1 /* 2 * SH4 emulation 3 * 4 * Copyright (c) 2005 Samuel Tardieu 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "exec/helper-proto.h" 22 #include "exec/exec-all.h" 23 #include "exec/cpu_ldst.h" 24 25 #ifndef CONFIG_USER_ONLY 26 27 void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 28 MMUAccessType access_type, 29 int mmu_idx, uintptr_t retaddr) 30 { 31 switch (access_type) { 32 case MMU_INST_FETCH: 33 case MMU_DATA_LOAD: 34 cs->exception_index = 0x0e0; 35 break; 36 case MMU_DATA_STORE: 37 cs->exception_index = 0x100; 38 break; 39 } 40 cpu_loop_exit_restore(cs, retaddr); 41 } 42 43 void tlb_fill(CPUState *cs, target_ulong addr, int size, 44 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 45 { 46 int ret; 47 48 ret = superh_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx); 49 if (ret) { 50 /* now we have a real cpu fault */ 51 cpu_loop_exit_restore(cs, retaddr); 52 } 53 } 54 55 #endif 56 57 void helper_ldtlb(CPUSH4State *env) 58 { 59 #ifdef CONFIG_USER_ONLY 60 SuperHCPU *cpu = sh_env_get_cpu(env); 61 62 /* XXXXX */ 63 cpu_abort(CPU(cpu), "Unhandled ldtlb"); 64 #else 65 cpu_load_tlb(env); 66 #endif 67 } 68 69 static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index, 70 uintptr_t retaddr) 71 { 72 CPUState *cs = CPU(sh_env_get_cpu(env)); 73 74 cs->exception_index = index; 75 cpu_loop_exit_restore(cs, retaddr); 76 } 77 78 void helper_raise_illegal_instruction(CPUSH4State *env) 79 { 80 raise_exception(env, 0x180, 0); 81 } 82 83 void helper_raise_slot_illegal_instruction(CPUSH4State *env) 84 { 85 raise_exception(env, 0x1a0, 0); 86 } 87 88 void helper_raise_fpu_disable(CPUSH4State *env) 89 { 90 raise_exception(env, 0x800, 0); 91 } 92 93 void helper_raise_slot_fpu_disable(CPUSH4State *env) 94 { 95 raise_exception(env, 0x820, 0); 96 } 97 98 void helper_debug(CPUSH4State *env) 99 { 100 raise_exception(env, EXCP_DEBUG, 0); 101 } 102 103 void helper_sleep(CPUSH4State *env) 104 { 105 CPUState *cs = CPU(sh_env_get_cpu(env)); 106 107 cs->halted = 1; 108 env->in_sleep = 1; 109 raise_exception(env, EXCP_HLT, 0); 110 } 111 112 void helper_trapa(CPUSH4State *env, uint32_t tra) 113 { 114 env->tra = tra << 2; 115 raise_exception(env, 0x160, 0); 116 } 117 118 void helper_exclusive(CPUSH4State *env) 119 { 120 /* We do not want cpu_restore_state to run. */ 121 cpu_loop_exit_atomic(ENV_GET_CPU(env), 0); 122 } 123 124 void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value) 125 { 126 if (cpu_sh4_is_cached (env, address)) 127 { 128 memory_content *r = g_new(memory_content, 1); 129 130 r->address = address; 131 r->value = value; 132 r->next = NULL; 133 134 *(env->movcal_backup_tail) = r; 135 env->movcal_backup_tail = &(r->next); 136 } 137 } 138 139 void helper_discard_movcal_backup(CPUSH4State *env) 140 { 141 memory_content *current = env->movcal_backup; 142 143 while(current) 144 { 145 memory_content *next = current->next; 146 g_free(current); 147 env->movcal_backup = current = next; 148 if (current == NULL) 149 env->movcal_backup_tail = &(env->movcal_backup); 150 } 151 } 152 153 void helper_ocbi(CPUSH4State *env, uint32_t address) 154 { 155 memory_content **current = &(env->movcal_backup); 156 while (*current) 157 { 158 uint32_t a = (*current)->address; 159 if ((a & ~0x1F) == (address & ~0x1F)) 160 { 161 memory_content *next = (*current)->next; 162 cpu_stl_data(env, a, (*current)->value); 163 164 if (next == NULL) 165 { 166 env->movcal_backup_tail = current; 167 } 168 169 g_free(*current); 170 *current = next; 171 break; 172 } 173 } 174 } 175 176 void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1) 177 { 178 int64_t res; 179 180 res = ((uint64_t) env->mach << 32) | env->macl; 181 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1; 182 env->mach = (res >> 32) & 0xffffffff; 183 env->macl = res & 0xffffffff; 184 if (env->sr & (1u << SR_S)) { 185 if (res < 0) 186 env->mach |= 0xffff0000; 187 else 188 env->mach &= 0x00007fff; 189 } 190 } 191 192 void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1) 193 { 194 int64_t res; 195 196 res = ((uint64_t) env->mach << 32) | env->macl; 197 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1; 198 env->mach = (res >> 32) & 0xffffffff; 199 env->macl = res & 0xffffffff; 200 if (env->sr & (1u << SR_S)) { 201 if (res < -0x80000000) { 202 env->mach = 1; 203 env->macl = 0x80000000; 204 } else if (res > 0x000000007fffffff) { 205 env->mach = 1; 206 env->macl = 0x7fffffff; 207 } 208 } 209 } 210 211 void helper_ld_fpscr(CPUSH4State *env, uint32_t val) 212 { 213 env->fpscr = val & FPSCR_MASK; 214 if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) { 215 set_float_rounding_mode(float_round_to_zero, &env->fp_status); 216 } else { 217 set_float_rounding_mode(float_round_nearest_even, &env->fp_status); 218 } 219 set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status); 220 } 221 222 static void update_fpscr(CPUSH4State *env, uintptr_t retaddr) 223 { 224 int xcpt, cause, enable; 225 226 xcpt = get_float_exception_flags(&env->fp_status); 227 228 /* Clear the cause entries */ 229 env->fpscr &= ~FPSCR_CAUSE_MASK; 230 231 if (unlikely(xcpt)) { 232 if (xcpt & float_flag_invalid) { 233 env->fpscr |= FPSCR_CAUSE_V; 234 } 235 if (xcpt & float_flag_divbyzero) { 236 env->fpscr |= FPSCR_CAUSE_Z; 237 } 238 if (xcpt & float_flag_overflow) { 239 env->fpscr |= FPSCR_CAUSE_O; 240 } 241 if (xcpt & float_flag_underflow) { 242 env->fpscr |= FPSCR_CAUSE_U; 243 } 244 if (xcpt & float_flag_inexact) { 245 env->fpscr |= FPSCR_CAUSE_I; 246 } 247 248 /* Accumulate in flag entries */ 249 env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK) 250 >> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT); 251 252 /* Generate an exception if enabled */ 253 cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT; 254 enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT; 255 if (cause & enable) { 256 raise_exception(env, 0x120, retaddr); 257 } 258 } 259 } 260 261 float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1) 262 { 263 set_float_exception_flags(0, &env->fp_status); 264 t0 = float32_add(t0, t1, &env->fp_status); 265 update_fpscr(env, GETPC()); 266 return t0; 267 } 268 269 float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1) 270 { 271 set_float_exception_flags(0, &env->fp_status); 272 t0 = float64_add(t0, t1, &env->fp_status); 273 update_fpscr(env, GETPC()); 274 return t0; 275 } 276 277 uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1) 278 { 279 int relation; 280 281 set_float_exception_flags(0, &env->fp_status); 282 relation = float32_compare(t0, t1, &env->fp_status); 283 update_fpscr(env, GETPC()); 284 return relation == float_relation_equal; 285 } 286 287 uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1) 288 { 289 int relation; 290 291 set_float_exception_flags(0, &env->fp_status); 292 relation = float64_compare(t0, t1, &env->fp_status); 293 update_fpscr(env, GETPC()); 294 return relation == float_relation_equal; 295 } 296 297 uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1) 298 { 299 int relation; 300 301 set_float_exception_flags(0, &env->fp_status); 302 relation = float32_compare(t0, t1, &env->fp_status); 303 update_fpscr(env, GETPC()); 304 return relation == float_relation_greater; 305 } 306 307 uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1) 308 { 309 int relation; 310 311 set_float_exception_flags(0, &env->fp_status); 312 relation = float64_compare(t0, t1, &env->fp_status); 313 update_fpscr(env, GETPC()); 314 return relation == float_relation_greater; 315 } 316 317 float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0) 318 { 319 float64 ret; 320 set_float_exception_flags(0, &env->fp_status); 321 ret = float32_to_float64(t0, &env->fp_status); 322 update_fpscr(env, GETPC()); 323 return ret; 324 } 325 326 float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0) 327 { 328 float32 ret; 329 set_float_exception_flags(0, &env->fp_status); 330 ret = float64_to_float32(t0, &env->fp_status); 331 update_fpscr(env, GETPC()); 332 return ret; 333 } 334 335 float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1) 336 { 337 set_float_exception_flags(0, &env->fp_status); 338 t0 = float32_div(t0, t1, &env->fp_status); 339 update_fpscr(env, GETPC()); 340 return t0; 341 } 342 343 float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1) 344 { 345 set_float_exception_flags(0, &env->fp_status); 346 t0 = float64_div(t0, t1, &env->fp_status); 347 update_fpscr(env, GETPC()); 348 return t0; 349 } 350 351 float32 helper_float_FT(CPUSH4State *env, uint32_t t0) 352 { 353 float32 ret; 354 set_float_exception_flags(0, &env->fp_status); 355 ret = int32_to_float32(t0, &env->fp_status); 356 update_fpscr(env, GETPC()); 357 return ret; 358 } 359 360 float64 helper_float_DT(CPUSH4State *env, uint32_t t0) 361 { 362 float64 ret; 363 set_float_exception_flags(0, &env->fp_status); 364 ret = int32_to_float64(t0, &env->fp_status); 365 update_fpscr(env, GETPC()); 366 return ret; 367 } 368 369 float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2) 370 { 371 set_float_exception_flags(0, &env->fp_status); 372 t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status); 373 update_fpscr(env, GETPC()); 374 return t0; 375 } 376 377 float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1) 378 { 379 set_float_exception_flags(0, &env->fp_status); 380 t0 = float32_mul(t0, t1, &env->fp_status); 381 update_fpscr(env, GETPC()); 382 return t0; 383 } 384 385 float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1) 386 { 387 set_float_exception_flags(0, &env->fp_status); 388 t0 = float64_mul(t0, t1, &env->fp_status); 389 update_fpscr(env, GETPC()); 390 return t0; 391 } 392 393 float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0) 394 { 395 set_float_exception_flags(0, &env->fp_status); 396 t0 = float32_sqrt(t0, &env->fp_status); 397 update_fpscr(env, GETPC()); 398 return t0; 399 } 400 401 float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0) 402 { 403 set_float_exception_flags(0, &env->fp_status); 404 t0 = float64_sqrt(t0, &env->fp_status); 405 update_fpscr(env, GETPC()); 406 return t0; 407 } 408 409 float32 helper_fsrra_FT(CPUSH4State *env, float32 t0) 410 { 411 set_float_exception_flags(0, &env->fp_status); 412 /* "Approximate" 1/sqrt(x) via actual computation. */ 413 t0 = float32_sqrt(t0, &env->fp_status); 414 t0 = float32_div(float32_one, t0, &env->fp_status); 415 /* Since this is supposed to be an approximation, an imprecision 416 exception is required. One supposes this also follows the usual 417 IEEE rule that other exceptions take precidence. */ 418 if (get_float_exception_flags(&env->fp_status) == 0) { 419 set_float_exception_flags(float_flag_inexact, &env->fp_status); 420 } 421 update_fpscr(env, GETPC()); 422 return t0; 423 } 424 425 float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1) 426 { 427 set_float_exception_flags(0, &env->fp_status); 428 t0 = float32_sub(t0, t1, &env->fp_status); 429 update_fpscr(env, GETPC()); 430 return t0; 431 } 432 433 float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1) 434 { 435 set_float_exception_flags(0, &env->fp_status); 436 t0 = float64_sub(t0, t1, &env->fp_status); 437 update_fpscr(env, GETPC()); 438 return t0; 439 } 440 441 uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0) 442 { 443 uint32_t ret; 444 set_float_exception_flags(0, &env->fp_status); 445 ret = float32_to_int32_round_to_zero(t0, &env->fp_status); 446 update_fpscr(env, GETPC()); 447 return ret; 448 } 449 450 uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0) 451 { 452 uint32_t ret; 453 set_float_exception_flags(0, &env->fp_status); 454 ret = float64_to_int32_round_to_zero(t0, &env->fp_status); 455 update_fpscr(env, GETPC()); 456 return ret; 457 } 458 459 void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n) 460 { 461 int bank, i; 462 float32 r, p; 463 464 bank = (env->sr & FPSCR_FR) ? 16 : 0; 465 r = float32_zero; 466 set_float_exception_flags(0, &env->fp_status); 467 468 for (i = 0 ; i < 4 ; i++) { 469 p = float32_mul(env->fregs[bank + m + i], 470 env->fregs[bank + n + i], 471 &env->fp_status); 472 r = float32_add(r, p, &env->fp_status); 473 } 474 update_fpscr(env, GETPC()); 475 476 env->fregs[bank + n + 3] = r; 477 } 478 479 void helper_ftrv(CPUSH4State *env, uint32_t n) 480 { 481 int bank_matrix, bank_vector; 482 int i, j; 483 float32 r[4]; 484 float32 p; 485 486 bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16; 487 bank_vector = (env->sr & FPSCR_FR) ? 16 : 0; 488 set_float_exception_flags(0, &env->fp_status); 489 for (i = 0 ; i < 4 ; i++) { 490 r[i] = float32_zero; 491 for (j = 0 ; j < 4 ; j++) { 492 p = float32_mul(env->fregs[bank_matrix + 4 * j + i], 493 env->fregs[bank_vector + j], 494 &env->fp_status); 495 r[i] = float32_add(r[i], p, &env->fp_status); 496 } 497 } 498 update_fpscr(env, GETPC()); 499 500 for (i = 0 ; i < 4 ; i++) { 501 env->fregs[bank_vector + i] = r[i]; 502 } 503 } 504