#include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "sysemu/kvm.h" #include "sysemu/tcg.h" #include "helper_regs.h" #include "mmu-hash64.h" #include "migration/cpu.h" #include "qapi/error.h" #include "qemu/main-loop.h" #include "kvm_ppc.h" #include "power8-pmu.h" static void post_load_update_msr(CPUPPCState *env) { target_ulong msr = env->msr; /* * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB * before restoring. Note that this recomputes hflags. */ env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB); ppc_store_msr(env, msr); if (tcg_enabled()) { pmu_update_summaries(env); } } static int get_avr(QEMUFile *f, void *pv, size_t size, const VMStateField *field) { ppc_avr_t *v = pv; v->u64[0] = qemu_get_be64(f); v->u64[1] = qemu_get_be64(f); return 0; } static int put_avr(QEMUFile *f, void *pv, size_t size, const VMStateField *field, JSONWriter *vmdesc) { ppc_avr_t *v = pv; qemu_put_be64(f, v->u64[0]); qemu_put_be64(f, v->u64[1]); return 0; } static const VMStateInfo vmstate_info_avr = { .name = "avr", .get = get_avr, .put = put_avr, }; #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \ VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t) #define VMSTATE_AVR_ARRAY(_f, _s, _n) \ VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0) static int get_fpr(QEMUFile *f, void *pv, size_t size, const VMStateField *field) { ppc_vsr_t *v = pv; v->VsrD(0) = qemu_get_be64(f); return 0; } static int put_fpr(QEMUFile *f, void *pv, size_t size, const VMStateField *field, JSONWriter *vmdesc) { ppc_vsr_t *v = pv; qemu_put_be64(f, v->VsrD(0)); return 0; } static const VMStateInfo vmstate_info_fpr = { .name = "fpr", .get = get_fpr, .put = put_fpr, }; #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \ VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t) #define VMSTATE_FPR_ARRAY(_f, _s, _n) \ VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0) static int get_vsr(QEMUFile *f, void *pv, size_t size, const VMStateField *field) { ppc_vsr_t *v = pv; v->VsrD(1) = qemu_get_be64(f); return 0; } static int put_vsr(QEMUFile *f, void *pv, size_t size, const VMStateField *field, JSONWriter *vmdesc) { ppc_vsr_t *v = pv; qemu_put_be64(f, v->VsrD(1)); return 0; } static const VMStateInfo vmstate_info_vsr = { .name = "vsr", .get = get_vsr, .put = put_vsr, }; #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \ VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t) #define VMSTATE_VSR_ARRAY(_f, _s, _n) \ VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0) static bool cpu_pre_2_8_migration(void *opaque, int version_id) { PowerPCCPU *cpu = opaque; return cpu->pre_2_8_migration; } #if defined(TARGET_PPC64) static bool cpu_pre_3_0_migration(void *opaque, int version_id) { PowerPCCPU *cpu = opaque; return cpu->pre_3_0_migration; } #endif static int cpu_pre_save(void *opaque) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; int i; uint64_t insns_compat_mask = PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC | PPC_64B | PPC_64BX | PPC_ALTIVEC | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD; uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM; env->spr[SPR_LR] = env->lr; env->spr[SPR_CTR] = env->ctr; env->spr[SPR_XER] = cpu_read_xer(env); #if defined(TARGET_PPC64) env->spr[SPR_CFAR] = env->cfar; #endif env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr; for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i]; env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i]; env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i]; env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i]; } for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4]; env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4]; env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4]; env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4]; } /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */ if (cpu->pre_2_8_migration) { /* * Mask out bits that got added to msr_mask since the versions * which stupidly included it in the migration stream. */ target_ulong metamask = 0 #if defined(TARGET_PPC64) | (1ULL << MSR_TS0) | (1ULL << MSR_TS1) #endif ; cpu->mig_msr_mask = env->msr_mask & ~metamask; cpu->mig_insns_flags = env->insns_flags & insns_compat_mask; /* * CPU models supported by old machines all have * PPC_MEM_TLBIE, so we set it unconditionally to allow * backward migration from a POWER9 host to a POWER8 host. */ cpu->mig_insns_flags |= PPC_MEM_TLBIE; cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2; cpu->mig_nb_BATs = env->nb_BATs; } if (cpu->pre_3_0_migration) { if (cpu->hash64_opts) { cpu->mig_slb_nr = cpu->hash64_opts->slb_size; } } /* Used to retain migration compatibility for pre 6.0 for 601 machines. */ env->hflags_compat_nmsr = 0; return 0; } /* * Determine if a given PVR is a "close enough" match to the CPU * object. For TCG and KVM PR it would probably be sufficient to * require an exact PVR match. However for KVM HV the user is * restricted to a PVR exactly matching the host CPU. The correct way * to handle this is to put the guest into an architected * compatibility mode. However, to allow a more forgiving transition * and migration from before this was widely done, we allow migration * between sufficiently similar PVRs, as determined by the CPU class's * pvr_match() hook. */ static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr) { PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); if (pvr == pcc->pvr) { return true; } return pcc->pvr_match(pcc, pvr); } static int cpu_post_load(void *opaque, int version_id) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; int i; /* * If we're operating in compat mode, we should be ok as long as * the destination supports the same compatibility mode. * * Otherwise, however, we require that the destination has exactly * the same CPU model as the source. */ #if defined(TARGET_PPC64) if (cpu->compat_pvr) { uint32_t compat_pvr = cpu->compat_pvr; Error *local_err = NULL; int ret; cpu->compat_pvr = 0; ret = ppc_set_compat(cpu, compat_pvr, &local_err); if (ret < 0) { error_report_err(local_err); return ret; } } else #endif { if (!pvr_match(cpu, env->spr[SPR_PVR])) { return -EINVAL; } } /* * If we're running with KVM HV, there is a chance that the guest * is running with KVM HV and its kernel does not have the * capability of dealing with a different PVR other than this * exact host PVR in KVM_SET_SREGS. If that happens, the * guest freezes after migration. * * The function kvmppc_pvr_workaround_required does this verification * by first checking if the kernel has the cap, returning true immediately * if that is the case. Otherwise, it checks if we're running in KVM PR. * If the guest kernel does not have the cap and we're not running KVM-PR * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will * receive the PVR it expects as a workaround. * */ if (kvmppc_pvr_workaround_required(cpu)) { env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value; } env->lr = env->spr[SPR_LR]; env->ctr = env->spr[SPR_CTR]; cpu_write_xer(env, env->spr[SPR_XER]); #if defined(TARGET_PPC64) env->cfar = env->spr[SPR_CFAR]; #endif env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR]; for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i]; env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1]; env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i]; env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1]; } for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i]; env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1]; env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i]; env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1]; } if (!cpu->vhyp) { ppc_store_sdr1(env, env->spr[SPR_SDR1]); } post_load_update_msr(env); return 0; } static bool fpu_needed(void *opaque) { PowerPCCPU *cpu = opaque; return cpu->env.insns_flags & PPC_FLOAT; } static const VMStateDescription vmstate_fpu = { .name = "cpu/fpu", .version_id = 1, .minimum_version_id = 1, .needed = fpu_needed, .fields = (VMStateField[]) { VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32), VMSTATE_UINTTL(env.fpscr, PowerPCCPU), VMSTATE_END_OF_LIST() }, }; static bool altivec_needed(void *opaque) { PowerPCCPU *cpu = opaque; return cpu->env.insns_flags & PPC_ALTIVEC; } static int get_vscr(QEMUFile *f, void *opaque, size_t size, const VMStateField *field) { PowerPCCPU *cpu = opaque; ppc_store_vscr(&cpu->env, qemu_get_be32(f)); return 0; } static int put_vscr(QEMUFile *f, void *opaque, size_t size, const VMStateField *field, JSONWriter *vmdesc) { PowerPCCPU *cpu = opaque; qemu_put_be32(f, ppc_get_vscr(&cpu->env)); return 0; } static const VMStateInfo vmstate_vscr = { .name = "cpu/altivec/vscr", .get = get_vscr, .put = put_vscr, }; static const VMStateDescription vmstate_altivec = { .name = "cpu/altivec", .version_id = 1, .minimum_version_id = 1, .needed = altivec_needed, .fields = (VMStateField[]) { VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32), /* * Save the architecture value of the vscr, not the internally * expanded version. Since this architecture value does not * exist in memory to be stored, this requires a but of hoop * jumping. We want OFFSET=0 so that we effectively pass CPU * to the helper functions. */ { .name = "vscr", .version_id = 0, .size = sizeof(uint32_t), .info = &vmstate_vscr, .flags = VMS_SINGLE, .offset = 0 }, VMSTATE_END_OF_LIST() }, }; static bool vsx_needed(void *opaque) { PowerPCCPU *cpu = opaque; return cpu->env.insns_flags2 & PPC2_VSX; } static const VMStateDescription vmstate_vsx = { .name = "cpu/vsx", .version_id = 1, .minimum_version_id = 1, .needed = vsx_needed, .fields = (VMStateField[]) { VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32), VMSTATE_END_OF_LIST() }, }; #ifdef TARGET_PPC64 /* Transactional memory state */ static bool tm_needed(void *opaque) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; return msr_ts; } static const VMStateDescription vmstate_tm = { .name = "cpu/tm", .version_id = 1, .minimum_version_id = 1, .needed = tm_needed, .fields = (VMStateField []) { VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32), VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64), VMSTATE_UINT64(env.tm_cr, PowerPCCPU), VMSTATE_UINT64(env.tm_lr, PowerPCCPU), VMSTATE_UINT64(env.tm_ctr, PowerPCCPU), VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU), VMSTATE_UINT64(env.tm_amr, PowerPCCPU), VMSTATE_UINT64(env.tm_ppr, PowerPCCPU), VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU), VMSTATE_UINT32(env.tm_vscr, PowerPCCPU), VMSTATE_UINT64(env.tm_dscr, PowerPCCPU), VMSTATE_UINT64(env.tm_tar, PowerPCCPU), VMSTATE_END_OF_LIST() }, }; #endif static bool sr_needed(void *opaque) { #ifdef TARGET_PPC64 PowerPCCPU *cpu = opaque; return !mmu_is_64bit(cpu->env.mmu_model); #else return true; #endif } static const VMStateDescription vmstate_sr = { .name = "cpu/sr", .version_id = 1, .minimum_version_id = 1, .needed = sr_needed, .fields = (VMStateField[]) { VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32), VMSTATE_END_OF_LIST() }, }; #ifdef TARGET_PPC64 static int get_slbe(QEMUFile *f, void *pv, size_t size, const VMStateField *field) { ppc_slb_t *v = pv; v->esid = qemu_get_be64(f); v->vsid = qemu_get_be64(f); return 0; } static int put_slbe(QEMUFile *f, void *pv, size_t size, const VMStateField *field, JSONWriter *vmdesc) { ppc_slb_t *v = pv; qemu_put_be64(f, v->esid); qemu_put_be64(f, v->vsid); return 0; } static const VMStateInfo vmstate_info_slbe = { .name = "slbe", .get = get_slbe, .put = put_slbe, }; #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \ VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t) #define VMSTATE_SLB_ARRAY(_f, _s, _n) \ VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0) static bool slb_needed(void *opaque) { PowerPCCPU *cpu = opaque; /* We don't support any of the old segment table based 64-bit CPUs */ return mmu_is_64bit(cpu->env.mmu_model); } static int slb_post_load(void *opaque, int version_id) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; int i; /* * We've pulled in the raw esid and vsid values from the migration * stream, but we need to recompute the page size pointers */ for (i = 0; i < cpu->hash64_opts->slb_size; i++) { if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) { /* Migration source had bad values in its SLB */ return -1; } } return 0; } static const VMStateDescription vmstate_slb = { .name = "cpu/slb", .version_id = 1, .minimum_version_id = 1, .needed = slb_needed, .post_load = slb_post_load, .fields = (VMStateField[]) { VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration), VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES), VMSTATE_END_OF_LIST() } }; #endif /* TARGET_PPC64 */ static const VMStateDescription vmstate_tlb6xx_entry = { .name = "cpu/tlb6xx_entry", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINTTL(pte0, ppc6xx_tlb_t), VMSTATE_UINTTL(pte1, ppc6xx_tlb_t), VMSTATE_UINTTL(EPN, ppc6xx_tlb_t), VMSTATE_END_OF_LIST() }, }; static bool tlb6xx_needed(void *opaque) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; return env->nb_tlb && (env->tlb_type == TLB_6XX); } static const VMStateDescription vmstate_tlb6xx = { .name = "cpu/tlb6xx", .version_id = 1, .minimum_version_id = 1, .needed = tlb6xx_needed, .fields = (VMStateField[]) { VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU, env.nb_tlb, vmstate_tlb6xx_entry, ppc6xx_tlb_t), VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_tlbemb_entry = { .name = "cpu/tlbemb_entry", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(RPN, ppcemb_tlb_t), VMSTATE_UINTTL(EPN, ppcemb_tlb_t), VMSTATE_UINTTL(PID, ppcemb_tlb_t), VMSTATE_UINTTL(size, ppcemb_tlb_t), VMSTATE_UINT32(prot, ppcemb_tlb_t), VMSTATE_UINT32(attr, ppcemb_tlb_t), VMSTATE_END_OF_LIST() }, }; static bool tlbemb_needed(void *opaque) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; return env->nb_tlb && (env->tlb_type == TLB_EMB); } static const VMStateDescription vmstate_tlbemb = { .name = "cpu/tlb6xx", .version_id = 1, .minimum_version_id = 1, .needed = tlbemb_needed, .fields = (VMStateField[]) { VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU, env.nb_tlb, vmstate_tlbemb_entry, ppcemb_tlb_t), VMSTATE_END_OF_LIST() }, }; static const VMStateDescription vmstate_tlbmas_entry = { .name = "cpu/tlbmas_entry", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(mas8, ppcmas_tlb_t), VMSTATE_UINT32(mas1, ppcmas_tlb_t), VMSTATE_UINT64(mas2, ppcmas_tlb_t), VMSTATE_UINT64(mas7_3, ppcmas_tlb_t), VMSTATE_END_OF_LIST() }, }; static bool tlbmas_needed(void *opaque) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; return env->nb_tlb && (env->tlb_type == TLB_MAS); } static const VMStateDescription vmstate_tlbmas = { .name = "cpu/tlbmas", .version_id = 1, .minimum_version_id = 1, .needed = tlbmas_needed, .fields = (VMStateField[]) { VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU, env.nb_tlb, vmstate_tlbmas_entry, ppcmas_tlb_t), VMSTATE_END_OF_LIST() } }; static bool compat_needed(void *opaque) { PowerPCCPU *cpu = opaque; assert(!(cpu->compat_pvr && !cpu->vhyp)); return !cpu->pre_2_10_migration && cpu->compat_pvr != 0; } static const VMStateDescription vmstate_compat = { .name = "cpu/compat", .version_id = 1, .minimum_version_id = 1, .needed = compat_needed, .fields = (VMStateField[]) { VMSTATE_UINT32(compat_pvr, PowerPCCPU), VMSTATE_END_OF_LIST() } }; const VMStateDescription vmstate_ppc_cpu = { .name = "cpu", .version_id = 5, .minimum_version_id = 5, .pre_save = cpu_pre_save, .post_load = cpu_post_load, .fields = (VMStateField[]) { VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */ /* User mode architected state */ VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32), #if !defined(TARGET_PPC64) VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32), #endif VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8), VMSTATE_UINTTL(env.nip, PowerPCCPU), /* SPRs */ VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024), VMSTATE_UINT64(env.spe_acc, PowerPCCPU), /* Reservation */ VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU), /* Supervisor mode architected state */ VMSTATE_UINTTL(env.msr, PowerPCCPU), /* Backward compatible internal state */ VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU), /* Sanity checking */ VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration), VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration), VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU, cpu_pre_2_8_migration), VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_fpu, &vmstate_altivec, &vmstate_vsx, &vmstate_sr, #ifdef TARGET_PPC64 &vmstate_tm, &vmstate_slb, #endif /* TARGET_PPC64 */ &vmstate_tlb6xx, &vmstate_tlbemb, &vmstate_tlbmas, &vmstate_compat, NULL } };