xref: /openbmc/qemu/target/mips/internal.h (revision ac89de40)
1 /* mips internal definitions and helpers
2  *
3  * This work is licensed under the terms of the GNU GPL, version 2 or later.
4  * See the COPYING file in the top-level directory.
5  */
6 
7 #ifndef MIPS_INTERNAL_H
8 #define MIPS_INTERNAL_H
9 
10 
11 /* MMU types, the first four entries have the same layout as the
12    CP0C0_MT field.  */
13 enum mips_mmu_types {
14     MMU_TYPE_NONE,
15     MMU_TYPE_R4000,
16     MMU_TYPE_RESERVED,
17     MMU_TYPE_FMT,
18     MMU_TYPE_R3000,
19     MMU_TYPE_R6000,
20     MMU_TYPE_R8000
21 };
22 
23 struct mips_def_t {
24     const char *name;
25     int32_t CP0_PRid;
26     int32_t CP0_Config0;
27     int32_t CP0_Config1;
28     int32_t CP0_Config2;
29     int32_t CP0_Config3;
30     int32_t CP0_Config4;
31     int32_t CP0_Config4_rw_bitmask;
32     int32_t CP0_Config5;
33     int32_t CP0_Config5_rw_bitmask;
34     int32_t CP0_Config6;
35     int32_t CP0_Config7;
36     target_ulong CP0_LLAddr_rw_bitmask;
37     int CP0_LLAddr_shift;
38     int32_t SYNCI_Step;
39     int32_t CCRes;
40     int32_t CP0_Status_rw_bitmask;
41     int32_t CP0_TCStatus_rw_bitmask;
42     int32_t CP0_SRSCtl;
43     int32_t CP1_fcr0;
44     int32_t CP1_fcr31_rw_bitmask;
45     int32_t CP1_fcr31;
46     int32_t MSAIR;
47     int32_t SEGBITS;
48     int32_t PABITS;
49     int32_t CP0_SRSConf0_rw_bitmask;
50     int32_t CP0_SRSConf0;
51     int32_t CP0_SRSConf1_rw_bitmask;
52     int32_t CP0_SRSConf1;
53     int32_t CP0_SRSConf2_rw_bitmask;
54     int32_t CP0_SRSConf2;
55     int32_t CP0_SRSConf3_rw_bitmask;
56     int32_t CP0_SRSConf3;
57     int32_t CP0_SRSConf4_rw_bitmask;
58     int32_t CP0_SRSConf4;
59     int32_t CP0_PageGrain_rw_bitmask;
60     int32_t CP0_PageGrain;
61     target_ulong CP0_EBaseWG_rw_bitmask;
62     uint64_t insn_flags;
63     enum mips_mmu_types mmu_type;
64 };
65 
66 extern const struct mips_def_t mips_defs[];
67 extern const int mips_defs_number;
68 
69 enum CPUMIPSMSADataFormat {
70     DF_BYTE = 0,
71     DF_HALF,
72     DF_WORD,
73     DF_DOUBLE
74 };
75 
76 void mips_cpu_do_interrupt(CPUState *cpu);
77 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
78 void mips_cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
79                          int flags);
80 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
81 int mips_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
82 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
83 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
84                                   MMUAccessType access_type,
85                                   int mmu_idx, uintptr_t retaddr);
86 
87 #if !defined(CONFIG_USER_ONLY)
88 
89 typedef struct r4k_tlb_t r4k_tlb_t;
90 struct r4k_tlb_t {
91     target_ulong VPN;
92     uint32_t PageMask;
93     uint16_t ASID;
94     unsigned int G:1;
95     unsigned int C0:3;
96     unsigned int C1:3;
97     unsigned int V0:1;
98     unsigned int V1:1;
99     unsigned int D0:1;
100     unsigned int D1:1;
101     unsigned int XI0:1;
102     unsigned int XI1:1;
103     unsigned int RI0:1;
104     unsigned int RI1:1;
105     unsigned int EHINV:1;
106     uint64_t PFN[2];
107 };
108 
109 struct CPUMIPSTLBContext {
110     uint32_t nb_tlb;
111     uint32_t tlb_in_use;
112     int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
113                        target_ulong address, int rw, int access_type);
114     void (*helper_tlbwi)(struct CPUMIPSState *env);
115     void (*helper_tlbwr)(struct CPUMIPSState *env);
116     void (*helper_tlbp)(struct CPUMIPSState *env);
117     void (*helper_tlbr)(struct CPUMIPSState *env);
118     void (*helper_tlbinv)(struct CPUMIPSState *env);
119     void (*helper_tlbinvf)(struct CPUMIPSState *env);
120     union {
121         struct {
122             r4k_tlb_t tlb[MIPS_TLB_MAX];
123         } r4k;
124     } mmu;
125 };
126 
127 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
128                        target_ulong address, int rw, int access_type);
129 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
130                           target_ulong address, int rw, int access_type);
131 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
132                     target_ulong address, int rw, int access_type);
133 void r4k_helper_tlbwi(CPUMIPSState *env);
134 void r4k_helper_tlbwr(CPUMIPSState *env);
135 void r4k_helper_tlbp(CPUMIPSState *env);
136 void r4k_helper_tlbr(CPUMIPSState *env);
137 void r4k_helper_tlbinv(CPUMIPSState *env);
138 void r4k_helper_tlbinvf(CPUMIPSState *env);
139 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
140 
141 void mips_cpu_unassigned_access(CPUState *cpu, hwaddr addr,
142                                 bool is_write, bool is_exec, int unused,
143                                 unsigned size);
144 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
145                                   int rw);
146 #endif
147 
148 #define cpu_signal_handler cpu_mips_signal_handler
149 
150 #ifndef CONFIG_USER_ONLY
151 extern const struct VMStateDescription vmstate_mips_cpu;
152 #endif
153 
154 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
155 {
156     return (env->CP0_Status & (1 << CP0St_IE)) &&
157         !(env->CP0_Status & (1 << CP0St_EXL)) &&
158         !(env->CP0_Status & (1 << CP0St_ERL)) &&
159         !(env->hflags & MIPS_HFLAG_DM) &&
160         /* Note that the TCStatus IXMT field is initialized to zero,
161            and only MT capable cores can set it to one. So we don't
162            need to check for MT capabilities here.  */
163         !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
164 }
165 
166 /* Check if there is pending and not masked out interrupt */
167 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
168 {
169     int32_t pending;
170     int32_t status;
171     bool r;
172 
173     pending = env->CP0_Cause & CP0Ca_IP_mask;
174     status = env->CP0_Status & CP0Ca_IP_mask;
175 
176     if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
177         /* A MIPS configured with a vectorizing external interrupt controller
178            will feed a vector into the Cause pending lines. The core treats
179            the status lines as a vector level, not as indiviual masks.  */
180         r = pending > status;
181     } else {
182         /* A MIPS configured with compatibility or VInt (Vectored Interrupts)
183            treats the pending lines as individual interrupt lines, the status
184            lines are individual masks.  */
185         r = (pending & status) != 0;
186     }
187     return r;
188 }
189 
190 void mips_tcg_init(void);
191 
192 /* TODO QOM'ify CPU reset and remove */
193 void cpu_state_reset(CPUMIPSState *s);
194 void cpu_mips_realize_env(CPUMIPSState *env);
195 
196 /* cp0_timer.c */
197 uint32_t cpu_mips_get_random(CPUMIPSState *env);
198 uint32_t cpu_mips_get_count(CPUMIPSState *env);
199 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
200 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
201 void cpu_mips_start_count(CPUMIPSState *env);
202 void cpu_mips_stop_count(CPUMIPSState *env);
203 
204 /* helper.c */
205 int mips_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size, int rw,
206                               int mmu_idx);
207 
208 /* op_helper.c */
209 uint32_t float_class_s(uint32_t arg, float_status *fst);
210 uint64_t float_class_d(uint64_t arg, float_status *fst);
211 
212 extern unsigned int ieee_rm[];
213 int ieee_ex_to_mips(int xcpt);
214 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
215 
216 static inline void restore_rounding_mode(CPUMIPSState *env)
217 {
218     set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
219                             &env->active_fpu.fp_status);
220 }
221 
222 static inline void restore_flush_mode(CPUMIPSState *env)
223 {
224     set_flush_to_zero((env->active_fpu.fcr31 & (1 << FCR31_FS)) != 0,
225                       &env->active_fpu.fp_status);
226 }
227 
228 static inline void restore_fp_status(CPUMIPSState *env)
229 {
230     restore_rounding_mode(env);
231     restore_flush_mode(env);
232     restore_snan_bit_mode(env);
233 }
234 
235 static inline void restore_msa_fp_status(CPUMIPSState *env)
236 {
237     float_status *status = &env->active_tc.msa_fp_status;
238     int rounding_mode = (env->active_tc.msacsr & MSACSR_RM_MASK) >> MSACSR_RM;
239     bool flush_to_zero = (env->active_tc.msacsr & MSACSR_FS_MASK) != 0;
240 
241     set_float_rounding_mode(ieee_rm[rounding_mode], status);
242     set_flush_to_zero(flush_to_zero, status);
243     set_flush_inputs_to_zero(flush_to_zero, status);
244 }
245 
246 static inline void restore_pamask(CPUMIPSState *env)
247 {
248     if (env->hflags & MIPS_HFLAG_ELPA) {
249         env->PAMask = (1ULL << env->PABITS) - 1;
250     } else {
251         env->PAMask = PAMASK_BASE;
252     }
253 }
254 
255 static inline int mips_vpe_active(CPUMIPSState *env)
256 {
257     int active = 1;
258 
259     /* Check that the VPE is enabled.  */
260     if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
261         active = 0;
262     }
263     /* Check that the VPE is activated.  */
264     if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
265         active = 0;
266     }
267 
268     /* Now verify that there are active thread contexts in the VPE.
269 
270        This assumes the CPU model will internally reschedule threads
271        if the active one goes to sleep. If there are no threads available
272        the active one will be in a sleeping state, and we can turn off
273        the entire VPE.  */
274     if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
275         /* TC is not activated.  */
276         active = 0;
277     }
278     if (env->active_tc.CP0_TCHalt & 1) {
279         /* TC is in halt state.  */
280         active = 0;
281     }
282 
283     return active;
284 }
285 
286 static inline int mips_vp_active(CPUMIPSState *env)
287 {
288     CPUState *other_cs = first_cpu;
289 
290     /* Check if the VP disabled other VPs (which means the VP is enabled) */
291     if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
292         return 1;
293     }
294 
295     /* Check if the virtual processor is disabled due to a DVP */
296     CPU_FOREACH(other_cs) {
297         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
298         if ((&other_cpu->env != env) &&
299             ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
300             return 0;
301         }
302     }
303     return 1;
304 }
305 
306 static inline void compute_hflags(CPUMIPSState *env)
307 {
308     env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
309                      MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
310                      MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
311                      MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
312                      MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
313     if (env->CP0_Status & (1 << CP0St_ERL)) {
314         env->hflags |= MIPS_HFLAG_ERL;
315     }
316     if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
317         !(env->CP0_Status & (1 << CP0St_ERL)) &&
318         !(env->hflags & MIPS_HFLAG_DM)) {
319         env->hflags |= (env->CP0_Status >> CP0St_KSU) & MIPS_HFLAG_KSU;
320     }
321 #if defined(TARGET_MIPS64)
322     if ((env->insn_flags & ISA_MIPS3) &&
323         (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
324          (env->CP0_Status & (1 << CP0St_PX)) ||
325          (env->CP0_Status & (1 << CP0St_UX)))) {
326         env->hflags |= MIPS_HFLAG_64;
327     }
328 
329     if (!(env->insn_flags & ISA_MIPS3)) {
330         env->hflags |= MIPS_HFLAG_AWRAP;
331     } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
332                !(env->CP0_Status & (1 << CP0St_UX))) {
333         env->hflags |= MIPS_HFLAG_AWRAP;
334     } else if (env->insn_flags & ISA_MIPS64R6) {
335         /* Address wrapping for Supervisor and Kernel is specified in R6 */
336         if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
337              !(env->CP0_Status & (1 << CP0St_SX))) ||
338             (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
339              !(env->CP0_Status & (1 << CP0St_KX)))) {
340             env->hflags |= MIPS_HFLAG_AWRAP;
341         }
342     }
343 #endif
344     if (((env->CP0_Status & (1 << CP0St_CU0)) &&
345          !(env->insn_flags & ISA_MIPS32R6)) ||
346         !(env->hflags & MIPS_HFLAG_KSU)) {
347         env->hflags |= MIPS_HFLAG_CP0;
348     }
349     if (env->CP0_Status & (1 << CP0St_CU1)) {
350         env->hflags |= MIPS_HFLAG_FPU;
351     }
352     if (env->CP0_Status & (1 << CP0St_FR)) {
353         env->hflags |= MIPS_HFLAG_F64;
354     }
355     if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
356         (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
357         env->hflags |= MIPS_HFLAG_SBRI;
358     }
359     if (env->insn_flags & ASE_DSP_R3) {
360         /*
361          * Our cpu supports DSP R3 ASE, so enable
362          * access to DSP R3 resources.
363          */
364         if (env->CP0_Status & (1 << CP0St_MX)) {
365             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
366                            MIPS_HFLAG_DSP_R3;
367         }
368     } else if (env->insn_flags & ASE_DSP_R2) {
369         /*
370          * Our cpu supports DSP R2 ASE, so enable
371          * access to DSP R2 resources.
372          */
373         if (env->CP0_Status & (1 << CP0St_MX)) {
374             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
375         }
376 
377     } else if (env->insn_flags & ASE_DSP) {
378         /*
379          * Our cpu supports DSP ASE, so enable
380          * access to DSP resources.
381          */
382         if (env->CP0_Status & (1 << CP0St_MX)) {
383             env->hflags |= MIPS_HFLAG_DSP;
384         }
385 
386     }
387     if (env->insn_flags & ISA_MIPS32R2) {
388         if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
389             env->hflags |= MIPS_HFLAG_COP1X;
390         }
391     } else if (env->insn_flags & ISA_MIPS32) {
392         if (env->hflags & MIPS_HFLAG_64) {
393             env->hflags |= MIPS_HFLAG_COP1X;
394         }
395     } else if (env->insn_flags & ISA_MIPS4) {
396         /* All supported MIPS IV CPUs use the XX (CU3) to enable
397            and disable the MIPS IV extensions to the MIPS III ISA.
398            Some other MIPS IV CPUs ignore the bit, so the check here
399            would be too restrictive for them.  */
400         if (env->CP0_Status & (1U << CP0St_CU3)) {
401             env->hflags |= MIPS_HFLAG_COP1X;
402         }
403     }
404     if (env->insn_flags & ASE_MSA) {
405         if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
406             env->hflags |= MIPS_HFLAG_MSA;
407         }
408     }
409     if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
410         if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
411             env->hflags |= MIPS_HFLAG_FRE;
412         }
413     }
414     if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
415         if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
416             env->hflags |= MIPS_HFLAG_ELPA;
417         }
418     }
419 }
420 
421 void cpu_mips_tlb_flush(CPUMIPSState *env);
422 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
423 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
424 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
425 
426 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
427                                           int error_code, uintptr_t pc);
428 
429 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
430                                                     uint32_t exception,
431                                                     uintptr_t pc)
432 {
433     do_raise_exception_err(env, exception, 0, pc);
434 }
435 
436 #endif
437