xref: /openbmc/qemu/target/ppc/machine.c (revision 90f9e35b)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "sysemu/tcg.h"
6 #include "helper_regs.h"
7 #include "mmu-hash64.h"
8 #include "migration/cpu.h"
9 #include "qapi/error.h"
10 #include "qemu/main-loop.h"
11 #include "kvm_ppc.h"
12 #include "power8-pmu.h"
13 
14 static void post_load_update_msr(CPUPPCState *env)
15 {
16     target_ulong msr = env->msr;
17 
18     /*
19      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
20      * before restoring.  Note that this recomputes hflags.
21      */
22     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
23     ppc_store_msr(env, msr);
24 
25     if (tcg_enabled()) {
26         pmu_update_summaries(env);
27     }
28 }
29 
30 static int get_avr(QEMUFile *f, void *pv, size_t size,
31                    const VMStateField *field)
32 {
33     ppc_avr_t *v = pv;
34 
35     v->u64[0] = qemu_get_be64(f);
36     v->u64[1] = qemu_get_be64(f);
37 
38     return 0;
39 }
40 
41 static int put_avr(QEMUFile *f, void *pv, size_t size,
42                    const VMStateField *field, JSONWriter *vmdesc)
43 {
44     ppc_avr_t *v = pv;
45 
46     qemu_put_be64(f, v->u64[0]);
47     qemu_put_be64(f, v->u64[1]);
48     return 0;
49 }
50 
51 static const VMStateInfo vmstate_info_avr = {
52     .name = "avr",
53     .get  = get_avr,
54     .put  = put_avr,
55 };
56 
57 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
58     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
59 
60 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
61     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
62 
63 static int get_fpr(QEMUFile *f, void *pv, size_t size,
64                    const VMStateField *field)
65 {
66     ppc_vsr_t *v = pv;
67 
68     v->VsrD(0) = qemu_get_be64(f);
69 
70     return 0;
71 }
72 
73 static int put_fpr(QEMUFile *f, void *pv, size_t size,
74                    const VMStateField *field, JSONWriter *vmdesc)
75 {
76     ppc_vsr_t *v = pv;
77 
78     qemu_put_be64(f, v->VsrD(0));
79     return 0;
80 }
81 
82 static const VMStateInfo vmstate_info_fpr = {
83     .name = "fpr",
84     .get  = get_fpr,
85     .put  = put_fpr,
86 };
87 
88 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
89     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
90 
91 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
92     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
93 
94 static int get_vsr(QEMUFile *f, void *pv, size_t size,
95                    const VMStateField *field)
96 {
97     ppc_vsr_t *v = pv;
98 
99     v->VsrD(1) = qemu_get_be64(f);
100 
101     return 0;
102 }
103 
104 static int put_vsr(QEMUFile *f, void *pv, size_t size,
105                    const VMStateField *field, JSONWriter *vmdesc)
106 {
107     ppc_vsr_t *v = pv;
108 
109     qemu_put_be64(f, v->VsrD(1));
110     return 0;
111 }
112 
113 static const VMStateInfo vmstate_info_vsr = {
114     .name = "vsr",
115     .get  = get_vsr,
116     .put  = put_vsr,
117 };
118 
119 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
120     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
121 
122 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
123     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
124 
125 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
126 {
127     PowerPCCPU *cpu = opaque;
128 
129     return cpu->pre_2_8_migration;
130 }
131 
132 #if defined(TARGET_PPC64)
133 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
134 {
135     PowerPCCPU *cpu = opaque;
136 
137     return cpu->pre_3_0_migration;
138 }
139 #endif
140 
141 static int cpu_pre_save(void *opaque)
142 {
143     PowerPCCPU *cpu = opaque;
144     CPUPPCState *env = &cpu->env;
145     int i;
146     uint64_t insns_compat_mask =
147         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
148         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
149         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
150         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
151         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
152         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
153         | PPC_64B | PPC_64BX | PPC_ALTIVEC
154         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
155     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
156         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
157         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
158         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
159         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
160         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
161 
162     env->spr[SPR_LR] = env->lr;
163     env->spr[SPR_CTR] = env->ctr;
164     env->spr[SPR_XER] = cpu_read_xer(env);
165 #if defined(TARGET_PPC64)
166     env->spr[SPR_CFAR] = env->cfar;
167 #endif
168     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
169 
170     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
171         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
172         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
173         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
174         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
175     }
176     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
177         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
178         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
179         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
180         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
181     }
182 
183     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
184     if (cpu->pre_2_8_migration) {
185         /*
186          * Mask out bits that got added to msr_mask since the versions
187          * which stupidly included it in the migration stream.
188          */
189         target_ulong metamask = 0
190 #if defined(TARGET_PPC64)
191             | (1ULL << MSR_TS0)
192             | (1ULL << MSR_TS1)
193 #endif
194             ;
195         cpu->mig_msr_mask = env->msr_mask & ~metamask;
196         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
197         /*
198          * CPU models supported by old machines all have
199          * PPC_MEM_TLBIE, so we set it unconditionally to allow
200          * backward migration from a POWER9 host to a POWER8 host.
201          */
202         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
203         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
204         cpu->mig_nb_BATs = env->nb_BATs;
205     }
206     if (cpu->pre_3_0_migration) {
207         if (cpu->hash64_opts) {
208             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
209         }
210     }
211 
212     /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
213     env->hflags_compat_nmsr = 0;
214 
215     return 0;
216 }
217 
218 /*
219  * Determine if a given PVR is a "close enough" match to the CPU
220  * object.  For TCG and KVM PR it would probably be sufficient to
221  * require an exact PVR match.  However for KVM HV the user is
222  * restricted to a PVR exactly matching the host CPU.  The correct way
223  * to handle this is to put the guest into an architected
224  * compatibility mode.  However, to allow a more forgiving transition
225  * and migration from before this was widely done, we allow migration
226  * between sufficiently similar PVRs, as determined by the CPU class's
227  * pvr_match() hook.
228  */
229 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
230 {
231     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
232 
233     if (pvr == pcc->pvr) {
234         return true;
235     }
236     return pcc->pvr_match(pcc, pvr);
237 }
238 
239 static int cpu_post_load(void *opaque, int version_id)
240 {
241     PowerPCCPU *cpu = opaque;
242     CPUPPCState *env = &cpu->env;
243     int i;
244 
245     /*
246      * If we're operating in compat mode, we should be ok as long as
247      * the destination supports the same compatibility mode.
248      *
249      * Otherwise, however, we require that the destination has exactly
250      * the same CPU model as the source.
251      */
252 
253 #if defined(TARGET_PPC64)
254     if (cpu->compat_pvr) {
255         uint32_t compat_pvr = cpu->compat_pvr;
256         Error *local_err = NULL;
257         int ret;
258 
259         cpu->compat_pvr = 0;
260         ret = ppc_set_compat(cpu, compat_pvr, &local_err);
261         if (ret < 0) {
262             error_report_err(local_err);
263             return ret;
264         }
265     } else
266 #endif
267     {
268         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
269             return -EINVAL;
270         }
271     }
272 
273     /*
274      * If we're running with KVM HV, there is a chance that the guest
275      * is running with KVM HV and its kernel does not have the
276      * capability of dealing with a different PVR other than this
277      * exact host PVR in KVM_SET_SREGS. If that happens, the
278      * guest freezes after migration.
279      *
280      * The function kvmppc_pvr_workaround_required does this verification
281      * by first checking if the kernel has the cap, returning true immediately
282      * if that is the case. Otherwise, it checks if we're running in KVM PR.
283      * If the guest kernel does not have the cap and we're not running KVM-PR
284      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
285      * receive the PVR it expects as a workaround.
286      *
287      */
288     if (kvmppc_pvr_workaround_required(cpu)) {
289         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
290     }
291 
292     env->lr = env->spr[SPR_LR];
293     env->ctr = env->spr[SPR_CTR];
294     cpu_write_xer(env, env->spr[SPR_XER]);
295 #if defined(TARGET_PPC64)
296     env->cfar = env->spr[SPR_CFAR];
297 #endif
298     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
299 
300     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
301         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
302         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
303         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
304         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
305     }
306     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
307         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
308         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
309         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
310         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
311     }
312 
313     if (!cpu->vhyp) {
314         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
315     }
316 
317     post_load_update_msr(env);
318 
319     return 0;
320 }
321 
322 static bool fpu_needed(void *opaque)
323 {
324     PowerPCCPU *cpu = opaque;
325 
326     return cpu->env.insns_flags & PPC_FLOAT;
327 }
328 
329 static const VMStateDescription vmstate_fpu = {
330     .name = "cpu/fpu",
331     .version_id = 1,
332     .minimum_version_id = 1,
333     .needed = fpu_needed,
334     .fields = (VMStateField[]) {
335         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
336         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
337         VMSTATE_END_OF_LIST()
338     },
339 };
340 
341 static bool altivec_needed(void *opaque)
342 {
343     PowerPCCPU *cpu = opaque;
344 
345     return cpu->env.insns_flags & PPC_ALTIVEC;
346 }
347 
348 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
349                     const VMStateField *field)
350 {
351     PowerPCCPU *cpu = opaque;
352     ppc_store_vscr(&cpu->env, qemu_get_be32(f));
353     return 0;
354 }
355 
356 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
357                     const VMStateField *field, JSONWriter *vmdesc)
358 {
359     PowerPCCPU *cpu = opaque;
360     qemu_put_be32(f, ppc_get_vscr(&cpu->env));
361     return 0;
362 }
363 
364 static const VMStateInfo vmstate_vscr = {
365     .name = "cpu/altivec/vscr",
366     .get = get_vscr,
367     .put = put_vscr,
368 };
369 
370 static const VMStateDescription vmstate_altivec = {
371     .name = "cpu/altivec",
372     .version_id = 1,
373     .minimum_version_id = 1,
374     .needed = altivec_needed,
375     .fields = (VMStateField[]) {
376         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
377         /*
378          * Save the architecture value of the vscr, not the internally
379          * expanded version.  Since this architecture value does not
380          * exist in memory to be stored, this requires a but of hoop
381          * jumping.  We want OFFSET=0 so that we effectively pass CPU
382          * to the helper functions.
383          */
384         {
385             .name = "vscr",
386             .version_id = 0,
387             .size = sizeof(uint32_t),
388             .info = &vmstate_vscr,
389             .flags = VMS_SINGLE,
390             .offset = 0
391         },
392         VMSTATE_END_OF_LIST()
393     },
394 };
395 
396 static bool vsx_needed(void *opaque)
397 {
398     PowerPCCPU *cpu = opaque;
399 
400     return cpu->env.insns_flags2 & PPC2_VSX;
401 }
402 
403 static const VMStateDescription vmstate_vsx = {
404     .name = "cpu/vsx",
405     .version_id = 1,
406     .minimum_version_id = 1,
407     .needed = vsx_needed,
408     .fields = (VMStateField[]) {
409         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
410         VMSTATE_END_OF_LIST()
411     },
412 };
413 
414 #ifdef TARGET_PPC64
415 /* Transactional memory state */
416 static bool tm_needed(void *opaque)
417 {
418     PowerPCCPU *cpu = opaque;
419     CPUPPCState *env = &cpu->env;
420     return msr_ts;
421 }
422 
423 static const VMStateDescription vmstate_tm = {
424     .name = "cpu/tm",
425     .version_id = 1,
426     .minimum_version_id = 1,
427     .needed = tm_needed,
428     .fields      = (VMStateField []) {
429         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
430         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
431         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
432         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
433         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
434         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
435         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
436         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
437         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
438         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
439         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
440         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
441         VMSTATE_END_OF_LIST()
442     },
443 };
444 #endif
445 
446 static bool sr_needed(void *opaque)
447 {
448 #ifdef TARGET_PPC64
449     PowerPCCPU *cpu = opaque;
450 
451     return !mmu_is_64bit(cpu->env.mmu_model);
452 #else
453     return true;
454 #endif
455 }
456 
457 static const VMStateDescription vmstate_sr = {
458     .name = "cpu/sr",
459     .version_id = 1,
460     .minimum_version_id = 1,
461     .needed = sr_needed,
462     .fields = (VMStateField[]) {
463         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
464         VMSTATE_END_OF_LIST()
465     },
466 };
467 
468 #ifdef TARGET_PPC64
469 static int get_slbe(QEMUFile *f, void *pv, size_t size,
470                     const VMStateField *field)
471 {
472     ppc_slb_t *v = pv;
473 
474     v->esid = qemu_get_be64(f);
475     v->vsid = qemu_get_be64(f);
476 
477     return 0;
478 }
479 
480 static int put_slbe(QEMUFile *f, void *pv, size_t size,
481                     const VMStateField *field, JSONWriter *vmdesc)
482 {
483     ppc_slb_t *v = pv;
484 
485     qemu_put_be64(f, v->esid);
486     qemu_put_be64(f, v->vsid);
487     return 0;
488 }
489 
490 static const VMStateInfo vmstate_info_slbe = {
491     .name = "slbe",
492     .get  = get_slbe,
493     .put  = put_slbe,
494 };
495 
496 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
497     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
498 
499 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
500     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
501 
502 static bool slb_needed(void *opaque)
503 {
504     PowerPCCPU *cpu = opaque;
505 
506     /* We don't support any of the old segment table based 64-bit CPUs */
507     return mmu_is_64bit(cpu->env.mmu_model);
508 }
509 
510 static int slb_post_load(void *opaque, int version_id)
511 {
512     PowerPCCPU *cpu = opaque;
513     CPUPPCState *env = &cpu->env;
514     int i;
515 
516     /*
517      * We've pulled in the raw esid and vsid values from the migration
518      * stream, but we need to recompute the page size pointers
519      */
520     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
521         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
522             /* Migration source had bad values in its SLB */
523             return -1;
524         }
525     }
526 
527     return 0;
528 }
529 
530 static const VMStateDescription vmstate_slb = {
531     .name = "cpu/slb",
532     .version_id = 1,
533     .minimum_version_id = 1,
534     .needed = slb_needed,
535     .post_load = slb_post_load,
536     .fields = (VMStateField[]) {
537         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
538         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
539         VMSTATE_END_OF_LIST()
540     }
541 };
542 #endif /* TARGET_PPC64 */
543 
544 static const VMStateDescription vmstate_tlb6xx_entry = {
545     .name = "cpu/tlb6xx_entry",
546     .version_id = 1,
547     .minimum_version_id = 1,
548     .fields = (VMStateField[]) {
549         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
550         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
551         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
552         VMSTATE_END_OF_LIST()
553     },
554 };
555 
556 static bool tlb6xx_needed(void *opaque)
557 {
558     PowerPCCPU *cpu = opaque;
559     CPUPPCState *env = &cpu->env;
560 
561     return env->nb_tlb && (env->tlb_type == TLB_6XX);
562 }
563 
564 static const VMStateDescription vmstate_tlb6xx = {
565     .name = "cpu/tlb6xx",
566     .version_id = 1,
567     .minimum_version_id = 1,
568     .needed = tlb6xx_needed,
569     .fields = (VMStateField[]) {
570         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
571         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
572                                             env.nb_tlb,
573                                             vmstate_tlb6xx_entry,
574                                             ppc6xx_tlb_t),
575         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
576         VMSTATE_END_OF_LIST()
577     }
578 };
579 
580 static const VMStateDescription vmstate_tlbemb_entry = {
581     .name = "cpu/tlbemb_entry",
582     .version_id = 1,
583     .minimum_version_id = 1,
584     .fields = (VMStateField[]) {
585         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
586         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
587         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
588         VMSTATE_UINTTL(size, ppcemb_tlb_t),
589         VMSTATE_UINT32(prot, ppcemb_tlb_t),
590         VMSTATE_UINT32(attr, ppcemb_tlb_t),
591         VMSTATE_END_OF_LIST()
592     },
593 };
594 
595 static bool tlbemb_needed(void *opaque)
596 {
597     PowerPCCPU *cpu = opaque;
598     CPUPPCState *env = &cpu->env;
599 
600     return env->nb_tlb && (env->tlb_type == TLB_EMB);
601 }
602 
603 static const VMStateDescription vmstate_tlbemb = {
604     .name = "cpu/tlb6xx",
605     .version_id = 1,
606     .minimum_version_id = 1,
607     .needed = tlbemb_needed,
608     .fields = (VMStateField[]) {
609         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
610         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
611                                             env.nb_tlb,
612                                             vmstate_tlbemb_entry,
613                                             ppcemb_tlb_t),
614         VMSTATE_END_OF_LIST()
615     },
616 };
617 
618 static const VMStateDescription vmstate_tlbmas_entry = {
619     .name = "cpu/tlbmas_entry",
620     .version_id = 1,
621     .minimum_version_id = 1,
622     .fields = (VMStateField[]) {
623         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
624         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
625         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
626         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
627         VMSTATE_END_OF_LIST()
628     },
629 };
630 
631 static bool tlbmas_needed(void *opaque)
632 {
633     PowerPCCPU *cpu = opaque;
634     CPUPPCState *env = &cpu->env;
635 
636     return env->nb_tlb && (env->tlb_type == TLB_MAS);
637 }
638 
639 static const VMStateDescription vmstate_tlbmas = {
640     .name = "cpu/tlbmas",
641     .version_id = 1,
642     .minimum_version_id = 1,
643     .needed = tlbmas_needed,
644     .fields = (VMStateField[]) {
645         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
646         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
647                                             env.nb_tlb,
648                                             vmstate_tlbmas_entry,
649                                             ppcmas_tlb_t),
650         VMSTATE_END_OF_LIST()
651     }
652 };
653 
654 static bool compat_needed(void *opaque)
655 {
656     PowerPCCPU *cpu = opaque;
657 
658     assert(!(cpu->compat_pvr && !cpu->vhyp));
659     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
660 }
661 
662 static const VMStateDescription vmstate_compat = {
663     .name = "cpu/compat",
664     .version_id = 1,
665     .minimum_version_id = 1,
666     .needed = compat_needed,
667     .fields = (VMStateField[]) {
668         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
669         VMSTATE_END_OF_LIST()
670     }
671 };
672 
673 const VMStateDescription vmstate_ppc_cpu = {
674     .name = "cpu",
675     .version_id = 5,
676     .minimum_version_id = 5,
677     .pre_save = cpu_pre_save,
678     .post_load = cpu_post_load,
679     .fields = (VMStateField[]) {
680         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
681 
682         /* User mode architected state */
683         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
684 #if !defined(TARGET_PPC64)
685         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
686 #endif
687         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
688         VMSTATE_UINTTL(env.nip, PowerPCCPU),
689 
690         /* SPRs */
691         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
692         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
693 
694         /* Reservation */
695         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
696 
697         /* Supervisor mode architected state */
698         VMSTATE_UINTTL(env.msr, PowerPCCPU),
699 
700         /* Backward compatible internal state */
701         VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
702 
703         /* Sanity checking */
704         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
705         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
706         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
707                             cpu_pre_2_8_migration),
708         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
709         VMSTATE_END_OF_LIST()
710     },
711     .subsections = (const VMStateDescription*[]) {
712         &vmstate_fpu,
713         &vmstate_altivec,
714         &vmstate_vsx,
715         &vmstate_sr,
716 #ifdef TARGET_PPC64
717         &vmstate_tm,
718         &vmstate_slb,
719 #endif /* TARGET_PPC64 */
720         &vmstate_tlb6xx,
721         &vmstate_tlbemb,
722         &vmstate_tlbmas,
723         &vmstate_compat,
724         NULL
725     }
726 };
727