/* * SH4 emulation * * Copyright (c) 2005 Samuel Tardieu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #ifndef CONFIG_USER_ONLY void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { switch (access_type) { case MMU_INST_FETCH: case MMU_DATA_LOAD: cs->exception_index = 0x0e0; break; case MMU_DATA_STORE: cs->exception_index = 0x100; break; } cpu_loop_exit_restore(cs, retaddr); } void tlb_fill(CPUState *cs, target_ulong addr, int size, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { int ret; ret = superh_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx); if (ret) { /* now we have a real cpu fault */ cpu_loop_exit_restore(cs, retaddr); } } #endif void helper_ldtlb(CPUSH4State *env) { #ifdef CONFIG_USER_ONLY SuperHCPU *cpu = sh_env_get_cpu(env); /* XXXXX */ cpu_abort(CPU(cpu), "Unhandled ldtlb"); #else cpu_load_tlb(env); #endif } static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index, uintptr_t retaddr) { CPUState *cs = CPU(sh_env_get_cpu(env)); cs->exception_index = index; cpu_loop_exit_restore(cs, retaddr); } void helper_raise_illegal_instruction(CPUSH4State *env) { raise_exception(env, 0x180, 0); } void helper_raise_slot_illegal_instruction(CPUSH4State *env) { raise_exception(env, 0x1a0, 0); } void helper_raise_fpu_disable(CPUSH4State *env) { raise_exception(env, 0x800, 0); } void helper_raise_slot_fpu_disable(CPUSH4State *env) { raise_exception(env, 0x820, 0); } void helper_debug(CPUSH4State *env) { raise_exception(env, EXCP_DEBUG, 0); } void helper_sleep(CPUSH4State *env) { CPUState *cs = CPU(sh_env_get_cpu(env)); cs->halted = 1; env->in_sleep = 1; raise_exception(env, EXCP_HLT, 0); } void helper_trapa(CPUSH4State *env, uint32_t tra) { env->tra = tra << 2; raise_exception(env, 0x160, 0); } void helper_exclusive(CPUSH4State *env) { /* We do not want cpu_restore_state to run. */ cpu_loop_exit_atomic(ENV_GET_CPU(env), 0); } void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value) { if (cpu_sh4_is_cached (env, address)) { memory_content *r = g_new(memory_content, 1); r->address = address; r->value = value; r->next = NULL; *(env->movcal_backup_tail) = r; env->movcal_backup_tail = &(r->next); } } void helper_discard_movcal_backup(CPUSH4State *env) { memory_content *current = env->movcal_backup; while(current) { memory_content *next = current->next; g_free(current); env->movcal_backup = current = next; if (current == NULL) env->movcal_backup_tail = &(env->movcal_backup); } } void helper_ocbi(CPUSH4State *env, uint32_t address) { memory_content **current = &(env->movcal_backup); while (*current) { uint32_t a = (*current)->address; if ((a & ~0x1F) == (address & ~0x1F)) { memory_content *next = (*current)->next; cpu_stl_data(env, a, (*current)->value); if (next == NULL) { env->movcal_backup_tail = current; } g_free(*current); *current = next; break; } } } void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1) { int64_t res; res = ((uint64_t) env->mach << 32) | env->macl; res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1; env->mach = (res >> 32) & 0xffffffff; env->macl = res & 0xffffffff; if (env->sr & (1u << SR_S)) { if (res < 0) env->mach |= 0xffff0000; else env->mach &= 0x00007fff; } } void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1) { int64_t res; res = ((uint64_t) env->mach << 32) | env->macl; res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1; env->mach = (res >> 32) & 0xffffffff; env->macl = res & 0xffffffff; if (env->sr & (1u << SR_S)) { if (res < -0x80000000) { env->mach = 1; env->macl = 0x80000000; } else if (res > 0x000000007fffffff) { env->mach = 1; env->macl = 0x7fffffff; } } } void helper_ld_fpscr(CPUSH4State *env, uint32_t val) { env->fpscr = val & FPSCR_MASK; if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) { set_float_rounding_mode(float_round_to_zero, &env->fp_status); } else { set_float_rounding_mode(float_round_nearest_even, &env->fp_status); } set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status); } static void update_fpscr(CPUSH4State *env, uintptr_t retaddr) { int xcpt, cause, enable; xcpt = get_float_exception_flags(&env->fp_status); /* Clear the cause entries */ env->fpscr &= ~FPSCR_CAUSE_MASK; if (unlikely(xcpt)) { if (xcpt & float_flag_invalid) { env->fpscr |= FPSCR_CAUSE_V; } if (xcpt & float_flag_divbyzero) { env->fpscr |= FPSCR_CAUSE_Z; } if (xcpt & float_flag_overflow) { env->fpscr |= FPSCR_CAUSE_O; } if (xcpt & float_flag_underflow) { env->fpscr |= FPSCR_CAUSE_U; } if (xcpt & float_flag_inexact) { env->fpscr |= FPSCR_CAUSE_I; } /* Accumulate in flag entries */ env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK) >> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT); /* Generate an exception if enabled */ cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT; enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT; if (cause & enable) { raise_exception(env, 0x120, retaddr); } } } float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float32_add(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return t0; } float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float64_add(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return t0; } uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1) { int relation; set_float_exception_flags(0, &env->fp_status); relation = float32_compare(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return relation == float_relation_equal; } uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1) { int relation; set_float_exception_flags(0, &env->fp_status); relation = float64_compare(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return relation == float_relation_equal; } uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1) { int relation; set_float_exception_flags(0, &env->fp_status); relation = float32_compare(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return relation == float_relation_greater; } uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1) { int relation; set_float_exception_flags(0, &env->fp_status); relation = float64_compare(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return relation == float_relation_greater; } float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0) { float64 ret; set_float_exception_flags(0, &env->fp_status); ret = float32_to_float64(t0, &env->fp_status); update_fpscr(env, GETPC()); return ret; } float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0) { float32 ret; set_float_exception_flags(0, &env->fp_status); ret = float64_to_float32(t0, &env->fp_status); update_fpscr(env, GETPC()); return ret; } float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float32_div(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return t0; } float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float64_div(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return t0; } float32 helper_float_FT(CPUSH4State *env, uint32_t t0) { float32 ret; set_float_exception_flags(0, &env->fp_status); ret = int32_to_float32(t0, &env->fp_status); update_fpscr(env, GETPC()); return ret; } float64 helper_float_DT(CPUSH4State *env, uint32_t t0) { float64 ret; set_float_exception_flags(0, &env->fp_status); ret = int32_to_float64(t0, &env->fp_status); update_fpscr(env, GETPC()); return ret; } float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2) { set_float_exception_flags(0, &env->fp_status); t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status); update_fpscr(env, GETPC()); return t0; } float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float32_mul(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return t0; } float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float64_mul(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return t0; } float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0) { set_float_exception_flags(0, &env->fp_status); t0 = float32_sqrt(t0, &env->fp_status); update_fpscr(env, GETPC()); return t0; } float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0) { set_float_exception_flags(0, &env->fp_status); t0 = float64_sqrt(t0, &env->fp_status); update_fpscr(env, GETPC()); return t0; } float32 helper_fsrra_FT(CPUSH4State *env, float32 t0) { set_float_exception_flags(0, &env->fp_status); /* "Approximate" 1/sqrt(x) via actual computation. */ t0 = float32_sqrt(t0, &env->fp_status); t0 = float32_div(float32_one, t0, &env->fp_status); /* Since this is supposed to be an approximation, an imprecision exception is required. One supposes this also follows the usual IEEE rule that other exceptions take precidence. */ if (get_float_exception_flags(&env->fp_status) == 0) { set_float_exception_flags(float_flag_inexact, &env->fp_status); } update_fpscr(env, GETPC()); return t0; } float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float32_sub(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return t0; } float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float64_sub(t0, t1, &env->fp_status); update_fpscr(env, GETPC()); return t0; } uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0) { uint32_t ret; set_float_exception_flags(0, &env->fp_status); ret = float32_to_int32_round_to_zero(t0, &env->fp_status); update_fpscr(env, GETPC()); return ret; } uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0) { uint32_t ret; set_float_exception_flags(0, &env->fp_status); ret = float64_to_int32_round_to_zero(t0, &env->fp_status); update_fpscr(env, GETPC()); return ret; } void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n) { int bank, i; float32 r, p; bank = (env->sr & FPSCR_FR) ? 16 : 0; r = float32_zero; set_float_exception_flags(0, &env->fp_status); for (i = 0 ; i < 4 ; i++) { p = float32_mul(env->fregs[bank + m + i], env->fregs[bank + n + i], &env->fp_status); r = float32_add(r, p, &env->fp_status); } update_fpscr(env, GETPC()); env->fregs[bank + n + 3] = r; } void helper_ftrv(CPUSH4State *env, uint32_t n) { int bank_matrix, bank_vector; int i, j; float32 r[4]; float32 p; bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16; bank_vector = (env->sr & FPSCR_FR) ? 16 : 0; set_float_exception_flags(0, &env->fp_status); for (i = 0 ; i < 4 ; i++) { r[i] = float32_zero; for (j = 0 ; j < 4 ; j++) { p = float32_mul(env->fregs[bank_matrix + 4 * j + i], env->fregs[bank_vector + j], &env->fp_status); r[i] = float32_add(r[i], p, &env->fp_status); } } update_fpscr(env, GETPC()); for (i = 0 ; i < 4 ; i++) { env->fregs[bank_vector + i] = r[i]; } }