xref: /openbmc/qemu/target/mips/internal.h (revision c09124dc)
1 /*
2  * MIPS internal definitions and helpers
3  *
4  * This work is licensed under the terms of the GNU GPL, version 2 or later.
5  * See the COPYING file in the top-level directory.
6  */
7 
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10 
11 #include "exec/memattrs.h"
12 #ifdef CONFIG_TCG
13 #include "tcg/tcg-internal.h"
14 #endif
15 
16 /*
17  * MMU types, the first four entries have the same layout as the
18  * CP0C0_MT field.
19  */
20 enum mips_mmu_types {
21     MMU_TYPE_NONE       = 0,
22     MMU_TYPE_R4000      = 1,    /* Standard TLB */
23     MMU_TYPE_BAT        = 2,    /* Block Address Translation */
24     MMU_TYPE_FMT        = 3,    /* Fixed Mapping */
25     MMU_TYPE_DVF        = 4,    /* Dual VTLB and FTLB */
26     MMU_TYPE_R3000,
27     MMU_TYPE_R6000,
28     MMU_TYPE_R8000
29 };
30 
31 struct mips_def_t {
32     const char *name;
33     int32_t CP0_PRid;
34     int32_t CP0_Config0;
35     int32_t CP0_Config1;
36     int32_t CP0_Config2;
37     int32_t CP0_Config3;
38     int32_t CP0_Config4;
39     int32_t CP0_Config4_rw_bitmask;
40     int32_t CP0_Config5;
41     int32_t CP0_Config5_rw_bitmask;
42     int32_t CP0_Config6;
43     int32_t CP0_Config6_rw_bitmask;
44     int32_t CP0_Config7;
45     int32_t CP0_Config7_rw_bitmask;
46     target_ulong CP0_LLAddr_rw_bitmask;
47     int CP0_LLAddr_shift;
48     int32_t SYNCI_Step;
49     int32_t CCRes;
50     int32_t CP0_Status_rw_bitmask;
51     int32_t CP0_TCStatus_rw_bitmask;
52     int32_t CP0_SRSCtl;
53     int32_t CP1_fcr0;
54     int32_t CP1_fcr31_rw_bitmask;
55     int32_t CP1_fcr31;
56     int32_t MSAIR;
57     int32_t SEGBITS;
58     int32_t PABITS;
59     int32_t CP0_SRSConf0_rw_bitmask;
60     int32_t CP0_SRSConf0;
61     int32_t CP0_SRSConf1_rw_bitmask;
62     int32_t CP0_SRSConf1;
63     int32_t CP0_SRSConf2_rw_bitmask;
64     int32_t CP0_SRSConf2;
65     int32_t CP0_SRSConf3_rw_bitmask;
66     int32_t CP0_SRSConf3;
67     int32_t CP0_SRSConf4_rw_bitmask;
68     int32_t CP0_SRSConf4;
69     int32_t CP0_PageGrain_rw_bitmask;
70     int32_t CP0_PageGrain;
71     target_ulong CP0_EBaseWG_rw_bitmask;
72     uint64_t insn_flags;
73     enum mips_mmu_types mmu_type;
74     int32_t SAARP;
75 };
76 
77 extern const char regnames[32][3];
78 extern const char fregnames[32][4];
79 
80 extern const struct mips_def_t mips_defs[];
81 extern const int mips_defs_number;
82 
83 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
84 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85 
86 #define USEG_LIMIT      ((target_ulong)(int32_t)0x7FFFFFFFUL)
87 #define KSEG0_BASE      ((target_ulong)(int32_t)0x80000000UL)
88 #define KSEG1_BASE      ((target_ulong)(int32_t)0xA0000000UL)
89 #define KSEG2_BASE      ((target_ulong)(int32_t)0xC0000000UL)
90 #define KSEG3_BASE      ((target_ulong)(int32_t)0xE0000000UL)
91 
92 #define KVM_KSEG0_BASE  ((target_ulong)(int32_t)0x40000000UL)
93 #define KVM_KSEG2_BASE  ((target_ulong)(int32_t)0x60000000UL)
94 
95 #if !defined(CONFIG_USER_ONLY)
96 
97 enum {
98     TLBRET_XI = -6,
99     TLBRET_RI = -5,
100     TLBRET_DIRTY = -4,
101     TLBRET_INVALID = -3,
102     TLBRET_NOMATCH = -2,
103     TLBRET_BADADDR = -1,
104     TLBRET_MATCH = 0
105 };
106 
107 int get_physical_address(CPUMIPSState *env, hwaddr *physical,
108                          int *prot, target_ulong real_address,
109                          MMUAccessType access_type, int mmu_idx);
110 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
111 
112 typedef struct r4k_tlb_t r4k_tlb_t;
113 struct r4k_tlb_t {
114     target_ulong VPN;
115     uint32_t PageMask;
116     uint16_t ASID;
117     uint32_t MMID;
118     unsigned int G:1;
119     unsigned int C0:3;
120     unsigned int C1:3;
121     unsigned int V0:1;
122     unsigned int V1:1;
123     unsigned int D0:1;
124     unsigned int D1:1;
125     unsigned int XI0:1;
126     unsigned int XI1:1;
127     unsigned int RI0:1;
128     unsigned int RI1:1;
129     unsigned int EHINV:1;
130     uint64_t PFN[2];
131 };
132 
133 struct CPUMIPSTLBContext {
134     uint32_t nb_tlb;
135     uint32_t tlb_in_use;
136     int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
137                        target_ulong address, MMUAccessType access_type);
138     void (*helper_tlbwi)(struct CPUMIPSState *env);
139     void (*helper_tlbwr)(struct CPUMIPSState *env);
140     void (*helper_tlbp)(struct CPUMIPSState *env);
141     void (*helper_tlbr)(struct CPUMIPSState *env);
142     void (*helper_tlbinv)(struct CPUMIPSState *env);
143     void (*helper_tlbinvf)(struct CPUMIPSState *env);
144     union {
145         struct {
146             r4k_tlb_t tlb[MIPS_TLB_MAX];
147         } r4k;
148     } mmu;
149 };
150 
151 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
152 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
153 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
154 
155 extern const VMStateDescription vmstate_mips_cpu;
156 
157 #endif /* !CONFIG_USER_ONLY */
158 
159 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
160 {
161     return (env->CP0_Status & (1 << CP0St_IE)) &&
162         !(env->CP0_Status & (1 << CP0St_EXL)) &&
163         !(env->CP0_Status & (1 << CP0St_ERL)) &&
164         !(env->hflags & MIPS_HFLAG_DM) &&
165         /*
166          * Note that the TCStatus IXMT field is initialized to zero,
167          * and only MT capable cores can set it to one. So we don't
168          * need to check for MT capabilities here.
169          */
170         !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
171 }
172 
173 /* Check if there is pending and not masked out interrupt */
174 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
175 {
176     int32_t pending;
177     int32_t status;
178     bool r;
179 
180     pending = env->CP0_Cause & CP0Ca_IP_mask;
181     status = env->CP0_Status & CP0Ca_IP_mask;
182 
183     if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
184         /*
185          * A MIPS configured with a vectorizing external interrupt controller
186          * will feed a vector into the Cause pending lines. The core treats
187          * the status lines as a vector level, not as individual masks.
188          */
189         r = pending > status;
190     } else {
191         /*
192          * A MIPS configured with compatibility or VInt (Vectored Interrupts)
193          * treats the pending lines as individual interrupt lines, the status
194          * lines are individual masks.
195          */
196         r = (pending & status) != 0;
197     }
198     return r;
199 }
200 
201 void msa_reset(CPUMIPSState *env);
202 
203 /* cp0_timer.c */
204 uint32_t cpu_mips_get_count(CPUMIPSState *env);
205 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
206 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
207 void cpu_mips_start_count(CPUMIPSState *env);
208 void cpu_mips_stop_count(CPUMIPSState *env);
209 
210 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
211 {
212     env->active_tc.PC = value & ~(target_ulong)1;
213     if (value & 1) {
214         env->hflags |= MIPS_HFLAG_M16;
215     } else {
216         env->hflags &= ~(MIPS_HFLAG_M16);
217     }
218 }
219 
220 static inline void restore_pamask(CPUMIPSState *env)
221 {
222     if (env->hflags & MIPS_HFLAG_ELPA) {
223         env->PAMask = (1ULL << env->PABITS) - 1;
224     } else {
225         env->PAMask = PAMASK_BASE;
226     }
227 }
228 
229 static inline int mips_vpe_active(CPUMIPSState *env)
230 {
231     int active = 1;
232 
233     /* Check that the VPE is enabled.  */
234     if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
235         active = 0;
236     }
237     /* Check that the VPE is activated.  */
238     if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
239         active = 0;
240     }
241 
242     /*
243      * Now verify that there are active thread contexts in the VPE.
244      *
245      * This assumes the CPU model will internally reschedule threads
246      * if the active one goes to sleep. If there are no threads available
247      * the active one will be in a sleeping state, and we can turn off
248      * the entire VPE.
249      */
250     if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
251         /* TC is not activated.  */
252         active = 0;
253     }
254     if (env->active_tc.CP0_TCHalt & 1) {
255         /* TC is in halt state.  */
256         active = 0;
257     }
258 
259     return active;
260 }
261 
262 static inline int mips_vp_active(CPUMIPSState *env)
263 {
264     CPUState *other_cs = first_cpu;
265 
266     /* Check if the VP disabled other VPs (which means the VP is enabled) */
267     if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
268         return 1;
269     }
270 
271     /* Check if the virtual processor is disabled due to a DVP */
272     CPU_FOREACH(other_cs) {
273         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
274         if ((&other_cpu->env != env) &&
275             ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
276             return 0;
277         }
278     }
279     return 1;
280 }
281 
282 static inline void compute_hflags(CPUMIPSState *env)
283 {
284     env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
285                      MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
286                      MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
287                      MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
288                      MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
289     if (env->CP0_Status & (1 << CP0St_ERL)) {
290         env->hflags |= MIPS_HFLAG_ERL;
291     }
292     if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
293         !(env->CP0_Status & (1 << CP0St_ERL)) &&
294         !(env->hflags & MIPS_HFLAG_DM)) {
295         env->hflags |= (env->CP0_Status >> CP0St_KSU) &
296                        MIPS_HFLAG_KSU;
297     }
298 #if defined(TARGET_MIPS64)
299     if ((env->insn_flags & ISA_MIPS3) &&
300         (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
301          (env->CP0_Status & (1 << CP0St_PX)) ||
302          (env->CP0_Status & (1 << CP0St_UX)))) {
303         env->hflags |= MIPS_HFLAG_64;
304     }
305 
306     if (!(env->insn_flags & ISA_MIPS3)) {
307         env->hflags |= MIPS_HFLAG_AWRAP;
308     } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
309                !(env->CP0_Status & (1 << CP0St_UX))) {
310         env->hflags |= MIPS_HFLAG_AWRAP;
311     } else if (env->insn_flags & ISA_MIPS_R6) {
312         /* Address wrapping for Supervisor and Kernel is specified in R6 */
313         if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
314              !(env->CP0_Status & (1 << CP0St_SX))) ||
315             (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
316              !(env->CP0_Status & (1 << CP0St_KX)))) {
317             env->hflags |= MIPS_HFLAG_AWRAP;
318         }
319     }
320 #endif
321     if (((env->CP0_Status & (1 << CP0St_CU0)) &&
322          !(env->insn_flags & ISA_MIPS_R6)) ||
323         !(env->hflags & MIPS_HFLAG_KSU)) {
324         env->hflags |= MIPS_HFLAG_CP0;
325     }
326     if (env->CP0_Status & (1 << CP0St_CU1)) {
327         env->hflags |= MIPS_HFLAG_FPU;
328     }
329     if (env->CP0_Status & (1 << CP0St_FR)) {
330         env->hflags |= MIPS_HFLAG_F64;
331     }
332     if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
333         (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
334         env->hflags |= MIPS_HFLAG_SBRI;
335     }
336     if (env->insn_flags & ASE_DSP_R3) {
337         /*
338          * Our cpu supports DSP R3 ASE, so enable
339          * access to DSP R3 resources.
340          */
341         if (env->CP0_Status & (1 << CP0St_MX)) {
342             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
343                            MIPS_HFLAG_DSP_R3;
344         }
345     } else if (env->insn_flags & ASE_DSP_R2) {
346         /*
347          * Our cpu supports DSP R2 ASE, so enable
348          * access to DSP R2 resources.
349          */
350         if (env->CP0_Status & (1 << CP0St_MX)) {
351             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
352         }
353 
354     } else if (env->insn_flags & ASE_DSP) {
355         /*
356          * Our cpu supports DSP ASE, so enable
357          * access to DSP resources.
358          */
359         if (env->CP0_Status & (1 << CP0St_MX)) {
360             env->hflags |= MIPS_HFLAG_DSP;
361         }
362 
363     }
364     if (env->insn_flags & ISA_MIPS_R2) {
365         if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
366             env->hflags |= MIPS_HFLAG_COP1X;
367         }
368     } else if (env->insn_flags & ISA_MIPS_R1) {
369         if (env->hflags & MIPS_HFLAG_64) {
370             env->hflags |= MIPS_HFLAG_COP1X;
371         }
372     } else if (env->insn_flags & ISA_MIPS4) {
373         /*
374          * All supported MIPS IV CPUs use the XX (CU3) to enable
375          * and disable the MIPS IV extensions to the MIPS III ISA.
376          * Some other MIPS IV CPUs ignore the bit, so the check here
377          * would be too restrictive for them.
378          */
379         if (env->CP0_Status & (1U << CP0St_CU3)) {
380             env->hflags |= MIPS_HFLAG_COP1X;
381         }
382     }
383     if (ase_msa_available(env)) {
384         if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
385             env->hflags |= MIPS_HFLAG_MSA;
386         }
387     }
388     if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
389         if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
390             env->hflags |= MIPS_HFLAG_FRE;
391         }
392     }
393     if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
394         if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
395             env->hflags |= MIPS_HFLAG_ELPA;
396         }
397     }
398 }
399 
400 #endif
401