1 /* 2 * MIPS internal definitions and helpers 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2 or later. 5 * See the COPYING file in the top-level directory. 6 */ 7 8 #ifndef MIPS_INTERNAL_H 9 #define MIPS_INTERNAL_H 10 11 #include "exec/memattrs.h" 12 #ifdef CONFIG_TCG 13 #include "tcg/tcg-internal.h" 14 #endif 15 #include "cpu.h" 16 17 /* 18 * MMU types, the first four entries have the same layout as the 19 * CP0C0_MT field. 20 */ 21 enum mips_mmu_types { 22 MMU_TYPE_NONE = 0, 23 MMU_TYPE_R4000 = 1, /* Standard TLB */ 24 MMU_TYPE_BAT = 2, /* Block Address Translation */ 25 MMU_TYPE_FMT = 3, /* Fixed Mapping */ 26 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */ 27 MMU_TYPE_R3000, 28 MMU_TYPE_R6000, 29 MMU_TYPE_R8000 30 }; 31 32 struct mips_def_t { 33 const char *name; 34 int32_t CP0_PRid; 35 int32_t CP0_Config0; 36 int32_t CP0_Config1; 37 int32_t CP0_Config2; 38 int32_t CP0_Config3; 39 int32_t CP0_Config4; 40 int32_t CP0_Config4_rw_bitmask; 41 int32_t CP0_Config5; 42 int32_t CP0_Config5_rw_bitmask; 43 int32_t CP0_Config6; 44 int32_t CP0_Config6_rw_bitmask; 45 int32_t CP0_Config7; 46 int32_t CP0_Config7_rw_bitmask; 47 target_ulong CP0_LLAddr_rw_bitmask; 48 int CP0_LLAddr_shift; 49 int32_t SYNCI_Step; 50 /* 51 * @CCRes: rate at which the coprocessor 0 counter increments 52 * 53 * The Count register acts as a timer, incrementing at a constant rate, 54 * whether or not an instruction is executed, retired, or any forward 55 * progress is made through the pipeline. The rate at which the counter 56 * increments is implementation dependent, and is a function of the 57 * pipeline clock of the processor, not the issue width of the processor. 58 */ 59 int32_t CCRes; 60 int32_t CP0_Status_rw_bitmask; 61 int32_t CP0_TCStatus_rw_bitmask; 62 int32_t CP0_SRSCtl; 63 int32_t CP1_fcr0; 64 int32_t CP1_fcr31_rw_bitmask; 65 int32_t CP1_fcr31; 66 int32_t MSAIR; 67 int32_t SEGBITS; 68 int32_t PABITS; 69 int32_t CP0_SRSConf0_rw_bitmask; 70 int32_t CP0_SRSConf0; 71 int32_t CP0_SRSConf1_rw_bitmask; 72 int32_t CP0_SRSConf1; 73 int32_t CP0_SRSConf2_rw_bitmask; 74 int32_t CP0_SRSConf2; 75 int32_t CP0_SRSConf3_rw_bitmask; 76 int32_t CP0_SRSConf3; 77 int32_t CP0_SRSConf4_rw_bitmask; 78 int32_t CP0_SRSConf4; 79 int32_t CP0_PageGrain_rw_bitmask; 80 int32_t CP0_PageGrain; 81 target_ulong CP0_EBaseWG_rw_bitmask; 82 uint64_t insn_flags; 83 enum mips_mmu_types mmu_type; 84 int32_t SAARP; 85 }; 86 87 extern const char regnames[32][3]; 88 extern const char fregnames[32][4]; 89 90 extern const struct mips_def_t mips_defs[]; 91 extern const int mips_defs_number; 92 93 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 94 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 95 96 #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL) 97 #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL) 98 #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL) 99 #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL) 100 #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL) 101 102 #define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL) 103 #define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL) 104 105 #if !defined(CONFIG_USER_ONLY) 106 107 enum { 108 TLBRET_XI = -6, 109 TLBRET_RI = -5, 110 TLBRET_DIRTY = -4, 111 TLBRET_INVALID = -3, 112 TLBRET_NOMATCH = -2, 113 TLBRET_BADADDR = -1, 114 TLBRET_MATCH = 0 115 }; 116 117 int get_physical_address(CPUMIPSState *env, hwaddr *physical, 118 int *prot, target_ulong real_address, 119 MMUAccessType access_type, int mmu_idx); 120 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 121 122 typedef struct r4k_tlb_t r4k_tlb_t; 123 struct r4k_tlb_t { 124 target_ulong VPN; 125 uint32_t PageMask; 126 uint16_t ASID; 127 uint32_t MMID; 128 unsigned int G:1; 129 unsigned int C0:3; 130 unsigned int C1:3; 131 unsigned int V0:1; 132 unsigned int V1:1; 133 unsigned int D0:1; 134 unsigned int D1:1; 135 unsigned int XI0:1; 136 unsigned int XI1:1; 137 unsigned int RI0:1; 138 unsigned int RI1:1; 139 unsigned int EHINV:1; 140 uint64_t PFN[2]; 141 }; 142 143 struct CPUMIPSTLBContext { 144 uint32_t nb_tlb; 145 uint32_t tlb_in_use; 146 int (*map_address)(CPUMIPSState *env, hwaddr *physical, int *prot, 147 target_ulong address, MMUAccessType access_type); 148 void (*helper_tlbwi)(CPUMIPSState *env); 149 void (*helper_tlbwr)(CPUMIPSState *env); 150 void (*helper_tlbp)(CPUMIPSState *env); 151 void (*helper_tlbr)(CPUMIPSState *env); 152 void (*helper_tlbinv)(CPUMIPSState *env); 153 void (*helper_tlbinvf)(CPUMIPSState *env); 154 union { 155 struct { 156 r4k_tlb_t tlb[MIPS_TLB_MAX]; 157 } r4k; 158 } mmu; 159 }; 160 161 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc); 162 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val); 163 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val); 164 165 extern const VMStateDescription vmstate_mips_cpu; 166 167 #endif /* !CONFIG_USER_ONLY */ 168 169 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env) 170 { 171 return (env->CP0_Status & (1 << CP0St_IE)) && 172 !(env->CP0_Status & (1 << CP0St_EXL)) && 173 !(env->CP0_Status & (1 << CP0St_ERL)) && 174 !(env->hflags & MIPS_HFLAG_DM) && 175 /* 176 * Note that the TCStatus IXMT field is initialized to zero, 177 * and only MT capable cores can set it to one. So we don't 178 * need to check for MT capabilities here. 179 */ 180 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT)); 181 } 182 183 /* Check if there is pending and not masked out interrupt */ 184 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env) 185 { 186 int32_t pending; 187 int32_t status; 188 bool r; 189 190 pending = env->CP0_Cause & CP0Ca_IP_mask; 191 status = env->CP0_Status & CP0Ca_IP_mask; 192 193 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) { 194 /* 195 * A MIPS configured with a vectorizing external interrupt controller 196 * will feed a vector into the Cause pending lines. The core treats 197 * the status lines as a vector level, not as individual masks. 198 */ 199 r = pending > status; 200 } else { 201 /* 202 * A MIPS configured with compatibility or VInt (Vectored Interrupts) 203 * treats the pending lines as individual interrupt lines, the status 204 * lines are individual masks. 205 */ 206 r = (pending & status) != 0; 207 } 208 return r; 209 } 210 211 void msa_reset(CPUMIPSState *env); 212 213 /* cp0_timer.c */ 214 uint32_t cpu_mips_get_count(CPUMIPSState *env); 215 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value); 216 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value); 217 void cpu_mips_start_count(CPUMIPSState *env); 218 void cpu_mips_stop_count(CPUMIPSState *env); 219 220 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value) 221 { 222 env->active_tc.PC = value & ~(target_ulong)1; 223 if (value & 1) { 224 env->hflags |= MIPS_HFLAG_M16; 225 } else { 226 env->hflags &= ~(MIPS_HFLAG_M16); 227 } 228 } 229 230 static inline void restore_pamask(CPUMIPSState *env) 231 { 232 if (env->hflags & MIPS_HFLAG_ELPA) { 233 env->PAMask = (1ULL << env->PABITS) - 1; 234 } else { 235 env->PAMask = PAMASK_BASE; 236 } 237 } 238 239 static inline int mips_vpe_active(CPUMIPSState *env) 240 { 241 int active = 1; 242 243 /* Check that the VPE is enabled. */ 244 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) { 245 active = 0; 246 } 247 /* Check that the VPE is activated. */ 248 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) { 249 active = 0; 250 } 251 252 /* 253 * Now verify that there are active thread contexts in the VPE. 254 * 255 * This assumes the CPU model will internally reschedule threads 256 * if the active one goes to sleep. If there are no threads available 257 * the active one will be in a sleeping state, and we can turn off 258 * the entire VPE. 259 */ 260 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) { 261 /* TC is not activated. */ 262 active = 0; 263 } 264 if (env->active_tc.CP0_TCHalt & 1) { 265 /* TC is in halt state. */ 266 active = 0; 267 } 268 269 return active; 270 } 271 272 static inline int mips_vp_active(CPUMIPSState *env) 273 { 274 CPUState *other_cs = first_cpu; 275 276 /* Check if the VP disabled other VPs (which means the VP is enabled) */ 277 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) { 278 return 1; 279 } 280 281 /* Check if the virtual processor is disabled due to a DVP */ 282 CPU_FOREACH(other_cs) { 283 MIPSCPU *other_cpu = MIPS_CPU(other_cs); 284 if ((&other_cpu->env != env) && 285 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) { 286 return 0; 287 } 288 } 289 return 1; 290 } 291 292 static inline void compute_hflags(CPUMIPSState *env) 293 { 294 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 | 295 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU | 296 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 | 297 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA | 298 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL); 299 if (env->CP0_Status & (1 << CP0St_ERL)) { 300 env->hflags |= MIPS_HFLAG_ERL; 301 } 302 if (!(env->CP0_Status & (1 << CP0St_EXL)) && 303 !(env->CP0_Status & (1 << CP0St_ERL)) && 304 !(env->hflags & MIPS_HFLAG_DM)) { 305 env->hflags |= (env->CP0_Status >> CP0St_KSU) & 306 MIPS_HFLAG_KSU; 307 } 308 #if defined(TARGET_MIPS64) 309 if ((env->insn_flags & ISA_MIPS3) && 310 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) || 311 (env->CP0_Status & (1 << CP0St_PX)) || 312 (env->CP0_Status & (1 << CP0St_UX)))) { 313 env->hflags |= MIPS_HFLAG_64; 314 } 315 316 if (!(env->insn_flags & ISA_MIPS3)) { 317 env->hflags |= MIPS_HFLAG_AWRAP; 318 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) && 319 !(env->CP0_Status & (1 << CP0St_UX))) { 320 env->hflags |= MIPS_HFLAG_AWRAP; 321 } else if (env->insn_flags & ISA_MIPS_R6) { 322 /* Address wrapping for Supervisor and Kernel is specified in R6 */ 323 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) && 324 !(env->CP0_Status & (1 << CP0St_SX))) || 325 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) && 326 !(env->CP0_Status & (1 << CP0St_KX)))) { 327 env->hflags |= MIPS_HFLAG_AWRAP; 328 } 329 } 330 #endif 331 if (((env->CP0_Status & (1 << CP0St_CU0)) && 332 !(env->insn_flags & ISA_MIPS_R6)) || 333 !(env->hflags & MIPS_HFLAG_KSU)) { 334 env->hflags |= MIPS_HFLAG_CP0; 335 } 336 if (env->CP0_Status & (1 << CP0St_CU1)) { 337 env->hflags |= MIPS_HFLAG_FPU; 338 } 339 if (env->CP0_Status & (1 << CP0St_FR)) { 340 env->hflags |= MIPS_HFLAG_F64; 341 } 342 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) && 343 (env->CP0_Config5 & (1 << CP0C5_SBRI))) { 344 env->hflags |= MIPS_HFLAG_SBRI; 345 } 346 if (env->insn_flags & ASE_DSP_R3) { 347 /* 348 * Our cpu supports DSP R3 ASE, so enable 349 * access to DSP R3 resources. 350 */ 351 if (env->CP0_Status & (1 << CP0St_MX)) { 352 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 | 353 MIPS_HFLAG_DSP_R3; 354 } 355 } else if (env->insn_flags & ASE_DSP_R2) { 356 /* 357 * Our cpu supports DSP R2 ASE, so enable 358 * access to DSP R2 resources. 359 */ 360 if (env->CP0_Status & (1 << CP0St_MX)) { 361 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2; 362 } 363 364 } else if (env->insn_flags & ASE_DSP) { 365 /* 366 * Our cpu supports DSP ASE, so enable 367 * access to DSP resources. 368 */ 369 if (env->CP0_Status & (1 << CP0St_MX)) { 370 env->hflags |= MIPS_HFLAG_DSP; 371 } 372 373 } 374 if (env->insn_flags & ISA_MIPS_R2) { 375 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) { 376 env->hflags |= MIPS_HFLAG_COP1X; 377 } 378 } else if (env->insn_flags & ISA_MIPS_R1) { 379 if (env->hflags & MIPS_HFLAG_64) { 380 env->hflags |= MIPS_HFLAG_COP1X; 381 } 382 } else if (env->insn_flags & ISA_MIPS4) { 383 /* 384 * All supported MIPS IV CPUs use the XX (CU3) to enable 385 * and disable the MIPS IV extensions to the MIPS III ISA. 386 * Some other MIPS IV CPUs ignore the bit, so the check here 387 * would be too restrictive for them. 388 */ 389 if (env->CP0_Status & (1U << CP0St_CU3)) { 390 env->hflags |= MIPS_HFLAG_COP1X; 391 } 392 } 393 if (ase_msa_available(env)) { 394 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) { 395 env->hflags |= MIPS_HFLAG_MSA; 396 } 397 } 398 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) { 399 if (env->CP0_Config5 & (1 << CP0C5_FRE)) { 400 env->hflags |= MIPS_HFLAG_FRE; 401 } 402 } 403 if (env->CP0_Config3 & (1 << CP0C3_LPA)) { 404 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) { 405 env->hflags |= MIPS_HFLAG_ELPA; 406 } 407 } 408 } 409 410 #endif 411