xref: /openbmc/qemu/target/mips/internal.h (revision 709395f8)
1 /* mips internal definitions and helpers
2  *
3  * This work is licensed under the terms of the GNU GPL, version 2 or later.
4  * See the COPYING file in the top-level directory.
5  */
6 
7 #ifndef MIPS_INTERNAL_H
8 #define MIPS_INTERNAL_H
9 
10 
11 /* MMU types, the first four entries have the same layout as the
12    CP0C0_MT field.  */
13 enum mips_mmu_types {
14     MMU_TYPE_NONE,
15     MMU_TYPE_R4000,
16     MMU_TYPE_RESERVED,
17     MMU_TYPE_FMT,
18     MMU_TYPE_R3000,
19     MMU_TYPE_R6000,
20     MMU_TYPE_R8000
21 };
22 
23 struct mips_def_t {
24     const char *name;
25     int32_t CP0_PRid;
26     int32_t CP0_Config0;
27     int32_t CP0_Config1;
28     int32_t CP0_Config2;
29     int32_t CP0_Config3;
30     int32_t CP0_Config4;
31     int32_t CP0_Config4_rw_bitmask;
32     int32_t CP0_Config5;
33     int32_t CP0_Config5_rw_bitmask;
34     int32_t CP0_Config6;
35     int32_t CP0_Config7;
36     target_ulong CP0_LLAddr_rw_bitmask;
37     int CP0_LLAddr_shift;
38     int32_t SYNCI_Step;
39     int32_t CCRes;
40     int32_t CP0_Status_rw_bitmask;
41     int32_t CP0_TCStatus_rw_bitmask;
42     int32_t CP0_SRSCtl;
43     int32_t CP1_fcr0;
44     int32_t CP1_fcr31_rw_bitmask;
45     int32_t CP1_fcr31;
46     int32_t MSAIR;
47     int32_t SEGBITS;
48     int32_t PABITS;
49     int32_t CP0_SRSConf0_rw_bitmask;
50     int32_t CP0_SRSConf0;
51     int32_t CP0_SRSConf1_rw_bitmask;
52     int32_t CP0_SRSConf1;
53     int32_t CP0_SRSConf2_rw_bitmask;
54     int32_t CP0_SRSConf2;
55     int32_t CP0_SRSConf3_rw_bitmask;
56     int32_t CP0_SRSConf3;
57     int32_t CP0_SRSConf4_rw_bitmask;
58     int32_t CP0_SRSConf4;
59     int32_t CP0_PageGrain_rw_bitmask;
60     int32_t CP0_PageGrain;
61     target_ulong CP0_EBaseWG_rw_bitmask;
62     uint64_t insn_flags;
63     enum mips_mmu_types mmu_type;
64     int32_t SAARP;
65 };
66 
67 extern const struct mips_def_t mips_defs[];
68 extern const int mips_defs_number;
69 
70 enum CPUMIPSMSADataFormat {
71     DF_BYTE = 0,
72     DF_HALF,
73     DF_WORD,
74     DF_DOUBLE
75 };
76 
77 void mips_cpu_do_interrupt(CPUState *cpu);
78 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
79 void mips_cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
80                          int flags);
81 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
82 int mips_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
83 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
84 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
85                                   MMUAccessType access_type,
86                                   int mmu_idx, uintptr_t retaddr);
87 
88 #if !defined(CONFIG_USER_ONLY)
89 
90 typedef struct r4k_tlb_t r4k_tlb_t;
91 struct r4k_tlb_t {
92     target_ulong VPN;
93     uint32_t PageMask;
94     uint16_t ASID;
95     unsigned int G:1;
96     unsigned int C0:3;
97     unsigned int C1:3;
98     unsigned int V0:1;
99     unsigned int V1:1;
100     unsigned int D0:1;
101     unsigned int D1:1;
102     unsigned int XI0:1;
103     unsigned int XI1:1;
104     unsigned int RI0:1;
105     unsigned int RI1:1;
106     unsigned int EHINV:1;
107     uint64_t PFN[2];
108 };
109 
110 struct CPUMIPSTLBContext {
111     uint32_t nb_tlb;
112     uint32_t tlb_in_use;
113     int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
114                        target_ulong address, int rw, int access_type);
115     void (*helper_tlbwi)(struct CPUMIPSState *env);
116     void (*helper_tlbwr)(struct CPUMIPSState *env);
117     void (*helper_tlbp)(struct CPUMIPSState *env);
118     void (*helper_tlbr)(struct CPUMIPSState *env);
119     void (*helper_tlbinv)(struct CPUMIPSState *env);
120     void (*helper_tlbinvf)(struct CPUMIPSState *env);
121     union {
122         struct {
123             r4k_tlb_t tlb[MIPS_TLB_MAX];
124         } r4k;
125     } mmu;
126 };
127 
128 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
129                        target_ulong address, int rw, int access_type);
130 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
131                           target_ulong address, int rw, int access_type);
132 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
133                     target_ulong address, int rw, int access_type);
134 void r4k_helper_tlbwi(CPUMIPSState *env);
135 void r4k_helper_tlbwr(CPUMIPSState *env);
136 void r4k_helper_tlbp(CPUMIPSState *env);
137 void r4k_helper_tlbr(CPUMIPSState *env);
138 void r4k_helper_tlbinv(CPUMIPSState *env);
139 void r4k_helper_tlbinvf(CPUMIPSState *env);
140 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
141 
142 void mips_cpu_unassigned_access(CPUState *cpu, hwaddr addr,
143                                 bool is_write, bool is_exec, int unused,
144                                 unsigned size);
145 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
146                                   int rw);
147 #endif
148 
149 #define cpu_signal_handler cpu_mips_signal_handler
150 
151 #ifndef CONFIG_USER_ONLY
152 extern const struct VMStateDescription vmstate_mips_cpu;
153 #endif
154 
155 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
156 {
157     return (env->CP0_Status & (1 << CP0St_IE)) &&
158         !(env->CP0_Status & (1 << CP0St_EXL)) &&
159         !(env->CP0_Status & (1 << CP0St_ERL)) &&
160         !(env->hflags & MIPS_HFLAG_DM) &&
161         /* Note that the TCStatus IXMT field is initialized to zero,
162            and only MT capable cores can set it to one. So we don't
163            need to check for MT capabilities here.  */
164         !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
165 }
166 
167 /* Check if there is pending and not masked out interrupt */
168 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
169 {
170     int32_t pending;
171     int32_t status;
172     bool r;
173 
174     pending = env->CP0_Cause & CP0Ca_IP_mask;
175     status = env->CP0_Status & CP0Ca_IP_mask;
176 
177     if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
178         /* A MIPS configured with a vectorizing external interrupt controller
179            will feed a vector into the Cause pending lines. The core treats
180            the status lines as a vector level, not as indiviual masks.  */
181         r = pending > status;
182     } else {
183         /* A MIPS configured with compatibility or VInt (Vectored Interrupts)
184            treats the pending lines as individual interrupt lines, the status
185            lines are individual masks.  */
186         r = (pending & status) != 0;
187     }
188     return r;
189 }
190 
191 void mips_tcg_init(void);
192 
193 /* TODO QOM'ify CPU reset and remove */
194 void cpu_state_reset(CPUMIPSState *s);
195 void cpu_mips_realize_env(CPUMIPSState *env);
196 
197 /* cp0_timer.c */
198 uint32_t cpu_mips_get_random(CPUMIPSState *env);
199 uint32_t cpu_mips_get_count(CPUMIPSState *env);
200 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
201 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
202 void cpu_mips_start_count(CPUMIPSState *env);
203 void cpu_mips_stop_count(CPUMIPSState *env);
204 
205 /* helper.c */
206 int mips_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size, int rw,
207                               int mmu_idx);
208 
209 /* op_helper.c */
210 uint32_t float_class_s(uint32_t arg, float_status *fst);
211 uint64_t float_class_d(uint64_t arg, float_status *fst);
212 
213 extern unsigned int ieee_rm[];
214 int ieee_ex_to_mips(int xcpt);
215 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
216 
217 static inline void restore_rounding_mode(CPUMIPSState *env)
218 {
219     set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
220                             &env->active_fpu.fp_status);
221 }
222 
223 static inline void restore_flush_mode(CPUMIPSState *env)
224 {
225     set_flush_to_zero((env->active_fpu.fcr31 & (1 << FCR31_FS)) != 0,
226                       &env->active_fpu.fp_status);
227 }
228 
229 static inline void restore_fp_status(CPUMIPSState *env)
230 {
231     restore_rounding_mode(env);
232     restore_flush_mode(env);
233     restore_snan_bit_mode(env);
234 }
235 
236 static inline void restore_msa_fp_status(CPUMIPSState *env)
237 {
238     float_status *status = &env->active_tc.msa_fp_status;
239     int rounding_mode = (env->active_tc.msacsr & MSACSR_RM_MASK) >> MSACSR_RM;
240     bool flush_to_zero = (env->active_tc.msacsr & MSACSR_FS_MASK) != 0;
241 
242     set_float_rounding_mode(ieee_rm[rounding_mode], status);
243     set_flush_to_zero(flush_to_zero, status);
244     set_flush_inputs_to_zero(flush_to_zero, status);
245 }
246 
247 static inline void restore_pamask(CPUMIPSState *env)
248 {
249     if (env->hflags & MIPS_HFLAG_ELPA) {
250         env->PAMask = (1ULL << env->PABITS) - 1;
251     } else {
252         env->PAMask = PAMASK_BASE;
253     }
254 }
255 
256 static inline int mips_vpe_active(CPUMIPSState *env)
257 {
258     int active = 1;
259 
260     /* Check that the VPE is enabled.  */
261     if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
262         active = 0;
263     }
264     /* Check that the VPE is activated.  */
265     if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
266         active = 0;
267     }
268 
269     /* Now verify that there are active thread contexts in the VPE.
270 
271        This assumes the CPU model will internally reschedule threads
272        if the active one goes to sleep. If there are no threads available
273        the active one will be in a sleeping state, and we can turn off
274        the entire VPE.  */
275     if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
276         /* TC is not activated.  */
277         active = 0;
278     }
279     if (env->active_tc.CP0_TCHalt & 1) {
280         /* TC is in halt state.  */
281         active = 0;
282     }
283 
284     return active;
285 }
286 
287 static inline int mips_vp_active(CPUMIPSState *env)
288 {
289     CPUState *other_cs = first_cpu;
290 
291     /* Check if the VP disabled other VPs (which means the VP is enabled) */
292     if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
293         return 1;
294     }
295 
296     /* Check if the virtual processor is disabled due to a DVP */
297     CPU_FOREACH(other_cs) {
298         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
299         if ((&other_cpu->env != env) &&
300             ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
301             return 0;
302         }
303     }
304     return 1;
305 }
306 
307 static inline void compute_hflags(CPUMIPSState *env)
308 {
309     env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
310                      MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
311                      MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
312                      MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
313                      MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
314     if (env->CP0_Status & (1 << CP0St_ERL)) {
315         env->hflags |= MIPS_HFLAG_ERL;
316     }
317     if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
318         !(env->CP0_Status & (1 << CP0St_ERL)) &&
319         !(env->hflags & MIPS_HFLAG_DM)) {
320         env->hflags |= (env->CP0_Status >> CP0St_KSU) & MIPS_HFLAG_KSU;
321     }
322 #if defined(TARGET_MIPS64)
323     if ((env->insn_flags & ISA_MIPS3) &&
324         (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
325          (env->CP0_Status & (1 << CP0St_PX)) ||
326          (env->CP0_Status & (1 << CP0St_UX)))) {
327         env->hflags |= MIPS_HFLAG_64;
328     }
329 
330     if (!(env->insn_flags & ISA_MIPS3)) {
331         env->hflags |= MIPS_HFLAG_AWRAP;
332     } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
333                !(env->CP0_Status & (1 << CP0St_UX))) {
334         env->hflags |= MIPS_HFLAG_AWRAP;
335     } else if (env->insn_flags & ISA_MIPS64R6) {
336         /* Address wrapping for Supervisor and Kernel is specified in R6 */
337         if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
338              !(env->CP0_Status & (1 << CP0St_SX))) ||
339             (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
340              !(env->CP0_Status & (1 << CP0St_KX)))) {
341             env->hflags |= MIPS_HFLAG_AWRAP;
342         }
343     }
344 #endif
345     if (((env->CP0_Status & (1 << CP0St_CU0)) &&
346          !(env->insn_flags & ISA_MIPS32R6)) ||
347         !(env->hflags & MIPS_HFLAG_KSU)) {
348         env->hflags |= MIPS_HFLAG_CP0;
349     }
350     if (env->CP0_Status & (1 << CP0St_CU1)) {
351         env->hflags |= MIPS_HFLAG_FPU;
352     }
353     if (env->CP0_Status & (1 << CP0St_FR)) {
354         env->hflags |= MIPS_HFLAG_F64;
355     }
356     if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
357         (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
358         env->hflags |= MIPS_HFLAG_SBRI;
359     }
360     if (env->insn_flags & ASE_DSP_R3) {
361         /*
362          * Our cpu supports DSP R3 ASE, so enable
363          * access to DSP R3 resources.
364          */
365         if (env->CP0_Status & (1 << CP0St_MX)) {
366             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
367                            MIPS_HFLAG_DSP_R3;
368         }
369     } else if (env->insn_flags & ASE_DSP_R2) {
370         /*
371          * Our cpu supports DSP R2 ASE, so enable
372          * access to DSP R2 resources.
373          */
374         if (env->CP0_Status & (1 << CP0St_MX)) {
375             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
376         }
377 
378     } else if (env->insn_flags & ASE_DSP) {
379         /*
380          * Our cpu supports DSP ASE, so enable
381          * access to DSP resources.
382          */
383         if (env->CP0_Status & (1 << CP0St_MX)) {
384             env->hflags |= MIPS_HFLAG_DSP;
385         }
386 
387     }
388     if (env->insn_flags & ISA_MIPS32R2) {
389         if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
390             env->hflags |= MIPS_HFLAG_COP1X;
391         }
392     } else if (env->insn_flags & ISA_MIPS32) {
393         if (env->hflags & MIPS_HFLAG_64) {
394             env->hflags |= MIPS_HFLAG_COP1X;
395         }
396     } else if (env->insn_flags & ISA_MIPS4) {
397         /* All supported MIPS IV CPUs use the XX (CU3) to enable
398            and disable the MIPS IV extensions to the MIPS III ISA.
399            Some other MIPS IV CPUs ignore the bit, so the check here
400            would be too restrictive for them.  */
401         if (env->CP0_Status & (1U << CP0St_CU3)) {
402             env->hflags |= MIPS_HFLAG_COP1X;
403         }
404     }
405     if (env->insn_flags & ASE_MSA) {
406         if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
407             env->hflags |= MIPS_HFLAG_MSA;
408         }
409     }
410     if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
411         if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
412             env->hflags |= MIPS_HFLAG_FRE;
413         }
414     }
415     if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
416         if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
417             env->hflags |= MIPS_HFLAG_ELPA;
418         }
419     }
420 }
421 
422 void cpu_mips_tlb_flush(CPUMIPSState *env);
423 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
424 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
425 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
426 
427 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
428                                           int error_code, uintptr_t pc);
429 
430 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
431                                                     uint32_t exception,
432                                                     uintptr_t pc)
433 {
434     do_raise_exception_err(env, exception, 0, pc);
435 }
436 
437 #endif
438