address allowed 4676 for use by the bootm command. See also "bootm_size" 4677 environment variable. Address defined by "bootm_low" is 4678 also the base of the initial memory mapping for the Linux 4679 kernel -- see the description of CONFIG_SYS_BOOTMAPSZ and 4680 bootm_mapsize. 4681 4682 bootm_mapsize - Size of the initial memory mapping for the Linux kernel. 4683 This variable is given as a hexadecimal number and it 4684 defines the size of the memory region starting at base 4685 address bootm_low that is accessible by the Linux kernel 4686 during early boot. If unset, CONFIG_SYS_BOOTMAPSZ is used 4687 as the default value if it is defined, and bootm_size is 4688 used otherwise. 4689 4690 bootm_size - Memory range available for image processing in the bootm 4691 command can be restricted. This variable is given as 4692 a hexadecimal number and defines the size of the region 4693 allowed for use by the bootm command. See also "bootm_low" 4694 environment variable. 4695 4696 updatefile - Location of the software update file on a TFTP server, used 4697 by the automatic software update feature. Please refer to 4698 documentation in doc/README.update for more details. 4699 4700 autoload - if set to "no" (any string beginning with 'n'), 4701 "bootp" will just load perform a lookup of the 4702 configuration from the BOOTP server, but not try to 4703 load any image using TFTP 4704 4705 autostart - if set to "yes", an image loaded using the "bootp", 4706 "rarpboot", "tftpboot" or "diskboot" commands will 4707 be automatically started (by internally calling 4708 "bootm") 4709 4710 If set to "no", a standalone image passed to the 4711 "bootm" command will be copied to the load address 4712 (and eventually uncompressed), but NOT be started. 4713 This can be used to load and uncompress arbitrary 4714 data. 4715 4716 fdt_high - if set this restricts the maximum address that the 4717 flattened device tree will be copied into upon boot. 4718 For example, if you have a system with 1 GB memory 4719 at physical address 0x10000000, while Linux kernel 4720 only recognizes the first 704 MB as low memory, you 4721 may need to set fdt_high as 0x3C000000 to have the 4722 device tree blob be copied to the maximum address 4723 of the 704 MB low memory, so that Linux kernel can 4724 access it during the boot procedure. 4725 4726 If this is set to the special value 0xFFFFFFFF then 4727 the fdt will not be copied at all on boot. For this 4728 to work it must reside in writable memory, have 4729 sufficient padding on the end of it for u-boot to 4730 add the information it needs into it, and the memory 4731 must be accessible by the kernel. 4732 4733 fdtcontroladdr- if set this is the address of the control flattened 4734 device tree used by U-Boot when CONFIG_OF_CONTROL is 4735 defined. 4736 4737 i2cfast - (PPC405GP|PPC405EP only) 4738 if set to 'y' configures Linux I2C driver for fast 4739 mode (400kHZ). This environment variable is used in 4740 initialization code. So, for changes to be effective 4741 it must be saved and board must be reset. 4742 4743 initrd_high - restrict positioning of initrd images: 4744 If this variable is not set, initrd images will be 4745 copied to the highest possible address in RAM; this 4746 is usually what you want since it allows for 4747 maximum initrd size. If for some reason you want to 4748 make sure that the initrd image is loaded below the 4749 CONFIG_SYS_BOOTMAPSZ limit, you can set this environment 4750 variable to a value of "no" or "off" or "0". 4751 Alternatively, you can set it to a maximum upper 4752 address to use (U-Boot will still check that it 4753 does not overwrite the U-Boot stack and data). 4754 4755 For instance, when you have a system with 16 MB 4756 RAM, and want to reserve 4 MB from use by Linux, 4757 you can do this by adding "mem=12M" to the value of 4758 the "bootargs" variable. However, now you must make 4759 sure that the initrd image is placed in the first 4760 12 MB as well - this can be done with 4761 4762 setenv initrd_high 00c00000 4763 4764 If you set initrd_high to 0xFFFFFFFF, this is an 4765 indication to U-Boot that all addresses are legal 4766 for the Linux kernel, including addresses in flash 4767 memory. In this case U-Boot will NOT COPY the 4768 ramdisk at all. This may be useful to reduce the 4769 boot time on your system, but requires that this 4770 feature is supported by your Linux kernel. 4771 4772 ipaddr - IP address; needed for tftpboot command 4773 4774 loadaddr - Default load address for commands like "bootp", 4775 "rarpboot", "tftpboot", "loadb" or "diskboot" 4776 4777 loads_echo - see CONFIG_LOADS_ECHO 4778 4779 serverip - TFTP server IP address; needed for tftpboot command 4780 4781 bootretry - see CONFIG_BOOT_RETRY_TIME 4782 4783 bootdelaykey - see CONFIG_AUTOBOOT_DELAY_STR 4784 4785 bootstopkey - see CONFIG_AUTOBOOT_STOP_STR 4786 4787 ethprime - controls which interface is used first. 4788 4789 ethact - controls which interface is currently active. 4790 For example you can do the following 4791 4792 => setenv ethact FEC 4793 => ping 192.168.0.1 # traffic sent on FEC 4794 => setenv ethact SCC 4795 => ping 10.0.0.1 # traffic sent on SCC 4796 4797 ethrotate - When set to "no" U-Boot does not go through all 4798 available network interfaces. 4799 It just stays at the currently selected interface. 4800 4801 netretry - When set to "no" each network operation will 4802 either succeed or fail without retrying. 4803 When set to "once" the network operation will 4804 fail when all the available network interfaces 4805 are tried once without success. 4806 Useful on scripts which control the retry operation 4807 themselves. 4808 4809 npe_ucode - set load address for the NPE microcode 4810 4811 silent_linux - If set then Linux will be told to boot silently, by 4812 changing the console to be empty. If "yes" it will be 4813 made silent. If "no" it will not be made silent. If 4814 unset, then it will be made silent if the U-Boot console 4815 is silent. 4816 4817 tftpsrcp - If this is set, the value is used for TFTP's 4818 UDP source port. 4819 4820 tftpdstp - If this is set, the value is used for TFTP's UDP 4821 destination port instead of the Well Know Port 69. 4822 4823 tftpblocksize - Block size to use for TFTP transfers; if not set, 4824 we use the TFTP server's default block size 4825 4826 tftptimeout - Retransmission timeout for TFTP packets (in milli- 4827 seconds, minimum value is 1000 = 1 second). Defines 4828 when a packet is considered to be lost so it has to 4829 be retransmitted. The default is 5000 = 5 seconds. 4830 Lowering this value may make downloads succeed 4831 faster in networks with high packet loss rates or 4832 with unreliable TFTP servers. 4833 4834 tftptimeoutcountmax - maximum count of TFTP timeouts (no 4835 unit, minimum value = 0). Defines how many timeouts 4836 can happen during a single file transfer before that 4837 transfer is aborted. The default is 10, and 0 means 4838 'no timeouts allowed'. Increasing this value may help 4839 downloads succeed with high packet loss rates, or with 4840 unreliable TFTP servers or client hardware. 4841 4842 vlan - When set to a value < 4095 the traffic over 4843 Ethernet is encapsulated/received over 802.1q 4844 VLAN tagged frames. 4845 4846 bootpretryperiod - Period during which BOOTP/DHCP sends retries. 4847 Unsigned value, in milliseconds. If not set, the period will 4848 be either the default (28000), or a value based on 4849 CONFIG_NET_RETRY_COUNT, if defined. This value has 4850 precedence over the valu based on CONFIG_NET_RETRY_COUNT. 4851 4852The following image location variables contain the location of images 4853used in booting. The "Image" column gives the role of the image and is 4854not an environment variable name. The other columns are environment 4855variable names. "File Name" gives the name of the file on a TFTP 4856server, "RAM Address" gives the location in RAM the image will be 4857loaded to, and "Flash Location" gives the image's address in NOR 4858flash or offset in NAND flash. 4859 4860*Note* - these variables don't have to be defined for all boards, some 4861boards currently use other variables for these purposes, and some 4862boards use these variables for other purposes. 4863 4864Image File Name RAM Address Flash Location 4865----- --------- ----------- -------------- 4866u-boot u-boot u-boot_addr_r u-boot_addr 4867Linux kernel bootfile kernel_addr_r kernel_addr 4868device tree blob fdtfile fdt_addr_r fdt_addr 4869ramdisk ramdiskfile ramdisk_addr_r ramdisk_addr 4870 4871The following environment variables may be used and automatically 4872updated by the network boot commands ("bootp" and "rarpboot"), 4873depending the information provided by your boot server: 4874 4875 bootfile - see above 4876 dnsip - IP address of your Domain Name Server 4877 dnsip2 - IP address of your secondary Domain Name Server 4878 gatewayip - IP address of the Gateway (Router) to use 4879 hostname - Target hostname 4880 ipaddr - see above 4881 netmask - Subnet Mask 4882 rootpath - Pathname of the root filesystem on the NFS server 4883 serverip - see above 4884 4885 4886There are two special Environment Variables: 4887 4888 serial# - contains hardware identification information such 4889 as type string and/or serial number 4890 ethaddr - Ethernet address 4891 4892These variables can be set only once (usually during manufacturing of 4893the board). U-Boot refuses to delete or overwrite these variables 4894once they have been set once. 4895 4896 4897Further special Environment Variables: 4898 4899 ver - Contains the U-Boot version string as printed 4900 with the "version" command. This variable is 4901 readonly (see CONFIG_VERSION_VARIABLE). 4902 4903 4904Please note that changes to some configuration parameters may take 4905only effect after the next boot (yes, that's just like Windoze :-). 4906 4907 4908Callback functions for environment variables: 4909--------------------------------------------- 4910 4911For some environment variables, the behavior of u-boot needs to change 4912when their values are changed. This functionality allows functions to 4913be associated with arbitrary variables. On creation, overwrite, or 4914deletion, the callback will provide the opportunity for some side 4915effect to happen or for the change to be rejected. 4916 4917The callbacks are named and associated with a function using the 4918U_BOOT_ENV_CALLBACK macro in your board or driver code. 4919 4920These callbacks are associated with variables in one of two ways. The 4921static list can be added to by defining CONFIG_ENV_CALLBACK_LIST_STATIC 4922in the board configuration to a string that defines a list of 4923associations. The list must be in the following format: 4924 4925 entry = variable_name[:callback_name] 4926 list = entry[,list] 4927 4928If the callback name is not specified, then the callback is deleted. 4929Spaces are also allowed anywhere in the list. 4930 4931Callbacks can also be associated by defining the ".callbacks" variable 4932with the same list format above. Any association in ".callbacks" will 4933override any association in the static list. You can define 4934CONFIG_ENV_CALLBACK_LIST_DEFAULT to a list (string) to define the 4935".callbacks" environment variable in the default or embedded environment. 4936 4937If CONFIG_REGEX is defined, the variable_name above is evaluated as a 4938regular expression. This allows multiple variables to be connected to 4939the same callback without explicitly listing them all out. 4940 4941 4942Command Line Parsing: 4943===================== 4944 4945There are two different command line parsers available with U-Boot: 4946the old "simple" one, and the much more powerful "hush" shell: 4947 4948Old, simple command line parser: 4949-------------------------------- 4950 4951- supports environment variables (through setenv / saveenv commands) 4952- several commands on one line, separated by ';' 4953- variable substitution using "... ${name} ..." syntax 4954- special characters ('$', ';') can be escaped by prefixing with '\', 4955 for example: 4956 setenv bootcmd bootm \${address} 4957- You can also escape text by enclosing in single apostrophes, for example: 4958 setenv addip 'setenv bootargs $bootargs ip=$ipaddr:$serverip:$gatewayip:$netmask:$hostname::off' 4959 4960Hush shell: 4961----------- 4962 4963- similar to Bourne shell, with control structures like 4964 if...then...else...fi, for...do...done; while...do...done, 4965 until...do...done, ... 4966- supports environment ("global") variables (through setenv / saveenv 4967 commands) and local shell variables (through standard shell syntax 4968 "name=value"); only environment variables can be used with "run" 4969 command 4970 4971General rules: 4972-------------- 4973 4974(1) If a command line (or an environment variable executed by a "run" 4975 command) contains several commands separated by semicolon, and 4976 one of these commands fails, then the remaining commands will be 4977 executed anyway. 4978 4979(2) If you execute several variables with one call to run (i. e. 4980 calling run with a list of variables as arguments), any failing 4981 command will cause "run" to terminate, i. e. the remaining 4982 variables are not executed. 4983 4984Note for Redundant Ethernet Interfaces: 4985======================================= 4986 4987Some boards come with redundant Ethernet interfaces; U-Boot supports 4988such configurations and is capable of automatic selection of a 4989"working" interface when needed. MAC assignment works as follows: 4990 4991Network interfaces are numbered eth0, eth1, eth2, ... Corresponding 4992MAC addresses can be stored in the environment as "ethaddr" (=>eth0), 4993"eth1addr" (=>eth1), "eth2addr", ... 4994 4995If the network interface stores some valid MAC address (for instance 4996in SROM), this is used as default address if there is NO correspon- 4997ding setting in the environment; if the corresponding environment 4998variable is set, this overrides the settings in the card; that means: 4999 5000o If the SROM has a valid MAC address, and there is no address in the 5001 environment, the SROM's address is used. 5002 5003o If there is no valid address in the SROM, and a definition in the 5004 environment exists, then the value from the environment variable is 5005 used. 5006 5007o If both the SROM and the environment contain a MAC address, and 5008 both addresses are the same, this MAC address is used. 5009 5010o If both the SROM and the environment contain a MAC address, and the 5011 addresses differ, the value from the environment is used and a 5012 warning is printed. 5013 5014o If neither SROM nor the environment contain a MAC address, an error 5015 is raised. If CONFIG_NET_RANDOM_ETHADDR is defined, then in this case 5016 a random, locally-assigned MAC is used. 5017 5018If Ethernet drivers implement the 'write_hwaddr' function, valid MAC addresses 5019will be programmed into hardware as part of the initialization process. This 5020may be skipped by setting the appropriate 'ethmacskip' environment variable. 5021The naming convention is as follows: 5022"ethmacskip" (=>eth0), "eth1macskip" (=>eth1) etc. 5023 5024Image Formats: 5025============== 5026 5027U-Boot is capable of booting (and performing other auxiliary operations on) 5028images in two formats: 5029 5030New uImage format (FIT) 5031----------------------- 5032 5033Flexible and powerful format based on Flattened Image Tree -- FIT (similar 5034to Flattened Device Tree). It allows the use of images with multiple 5035components (several kernels, ramdisks, etc.), with contents protected by 5036SHA1, MD5 or CRC32. More details are found in the doc/uImage.FIT directory. 5037 5038 5039Old uImage format 5040----------------- 5041 5042Old image format is based on binary files which can be basically anything, 5043preceded by a special header; see the definitions in include/image.h for 5044details; basically, the header defines the following image properties: 5045 5046* Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD, 5047 4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, 5048 LynxOS, pSOS, QNX, RTEMS, INTEGRITY; 5049 Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, LynxOS, 5050 INTEGRITY). 5051* Target CPU Architecture (Provisions for Alpha, ARM, AVR32, Intel x86, 5052 IA64, MIPS, NDS32, Nios II, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit; 5053 Currently supported: ARM, AVR32, Intel x86, MIPS, NDS32, Nios II, PowerPC). 5054* Compression Type (uncompressed, gzip, bzip2) 5055* Load Address 5056* Entry Point 5057* Image Name 5058* Image Timestamp 5059 5060The header is marked by a special Magic Number, and both the header 5061and the data portions of the image are secured against corruption by 5062CRC32 checksums. 5063 5064 5065Linux Support: 5066============== 5067 5068Although U-Boot should support any OS or standalone application 5069easily, the main focus has always been on Linux during the design of 5070U-Boot. 5071 5072U-Boot includes many features that so far have been part of some 5073special "boot loader" code within the Linux kernel. Also, any 5074"initrd" images to be used are no longer part of one big Linux image; 5075instead, kernel and "initrd" are separate images. This implementation 5076serves several purposes: 5077 5078- the same features can be used for other OS or standalone 5079 applications (for instance: using compressed images to reduce the 5080 Flash memory footprint) 5081 5082- it becomes much easier to port new Linux kernel versions because 5083 lots of low-level, hardware dependent stuff are done by U-Boot 5084 5085- the same Linux kernel image can now be used with different "initrd" 5086 images; of course this also means that different kernel images can 5087 be run with the same "initrd". This makes testing easier (you don't 5088 have to build a new "zImage.initrd" Linux image when you just 5089 change a file in your "initrd"). Also, a field-upgrade of the 5090 software is easier now. 5091 5092 5093Linux HOWTO: 5094============ 5095 5096Porting Linux to U-Boot based systems: 5097--------------------------------------- 5098 5099U-Boot cannot save you from doing all the necessary modifications to 5100configure the Linux device drivers for use with your target hardware 5101(no, we don't intend to provide a full virtual machine interface to 5102Linux :-). 5103 5104But now you can ignore ALL boot loader code (in arch/powerpc/mbxboot). 5105 5106Just make sure your machine specific header file (for instance 5107include/asm-ppc/tqm8xx.h) includes the same definition of the Board 5108Information structure as we define in include/asm-<arch>/u-boot.h, 5109and make sure that your definition of IMAP_ADDR uses the same value 5110as your U-Boot configuration in CONFIG_SYS_IMMR. 5111 5112Note that U-Boot now has a driver model, a unified model for drivers. 5113If you are adding a new driver, plumb it into driver model. If there 5114is no uclass available, you are encouraged to create one. See 5115doc/driver-model. 5116 5117 5118Configuring the Linux kernel: 5119----------------------------- 5120 5121No specific requirements for U-Boot. Make sure you have some root 5122device (initial ramdisk, NFS) for your target system. 5123 5124 5125Building a Linux Image: 5126----------------------- 5127 5128With U-Boot, "normal" build targets like "zImage" or "bzImage" are 5129not used. If you use recent kernel source, a new build target 5130"uImage" will exist which automatically builds an image usable by 5131U-Boot. Most older kernels also have support for a "pImage" target, 5132which was introduced for our predecessor project PPCBoot and uses a 5133100% compatible format. 5134 5135Example: 5136 5137 make TQM850L_defconfig 5138 make oldconfig 5139 make dep 5140 make uImage 5141 5142The "uImage" build target uses a special tool (in 'tools/mkimage') to 5143encapsulate a compressed Linux kernel image with header information, 5144CRC32 checksum etc. for use with U-Boot. This is what we are doing: 5145 5146* build a standard "vmlinux" kernel image (in ELF binary format): 5147 5148* convert the kernel into a raw binary image: 5149 5150 ${CROSS_COMPILE}-objcopy -O binary \ 5151 -R .note -R .comment \ 5152 -S vmlinux linux.bin 5153 5154* compress the binary image: 5155 5156 gzip -9 linux.bin 5157 5158* package compressed binary image for U-Boot: 5159 5160 mkimage -A ppc -O linux -T kernel -C gzip \ 5161 -a 0 -e 0 -n "Linux Kernel Image" \ 5162 -d linux.bin.gz uImage 5163 5164 5165The "mkimage" tool can also be used to create ramdisk images for use 5166with U-Boot, either separated from the Linux kernel image, or 5167combined into one file. "mkimage" encapsulates the images with a 64 5168byte header containing information about target architecture, 5169operating system, image type, compression method, entry points, time 5170stamp, CRC32 checksums, etc. 5171 5172"mkimage" can be called in two ways: to verify existing images and 5173print the header information, or to build new images. 5174 5175In the first form (with "-l" option) mkimage lists the information 5176contained in the header of an existing U-Boot image; this includes 5177checksum verification: 5178 5179 tools/mkimage -l image 5180 -l ==> list image header information 5181 5182The second form (with "-d" option) is used to build a U-Boot image 5183from a "data file" which is used as image payload: 5184 5185 tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \ 5186 -n name -d data_file image 5187 -A ==> set architecture to 'arch' 5188 -O ==> set operating system to 'os' 5189 -T ==> set image type to 'type' 5190 -C ==> set compression type 'comp' 5191 -a ==> set load address to 'addr' (hex) 5192 -e ==> set entry point to 'ep' (hex) 5193 -n ==> set image name to 'name' 5194 -d ==> use image data from 'datafile' 5195 5196Right now, all Linux kernels for PowerPC systems use the same load 5197address (0x00000000), but the entry point address depends on the 5198kernel version: 5199 5200- 2.2.x kernels have the entry point at 0x0000000C, 5201- 2.3.x and later kernels have the entry point at 0x00000000. 5202 5203So a typical call to build a U-Boot image would read: 5204 5205 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \ 5206 > -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \ 5207 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz \ 5208 > examples/uImage.TQM850L 5209 Image Name: 2.4.4 kernel for TQM850L 5210 Created: Wed Jul 19 02:34:59 2000 5211 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5212 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB 5213 Load Address: 0x00000000 5214 Entry Point: 0x00000000 5215 5216To verify the contents of the image (or check for corruption): 5217 5218 -> tools/mkimage -l examples/uImage.TQM850L 5219 Image Name: 2.4.4 kernel for TQM850L 5220 Created: Wed Jul 19 02:34:59 2000 5221 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5222 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB 5223 Load Address: 0x00000000 5224 Entry Point: 0x00000000 5225 5226NOTE: for embedded systems where boot time is critical you can trade 5227speed for memory and install an UNCOMPRESSED image instead: this 5228needs more space in Flash, but boots much faster since it does not 5229need to be uncompressed: 5230 5231 -> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz 5232 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \ 5233 > -A ppc -O linux -T kernel -C none -a 0 -e 0 \ 5234 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux \ 5235 > examples/uImage.TQM850L-uncompressed 5236 Image Name: 2.4.4 kernel for TQM850L 5237 Created: Wed Jul 19 02:34:59 2000 5238 Image Type: PowerPC Linux Kernel Image (uncompressed) 5239 Data Size: 792160 Bytes = 773.59 kB = 0.76 MB 5240 Load Address: 0x00000000 5241 Entry Point: 0x00000000 5242 5243 5244Similar you can build U-Boot images from a 'ramdisk.image.gz' file 5245when your kernel is intended to use an initial ramdisk: 5246 5247 -> tools/mkimage -n 'Simple Ramdisk Image' \ 5248 > -A ppc -O linux -T ramdisk -C gzip \ 5249 > -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd 5250 Image Name: Simple Ramdisk Image 5251 Created: Wed Jan 12 14:01:50 2000 5252 Image Type: PowerPC Linux RAMDisk Image (gzip compressed) 5253 Data Size: 566530 Bytes = 553.25 kB = 0.54 MB 5254 Load Address: 0x00000000 5255 Entry Point: 0x00000000 5256 5257The "dumpimage" is a tool to disassemble images built by mkimage. Its "-i" 5258option performs the converse operation of the mkimage's second form (the "-d" 5259option). Given an image built by mkimage, the dumpimage extracts a "data file" 5260from the image: 5261 5262 tools/dumpimage -i image -T type -p position data_file 5263 -i ==> extract from the 'image' a specific 'data_file' 5264 -T ==> set image type to 'type' 5265 -p ==> 'position' (starting at 0) of the 'data_file' inside the 'image' 5266 5267 5268Installing a Linux Image: 5269------------------------- 5270 5271To downloading a U-Boot image over the serial (console) interface, 5272you must convert the image to S-Record format: 5273 5274 objcopy -I binary -O srec examples/image examples/image.srec 5275 5276The 'objcopy' does not understand the information in the U-Boot 5277image header, so the resulting S-Record file will be relative to 5278address 0x00000000. To load it to a given address, you need to 5279specify the target address as 'offset' parameter with the 'loads' 5280command. 5281 5282Example: install the image to address 0x40100000 (which on the 5283TQM8xxL is in the first Flash bank): 5284 5285 => erase 40100000 401FFFFF 5286 5287 .......... done 5288 Erased 8 sectors 5289 5290 => loads 40100000 5291 ## Ready for S-Record download ... 5292 ~>examples/image.srec 5293 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 5294 ... 5295 15989 15990 15991 15992 5296 [file transfer complete] 5297 [connected] 5298 ## Start Addr = 0x00000000 5299 5300 5301You can check the success of the download using the 'iminfo' command; 5302this includes a checksum verification so you can be sure no data 5303corruption happened: 5304 5305 => imi 40100000 5306 5307 ## Checking Image at 40100000 ... 5308 Image Name: 2.2.13 for initrd on TQM850L 5309 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5310 Data Size: 335725 Bytes = 327 kB = 0 MB 5311 Load Address: 00000000 5312 Entry Point: 0000000c 5313 Verifying Checksum ... OK 5314 5315 5316Boot Linux: 5317----------- 5318 5319The "bootm" command is used to boot an application that is stored in 5320memory (RAM or Flash). In case of a Linux kernel image, the contents 5321of the "bootargs" environment variable is passed to the kernel as 5322parameters. You can check and modify this variable using the 5323"printenv" and "setenv" commands: 5324 5325 5326 => printenv bootargs 5327 bootargs=root=/dev/ram 5328 5329 => setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2 5330 5331 => printenv bootargs 5332 bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2 5333 5334 => bootm 40020000 5335 ## Booting Linux kernel at 40020000 ... 5336 Image Name: 2.2.13 for NFS on TQM850L 5337 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5338 Data Size: 381681 Bytes = 372 kB = 0 MB 5339 Load Address: 00000000 5340 Entry Point: 0000000c 5341 Verifying Checksum ... OK 5342 Uncompressing Kernel Image ... OK 5343 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:35:17 MEST 2000 5344 Boot arguments: root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2 5345 time_init: decrementer frequency = 187500000/60 5346 Calibrating delay loop... 49.77 BogoMIPS 5347 Memory: 15208k available (700k kernel code, 444k data, 32k init) [c0000000,c1000000] 5348 ... 5349 5350If you want to boot a Linux kernel with initial RAM disk, you pass 5351the memory addresses of both the kernel and the initrd image (PPBCOOT 5352format!) to the "bootm" command: 5353 5354 => imi 40100000 40200000 5355 5356 ## Checking Image at 40100000 ... 5357 Image Name: 2.2.13 for initrd on TQM850L 5358 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5359 Data Size: 335725 Bytes = 327 kB = 0 MB 5360 Load Address: 00000000 5361 Entry Point: 0000000c 5362 Verifying Checksum ... OK 5363 5364 ## Checking Image at 40200000 ... 5365 Image Name: Simple Ramdisk Image 5366 Image Type: PowerPC Linux RAMDisk Image (gzip compressed) 5367 Data Size: 566530 Bytes = 553 kB = 0 MB 5368 Load Address: 00000000 5369 Entry Point: 00000000 5370 Verifying Checksum ... OK 5371 5372 => bootm 40100000 40200000 5373 ## Booting Linux kernel at 40100000 ... 5374 Image Name: 2.2.13 for initrd on TQM850L 5375 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5376 Data Size: 335725 Bytes = 327 kB = 0 MB 5377 Load Address: 00000000 5378 Entry Point: 0000000c 5379 Verifying Checksum ... OK 5380 Uncompressing Kernel Image ... OK 5381 ## Loading RAMDisk Image at 40200000 ... 5382 Image Name: Simple Ramdisk Image 5383 Image Type: PowerPC Linux RAMDisk Image (gzip compressed) 5384 Data Size: 566530 Bytes = 553 kB = 0 MB 5385 Load Address: 00000000 5386 Entry Point: 00000000 5387 Verifying Checksum ... OK 5388 Loading Ramdisk ... OK 5389 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:32:08 MEST 2000 5390 Boot arguments: root=/dev/ram 5391 time_init: decrementer frequency = 187500000/60 5392 Calibrating delay loop... 49.77 BogoMIPS 5393 ... 5394 RAMDISK: Compressed image found at block 0 5395 VFS: Mounted root (ext2 filesystem). 5396 5397 bash# 5398 5399Boot Linux and pass a flat device tree: 5400----------- 5401 5402First, U-Boot must be compiled with the appropriate defines. See the section 5403titled "Linux Kernel Interface" above for a more in depth explanation. The 5404following is an example of how to start a kernel and pass an updated 5405flat device tree: 5406 5407=> print oftaddr 5408oftaddr=0x300000 5409=> print oft 5410oft=oftrees/mpc8540ads.dtb 5411=> tftp $oftaddr $oft 5412Speed: 1000, full duplex 5413Using TSEC0 device 5414TFTP from server 192.168.1.1; our IP address is 192.168.1.101 5415Filename 'oftrees/mpc8540ads.dtb'. 5416Load address: 0x300000 5417Loading: # 5418done 5419Bytes transferred = 4106 (100a hex) 5420=> tftp $loadaddr $bootfile 5421Speed: 1000, full duplex 5422Using TSEC0 device 5423TFTP from server 192.168.1.1; our IP address is 192.168.1.2 5424Filename 'uImage'. 5425Load address: 0x200000 5426Loading:############ 5427done 5428Bytes transferred = 1029407 (fb51f hex) 5429=> print loadaddr 5430loadaddr=200000 5431=> print oftaddr 5432oftaddr=0x300000 5433=> bootm $loadaddr - $oftaddr 5434## Booting image at 00200000 ... 5435 Image Name: Linux-2.6.17-dirty 5436 Image Type: PowerPC Linux Kernel Image (gzip compressed) 5437 Data Size: 1029343 Bytes = 1005.2 kB 5438 Load Address: 00000000 5439 Entry Point: 00000000 5440 Verifying Checksum ... OK 5441 Uncompressing Kernel Image ... OK 5442Booting using flat device tree at 0x300000 5443Using MPC85xx ADS machine description 5444Memory CAM mapping: CAM0=256Mb, CAM1=256Mb, CAM2=0Mb residual: 0Mb 5445[snip] 5446 5447 5448More About U-Boot Image Types: 5449------------------------------ 5450 5451U-Boot supports the following image types: 5452 5453 "Standalone Programs" are directly runnable in the environment 5454 provided by U-Boot; it is expected that (if they behave 5455 well) you can continue to work in U-Boot after return from 5456 the Standalone Program. 5457 "OS Kernel Images" are usually images of some Embedded OS which 5458 will take over control completely. Usually these programs 5459 will install their own set of exception handlers, device 5460 drivers, set up the MMU, etc. - this means, that you cannot 5461 expect to re-enter U-Boot except by resetting the CPU. 5462 "RAMDisk Images" are more or less just data blocks, and their 5463 parameters (address, size) are passed to an OS kernel that is 5464 being started. 5465 "Multi-File Images" contain several images, typically an OS 5466 (Linux) kernel image and one or more data images like 5467 RAMDisks. This construct is useful for instance when you want 5468 to boot over the network using BOOTP etc., where the boot 5469 server provides just a single image file, but you want to get 5470 for instance an OS kernel and a RAMDisk image. 5471 5472 "Multi-File Images" start with a list of image sizes, each 5473 image size (in bytes) specified by an "uint32_t" in network 5474 byte order. This list is terminated by an "(uint32_t)0". 5475 Immediately after the terminating 0 follow the images, one by 5476 one, all aligned on "uint32_t" boundaries (size rounded up to 5477 a multiple of 4 bytes). 5478 5479 "Firmware Images" are binary images containing firmware (like 5480 U-Boot or FPGA images) which usually will be programmed to 5481 flash memory. 5482 5483 "Script files" are command sequences that will be executed by 5484 U-Boot's command interpreter; this feature is especially 5485 useful when you configure U-Boot to use a real shell (hush) 5486 as command interpreter. 5487 5488Booting the Linux zImage: 5489------------------------- 5490 5491On some platforms, it's possible to boot Linux zImage. This is done 5492using the "bootz" command. The syntax of "bootz" command is the same 5493as the syntax of "bootm" command. 5494 5495Note, defining the CONFIG_SUPPORT_RAW_INITRD allows user to supply 5496kernel with raw initrd images. The syntax is slightly different, the 5497address of the initrd must be augmented by it's size, in the following 5498format: "<initrd addres>:<initrd size>". 5499 5500 5501Standalone HOWTO: 5502================= 5503 5504One of the features of U-Boot is that you can dynamically load and 5505run "standalone" applications, which can use some resources of 5506U-Boot like console I/O functions or interrupt services. 5507 5508Two simple examples are included with the sources: 5509 5510"Hello World" Demo: 5511------------------- 5512 5513'examples/hello_world.c' contains a small "Hello World" Demo 5514application; it is automatically compiled when you build U-Boot. 5515It's configured to run at address 0x00040004, so you can play with it 5516like that: 5517 5518 => loads 5519 ## Ready for S-Record download ... 5520 ~>examples/hello_world.srec 5521 1 2 3 4 5 6 7 8 9 10 11 ... 5522 [file transfer complete] 5523 [connected] 5524 ## Start Addr = 0x00040004 5525 5526 => go 40004 Hello World! This is a test. 5527 ## Starting application at 0x00040004 ... 5528 Hello World 5529 argc = 7 5530 argv[0] = "40004" 5531 argv[1] = "Hello" 5532 argv[2] = "World!" 5533 argv[3] = "This" 5534 argv[4] = "is" 5535 argv[5] = "a" 5536 argv[6] = "test." 5537 argv[7] = "<NULL>" 5538 Hit any key to exit ... 5539 5540 ## Application terminated, rc = 0x0 5541 5542Another example, which demonstrates how to register a CPM interrupt 5543handler with the U-Boot code, can be found in 'examples/timer.c'. 5544Here, a CPM timer is set up to generate an interrupt every second. 5545The interrupt service routine is trivial, just printing a '.' 5546character, but this is just a demo program. The application can be 5547controlled by the following keys: 5548 5549 ? - print current values og the CPM Timer registers 5550 b - enable interrupts and start timer 5551 e - stop timer and disable interrupts 5552 q - quit application 5553 5554 => loads 5555 ## Ready for S-Record download ... 5556 ~>examples/timer.srec 5557 1 2 3 4 5 6 7 8 9 10 11 ... 5558 [file transfer complete] 5559 [connected] 5560 ## Start Addr = 0x00040004 5561 5562 => go 40004 5563 ## Starting application at 0x00040004 ... 5564 TIMERS=0xfff00980 5565 Using timer 1 5566 tgcr @ 0xfff00980, tmr @ 0xfff00990, trr @ 0xfff00994, tcr @ 0xfff00998, tcn @ 0xfff0099c, ter @ 0xfff009b0 5567 5568Hit 'b': 5569 [q, b, e, ?] Set interval 1000000 us 5570 Enabling timer 5571Hit '?': 5572 [q, b, e, ?] ........ 5573 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0xef6, ter=0x0 5574Hit '?': 5575 [q, b, e, ?] . 5576 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x2ad4, ter=0x0 5577Hit '?': 5578 [q, b, e, ?] . 5579 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x1efc, ter=0x0 5580Hit '?': 5581 [q, b, e, ?] . 5582 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x169d, ter=0x0 5583Hit 'e': 5584 [q, b, e, ?] ...Stopping timer 5585Hit 'q': 5586 [q, b, e, ?] ## Application terminated, rc = 0x0 5587 5588 5589Minicom warning: 5590================ 5591 5592Over time, many people have reported problems when trying to use the 5593"minicom" terminal emulation program for serial download. I (wd) 5594consider minicom to be broken, and recommend not to use it. Under 5595Unix, I recommend to use C-Kermit for general purpose use (and 5596especially for kermit binary protocol download ("loadb" command), and 5597use "cu" for S-Record download ("loads" command). See 5598http://www.denx.de/wiki/view/DULG/SystemSetup#Section_4.3. 5599for help with kermit. 5600 5601 5602Nevertheless, if you absolutely want to use it try adding this 5603configuration to your "File transfer protocols" section: 5604 5605 Name Program Name U/D FullScr IO-Red. Multi 5606 X kermit /usr/bin/kermit -i -l %l -s Y U Y N N 5607 Y kermit /usr/bin/kermit -i -l %l -r N D Y N N 5608 5609 5610NetBSD Notes: 5611============= 5612 5613Starting at version 0.9.2, U-Boot supports NetBSD both as host 5614(build U-Boot) and target system (boots NetBSD/mpc8xx). 5615 5616Building requires a cross environment; it is known to work on 5617NetBSD/i386 with the cross-powerpc-netbsd-1.3 package (you will also 5618need gmake since the Makefiles are not compatible with BSD make). 5619Note that the cross-powerpc package does not install include files; 5620attempting to build U-Boot will fail because <machine/ansi.h> is 5621missing. This file has to be installed and patched manually: 5622 5623 # cd /usr/pkg/cross/powerpc-netbsd/include 5624 # mkdir powerpc 5625 # ln -s powerpc machine 5626 # cp /usr/src/sys/arch/powerpc/include/ansi.h powerpc/ansi.h 5627 # ${EDIT} powerpc/ansi.h ## must remove __va_list, _BSD_VA_LIST 5628 5629Native builds *don't* work due to incompatibilities between native 5630and U-Boot include files. 5631 5632Booting assumes that (the first part of) the image booted is a 5633stage-2 loader which in turn loads and then invokes the kernel 5634proper. Loader sources will eventually appear in the NetBSD source 5635tree (probably in sys/arc/mpc8xx/stand/u-boot_stage2/); in the 5636meantime, see ftp://ftp.denx.de/pub/u-boot/ppcboot_stage2.tar.gz 5637 5638 5639Implementation Internals: 5640========================= 5641 5642The following is not intended to be a complete description of every 5643implementation detail. However, it should help to understand the 5644inner workings of U-Boot and make it easier to port it to custom 5645hardware. 5646 5647 5648Initial Stack, Global Data: 5649--------------------------- 5650 5651The implementation of U-Boot is complicated by the fact that U-Boot 5652starts running out of ROM (flash memory), usually without access to 5653system RAM (because the memory controller is not initialized yet). 5654This means that we don't have writable Data or BSS segments, and BSS 5655is not initialized as zero. To be able to get a C environment working 5656at all, we have to allocate at least a minimal stack. Implementation 5657options for this are defined and restricted by the CPU used: Some CPU 5658models provide on-chip memory (like the IMMR area on MPC8xx and 5659MPC826x processors), on others (parts of) the data cache can be 5660locked as (mis-) used as memory, etc. 5661 5662 Chris Hallinan posted a good summary of these issues to the 5663 U-Boot mailing list: 5664 5665 Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)? 5666 From: "Chris Hallinan" <clh@net1plus.com> 5667 Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET) 5668 ... 5669 5670 Correct me if I'm wrong, folks, but the way I understand it 5671 is this: Using DCACHE as initial RAM for Stack, etc, does not 5672 require any physical RAM backing up the cache. The cleverness 5673 is that the cache is being used as a temporary supply of 5674 necessary storage before the SDRAM controller is setup. It's 5675 beyond the scope of this list to explain the details, but you 5676 can see how this works by studying the cache architecture and 5677 operation in the architecture and processor-specific manuals. 5678 5679 OCM is On Chip Memory, which I believe the 405GP has 4K. It 5680 is another option for the system designer to use as an 5681 initial stack/RAM area prior to SDRAM being available. Either 5682 option should work for you. Using CS 4 should be fine if your 5683 board designers haven't used it for something that would 5684 cause you grief during the initial boot! It is frequently not 5685 used. 5686 5687 CONFIG_SYS_INIT_RAM_ADDR should be somewhere that won't interfere 5688 with your processor/board/system design. The default value 5689 you will find in any recent u-boot distribution in 5690 walnut.h should work for you. I'd set it to a value larger 5691 than your SDRAM module. If you have a 64MB SDRAM module, set 5692 it above 400_0000. Just make sure your board has no resources 5693 that are supposed to respond to that address! That code in 5694 start.S has been around a while and should work as is when 5695 you get the config right. 5696 5697 -Chris Hallinan 5698 DS4.COM, Inc. 5699 5700It is essential to remember this, since it has some impact on the C 5701code for the initialization procedures: 5702 5703* Initialized global data (data segment) is read-only. Do not attempt 5704 to write it. 5705 5706* Do not use any uninitialized global data (or implicitly initialized 5707 as zero data - BSS segment) at all - this is undefined, initiali- 5708 zation is performed later (when relocating to RAM). 5709 5710* Stack space is very limited. Avoid big data buffers or things like 5711 that. 5712 5713Having only the stack as writable memory limits means we cannot use 5714normal global data to share information between the code. But it 5715turned out that the implementation of U-Boot can be greatly 5716simplified by making a global data structure (gd_t) available to all 5717functions. We could pass a pointer to this data as argument to _all_ 5718functions, but this would bloat the code. Instead we use a feature of 5719the GCC compiler (Global Register Variables) to share the data: we 5720place a pointer (gd) to the global data into a register which we 5721reserve for this purpose. 5722 5723When choosing a register for such a purpose we are restricted by the 5724relevant (E)ABI specifications for the current architecture, and by 5725GCC's implementation. 5726 5727For PowerPC, the following registers have specific use: 5728 R1: stack pointer 5729 R2: reserved for system use 5730 R3-R4: parameter passing and return values 5731 R5-R10: parameter passing 5732 R13: small data area pointer 5733 R30: GOT pointer 5734 R31: frame pointer 5735 5736 (U-Boot also uses R12 as internal GOT pointer. r12 5737 is a volatile register so r12 needs to be reset when 5738 going back and forth between asm and C) 5739 5740 ==> U-Boot will use R2 to hold a pointer to the global data 5741 5742 Note: on PPC, we could use a static initializer (since the 5743 address of the global data structure is known at compile time), 5744 but it turned out that reserving a register results in somewhat 5745 smaller code - although the code savings are not that big (on 5746 average for all boards 752 bytes for the whole U-Boot image, 5747 624 text + 127 data). 5748 5749On ARM, the following registers are used: 5750 5751 R0: function argument word/integer result 5752 R1-R3: function argument word 5753 R9: platform specific 5754 R10: stack limit (used only if stack checking is enabled) 5755 R11: argument (frame) pointer 5756 R12: temporary workspace 5757 R13: stack pointer 5758 R14: link register 5759 R15: program counter 5760 5761 ==> U-Boot will use R9 to hold a pointer to the global data 5762 5763 Note: on ARM, only R_ARM_RELATIVE relocations are supported. 5764 5765On Nios II, the ABI is documented here: 5766 http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf 5767 5768 ==> U-Boot will use gp to hold a pointer to the global data 5769 5770 Note: on Nios II, we give "-G0" option to gcc and don't use gp 5771 to access small data sections, so gp is free. 5772 5773On NDS32, the following registers are used: 5774 5775 R0-R1: argument/return 5776 R2-R5: argument 5777 R15: temporary register for assembler 5778 R16: trampoline register 5779 R28: frame pointer (FP) 5780 R29: global pointer (GP) 5781 R30: link register (LP) 5782 R31: stack pointer (SP) 5783 PC: program counter (PC) 5784 5785 ==> U-Boot will use R10 to hold a pointer to the global data 5786 5787NOTE: DECLARE_GLOBAL_DATA_PTR must be used with file-global scope, 5788or current versions of GCC may "optimize" the code too much. 5789 5790Memory Management: 5791------------------ 5792 5793U-Boot runs in system state and uses physical addresses, i.e. the 5794MMU is not used either for address mapping nor for memory protection. 5795 5796The available memory is mapped to fixed addresses using the memory 5797controller. In this process, a contiguous block is formed for each 5798memory type (Flash, SDRAM, SRAM), even when it consists of several 5799physical memory banks. 5800 5801U-Boot is installed in the first 128 kB of the first Flash bank (on 5802TQM8xxL modules this is the range 0x40000000 ... 0x4001FFFF). After 5803booting and sizing and initializing DRAM, the code relocates itself 5804to the upper end of DRAM. Immediately below the U-Boot code some 5805memory is reserved for use by malloc() [see CONFIG_SYS_MALLOC_LEN 5806configuration setting]. Below that, a structure with global Board 5807Info data is placed, followed by the stack (growing downward). 5808 5809Additionally, some exception handler code is copied to the low 8 kB 5810of DRAM (0x00000000 ... 0x00001FFF). 5811 5812So a typical memory configuration with 16 MB of DRAM could look like 5813this: 5814 5815 0x0000 0000 Exception Vector code 5816 : 5817 0x0000 1FFF 5818 0x0000 2000 Free for Application Use 5819 : 5820 : 5821 5822 : 5823 : 5824 0x00FB FF20 Monitor Stack (Growing downward) 5825 0x00FB FFAC Board Info Data and permanent copy of global data 5826 0x00FC 0000 Malloc Arena 5827 : 5828 0x00FD FFFF 5829 0x00FE 0000 RAM Copy of Monitor Code 5830 ... eventually: LCD or video framebuffer 5831 ... eventually: pRAM (Protected RAM - unchanged by reset) 5832 0x00FF FFFF [End of RAM] 5833 5834 5835System Initialization: 5836---------------------- 5837 5838In the reset configuration, U-Boot starts at the reset entry point 5839(on most PowerPC systems at address 0x00000100). Because of the reset 5840configuration for CS0# this is a mirror of the on board Flash memory. 5841To be able to re-map memory U-Boot then jumps to its link address. 5842To be able to implement the initialization code in C, a (small!) 5843initial stack is set up in the internal Dual Ported RAM (in case CPUs 5844which provide such a feature like MPC8xx or MPC8260), or in a locked 5845part of the data cache. After that, U-Boot initializes the CPU core, 5846the caches and the SIU. 5847 5848Next, all (potentially) available memory banks are mapped using a 5849preliminary mapping. For example, we put them on 512 MB boundaries 5850(multiples of 0x20000000: SDRAM on 0x00000000 and 0x20000000, Flash 5851on 0x40000000 and 0x60000000, SRAM on 0x80000000). Then UPM A is 5852programmed for SDRAM access. Using the temporary configuration, a 5853simple memory test is run that determines the size of the SDRAM 5854banks. 5855 5856When there is more than one SDRAM bank, and the banks are of 5857different size, the largest is mapped first. For equal size, the first 5858bank (CS2#) is mapped first. The first mapping is always for address 58590x00000000, with any additional banks following immediately to create 5860contiguous memory starting from 0. 5861 5862Then, the monitor installs itself at the upper end of the SDRAM area 5863and allocates memory for use by malloc() and for the global Board 5864Info data; also, the exception vector code is copied to the low RAM 5865pages, and the final stack is set up. 5866 5867Only after this relocation will you have a "normal" C environment; 5868until that you are restricted in several ways, mostly because you are 5869running from ROM, and because the code will have to be relocated to a 5870new address in RAM. 5871 5872 5873U-Boot Porting Guide: 5874---------------------- 5875 5876[Based on messages by Jerry Van Baren in the U-Boot-Users mailing 5877list, October 2002] 5878 5879 5880int main(int argc, char *argv[]) 5881{ 5882 sighandler_t no_more_time; 5883 5884 signal(SIGALRM, no_more_time); 5885 alarm(PROJECT_DEADLINE - toSec (3 * WEEK)); 5886 5887 if (available_money > available_manpower) { 5888 Pay consultant to port U-Boot; 5889 return 0; 5890 } 5891 5892 Download latest U-Boot source; 5893 5894 Subscribe to u-boot mailing list; 5895 5896 if (clueless) 5897 email("Hi, I am new to U-Boot, how do I get started?"); 5898 5899 while (learning) { 5900 Read the README file in the top level directory; 5901 Read http://www.denx.de/twiki/bin/view/DULG/Manual; 5902 Read applicable doc/*.README; 5903 Read the source, Luke; 5904 /* find . -name "*.[chS]" | xargs grep -i <keyword> */ 5905 } 5906 5907 if (available_money > toLocalCurrency ($2500)) 5908 Buy a BDI3000; 5909 else 5910 Add a lot of aggravation and time; 5911 5912 if (a similar board exists) { /* hopefully... */ 5913 cp -a board/<similar> board/<myboard> 5914 cp include/configs/<similar>.h include/configs/<myboard>.h 5915 } else { 5916 Create your own board support subdirectory; 5917 Create your own board include/configs/<myboard>.h file; 5918 } 5919 Edit new board/<myboard> files 5920 Edit new include/configs/<myboard>.h 5921 5922 while (!accepted) { 5923 while (!running) { 5924 do { 5925 Add / modify source code; 5926 } until (compiles); 5927 Debug; 5928 if (clueless) 5929 email("Hi, I am having problems..."); 5930 } 5931 Send patch file to the U-Boot email list; 5932 if (reasonable critiques) 5933 Incorporate improvements from email list code review; 5934 else 5935 Defend code as written; 5936 } 5937 5938 return 0; 5939} 5940 5941void no_more_time (int sig) 5942{ 5943 hire_a_guru(); 5944} 5945 5946 5947Coding Standards: 5948----------------- 5949 5950All contributions to U-Boot should conform to the Linux kernel 5951coding style; see the file "Documentation/CodingStyle" and the script 5952"scripts/Lindent" in your Linux kernel source directory. 5953 5954Source files originating from a different project (for example the 5955MTD subsystem) are generally exempt from these guidelines and are not 5956reformatted to ease subsequent migration to newer versions of those 5957sources. 5958 5959Please note that U-Boot is implemented in C (and to some small parts in 5960Assembler); no C++ is used, so please do not use C++ style comments (//) 5961in your code. 5962 5963Please also stick to the following formatting rules: 5964- remove any trailing white space 5965- use TAB characters for indentation and vertical alignment, not spaces 5966- make sure NOT to use DOS '\r\n' line feeds 5967- do not add more than 2 consecutive empty lines to source files 5968- do not add trailing empty lines to source files 5969 5970Submissions which do not conform to the standards may be returned 5971with a request to reformat the changes. 5972 5973 5974Submitting Patches: 5975------------------- 5976 5977Since the number of patches for U-Boot is growing, we need to 5978establish some rules. Submissions which do not conform to these rules 5979may be rejected, even when they contain important and valuable stuff. 5980 5981Please see http://www.denx.de/wiki/U-Boot/Patches for details. 5982 5983Patches shall be sent to the u-boot mailing list <u-boot@lists.denx.de>; 5984see http://lists.denx.de/mailman/listinfo/u-boot 5985 5986When you send a patch, please include the following information with 5987it: 5988 5989* For bug fixes: a description of the bug and how your patch fixes 5990 this bug. Please try to include a way of demonstrating that the 5991 patch actually fixes something. 5992 5993* For new features: a description of the feature and your 5994 implementation. 5995 5996* A CHANGELOG entry as plaintext (separate from the patch) 5997 5998* For major contributions, add a MAINTAINERS file with your 5999 information and associated file and directory references. 6000 6001* When you add support for a new board, don't forget to add a 6002 maintainer e-mail address to the boards.cfg file, too. 6003 6004* If your patch adds new configuration options, don't forget to 6005 document these in the README file. 6006 6007* The patch itself. If you are using git (which is *strongly* 6008 recommended) you can easily generate the patch using the 6009 "git format-patch". If you then use "git send-email" to send it to 6010 the U-Boot mailing list, you will avoid most of the common problems 6011 with some other mail clients. 6012 6013 If you cannot use git, use "diff -purN OLD NEW". If your version of 6014 diff does not support these options, then get the latest version of 6015 GNU diff. 6016 6017 The current directory when running this command shall be the parent 6018 directory of the U-Boot source tree (i. e. please make sure that 6019 your patch includes sufficient directory information for the 6020 affected files). 6021 6022 We prefer patches as plain text. MIME attachments are discouraged, 6023 and compressed attachments must not be used. 6024 6025* If one logical set of modifications affects or creates several 6026 files, all these changes shall be submitted in a SINGLE patch file. 6027 6028* Changesets that contain different, unrelated modifications shall be 6029 submitted as SEPARATE patches, one patch per changeset. 6030 6031 6032Notes: 6033 6034* Before sending the patch, run the buildman script on your patched 6035 source tree and make sure that no errors or warnings are reported 6036 for any of the boards. 6037 6038* Keep your modifications to the necessary minimum: A patch 6039 containing several unrelated changes or arbitrary reformats will be 6040 returned with a request to re-formatting / split it. 6041 6042* If you modify existing code, make sure that your new code does not 6043 add to the memory footprint of the code ;-) Small is beautiful! 6044 When adding new features, these should compile conditionally only 6045 (using #ifdef), and the resulting code with the new feature 6046 disabled must not need more memory than the old code without your 6047 modification. 6048 6049* Remember that there is a size limit of 100 kB per message on the 6050 u-boot mailing list. Bigger patches will be moderated. If they are 6051 reasonable and not too big, they will be acknowledged. But patches 6052 bigger than the size limit should be avoided. 6053