xref: /openbmc/qemu/target/mips/internal.h (revision 3ae8a100)
1 /* mips internal definitions and helpers
2  *
3  * This work is licensed under the terms of the GNU GPL, version 2 or later.
4  * See the COPYING file in the top-level directory.
5  */
6 
7 #ifndef MIPS_INTERNAL_H
8 #define MIPS_INTERNAL_H
9 
10 
11 /* MMU types, the first four entries have the same layout as the
12    CP0C0_MT field.  */
13 enum mips_mmu_types {
14     MMU_TYPE_NONE,
15     MMU_TYPE_R4000,
16     MMU_TYPE_RESERVED,
17     MMU_TYPE_FMT,
18     MMU_TYPE_R3000,
19     MMU_TYPE_R6000,
20     MMU_TYPE_R8000
21 };
22 
23 struct mips_def_t {
24     const char *name;
25     int32_t CP0_PRid;
26     int32_t CP0_Config0;
27     int32_t CP0_Config1;
28     int32_t CP0_Config2;
29     int32_t CP0_Config3;
30     int32_t CP0_Config4;
31     int32_t CP0_Config4_rw_bitmask;
32     int32_t CP0_Config5;
33     int32_t CP0_Config5_rw_bitmask;
34     int32_t CP0_Config6;
35     int32_t CP0_Config7;
36     target_ulong CP0_LLAddr_rw_bitmask;
37     int CP0_LLAddr_shift;
38     int32_t SYNCI_Step;
39     int32_t CCRes;
40     int32_t CP0_Status_rw_bitmask;
41     int32_t CP0_TCStatus_rw_bitmask;
42     int32_t CP0_SRSCtl;
43     int32_t CP1_fcr0;
44     int32_t CP1_fcr31_rw_bitmask;
45     int32_t CP1_fcr31;
46     int32_t MSAIR;
47     int32_t SEGBITS;
48     int32_t PABITS;
49     int32_t CP0_SRSConf0_rw_bitmask;
50     int32_t CP0_SRSConf0;
51     int32_t CP0_SRSConf1_rw_bitmask;
52     int32_t CP0_SRSConf1;
53     int32_t CP0_SRSConf2_rw_bitmask;
54     int32_t CP0_SRSConf2;
55     int32_t CP0_SRSConf3_rw_bitmask;
56     int32_t CP0_SRSConf3;
57     int32_t CP0_SRSConf4_rw_bitmask;
58     int32_t CP0_SRSConf4;
59     int32_t CP0_PageGrain_rw_bitmask;
60     int32_t CP0_PageGrain;
61     target_ulong CP0_EBaseWG_rw_bitmask;
62     int insn_flags;
63     enum mips_mmu_types mmu_type;
64 };
65 
66 extern const struct mips_def_t mips_defs[];
67 extern const int mips_defs_number;
68 
69 enum CPUMIPSMSADataFormat {
70     DF_BYTE = 0,
71     DF_HALF,
72     DF_WORD,
73     DF_DOUBLE
74 };
75 
76 void mips_cpu_do_interrupt(CPUState *cpu);
77 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
78 void mips_cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
79                          int flags);
80 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
81 int mips_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
82 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
83 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
84                                   MMUAccessType access_type,
85                                   int mmu_idx, uintptr_t retaddr);
86 
87 #if !defined(CONFIG_USER_ONLY)
88 
89 typedef struct r4k_tlb_t r4k_tlb_t;
90 struct r4k_tlb_t {
91     target_ulong VPN;
92     uint32_t PageMask;
93     uint16_t ASID;
94     unsigned int G:1;
95     unsigned int C0:3;
96     unsigned int C1:3;
97     unsigned int V0:1;
98     unsigned int V1:1;
99     unsigned int D0:1;
100     unsigned int D1:1;
101     unsigned int XI0:1;
102     unsigned int XI1:1;
103     unsigned int RI0:1;
104     unsigned int RI1:1;
105     unsigned int EHINV:1;
106     uint64_t PFN[2];
107 };
108 
109 struct CPUMIPSTLBContext {
110     uint32_t nb_tlb;
111     uint32_t tlb_in_use;
112     int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
113                        target_ulong address, int rw, int access_type);
114     void (*helper_tlbwi)(struct CPUMIPSState *env);
115     void (*helper_tlbwr)(struct CPUMIPSState *env);
116     void (*helper_tlbp)(struct CPUMIPSState *env);
117     void (*helper_tlbr)(struct CPUMIPSState *env);
118     void (*helper_tlbinv)(struct CPUMIPSState *env);
119     void (*helper_tlbinvf)(struct CPUMIPSState *env);
120     union {
121         struct {
122             r4k_tlb_t tlb[MIPS_TLB_MAX];
123         } r4k;
124     } mmu;
125 };
126 
127 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
128                        target_ulong address, int rw, int access_type);
129 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
130                           target_ulong address, int rw, int access_type);
131 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
132                     target_ulong address, int rw, int access_type);
133 void r4k_helper_tlbwi(CPUMIPSState *env);
134 void r4k_helper_tlbwr(CPUMIPSState *env);
135 void r4k_helper_tlbp(CPUMIPSState *env);
136 void r4k_helper_tlbr(CPUMIPSState *env);
137 void r4k_helper_tlbinv(CPUMIPSState *env);
138 void r4k_helper_tlbinvf(CPUMIPSState *env);
139 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
140 
141 void mips_cpu_unassigned_access(CPUState *cpu, hwaddr addr,
142                                 bool is_write, bool is_exec, int unused,
143                                 unsigned size);
144 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
145                                   int rw);
146 #endif
147 
148 #define cpu_signal_handler cpu_mips_signal_handler
149 
150 #ifndef CONFIG_USER_ONLY
151 extern const struct VMStateDescription vmstate_mips_cpu;
152 #endif
153 
154 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
155 {
156     return (env->CP0_Status & (1 << CP0St_IE)) &&
157         !(env->CP0_Status & (1 << CP0St_EXL)) &&
158         !(env->CP0_Status & (1 << CP0St_ERL)) &&
159         !(env->hflags & MIPS_HFLAG_DM) &&
160         /* Note that the TCStatus IXMT field is initialized to zero,
161            and only MT capable cores can set it to one. So we don't
162            need to check for MT capabilities here.  */
163         !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
164 }
165 
166 /* Check if there is pending and not masked out interrupt */
167 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
168 {
169     int32_t pending;
170     int32_t status;
171     bool r;
172 
173     pending = env->CP0_Cause & CP0Ca_IP_mask;
174     status = env->CP0_Status & CP0Ca_IP_mask;
175 
176     if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
177         /* A MIPS configured with a vectorizing external interrupt controller
178            will feed a vector into the Cause pending lines. The core treats
179            the status lines as a vector level, not as indiviual masks.  */
180         r = pending > status;
181     } else {
182         /* A MIPS configured with compatibility or VInt (Vectored Interrupts)
183            treats the pending lines as individual interrupt lines, the status
184            lines are individual masks.  */
185         r = (pending & status) != 0;
186     }
187     return r;
188 }
189 
190 void mips_tcg_init(void);
191 
192 /* TODO QOM'ify CPU reset and remove */
193 void cpu_state_reset(CPUMIPSState *s);
194 void cpu_mips_realize_env(CPUMIPSState *env);
195 
196 /* cp0_timer.c */
197 uint32_t cpu_mips_get_random(CPUMIPSState *env);
198 uint32_t cpu_mips_get_count(CPUMIPSState *env);
199 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
200 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
201 void cpu_mips_start_count(CPUMIPSState *env);
202 void cpu_mips_stop_count(CPUMIPSState *env);
203 
204 /* helper.c */
205 int mips_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size, int rw,
206                               int mmu_idx);
207 
208 /* op_helper.c */
209 uint32_t float_class_s(uint32_t arg, float_status *fst);
210 uint64_t float_class_d(uint64_t arg, float_status *fst);
211 
212 extern unsigned int ieee_rm[];
213 int ieee_ex_to_mips(int xcpt);
214 
215 static inline void restore_rounding_mode(CPUMIPSState *env)
216 {
217     set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
218                             &env->active_fpu.fp_status);
219 }
220 
221 static inline void restore_flush_mode(CPUMIPSState *env)
222 {
223     set_flush_to_zero((env->active_fpu.fcr31 & (1 << FCR31_FS)) != 0,
224                       &env->active_fpu.fp_status);
225 }
226 
227 static inline void restore_fp_status(CPUMIPSState *env)
228 {
229     restore_rounding_mode(env);
230     restore_flush_mode(env);
231     restore_snan_bit_mode(env);
232 }
233 
234 static inline void restore_msa_fp_status(CPUMIPSState *env)
235 {
236     float_status *status = &env->active_tc.msa_fp_status;
237     int rounding_mode = (env->active_tc.msacsr & MSACSR_RM_MASK) >> MSACSR_RM;
238     bool flush_to_zero = (env->active_tc.msacsr & MSACSR_FS_MASK) != 0;
239 
240     set_float_rounding_mode(ieee_rm[rounding_mode], status);
241     set_flush_to_zero(flush_to_zero, status);
242     set_flush_inputs_to_zero(flush_to_zero, status);
243 }
244 
245 static inline void restore_pamask(CPUMIPSState *env)
246 {
247     if (env->hflags & MIPS_HFLAG_ELPA) {
248         env->PAMask = (1ULL << env->PABITS) - 1;
249     } else {
250         env->PAMask = PAMASK_BASE;
251     }
252 }
253 
254 static inline int mips_vpe_active(CPUMIPSState *env)
255 {
256     int active = 1;
257 
258     /* Check that the VPE is enabled.  */
259     if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
260         active = 0;
261     }
262     /* Check that the VPE is activated.  */
263     if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
264         active = 0;
265     }
266 
267     /* Now verify that there are active thread contexts in the VPE.
268 
269        This assumes the CPU model will internally reschedule threads
270        if the active one goes to sleep. If there are no threads available
271        the active one will be in a sleeping state, and we can turn off
272        the entire VPE.  */
273     if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
274         /* TC is not activated.  */
275         active = 0;
276     }
277     if (env->active_tc.CP0_TCHalt & 1) {
278         /* TC is in halt state.  */
279         active = 0;
280     }
281 
282     return active;
283 }
284 
285 static inline int mips_vp_active(CPUMIPSState *env)
286 {
287     CPUState *other_cs = first_cpu;
288 
289     /* Check if the VP disabled other VPs (which means the VP is enabled) */
290     if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
291         return 1;
292     }
293 
294     /* Check if the virtual processor is disabled due to a DVP */
295     CPU_FOREACH(other_cs) {
296         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
297         if ((&other_cpu->env != env) &&
298             ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
299             return 0;
300         }
301     }
302     return 1;
303 }
304 
305 static inline void compute_hflags(CPUMIPSState *env)
306 {
307     env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
308                      MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
309                      MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSPR2 |
310                      MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA | MIPS_HFLAG_FRE |
311                      MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
312     if (env->CP0_Status & (1 << CP0St_ERL)) {
313         env->hflags |= MIPS_HFLAG_ERL;
314     }
315     if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
316         !(env->CP0_Status & (1 << CP0St_ERL)) &&
317         !(env->hflags & MIPS_HFLAG_DM)) {
318         env->hflags |= (env->CP0_Status >> CP0St_KSU) & MIPS_HFLAG_KSU;
319     }
320 #if defined(TARGET_MIPS64)
321     if ((env->insn_flags & ISA_MIPS3) &&
322         (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
323          (env->CP0_Status & (1 << CP0St_PX)) ||
324          (env->CP0_Status & (1 << CP0St_UX)))) {
325         env->hflags |= MIPS_HFLAG_64;
326     }
327 
328     if (!(env->insn_flags & ISA_MIPS3)) {
329         env->hflags |= MIPS_HFLAG_AWRAP;
330     } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
331                !(env->CP0_Status & (1 << CP0St_UX))) {
332         env->hflags |= MIPS_HFLAG_AWRAP;
333     } else if (env->insn_flags & ISA_MIPS64R6) {
334         /* Address wrapping for Supervisor and Kernel is specified in R6 */
335         if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
336              !(env->CP0_Status & (1 << CP0St_SX))) ||
337             (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
338              !(env->CP0_Status & (1 << CP0St_KX)))) {
339             env->hflags |= MIPS_HFLAG_AWRAP;
340         }
341     }
342 #endif
343     if (((env->CP0_Status & (1 << CP0St_CU0)) &&
344          !(env->insn_flags & ISA_MIPS32R6)) ||
345         !(env->hflags & MIPS_HFLAG_KSU)) {
346         env->hflags |= MIPS_HFLAG_CP0;
347     }
348     if (env->CP0_Status & (1 << CP0St_CU1)) {
349         env->hflags |= MIPS_HFLAG_FPU;
350     }
351     if (env->CP0_Status & (1 << CP0St_FR)) {
352         env->hflags |= MIPS_HFLAG_F64;
353     }
354     if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
355         (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
356         env->hflags |= MIPS_HFLAG_SBRI;
357     }
358     if (env->insn_flags & ASE_DSPR2) {
359         /* Enables access MIPS DSP resources, now our cpu is DSP ASER2,
360            so enable to access DSPR2 resources. */
361         if (env->CP0_Status & (1 << CP0St_MX)) {
362             env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSPR2;
363         }
364 
365     } else if (env->insn_flags & ASE_DSP) {
366         /* Enables access MIPS DSP resources, now our cpu is DSP ASE,
367            so enable to access DSP resources. */
368         if (env->CP0_Status & (1 << CP0St_MX)) {
369             env->hflags |= MIPS_HFLAG_DSP;
370         }
371 
372     }
373     if (env->insn_flags & ISA_MIPS32R2) {
374         if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
375             env->hflags |= MIPS_HFLAG_COP1X;
376         }
377     } else if (env->insn_flags & ISA_MIPS32) {
378         if (env->hflags & MIPS_HFLAG_64) {
379             env->hflags |= MIPS_HFLAG_COP1X;
380         }
381     } else if (env->insn_flags & ISA_MIPS4) {
382         /* All supported MIPS IV CPUs use the XX (CU3) to enable
383            and disable the MIPS IV extensions to the MIPS III ISA.
384            Some other MIPS IV CPUs ignore the bit, so the check here
385            would be too restrictive for them.  */
386         if (env->CP0_Status & (1U << CP0St_CU3)) {
387             env->hflags |= MIPS_HFLAG_COP1X;
388         }
389     }
390     if (env->insn_flags & ASE_MSA) {
391         if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
392             env->hflags |= MIPS_HFLAG_MSA;
393         }
394     }
395     if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
396         if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
397             env->hflags |= MIPS_HFLAG_FRE;
398         }
399     }
400     if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
401         if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
402             env->hflags |= MIPS_HFLAG_ELPA;
403         }
404     }
405 }
406 
407 void cpu_mips_tlb_flush(CPUMIPSState *env);
408 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
409 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
410 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
411 
412 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
413                                           int error_code, uintptr_t pc);
414 
415 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
416                                                     uint32_t exception,
417                                                     uintptr_t pc)
418 {
419     do_raise_exception_err(env, exception, 0, pc);
420 }
421 
422 #endif
423