xref: /openbmc/qemu/target/mips/internal.h (revision edf64786)
1 /*
2  * MIPS internal definitions and helpers
3  *
4  * This work is licensed under the terms of the GNU GPL, version 2 or later.
5  * See the COPYING file in the top-level directory.
6  */
7 
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10 
11 #include "exec/memattrs.h"
12 
13 /*
14  * MMU types, the first four entries have the same layout as the
15  * CP0C0_MT field.
16  */
17 enum mips_mmu_types {
18     MMU_TYPE_NONE       = 0,
19     MMU_TYPE_R4000      = 1,    /* Standard TLB */
20     MMU_TYPE_BAT        = 2,    /* Block Address Translation */
21     MMU_TYPE_FMT        = 3,    /* Fixed Mapping */
22     MMU_TYPE_DVF        = 4,    /* Dual VTLB and FTLB */
23     MMU_TYPE_R3000,
24     MMU_TYPE_R6000,
25     MMU_TYPE_R8000
26 };
27 
28 struct mips_def_t {
29     const char *name;
30     int32_t CP0_PRid;
31     int32_t CP0_Config0;
32     int32_t CP0_Config1;
33     int32_t CP0_Config2;
34     int32_t CP0_Config3;
35     int32_t CP0_Config4;
36     int32_t CP0_Config4_rw_bitmask;
37     int32_t CP0_Config5;
38     int32_t CP0_Config5_rw_bitmask;
39     int32_t CP0_Config6;
40     int32_t CP0_Config6_rw_bitmask;
41     int32_t CP0_Config7;
42     int32_t CP0_Config7_rw_bitmask;
43     target_ulong CP0_LLAddr_rw_bitmask;
44     int CP0_LLAddr_shift;
45     int32_t SYNCI_Step;
46     int32_t CCRes;
47     int32_t CP0_Status_rw_bitmask;
48     int32_t CP0_TCStatus_rw_bitmask;
49     int32_t CP0_SRSCtl;
50     int32_t CP1_fcr0;
51     int32_t CP1_fcr31_rw_bitmask;
52     int32_t CP1_fcr31;
53     int32_t MSAIR;
54     int32_t SEGBITS;
55     int32_t PABITS;
56     int32_t CP0_SRSConf0_rw_bitmask;
57     int32_t CP0_SRSConf0;
58     int32_t CP0_SRSConf1_rw_bitmask;
59     int32_t CP0_SRSConf1;
60     int32_t CP0_SRSConf2_rw_bitmask;
61     int32_t CP0_SRSConf2;
62     int32_t CP0_SRSConf3_rw_bitmask;
63     int32_t CP0_SRSConf3;
64     int32_t CP0_SRSConf4_rw_bitmask;
65     int32_t CP0_SRSConf4;
66     int32_t CP0_PageGrain_rw_bitmask;
67     int32_t CP0_PageGrain;
68     target_ulong CP0_EBaseWG_rw_bitmask;
69     uint64_t insn_flags;
70     enum mips_mmu_types mmu_type;
71     int32_t SAARP;
72 };
73 
74 extern const struct mips_def_t mips_defs[];
75 extern const int mips_defs_number;
76 
77 void mips_cpu_do_interrupt(CPUState *cpu);
78 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
79 void mips_cpu_dump_state(CPUState *cpu, FILE *f, int flags);
80 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
81 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
82 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
83 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
84                                   MMUAccessType access_type,
85                                   int mmu_idx, uintptr_t retaddr);
86 
87 #if !defined(CONFIG_USER_ONLY)
88 
89 typedef struct r4k_tlb_t r4k_tlb_t;
90 struct r4k_tlb_t {
91     target_ulong VPN;
92     uint32_t PageMask;
93     uint16_t ASID;
94     uint32_t MMID;
95     unsigned int G:1;
96     unsigned int C0:3;
97     unsigned int C1:3;
98     unsigned int V0:1;
99     unsigned int V1:1;
100     unsigned int D0:1;
101     unsigned int D1:1;
102     unsigned int XI0:1;
103     unsigned int XI1:1;
104     unsigned int RI0:1;
105     unsigned int RI1:1;
106     unsigned int EHINV:1;
107     uint64_t PFN[2];
108 };
109 
110 struct CPUMIPSTLBContext {
111     uint32_t nb_tlb;
112     uint32_t tlb_in_use;
113     int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
114                        target_ulong address, int rw, int access_type);
115     void (*helper_tlbwi)(struct CPUMIPSState *env);
116     void (*helper_tlbwr)(struct CPUMIPSState *env);
117     void (*helper_tlbp)(struct CPUMIPSState *env);
118     void (*helper_tlbr)(struct CPUMIPSState *env);
119     void (*helper_tlbinv)(struct CPUMIPSState *env);
120     void (*helper_tlbinvf)(struct CPUMIPSState *env);
121     union {
122         struct {
123             r4k_tlb_t tlb[MIPS_TLB_MAX];
124         } r4k;
125     } mmu;
126 };
127 
128 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
129                        target_ulong address, int rw, int access_type);
130 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
131                           target_ulong address, int rw, int access_type);
132 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
133                     target_ulong address, int rw, int access_type);
134 void r4k_helper_tlbwi(CPUMIPSState *env);
135 void r4k_helper_tlbwr(CPUMIPSState *env);
136 void r4k_helper_tlbp(CPUMIPSState *env);
137 void r4k_helper_tlbr(CPUMIPSState *env);
138 void r4k_helper_tlbinv(CPUMIPSState *env);
139 void r4k_helper_tlbinvf(CPUMIPSState *env);
140 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
141 uint32_t cpu_mips_get_random(CPUMIPSState *env);
142 
143 void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
144                                     vaddr addr, unsigned size,
145                                     MMUAccessType access_type,
146                                     int mmu_idx, MemTxAttrs attrs,
147                                     MemTxResult response, uintptr_t retaddr);
148 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
149                                   int rw);
150 #endif
151 
152 #define cpu_signal_handler cpu_mips_signal_handler
153 
154 #ifndef CONFIG_USER_ONLY
155 extern const VMStateDescription vmstate_mips_cpu;
156 #endif
157 
158 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
159 {
160     return (env->CP0_Status & (1 << CP0St_IE)) &&
161         !(env->CP0_Status & (1 << CP0St_EXL)) &&
162         !(env->CP0_Status & (1 << CP0St_ERL)) &&
163         !(env->hflags & MIPS_HFLAG_DM) &&
164         /*
165          * Note that the TCStatus IXMT field is initialized to zero,
166          * and only MT capable cores can set it to one. So we don't
167          * need to check for MT capabilities here.
168          */
169         !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
170 }
171 
172 /* Check if there is pending and not masked out interrupt */
173 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
174 {
175     int32_t pending;
176     int32_t status;
177     bool r;
178 
179     pending = env->CP0_Cause & CP0Ca_IP_mask;
180     status = env->CP0_Status & CP0Ca_IP_mask;
181 
182     if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
183         /*
184          * A MIPS configured with a vectorizing external interrupt controller
185          * will feed a vector into the Cause pending lines. The core treats
186          * the status lines as a vector level, not as individual masks.
187          */
188         r = pending > status;
189     } else {
190         /*
191          * A MIPS configured with compatibility or VInt (Vectored Interrupts)
192          * treats the pending lines as individual interrupt lines, the status
193          * lines are individual masks.
194          */
195         r = (pending & status) != 0;
196     }
197     return r;
198 }
199 
200 void mips_tcg_init(void);
201 
202 void msa_reset(CPUMIPSState *env);
203 
204 /* cp0_timer.c */
205 uint32_t cpu_mips_get_count(CPUMIPSState *env);
206 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
207 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
208 void cpu_mips_start_count(CPUMIPSState *env);
209 void cpu_mips_stop_count(CPUMIPSState *env);
210 
211 /* helper.c */
212 void mmu_init(CPUMIPSState *env, const mips_def_t *def);
213 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
214                        MMUAccessType access_type, int mmu_idx,
215                        bool probe, uintptr_t retaddr);
216 
217 /* op_helper.c */
218 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
219 
220 static inline void restore_pamask(CPUMIPSState *env)
221 {
222     if (env->hflags & MIPS_HFLAG_ELPA) {
223         env->PAMask = (1ULL << env->PABITS) - 1;
224     } else {
225         env->PAMask = PAMASK_BASE;
226     }
227 }
228 
229 static inline int mips_vpe_active(CPUMIPSState *env)
230 {
231     int active = 1;
232 
233     /* Check that the VPE is enabled.  */
234     if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
235         active = 0;
236     }
237     /* Check that the VPE is activated.  */
238     if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
239         active = 0;
240     }
241 
242     /*
243      * Now verify that there are active thread contexts in the VPE.
244      *
245      * This assumes the CPU model will internally reschedule threads
246      * if the active one goes to sleep. If there are no threads available
247      * the active one will be in a sleeping state, and we can turn off
248      * the entire VPE.
249      */
250     if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
251         /* TC is not activated.  */
252         active = 0;
253     }
254     if (env->active_tc.CP0_TCHalt & 1) {
255         /* TC is in halt state.  */
256         active = 0;
257     }
258 
259     return active;
260 }
261 
262 static inline int mips_vp_active(CPUMIPSState *env)
263 {
264     CPUState *other_cs = first_cpu;
265 
266     /* Check if the VP disabled other VPs (which means the VP is enabled) */
267     if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
268         return 1;
269     }
270 
271     /* Check if the virtual processor is disabled due to a DVP */
272     CPU_FOREACH(other_cs) {
273         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
274         if ((&other_cpu->env != env) &&
275             ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
276             return 0;
277         }
278     }
279     return 1;
280 }
281 
282 static inline void compute_hflags(CPUMIPSState *env)
283 {
284     env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
285                      MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
286                      MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
287                      MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
288                      MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
289     if (env->CP0_Status & (1 << CP0St_ERL)) {
290         env->hflags |= MIPS_HFLAG_ERL;
291     }
292     if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
293         !(env->CP0_Status & (1 << CP0St_ERL)) &&
294         !(env->hflags & MIPS_HFLAG_DM)) {
295         env->hflags |= (env->CP0_Status >> CP0St_KSU) &
296                        MIPS_HFLAG_KSU;
297     }
298 #if defined(TARGET_MIPS64)
299     if ((env->insn_flags & ISA_MIPS3) &&
300         (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
301          (env->CP0_Status & (1 << CP0St_PX)) ||
302          (env->CP0_Status & (1 << CP0St_UX)))) {
303         env->hflags |= MIPS_HFLAG_64;
304     }
305 
306     if (!(env->insn_flags & ISA_MIPS3)) {
307         env->hflags |= MIPS_HFLAG_AWRAP;
308     } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
309                !(env->CP0_Status & (1 << CP0St_UX))) {
310         env->hflags |= MIPS_HFLAG_AWRAP;
311     } else if (env->insn_flags & ISA_MIPS_R6) {
312         /* Address wrapping for Supervisor and Kernel is specified in R6 */
313         if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
314              !(env->CP0_Status & (1 << CP0St_SX))) ||
315             (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
316              !(env->CP0_Status & (1 << CP0St_KX)))) {
317             env->hflags |= MIPS_HFLAG_AWRAP;
318         }
319     }
320 #endif
321     if (((env->CP0_Status & (1 << CP0St_CU0)) &&
322          !(env->insn_flags & ISA_MIPS_R6)) ||
323         !(env->hflags & MIPS_HFLAG_KSU)) {
324         env->hflags |= MIPS_HFLAG_CP0;
325     }
326     if (env->CP0_Status & (1 << CP0St_CU1)) {
327         env->hflags |= MIPS_HFLAG_FPU;
328     }
329     if (env->CP0_Status & (1 << CP0St_FR)) {
330         env->hflags |= MIPS_HFLAG_F64;
331     }
332     if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
333         (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
334         env->hflags |= MIPS_HFLAG_SBRI;
335     }
336     if (env->insn_flags & ASE_DSP_R3) {
337         /*
338          * Our cpu supports DSP R3 ASE, so enable
339          * access to DSP R3 resources.
340          */
341         if (env->CP0_Status & (1 << CP0St_MX)) {
342             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
343                            MIPS_HFLAG_DSP_R3;
344         }
345     } else if (env->insn_flags & ASE_DSP_R2) {
346         /*
347          * Our cpu supports DSP R2 ASE, so enable
348          * access to DSP R2 resources.
349          */
350         if (env->CP0_Status & (1 << CP0St_MX)) {
351             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
352         }
353 
354     } else if (env->insn_flags & ASE_DSP) {
355         /*
356          * Our cpu supports DSP ASE, so enable
357          * access to DSP resources.
358          */
359         if (env->CP0_Status & (1 << CP0St_MX)) {
360             env->hflags |= MIPS_HFLAG_DSP;
361         }
362 
363     }
364     if (env->insn_flags & ISA_MIPS_R2) {
365         if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
366             env->hflags |= MIPS_HFLAG_COP1X;
367         }
368     } else if (env->insn_flags & ISA_MIPS_R1) {
369         if (env->hflags & MIPS_HFLAG_64) {
370             env->hflags |= MIPS_HFLAG_COP1X;
371         }
372     } else if (env->insn_flags & ISA_MIPS4) {
373         /*
374          * All supported MIPS IV CPUs use the XX (CU3) to enable
375          * and disable the MIPS IV extensions to the MIPS III ISA.
376          * Some other MIPS IV CPUs ignore the bit, so the check here
377          * would be too restrictive for them.
378          */
379         if (env->CP0_Status & (1U << CP0St_CU3)) {
380             env->hflags |= MIPS_HFLAG_COP1X;
381         }
382     }
383     if (ase_msa_available(env)) {
384         if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
385             env->hflags |= MIPS_HFLAG_MSA;
386         }
387     }
388     if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
389         if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
390             env->hflags |= MIPS_HFLAG_FRE;
391         }
392     }
393     if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
394         if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
395             env->hflags |= MIPS_HFLAG_ELPA;
396         }
397     }
398 }
399 
400 void cpu_mips_tlb_flush(CPUMIPSState *env);
401 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
402 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
403 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
404 
405 const char *mips_exception_name(int32_t exception);
406 
407 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
408                                           int error_code, uintptr_t pc);
409 
410 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
411                                                     uint32_t exception,
412                                                     uintptr_t pc)
413 {
414     do_raise_exception_err(env, exception, 0, pc);
415 }
416 
417 #endif
418