1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "exec/exec-all.h" 4 #include "sysemu/kvm.h" 5 #include "sysemu/tcg.h" 6 #include "helper_regs.h" 7 #include "mmu-hash64.h" 8 #include "migration/cpu.h" 9 #include "qapi/error.h" 10 #include "qemu/main-loop.h" 11 #include "kvm_ppc.h" 12 #include "power8-pmu.h" 13 14 static void post_load_update_msr(CPUPPCState *env) 15 { 16 target_ulong msr = env->msr; 17 18 /* 19 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB 20 * before restoring. Note that this recomputes hflags. 21 */ 22 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB); 23 ppc_store_msr(env, msr); 24 25 if (tcg_enabled()) { 26 pmu_update_summaries(env); 27 } 28 } 29 30 static int get_avr(QEMUFile *f, void *pv, size_t size, 31 const VMStateField *field) 32 { 33 ppc_avr_t *v = pv; 34 35 v->u64[0] = qemu_get_be64(f); 36 v->u64[1] = qemu_get_be64(f); 37 38 return 0; 39 } 40 41 static int put_avr(QEMUFile *f, void *pv, size_t size, 42 const VMStateField *field, JSONWriter *vmdesc) 43 { 44 ppc_avr_t *v = pv; 45 46 qemu_put_be64(f, v->u64[0]); 47 qemu_put_be64(f, v->u64[1]); 48 return 0; 49 } 50 51 static const VMStateInfo vmstate_info_avr = { 52 .name = "avr", 53 .get = get_avr, 54 .put = put_avr, 55 }; 56 57 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \ 58 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t) 59 60 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \ 61 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0) 62 63 static int get_fpr(QEMUFile *f, void *pv, size_t size, 64 const VMStateField *field) 65 { 66 ppc_vsr_t *v = pv; 67 68 v->VsrD(0) = qemu_get_be64(f); 69 70 return 0; 71 } 72 73 static int put_fpr(QEMUFile *f, void *pv, size_t size, 74 const VMStateField *field, JSONWriter *vmdesc) 75 { 76 ppc_vsr_t *v = pv; 77 78 qemu_put_be64(f, v->VsrD(0)); 79 return 0; 80 } 81 82 static const VMStateInfo vmstate_info_fpr = { 83 .name = "fpr", 84 .get = get_fpr, 85 .put = put_fpr, 86 }; 87 88 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \ 89 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t) 90 91 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \ 92 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0) 93 94 static int get_vsr(QEMUFile *f, void *pv, size_t size, 95 const VMStateField *field) 96 { 97 ppc_vsr_t *v = pv; 98 99 v->VsrD(1) = qemu_get_be64(f); 100 101 return 0; 102 } 103 104 static int put_vsr(QEMUFile *f, void *pv, size_t size, 105 const VMStateField *field, JSONWriter *vmdesc) 106 { 107 ppc_vsr_t *v = pv; 108 109 qemu_put_be64(f, v->VsrD(1)); 110 return 0; 111 } 112 113 static const VMStateInfo vmstate_info_vsr = { 114 .name = "vsr", 115 .get = get_vsr, 116 .put = put_vsr, 117 }; 118 119 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \ 120 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t) 121 122 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \ 123 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0) 124 125 static bool cpu_pre_2_8_migration(void *opaque, int version_id) 126 { 127 PowerPCCPU *cpu = opaque; 128 129 return cpu->pre_2_8_migration; 130 } 131 132 #if defined(TARGET_PPC64) 133 static bool cpu_pre_3_0_migration(void *opaque, int version_id) 134 { 135 PowerPCCPU *cpu = opaque; 136 137 return cpu->pre_3_0_migration; 138 } 139 #endif 140 141 static int cpu_pre_save(void *opaque) 142 { 143 PowerPCCPU *cpu = opaque; 144 CPUPPCState *env = &cpu->env; 145 int i; 146 uint64_t insns_compat_mask = 147 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB 148 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES 149 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES 150 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT 151 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ 152 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC 153 | PPC_64B | PPC_64BX | PPC_ALTIVEC 154 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD; 155 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX 156 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 157 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206 158 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207 159 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 160 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM; 161 162 env->spr[SPR_LR] = env->lr; 163 env->spr[SPR_CTR] = env->ctr; 164 env->spr[SPR_XER] = cpu_read_xer(env); 165 #if defined(TARGET_PPC64) 166 env->spr[SPR_CFAR] = env->cfar; 167 #endif 168 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr; 169 170 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 171 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i]; 172 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i]; 173 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i]; 174 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i]; 175 } 176 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 177 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4]; 178 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4]; 179 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4]; 180 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4]; 181 } 182 183 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */ 184 if (cpu->pre_2_8_migration) { 185 /* 186 * Mask out bits that got added to msr_mask since the versions 187 * which stupidly included it in the migration stream. 188 */ 189 target_ulong metamask = 0 190 #if defined(TARGET_PPC64) 191 | (1ULL << MSR_TS0) 192 | (1ULL << MSR_TS1) 193 #endif 194 ; 195 cpu->mig_msr_mask = env->msr_mask & ~metamask; 196 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask; 197 /* 198 * CPU models supported by old machines all have 199 * PPC_MEM_TLBIE, so we set it unconditionally to allow 200 * backward migration from a POWER9 host to a POWER8 host. 201 */ 202 cpu->mig_insns_flags |= PPC_MEM_TLBIE; 203 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2; 204 cpu->mig_nb_BATs = env->nb_BATs; 205 } 206 if (cpu->pre_3_0_migration) { 207 if (cpu->hash64_opts) { 208 cpu->mig_slb_nr = cpu->hash64_opts->slb_size; 209 } 210 } 211 212 /* Used to retain migration compatibility for pre 6.0 for 601 machines. */ 213 env->hflags_compat_nmsr = 0; 214 215 return 0; 216 } 217 218 /* 219 * Determine if a given PVR is a "close enough" match to the CPU 220 * object. For TCG and KVM PR it would probably be sufficient to 221 * require an exact PVR match. However for KVM HV the user is 222 * restricted to a PVR exactly matching the host CPU. The correct way 223 * to handle this is to put the guest into an architected 224 * compatibility mode. However, to allow a more forgiving transition 225 * and migration from before this was widely done, we allow migration 226 * between sufficiently similar PVRs, as determined by the CPU class's 227 * pvr_match() hook. 228 */ 229 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr) 230 { 231 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 232 233 if (pvr == pcc->pvr) { 234 return true; 235 } 236 return pcc->pvr_match(pcc, pvr); 237 } 238 239 static int cpu_post_load(void *opaque, int version_id) 240 { 241 PowerPCCPU *cpu = opaque; 242 CPUPPCState *env = &cpu->env; 243 int i; 244 245 /* 246 * If we're operating in compat mode, we should be ok as long as 247 * the destination supports the same compatibility mode. 248 * 249 * Otherwise, however, we require that the destination has exactly 250 * the same CPU model as the source. 251 */ 252 253 #if defined(TARGET_PPC64) 254 if (cpu->compat_pvr) { 255 uint32_t compat_pvr = cpu->compat_pvr; 256 Error *local_err = NULL; 257 int ret; 258 259 cpu->compat_pvr = 0; 260 ret = ppc_set_compat(cpu, compat_pvr, &local_err); 261 if (ret < 0) { 262 error_report_err(local_err); 263 return ret; 264 } 265 } else 266 #endif 267 { 268 if (!pvr_match(cpu, env->spr[SPR_PVR])) { 269 return -EINVAL; 270 } 271 } 272 273 /* 274 * If we're running with KVM HV, there is a chance that the guest 275 * is running with KVM HV and its kernel does not have the 276 * capability of dealing with a different PVR other than this 277 * exact host PVR in KVM_SET_SREGS. If that happens, the 278 * guest freezes after migration. 279 * 280 * The function kvmppc_pvr_workaround_required does this verification 281 * by first checking if the kernel has the cap, returning true immediately 282 * if that is the case. Otherwise, it checks if we're running in KVM PR. 283 * If the guest kernel does not have the cap and we're not running KVM-PR 284 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will 285 * receive the PVR it expects as a workaround. 286 * 287 */ 288 if (kvmppc_pvr_workaround_required(cpu)) { 289 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value; 290 } 291 292 env->lr = env->spr[SPR_LR]; 293 env->ctr = env->spr[SPR_CTR]; 294 cpu_write_xer(env, env->spr[SPR_XER]); 295 #if defined(TARGET_PPC64) 296 env->cfar = env->spr[SPR_CFAR]; 297 #endif 298 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR]; 299 300 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 301 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i]; 302 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1]; 303 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i]; 304 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1]; 305 } 306 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 307 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i]; 308 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1]; 309 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i]; 310 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1]; 311 } 312 313 if (!cpu->vhyp) { 314 ppc_store_sdr1(env, env->spr[SPR_SDR1]); 315 } 316 317 post_load_update_msr(env); 318 319 return 0; 320 } 321 322 static bool fpu_needed(void *opaque) 323 { 324 PowerPCCPU *cpu = opaque; 325 326 return cpu->env.insns_flags & PPC_FLOAT; 327 } 328 329 static const VMStateDescription vmstate_fpu = { 330 .name = "cpu/fpu", 331 .version_id = 1, 332 .minimum_version_id = 1, 333 .needed = fpu_needed, 334 .fields = (VMStateField[]) { 335 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32), 336 VMSTATE_UINTTL(env.fpscr, PowerPCCPU), 337 VMSTATE_END_OF_LIST() 338 }, 339 }; 340 341 static bool altivec_needed(void *opaque) 342 { 343 PowerPCCPU *cpu = opaque; 344 345 return cpu->env.insns_flags & PPC_ALTIVEC; 346 } 347 348 static int get_vscr(QEMUFile *f, void *opaque, size_t size, 349 const VMStateField *field) 350 { 351 PowerPCCPU *cpu = opaque; 352 ppc_store_vscr(&cpu->env, qemu_get_be32(f)); 353 return 0; 354 } 355 356 static int put_vscr(QEMUFile *f, void *opaque, size_t size, 357 const VMStateField *field, JSONWriter *vmdesc) 358 { 359 PowerPCCPU *cpu = opaque; 360 qemu_put_be32(f, ppc_get_vscr(&cpu->env)); 361 return 0; 362 } 363 364 static const VMStateInfo vmstate_vscr = { 365 .name = "cpu/altivec/vscr", 366 .get = get_vscr, 367 .put = put_vscr, 368 }; 369 370 static const VMStateDescription vmstate_altivec = { 371 .name = "cpu/altivec", 372 .version_id = 1, 373 .minimum_version_id = 1, 374 .needed = altivec_needed, 375 .fields = (VMStateField[]) { 376 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32), 377 /* 378 * Save the architecture value of the vscr, not the internally 379 * expanded version. Since this architecture value does not 380 * exist in memory to be stored, this requires a but of hoop 381 * jumping. We want OFFSET=0 so that we effectively pass CPU 382 * to the helper functions. 383 */ 384 { 385 .name = "vscr", 386 .version_id = 0, 387 .size = sizeof(uint32_t), 388 .info = &vmstate_vscr, 389 .flags = VMS_SINGLE, 390 .offset = 0 391 }, 392 VMSTATE_END_OF_LIST() 393 }, 394 }; 395 396 static bool vsx_needed(void *opaque) 397 { 398 PowerPCCPU *cpu = opaque; 399 400 return cpu->env.insns_flags2 & PPC2_VSX; 401 } 402 403 static const VMStateDescription vmstate_vsx = { 404 .name = "cpu/vsx", 405 .version_id = 1, 406 .minimum_version_id = 1, 407 .needed = vsx_needed, 408 .fields = (VMStateField[]) { 409 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32), 410 VMSTATE_END_OF_LIST() 411 }, 412 }; 413 414 #ifdef TARGET_PPC64 415 /* Transactional memory state */ 416 static bool tm_needed(void *opaque) 417 { 418 PowerPCCPU *cpu = opaque; 419 CPUPPCState *env = &cpu->env; 420 return msr_ts; 421 } 422 423 static const VMStateDescription vmstate_tm = { 424 .name = "cpu/tm", 425 .version_id = 1, 426 .minimum_version_id = 1, 427 .needed = tm_needed, 428 .fields = (VMStateField []) { 429 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32), 430 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64), 431 VMSTATE_UINT64(env.tm_cr, PowerPCCPU), 432 VMSTATE_UINT64(env.tm_lr, PowerPCCPU), 433 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU), 434 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU), 435 VMSTATE_UINT64(env.tm_amr, PowerPCCPU), 436 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU), 437 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU), 438 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU), 439 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU), 440 VMSTATE_UINT64(env.tm_tar, PowerPCCPU), 441 VMSTATE_END_OF_LIST() 442 }, 443 }; 444 #endif 445 446 static bool sr_needed(void *opaque) 447 { 448 #ifdef TARGET_PPC64 449 PowerPCCPU *cpu = opaque; 450 451 return !mmu_is_64bit(cpu->env.mmu_model); 452 #else 453 return true; 454 #endif 455 } 456 457 static const VMStateDescription vmstate_sr = { 458 .name = "cpu/sr", 459 .version_id = 1, 460 .minimum_version_id = 1, 461 .needed = sr_needed, 462 .fields = (VMStateField[]) { 463 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32), 464 VMSTATE_END_OF_LIST() 465 }, 466 }; 467 468 #ifdef TARGET_PPC64 469 static int get_slbe(QEMUFile *f, void *pv, size_t size, 470 const VMStateField *field) 471 { 472 ppc_slb_t *v = pv; 473 474 v->esid = qemu_get_be64(f); 475 v->vsid = qemu_get_be64(f); 476 477 return 0; 478 } 479 480 static int put_slbe(QEMUFile *f, void *pv, size_t size, 481 const VMStateField *field, JSONWriter *vmdesc) 482 { 483 ppc_slb_t *v = pv; 484 485 qemu_put_be64(f, v->esid); 486 qemu_put_be64(f, v->vsid); 487 return 0; 488 } 489 490 static const VMStateInfo vmstate_info_slbe = { 491 .name = "slbe", 492 .get = get_slbe, 493 .put = put_slbe, 494 }; 495 496 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \ 497 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t) 498 499 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \ 500 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0) 501 502 static bool slb_needed(void *opaque) 503 { 504 PowerPCCPU *cpu = opaque; 505 506 /* We don't support any of the old segment table based 64-bit CPUs */ 507 return mmu_is_64bit(cpu->env.mmu_model); 508 } 509 510 static int slb_post_load(void *opaque, int version_id) 511 { 512 PowerPCCPU *cpu = opaque; 513 CPUPPCState *env = &cpu->env; 514 int i; 515 516 /* 517 * We've pulled in the raw esid and vsid values from the migration 518 * stream, but we need to recompute the page size pointers 519 */ 520 for (i = 0; i < cpu->hash64_opts->slb_size; i++) { 521 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) { 522 /* Migration source had bad values in its SLB */ 523 return -1; 524 } 525 } 526 527 return 0; 528 } 529 530 static const VMStateDescription vmstate_slb = { 531 .name = "cpu/slb", 532 .version_id = 1, 533 .minimum_version_id = 1, 534 .needed = slb_needed, 535 .post_load = slb_post_load, 536 .fields = (VMStateField[]) { 537 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration), 538 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES), 539 VMSTATE_END_OF_LIST() 540 } 541 }; 542 #endif /* TARGET_PPC64 */ 543 544 static const VMStateDescription vmstate_tlb6xx_entry = { 545 .name = "cpu/tlb6xx_entry", 546 .version_id = 1, 547 .minimum_version_id = 1, 548 .fields = (VMStateField[]) { 549 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t), 550 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t), 551 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t), 552 VMSTATE_END_OF_LIST() 553 }, 554 }; 555 556 static bool tlb6xx_needed(void *opaque) 557 { 558 PowerPCCPU *cpu = opaque; 559 CPUPPCState *env = &cpu->env; 560 561 return env->nb_tlb && (env->tlb_type == TLB_6XX); 562 } 563 564 static const VMStateDescription vmstate_tlb6xx = { 565 .name = "cpu/tlb6xx", 566 .version_id = 1, 567 .minimum_version_id = 1, 568 .needed = tlb6xx_needed, 569 .fields = (VMStateField[]) { 570 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 571 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU, 572 env.nb_tlb, 573 vmstate_tlb6xx_entry, 574 ppc6xx_tlb_t), 575 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4), 576 VMSTATE_END_OF_LIST() 577 } 578 }; 579 580 static const VMStateDescription vmstate_tlbemb_entry = { 581 .name = "cpu/tlbemb_entry", 582 .version_id = 1, 583 .minimum_version_id = 1, 584 .fields = (VMStateField[]) { 585 VMSTATE_UINT64(RPN, ppcemb_tlb_t), 586 VMSTATE_UINTTL(EPN, ppcemb_tlb_t), 587 VMSTATE_UINTTL(PID, ppcemb_tlb_t), 588 VMSTATE_UINTTL(size, ppcemb_tlb_t), 589 VMSTATE_UINT32(prot, ppcemb_tlb_t), 590 VMSTATE_UINT32(attr, ppcemb_tlb_t), 591 VMSTATE_END_OF_LIST() 592 }, 593 }; 594 595 static bool tlbemb_needed(void *opaque) 596 { 597 PowerPCCPU *cpu = opaque; 598 CPUPPCState *env = &cpu->env; 599 600 return env->nb_tlb && (env->tlb_type == TLB_EMB); 601 } 602 603 static const VMStateDescription vmstate_tlbemb = { 604 .name = "cpu/tlb6xx", 605 .version_id = 1, 606 .minimum_version_id = 1, 607 .needed = tlbemb_needed, 608 .fields = (VMStateField[]) { 609 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 610 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU, 611 env.nb_tlb, 612 vmstate_tlbemb_entry, 613 ppcemb_tlb_t), 614 VMSTATE_END_OF_LIST() 615 }, 616 }; 617 618 static const VMStateDescription vmstate_tlbmas_entry = { 619 .name = "cpu/tlbmas_entry", 620 .version_id = 1, 621 .minimum_version_id = 1, 622 .fields = (VMStateField[]) { 623 VMSTATE_UINT32(mas8, ppcmas_tlb_t), 624 VMSTATE_UINT32(mas1, ppcmas_tlb_t), 625 VMSTATE_UINT64(mas2, ppcmas_tlb_t), 626 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t), 627 VMSTATE_END_OF_LIST() 628 }, 629 }; 630 631 static bool tlbmas_needed(void *opaque) 632 { 633 PowerPCCPU *cpu = opaque; 634 CPUPPCState *env = &cpu->env; 635 636 return env->nb_tlb && (env->tlb_type == TLB_MAS); 637 } 638 639 static const VMStateDescription vmstate_tlbmas = { 640 .name = "cpu/tlbmas", 641 .version_id = 1, 642 .minimum_version_id = 1, 643 .needed = tlbmas_needed, 644 .fields = (VMStateField[]) { 645 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 646 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU, 647 env.nb_tlb, 648 vmstate_tlbmas_entry, 649 ppcmas_tlb_t), 650 VMSTATE_END_OF_LIST() 651 } 652 }; 653 654 static bool compat_needed(void *opaque) 655 { 656 PowerPCCPU *cpu = opaque; 657 658 assert(!(cpu->compat_pvr && !cpu->vhyp)); 659 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0; 660 } 661 662 static const VMStateDescription vmstate_compat = { 663 .name = "cpu/compat", 664 .version_id = 1, 665 .minimum_version_id = 1, 666 .needed = compat_needed, 667 .fields = (VMStateField[]) { 668 VMSTATE_UINT32(compat_pvr, PowerPCCPU), 669 VMSTATE_END_OF_LIST() 670 } 671 }; 672 673 const VMStateDescription vmstate_ppc_cpu = { 674 .name = "cpu", 675 .version_id = 5, 676 .minimum_version_id = 5, 677 .pre_save = cpu_pre_save, 678 .post_load = cpu_post_load, 679 .fields = (VMStateField[]) { 680 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */ 681 682 /* User mode architected state */ 683 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32), 684 #if !defined(TARGET_PPC64) 685 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32), 686 #endif 687 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8), 688 VMSTATE_UINTTL(env.nip, PowerPCCPU), 689 690 /* SPRs */ 691 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024), 692 VMSTATE_UINT64(env.spe_acc, PowerPCCPU), 693 694 /* Reservation */ 695 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU), 696 697 /* Supervisor mode architected state */ 698 VMSTATE_UINTTL(env.msr, PowerPCCPU), 699 700 /* Backward compatible internal state */ 701 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU), 702 703 /* Sanity checking */ 704 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration), 705 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration), 706 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU, 707 cpu_pre_2_8_migration), 708 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration), 709 VMSTATE_END_OF_LIST() 710 }, 711 .subsections = (const VMStateDescription*[]) { 712 &vmstate_fpu, 713 &vmstate_altivec, 714 &vmstate_vsx, 715 &vmstate_sr, 716 #ifdef TARGET_PPC64 717 &vmstate_tm, 718 &vmstate_slb, 719 #endif /* TARGET_PPC64 */ 720 &vmstate_tlb6xx, 721 &vmstate_tlbemb, 722 &vmstate_tlbmas, 723 &vmstate_compat, 724 NULL 725 } 726 }; 727