1 /* 2 * HPPA emulation cpu translation for qemu. 3 * 4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "disas/disas.h" 23 #include "qemu/host-utils.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg-op.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/helper-proto.h" 28 #include "exec/helper-gen.h" 29 #include "exec/translator.h" 30 #include "exec/log.h" 31 32 /* Since we have a distinction between register size and address size, 33 we need to redefine all of these. */ 34 35 #undef TCGv 36 #undef tcg_temp_new 37 #undef tcg_global_reg_new 38 #undef tcg_global_mem_new 39 #undef tcg_temp_local_new 40 #undef tcg_temp_free 41 42 #if TARGET_LONG_BITS == 64 43 #define TCGv_tl TCGv_i64 44 #define tcg_temp_new_tl tcg_temp_new_i64 45 #define tcg_temp_free_tl tcg_temp_free_i64 46 #if TARGET_REGISTER_BITS == 64 47 #define tcg_gen_extu_reg_tl tcg_gen_mov_i64 48 #else 49 #define tcg_gen_extu_reg_tl tcg_gen_extu_i32_i64 50 #endif 51 #else 52 #define TCGv_tl TCGv_i32 53 #define tcg_temp_new_tl tcg_temp_new_i32 54 #define tcg_temp_free_tl tcg_temp_free_i32 55 #define tcg_gen_extu_reg_tl tcg_gen_mov_i32 56 #endif 57 58 #if TARGET_REGISTER_BITS == 64 59 #define TCGv_reg TCGv_i64 60 61 #define tcg_temp_new tcg_temp_new_i64 62 #define tcg_global_reg_new tcg_global_reg_new_i64 63 #define tcg_global_mem_new tcg_global_mem_new_i64 64 #define tcg_temp_local_new tcg_temp_local_new_i64 65 #define tcg_temp_free tcg_temp_free_i64 66 67 #define tcg_gen_movi_reg tcg_gen_movi_i64 68 #define tcg_gen_mov_reg tcg_gen_mov_i64 69 #define tcg_gen_ld8u_reg tcg_gen_ld8u_i64 70 #define tcg_gen_ld8s_reg tcg_gen_ld8s_i64 71 #define tcg_gen_ld16u_reg tcg_gen_ld16u_i64 72 #define tcg_gen_ld16s_reg tcg_gen_ld16s_i64 73 #define tcg_gen_ld32u_reg tcg_gen_ld32u_i64 74 #define tcg_gen_ld32s_reg tcg_gen_ld32s_i64 75 #define tcg_gen_ld_reg tcg_gen_ld_i64 76 #define tcg_gen_st8_reg tcg_gen_st8_i64 77 #define tcg_gen_st16_reg tcg_gen_st16_i64 78 #define tcg_gen_st32_reg tcg_gen_st32_i64 79 #define tcg_gen_st_reg tcg_gen_st_i64 80 #define tcg_gen_add_reg tcg_gen_add_i64 81 #define tcg_gen_addi_reg tcg_gen_addi_i64 82 #define tcg_gen_sub_reg tcg_gen_sub_i64 83 #define tcg_gen_neg_reg tcg_gen_neg_i64 84 #define tcg_gen_subfi_reg tcg_gen_subfi_i64 85 #define tcg_gen_subi_reg tcg_gen_subi_i64 86 #define tcg_gen_and_reg tcg_gen_and_i64 87 #define tcg_gen_andi_reg tcg_gen_andi_i64 88 #define tcg_gen_or_reg tcg_gen_or_i64 89 #define tcg_gen_ori_reg tcg_gen_ori_i64 90 #define tcg_gen_xor_reg tcg_gen_xor_i64 91 #define tcg_gen_xori_reg tcg_gen_xori_i64 92 #define tcg_gen_not_reg tcg_gen_not_i64 93 #define tcg_gen_shl_reg tcg_gen_shl_i64 94 #define tcg_gen_shli_reg tcg_gen_shli_i64 95 #define tcg_gen_shr_reg tcg_gen_shr_i64 96 #define tcg_gen_shri_reg tcg_gen_shri_i64 97 #define tcg_gen_sar_reg tcg_gen_sar_i64 98 #define tcg_gen_sari_reg tcg_gen_sari_i64 99 #define tcg_gen_brcond_reg tcg_gen_brcond_i64 100 #define tcg_gen_brcondi_reg tcg_gen_brcondi_i64 101 #define tcg_gen_setcond_reg tcg_gen_setcond_i64 102 #define tcg_gen_setcondi_reg tcg_gen_setcondi_i64 103 #define tcg_gen_mul_reg tcg_gen_mul_i64 104 #define tcg_gen_muli_reg tcg_gen_muli_i64 105 #define tcg_gen_div_reg tcg_gen_div_i64 106 #define tcg_gen_rem_reg tcg_gen_rem_i64 107 #define tcg_gen_divu_reg tcg_gen_divu_i64 108 #define tcg_gen_remu_reg tcg_gen_remu_i64 109 #define tcg_gen_discard_reg tcg_gen_discard_i64 110 #define tcg_gen_trunc_reg_i32 tcg_gen_extrl_i64_i32 111 #define tcg_gen_trunc_i64_reg tcg_gen_mov_i64 112 #define tcg_gen_extu_i32_reg tcg_gen_extu_i32_i64 113 #define tcg_gen_ext_i32_reg tcg_gen_ext_i32_i64 114 #define tcg_gen_extu_reg_i64 tcg_gen_mov_i64 115 #define tcg_gen_ext_reg_i64 tcg_gen_mov_i64 116 #define tcg_gen_ext8u_reg tcg_gen_ext8u_i64 117 #define tcg_gen_ext8s_reg tcg_gen_ext8s_i64 118 #define tcg_gen_ext16u_reg tcg_gen_ext16u_i64 119 #define tcg_gen_ext16s_reg tcg_gen_ext16s_i64 120 #define tcg_gen_ext32u_reg tcg_gen_ext32u_i64 121 #define tcg_gen_ext32s_reg tcg_gen_ext32s_i64 122 #define tcg_gen_bswap16_reg tcg_gen_bswap16_i64 123 #define tcg_gen_bswap32_reg tcg_gen_bswap32_i64 124 #define tcg_gen_bswap64_reg tcg_gen_bswap64_i64 125 #define tcg_gen_concat_reg_i64 tcg_gen_concat32_i64 126 #define tcg_gen_andc_reg tcg_gen_andc_i64 127 #define tcg_gen_eqv_reg tcg_gen_eqv_i64 128 #define tcg_gen_nand_reg tcg_gen_nand_i64 129 #define tcg_gen_nor_reg tcg_gen_nor_i64 130 #define tcg_gen_orc_reg tcg_gen_orc_i64 131 #define tcg_gen_clz_reg tcg_gen_clz_i64 132 #define tcg_gen_ctz_reg tcg_gen_ctz_i64 133 #define tcg_gen_clzi_reg tcg_gen_clzi_i64 134 #define tcg_gen_ctzi_reg tcg_gen_ctzi_i64 135 #define tcg_gen_clrsb_reg tcg_gen_clrsb_i64 136 #define tcg_gen_ctpop_reg tcg_gen_ctpop_i64 137 #define tcg_gen_rotl_reg tcg_gen_rotl_i64 138 #define tcg_gen_rotli_reg tcg_gen_rotli_i64 139 #define tcg_gen_rotr_reg tcg_gen_rotr_i64 140 #define tcg_gen_rotri_reg tcg_gen_rotri_i64 141 #define tcg_gen_deposit_reg tcg_gen_deposit_i64 142 #define tcg_gen_deposit_z_reg tcg_gen_deposit_z_i64 143 #define tcg_gen_extract_reg tcg_gen_extract_i64 144 #define tcg_gen_sextract_reg tcg_gen_sextract_i64 145 #define tcg_const_reg tcg_const_i64 146 #define tcg_const_local_reg tcg_const_local_i64 147 #define tcg_constant_reg tcg_constant_i64 148 #define tcg_gen_movcond_reg tcg_gen_movcond_i64 149 #define tcg_gen_add2_reg tcg_gen_add2_i64 150 #define tcg_gen_sub2_reg tcg_gen_sub2_i64 151 #define tcg_gen_qemu_ld_reg tcg_gen_qemu_ld_i64 152 #define tcg_gen_qemu_st_reg tcg_gen_qemu_st_i64 153 #define tcg_gen_atomic_xchg_reg tcg_gen_atomic_xchg_i64 154 #define tcg_gen_trunc_reg_ptr tcg_gen_trunc_i64_ptr 155 #else 156 #define TCGv_reg TCGv_i32 157 #define tcg_temp_new tcg_temp_new_i32 158 #define tcg_global_reg_new tcg_global_reg_new_i32 159 #define tcg_global_mem_new tcg_global_mem_new_i32 160 #define tcg_temp_local_new tcg_temp_local_new_i32 161 #define tcg_temp_free tcg_temp_free_i32 162 163 #define tcg_gen_movi_reg tcg_gen_movi_i32 164 #define tcg_gen_mov_reg tcg_gen_mov_i32 165 #define tcg_gen_ld8u_reg tcg_gen_ld8u_i32 166 #define tcg_gen_ld8s_reg tcg_gen_ld8s_i32 167 #define tcg_gen_ld16u_reg tcg_gen_ld16u_i32 168 #define tcg_gen_ld16s_reg tcg_gen_ld16s_i32 169 #define tcg_gen_ld32u_reg tcg_gen_ld_i32 170 #define tcg_gen_ld32s_reg tcg_gen_ld_i32 171 #define tcg_gen_ld_reg tcg_gen_ld_i32 172 #define tcg_gen_st8_reg tcg_gen_st8_i32 173 #define tcg_gen_st16_reg tcg_gen_st16_i32 174 #define tcg_gen_st32_reg tcg_gen_st32_i32 175 #define tcg_gen_st_reg tcg_gen_st_i32 176 #define tcg_gen_add_reg tcg_gen_add_i32 177 #define tcg_gen_addi_reg tcg_gen_addi_i32 178 #define tcg_gen_sub_reg tcg_gen_sub_i32 179 #define tcg_gen_neg_reg tcg_gen_neg_i32 180 #define tcg_gen_subfi_reg tcg_gen_subfi_i32 181 #define tcg_gen_subi_reg tcg_gen_subi_i32 182 #define tcg_gen_and_reg tcg_gen_and_i32 183 #define tcg_gen_andi_reg tcg_gen_andi_i32 184 #define tcg_gen_or_reg tcg_gen_or_i32 185 #define tcg_gen_ori_reg tcg_gen_ori_i32 186 #define tcg_gen_xor_reg tcg_gen_xor_i32 187 #define tcg_gen_xori_reg tcg_gen_xori_i32 188 #define tcg_gen_not_reg tcg_gen_not_i32 189 #define tcg_gen_shl_reg tcg_gen_shl_i32 190 #define tcg_gen_shli_reg tcg_gen_shli_i32 191 #define tcg_gen_shr_reg tcg_gen_shr_i32 192 #define tcg_gen_shri_reg tcg_gen_shri_i32 193 #define tcg_gen_sar_reg tcg_gen_sar_i32 194 #define tcg_gen_sari_reg tcg_gen_sari_i32 195 #define tcg_gen_brcond_reg tcg_gen_brcond_i32 196 #define tcg_gen_brcondi_reg tcg_gen_brcondi_i32 197 #define tcg_gen_setcond_reg tcg_gen_setcond_i32 198 #define tcg_gen_setcondi_reg tcg_gen_setcondi_i32 199 #define tcg_gen_mul_reg tcg_gen_mul_i32 200 #define tcg_gen_muli_reg tcg_gen_muli_i32 201 #define tcg_gen_div_reg tcg_gen_div_i32 202 #define tcg_gen_rem_reg tcg_gen_rem_i32 203 #define tcg_gen_divu_reg tcg_gen_divu_i32 204 #define tcg_gen_remu_reg tcg_gen_remu_i32 205 #define tcg_gen_discard_reg tcg_gen_discard_i32 206 #define tcg_gen_trunc_reg_i32 tcg_gen_mov_i32 207 #define tcg_gen_trunc_i64_reg tcg_gen_extrl_i64_i32 208 #define tcg_gen_extu_i32_reg tcg_gen_mov_i32 209 #define tcg_gen_ext_i32_reg tcg_gen_mov_i32 210 #define tcg_gen_extu_reg_i64 tcg_gen_extu_i32_i64 211 #define tcg_gen_ext_reg_i64 tcg_gen_ext_i32_i64 212 #define tcg_gen_ext8u_reg tcg_gen_ext8u_i32 213 #define tcg_gen_ext8s_reg tcg_gen_ext8s_i32 214 #define tcg_gen_ext16u_reg tcg_gen_ext16u_i32 215 #define tcg_gen_ext16s_reg tcg_gen_ext16s_i32 216 #define tcg_gen_ext32u_reg tcg_gen_mov_i32 217 #define tcg_gen_ext32s_reg tcg_gen_mov_i32 218 #define tcg_gen_bswap16_reg tcg_gen_bswap16_i32 219 #define tcg_gen_bswap32_reg tcg_gen_bswap32_i32 220 #define tcg_gen_concat_reg_i64 tcg_gen_concat_i32_i64 221 #define tcg_gen_andc_reg tcg_gen_andc_i32 222 #define tcg_gen_eqv_reg tcg_gen_eqv_i32 223 #define tcg_gen_nand_reg tcg_gen_nand_i32 224 #define tcg_gen_nor_reg tcg_gen_nor_i32 225 #define tcg_gen_orc_reg tcg_gen_orc_i32 226 #define tcg_gen_clz_reg tcg_gen_clz_i32 227 #define tcg_gen_ctz_reg tcg_gen_ctz_i32 228 #define tcg_gen_clzi_reg tcg_gen_clzi_i32 229 #define tcg_gen_ctzi_reg tcg_gen_ctzi_i32 230 #define tcg_gen_clrsb_reg tcg_gen_clrsb_i32 231 #define tcg_gen_ctpop_reg tcg_gen_ctpop_i32 232 #define tcg_gen_rotl_reg tcg_gen_rotl_i32 233 #define tcg_gen_rotli_reg tcg_gen_rotli_i32 234 #define tcg_gen_rotr_reg tcg_gen_rotr_i32 235 #define tcg_gen_rotri_reg tcg_gen_rotri_i32 236 #define tcg_gen_deposit_reg tcg_gen_deposit_i32 237 #define tcg_gen_deposit_z_reg tcg_gen_deposit_z_i32 238 #define tcg_gen_extract_reg tcg_gen_extract_i32 239 #define tcg_gen_sextract_reg tcg_gen_sextract_i32 240 #define tcg_const_reg tcg_const_i32 241 #define tcg_const_local_reg tcg_const_local_i32 242 #define tcg_constant_reg tcg_constant_i32 243 #define tcg_gen_movcond_reg tcg_gen_movcond_i32 244 #define tcg_gen_add2_reg tcg_gen_add2_i32 245 #define tcg_gen_sub2_reg tcg_gen_sub2_i32 246 #define tcg_gen_qemu_ld_reg tcg_gen_qemu_ld_i32 247 #define tcg_gen_qemu_st_reg tcg_gen_qemu_st_i32 248 #define tcg_gen_atomic_xchg_reg tcg_gen_atomic_xchg_i32 249 #define tcg_gen_trunc_reg_ptr tcg_gen_ext_i32_ptr 250 #endif /* TARGET_REGISTER_BITS */ 251 252 typedef struct DisasCond { 253 TCGCond c; 254 TCGv_reg a0, a1; 255 } DisasCond; 256 257 typedef struct DisasContext { 258 DisasContextBase base; 259 CPUState *cs; 260 261 target_ureg iaoq_f; 262 target_ureg iaoq_b; 263 target_ureg iaoq_n; 264 TCGv_reg iaoq_n_var; 265 266 int ntempr, ntempl; 267 TCGv_reg tempr[8]; 268 TCGv_tl templ[4]; 269 270 DisasCond null_cond; 271 TCGLabel *null_lab; 272 273 uint32_t insn; 274 uint32_t tb_flags; 275 int mmu_idx; 276 int privilege; 277 bool psw_n_nonzero; 278 } DisasContext; 279 280 /* Note that ssm/rsm instructions number PSW_W and PSW_E differently. */ 281 static int expand_sm_imm(DisasContext *ctx, int val) 282 { 283 if (val & PSW_SM_E) { 284 val = (val & ~PSW_SM_E) | PSW_E; 285 } 286 if (val & PSW_SM_W) { 287 val = (val & ~PSW_SM_W) | PSW_W; 288 } 289 return val; 290 } 291 292 /* Inverted space register indicates 0 means sr0 not inferred from base. */ 293 static int expand_sr3x(DisasContext *ctx, int val) 294 { 295 return ~val; 296 } 297 298 /* Convert the M:A bits within a memory insn to the tri-state value 299 we use for the final M. */ 300 static int ma_to_m(DisasContext *ctx, int val) 301 { 302 return val & 2 ? (val & 1 ? -1 : 1) : 0; 303 } 304 305 /* Convert the sign of the displacement to a pre or post-modify. */ 306 static int pos_to_m(DisasContext *ctx, int val) 307 { 308 return val ? 1 : -1; 309 } 310 311 static int neg_to_m(DisasContext *ctx, int val) 312 { 313 return val ? -1 : 1; 314 } 315 316 /* Used for branch targets and fp memory ops. */ 317 static int expand_shl2(DisasContext *ctx, int val) 318 { 319 return val << 2; 320 } 321 322 /* Used for fp memory ops. */ 323 static int expand_shl3(DisasContext *ctx, int val) 324 { 325 return val << 3; 326 } 327 328 /* Used for assemble_21. */ 329 static int expand_shl11(DisasContext *ctx, int val) 330 { 331 return val << 11; 332 } 333 334 335 /* Include the auto-generated decoder. */ 336 #include "decode-insns.c.inc" 337 338 /* We are not using a goto_tb (for whatever reason), but have updated 339 the iaq (for whatever reason), so don't do it again on exit. */ 340 #define DISAS_IAQ_N_UPDATED DISAS_TARGET_0 341 342 /* We are exiting the TB, but have neither emitted a goto_tb, nor 343 updated the iaq for the next instruction to be executed. */ 344 #define DISAS_IAQ_N_STALE DISAS_TARGET_1 345 346 /* Similarly, but we want to return to the main loop immediately 347 to recognize unmasked interrupts. */ 348 #define DISAS_IAQ_N_STALE_EXIT DISAS_TARGET_2 349 #define DISAS_EXIT DISAS_TARGET_3 350 351 /* global register indexes */ 352 static TCGv_reg cpu_gr[32]; 353 static TCGv_i64 cpu_sr[4]; 354 static TCGv_i64 cpu_srH; 355 static TCGv_reg cpu_iaoq_f; 356 static TCGv_reg cpu_iaoq_b; 357 static TCGv_i64 cpu_iasq_f; 358 static TCGv_i64 cpu_iasq_b; 359 static TCGv_reg cpu_sar; 360 static TCGv_reg cpu_psw_n; 361 static TCGv_reg cpu_psw_v; 362 static TCGv_reg cpu_psw_cb; 363 static TCGv_reg cpu_psw_cb_msb; 364 365 #include "exec/gen-icount.h" 366 367 void hppa_translate_init(void) 368 { 369 #define DEF_VAR(V) { &cpu_##V, #V, offsetof(CPUHPPAState, V) } 370 371 typedef struct { TCGv_reg *var; const char *name; int ofs; } GlobalVar; 372 static const GlobalVar vars[] = { 373 { &cpu_sar, "sar", offsetof(CPUHPPAState, cr[CR_SAR]) }, 374 DEF_VAR(psw_n), 375 DEF_VAR(psw_v), 376 DEF_VAR(psw_cb), 377 DEF_VAR(psw_cb_msb), 378 DEF_VAR(iaoq_f), 379 DEF_VAR(iaoq_b), 380 }; 381 382 #undef DEF_VAR 383 384 /* Use the symbolic register names that match the disassembler. */ 385 static const char gr_names[32][4] = { 386 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 387 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 388 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 389 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" 390 }; 391 /* SR[4-7] are not global registers so that we can index them. */ 392 static const char sr_names[5][4] = { 393 "sr0", "sr1", "sr2", "sr3", "srH" 394 }; 395 396 int i; 397 398 cpu_gr[0] = NULL; 399 for (i = 1; i < 32; i++) { 400 cpu_gr[i] = tcg_global_mem_new(cpu_env, 401 offsetof(CPUHPPAState, gr[i]), 402 gr_names[i]); 403 } 404 for (i = 0; i < 4; i++) { 405 cpu_sr[i] = tcg_global_mem_new_i64(cpu_env, 406 offsetof(CPUHPPAState, sr[i]), 407 sr_names[i]); 408 } 409 cpu_srH = tcg_global_mem_new_i64(cpu_env, 410 offsetof(CPUHPPAState, sr[4]), 411 sr_names[4]); 412 413 for (i = 0; i < ARRAY_SIZE(vars); ++i) { 414 const GlobalVar *v = &vars[i]; 415 *v->var = tcg_global_mem_new(cpu_env, v->ofs, v->name); 416 } 417 418 cpu_iasq_f = tcg_global_mem_new_i64(cpu_env, 419 offsetof(CPUHPPAState, iasq_f), 420 "iasq_f"); 421 cpu_iasq_b = tcg_global_mem_new_i64(cpu_env, 422 offsetof(CPUHPPAState, iasq_b), 423 "iasq_b"); 424 } 425 426 static DisasCond cond_make_f(void) 427 { 428 return (DisasCond){ 429 .c = TCG_COND_NEVER, 430 .a0 = NULL, 431 .a1 = NULL, 432 }; 433 } 434 435 static DisasCond cond_make_t(void) 436 { 437 return (DisasCond){ 438 .c = TCG_COND_ALWAYS, 439 .a0 = NULL, 440 .a1 = NULL, 441 }; 442 } 443 444 static DisasCond cond_make_n(void) 445 { 446 return (DisasCond){ 447 .c = TCG_COND_NE, 448 .a0 = cpu_psw_n, 449 .a1 = tcg_constant_reg(0) 450 }; 451 } 452 453 static DisasCond cond_make_0_tmp(TCGCond c, TCGv_reg a0) 454 { 455 assert (c != TCG_COND_NEVER && c != TCG_COND_ALWAYS); 456 return (DisasCond){ 457 .c = c, .a0 = a0, .a1 = tcg_constant_reg(0) 458 }; 459 } 460 461 static DisasCond cond_make_0(TCGCond c, TCGv_reg a0) 462 { 463 TCGv_reg tmp = tcg_temp_new(); 464 tcg_gen_mov_reg(tmp, a0); 465 return cond_make_0_tmp(c, tmp); 466 } 467 468 static DisasCond cond_make(TCGCond c, TCGv_reg a0, TCGv_reg a1) 469 { 470 DisasCond r = { .c = c }; 471 472 assert (c != TCG_COND_NEVER && c != TCG_COND_ALWAYS); 473 r.a0 = tcg_temp_new(); 474 tcg_gen_mov_reg(r.a0, a0); 475 r.a1 = tcg_temp_new(); 476 tcg_gen_mov_reg(r.a1, a1); 477 478 return r; 479 } 480 481 static void cond_free(DisasCond *cond) 482 { 483 switch (cond->c) { 484 default: 485 if (cond->a0 != cpu_psw_n) { 486 tcg_temp_free(cond->a0); 487 } 488 tcg_temp_free(cond->a1); 489 cond->a0 = NULL; 490 cond->a1 = NULL; 491 /* fallthru */ 492 case TCG_COND_ALWAYS: 493 cond->c = TCG_COND_NEVER; 494 break; 495 case TCG_COND_NEVER: 496 break; 497 } 498 } 499 500 static TCGv_reg get_temp(DisasContext *ctx) 501 { 502 unsigned i = ctx->ntempr++; 503 g_assert(i < ARRAY_SIZE(ctx->tempr)); 504 return ctx->tempr[i] = tcg_temp_new(); 505 } 506 507 #ifndef CONFIG_USER_ONLY 508 static TCGv_tl get_temp_tl(DisasContext *ctx) 509 { 510 unsigned i = ctx->ntempl++; 511 g_assert(i < ARRAY_SIZE(ctx->templ)); 512 return ctx->templ[i] = tcg_temp_new_tl(); 513 } 514 #endif 515 516 static TCGv_reg load_const(DisasContext *ctx, target_sreg v) 517 { 518 TCGv_reg t = get_temp(ctx); 519 tcg_gen_movi_reg(t, v); 520 return t; 521 } 522 523 static TCGv_reg load_gpr(DisasContext *ctx, unsigned reg) 524 { 525 if (reg == 0) { 526 TCGv_reg t = get_temp(ctx); 527 tcg_gen_movi_reg(t, 0); 528 return t; 529 } else { 530 return cpu_gr[reg]; 531 } 532 } 533 534 static TCGv_reg dest_gpr(DisasContext *ctx, unsigned reg) 535 { 536 if (reg == 0 || ctx->null_cond.c != TCG_COND_NEVER) { 537 return get_temp(ctx); 538 } else { 539 return cpu_gr[reg]; 540 } 541 } 542 543 static void save_or_nullify(DisasContext *ctx, TCGv_reg dest, TCGv_reg t) 544 { 545 if (ctx->null_cond.c != TCG_COND_NEVER) { 546 tcg_gen_movcond_reg(ctx->null_cond.c, dest, ctx->null_cond.a0, 547 ctx->null_cond.a1, dest, t); 548 } else { 549 tcg_gen_mov_reg(dest, t); 550 } 551 } 552 553 static void save_gpr(DisasContext *ctx, unsigned reg, TCGv_reg t) 554 { 555 if (reg != 0) { 556 save_or_nullify(ctx, cpu_gr[reg], t); 557 } 558 } 559 560 #ifdef HOST_WORDS_BIGENDIAN 561 # define HI_OFS 0 562 # define LO_OFS 4 563 #else 564 # define HI_OFS 4 565 # define LO_OFS 0 566 #endif 567 568 static TCGv_i32 load_frw_i32(unsigned rt) 569 { 570 TCGv_i32 ret = tcg_temp_new_i32(); 571 tcg_gen_ld_i32(ret, cpu_env, 572 offsetof(CPUHPPAState, fr[rt & 31]) 573 + (rt & 32 ? LO_OFS : HI_OFS)); 574 return ret; 575 } 576 577 static TCGv_i32 load_frw0_i32(unsigned rt) 578 { 579 if (rt == 0) { 580 return tcg_const_i32(0); 581 } else { 582 return load_frw_i32(rt); 583 } 584 } 585 586 static TCGv_i64 load_frw0_i64(unsigned rt) 587 { 588 if (rt == 0) { 589 return tcg_const_i64(0); 590 } else { 591 TCGv_i64 ret = tcg_temp_new_i64(); 592 tcg_gen_ld32u_i64(ret, cpu_env, 593 offsetof(CPUHPPAState, fr[rt & 31]) 594 + (rt & 32 ? LO_OFS : HI_OFS)); 595 return ret; 596 } 597 } 598 599 static void save_frw_i32(unsigned rt, TCGv_i32 val) 600 { 601 tcg_gen_st_i32(val, cpu_env, 602 offsetof(CPUHPPAState, fr[rt & 31]) 603 + (rt & 32 ? LO_OFS : HI_OFS)); 604 } 605 606 #undef HI_OFS 607 #undef LO_OFS 608 609 static TCGv_i64 load_frd(unsigned rt) 610 { 611 TCGv_i64 ret = tcg_temp_new_i64(); 612 tcg_gen_ld_i64(ret, cpu_env, offsetof(CPUHPPAState, fr[rt])); 613 return ret; 614 } 615 616 static TCGv_i64 load_frd0(unsigned rt) 617 { 618 if (rt == 0) { 619 return tcg_const_i64(0); 620 } else { 621 return load_frd(rt); 622 } 623 } 624 625 static void save_frd(unsigned rt, TCGv_i64 val) 626 { 627 tcg_gen_st_i64(val, cpu_env, offsetof(CPUHPPAState, fr[rt])); 628 } 629 630 static void load_spr(DisasContext *ctx, TCGv_i64 dest, unsigned reg) 631 { 632 #ifdef CONFIG_USER_ONLY 633 tcg_gen_movi_i64(dest, 0); 634 #else 635 if (reg < 4) { 636 tcg_gen_mov_i64(dest, cpu_sr[reg]); 637 } else if (ctx->tb_flags & TB_FLAG_SR_SAME) { 638 tcg_gen_mov_i64(dest, cpu_srH); 639 } else { 640 tcg_gen_ld_i64(dest, cpu_env, offsetof(CPUHPPAState, sr[reg])); 641 } 642 #endif 643 } 644 645 /* Skip over the implementation of an insn that has been nullified. 646 Use this when the insn is too complex for a conditional move. */ 647 static void nullify_over(DisasContext *ctx) 648 { 649 if (ctx->null_cond.c != TCG_COND_NEVER) { 650 /* The always condition should have been handled in the main loop. */ 651 assert(ctx->null_cond.c != TCG_COND_ALWAYS); 652 653 ctx->null_lab = gen_new_label(); 654 655 /* If we're using PSW[N], copy it to a temp because... */ 656 if (ctx->null_cond.a0 == cpu_psw_n) { 657 ctx->null_cond.a0 = tcg_temp_new(); 658 tcg_gen_mov_reg(ctx->null_cond.a0, cpu_psw_n); 659 } 660 /* ... we clear it before branching over the implementation, 661 so that (1) it's clear after nullifying this insn and 662 (2) if this insn nullifies the next, PSW[N] is valid. */ 663 if (ctx->psw_n_nonzero) { 664 ctx->psw_n_nonzero = false; 665 tcg_gen_movi_reg(cpu_psw_n, 0); 666 } 667 668 tcg_gen_brcond_reg(ctx->null_cond.c, ctx->null_cond.a0, 669 ctx->null_cond.a1, ctx->null_lab); 670 cond_free(&ctx->null_cond); 671 } 672 } 673 674 /* Save the current nullification state to PSW[N]. */ 675 static void nullify_save(DisasContext *ctx) 676 { 677 if (ctx->null_cond.c == TCG_COND_NEVER) { 678 if (ctx->psw_n_nonzero) { 679 tcg_gen_movi_reg(cpu_psw_n, 0); 680 } 681 return; 682 } 683 if (ctx->null_cond.a0 != cpu_psw_n) { 684 tcg_gen_setcond_reg(ctx->null_cond.c, cpu_psw_n, 685 ctx->null_cond.a0, ctx->null_cond.a1); 686 ctx->psw_n_nonzero = true; 687 } 688 cond_free(&ctx->null_cond); 689 } 690 691 /* Set a PSW[N] to X. The intention is that this is used immediately 692 before a goto_tb/exit_tb, so that there is no fallthru path to other 693 code within the TB. Therefore we do not update psw_n_nonzero. */ 694 static void nullify_set(DisasContext *ctx, bool x) 695 { 696 if (ctx->psw_n_nonzero || x) { 697 tcg_gen_movi_reg(cpu_psw_n, x); 698 } 699 } 700 701 /* Mark the end of an instruction that may have been nullified. 702 This is the pair to nullify_over. Always returns true so that 703 it may be tail-called from a translate function. */ 704 static bool nullify_end(DisasContext *ctx) 705 { 706 TCGLabel *null_lab = ctx->null_lab; 707 DisasJumpType status = ctx->base.is_jmp; 708 709 /* For NEXT, NORETURN, STALE, we can easily continue (or exit). 710 For UPDATED, we cannot update on the nullified path. */ 711 assert(status != DISAS_IAQ_N_UPDATED); 712 713 if (likely(null_lab == NULL)) { 714 /* The current insn wasn't conditional or handled the condition 715 applied to it without a branch, so the (new) setting of 716 NULL_COND can be applied directly to the next insn. */ 717 return true; 718 } 719 ctx->null_lab = NULL; 720 721 if (likely(ctx->null_cond.c == TCG_COND_NEVER)) { 722 /* The next instruction will be unconditional, 723 and NULL_COND already reflects that. */ 724 gen_set_label(null_lab); 725 } else { 726 /* The insn that we just executed is itself nullifying the next 727 instruction. Store the condition in the PSW[N] global. 728 We asserted PSW[N] = 0 in nullify_over, so that after the 729 label we have the proper value in place. */ 730 nullify_save(ctx); 731 gen_set_label(null_lab); 732 ctx->null_cond = cond_make_n(); 733 } 734 if (status == DISAS_NORETURN) { 735 ctx->base.is_jmp = DISAS_NEXT; 736 } 737 return true; 738 } 739 740 static void copy_iaoq_entry(TCGv_reg dest, target_ureg ival, TCGv_reg vval) 741 { 742 if (unlikely(ival == -1)) { 743 tcg_gen_mov_reg(dest, vval); 744 } else { 745 tcg_gen_movi_reg(dest, ival); 746 } 747 } 748 749 static inline target_ureg iaoq_dest(DisasContext *ctx, target_sreg disp) 750 { 751 return ctx->iaoq_f + disp + 8; 752 } 753 754 static void gen_excp_1(int exception) 755 { 756 gen_helper_excp(cpu_env, tcg_constant_i32(exception)); 757 } 758 759 static void gen_excp(DisasContext *ctx, int exception) 760 { 761 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_f, cpu_iaoq_f); 762 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_b, cpu_iaoq_b); 763 nullify_save(ctx); 764 gen_excp_1(exception); 765 ctx->base.is_jmp = DISAS_NORETURN; 766 } 767 768 static bool gen_excp_iir(DisasContext *ctx, int exc) 769 { 770 nullify_over(ctx); 771 tcg_gen_st_reg(tcg_constant_reg(ctx->insn), 772 cpu_env, offsetof(CPUHPPAState, cr[CR_IIR])); 773 gen_excp(ctx, exc); 774 return nullify_end(ctx); 775 } 776 777 static bool gen_illegal(DisasContext *ctx) 778 { 779 return gen_excp_iir(ctx, EXCP_ILL); 780 } 781 782 #ifdef CONFIG_USER_ONLY 783 #define CHECK_MOST_PRIVILEGED(EXCP) \ 784 return gen_excp_iir(ctx, EXCP) 785 #else 786 #define CHECK_MOST_PRIVILEGED(EXCP) \ 787 do { \ 788 if (ctx->privilege != 0) { \ 789 return gen_excp_iir(ctx, EXCP); \ 790 } \ 791 } while (0) 792 #endif 793 794 static bool use_goto_tb(DisasContext *ctx, target_ureg dest) 795 { 796 return translator_use_goto_tb(&ctx->base, dest); 797 } 798 799 /* If the next insn is to be nullified, and it's on the same page, 800 and we're not attempting to set a breakpoint on it, then we can 801 totally skip the nullified insn. This avoids creating and 802 executing a TB that merely branches to the next TB. */ 803 static bool use_nullify_skip(DisasContext *ctx) 804 { 805 return (((ctx->iaoq_b ^ ctx->iaoq_f) & TARGET_PAGE_MASK) == 0 806 && !cpu_breakpoint_test(ctx->cs, ctx->iaoq_b, BP_ANY)); 807 } 808 809 static void gen_goto_tb(DisasContext *ctx, int which, 810 target_ureg f, target_ureg b) 811 { 812 if (f != -1 && b != -1 && use_goto_tb(ctx, f)) { 813 tcg_gen_goto_tb(which); 814 tcg_gen_movi_reg(cpu_iaoq_f, f); 815 tcg_gen_movi_reg(cpu_iaoq_b, b); 816 tcg_gen_exit_tb(ctx->base.tb, which); 817 } else { 818 copy_iaoq_entry(cpu_iaoq_f, f, cpu_iaoq_b); 819 copy_iaoq_entry(cpu_iaoq_b, b, ctx->iaoq_n_var); 820 if (ctx->base.singlestep_enabled) { 821 gen_excp_1(EXCP_DEBUG); 822 } else { 823 tcg_gen_lookup_and_goto_ptr(); 824 } 825 } 826 } 827 828 static bool cond_need_sv(int c) 829 { 830 return c == 2 || c == 3 || c == 6; 831 } 832 833 static bool cond_need_cb(int c) 834 { 835 return c == 4 || c == 5; 836 } 837 838 /* 839 * Compute conditional for arithmetic. See Page 5-3, Table 5-1, of 840 * the Parisc 1.1 Architecture Reference Manual for details. 841 */ 842 843 static DisasCond do_cond(unsigned cf, TCGv_reg res, 844 TCGv_reg cb_msb, TCGv_reg sv) 845 { 846 DisasCond cond; 847 TCGv_reg tmp; 848 849 switch (cf >> 1) { 850 case 0: /* Never / TR (0 / 1) */ 851 cond = cond_make_f(); 852 break; 853 case 1: /* = / <> (Z / !Z) */ 854 cond = cond_make_0(TCG_COND_EQ, res); 855 break; 856 case 2: /* < / >= (N ^ V / !(N ^ V) */ 857 tmp = tcg_temp_new(); 858 tcg_gen_xor_reg(tmp, res, sv); 859 cond = cond_make_0_tmp(TCG_COND_LT, tmp); 860 break; 861 case 3: /* <= / > (N ^ V) | Z / !((N ^ V) | Z) */ 862 /* 863 * Simplify: 864 * (N ^ V) | Z 865 * ((res < 0) ^ (sv < 0)) | !res 866 * ((res ^ sv) < 0) | !res 867 * (~(res ^ sv) >= 0) | !res 868 * !(~(res ^ sv) >> 31) | !res 869 * !(~(res ^ sv) >> 31 & res) 870 */ 871 tmp = tcg_temp_new(); 872 tcg_gen_eqv_reg(tmp, res, sv); 873 tcg_gen_sari_reg(tmp, tmp, TARGET_REGISTER_BITS - 1); 874 tcg_gen_and_reg(tmp, tmp, res); 875 cond = cond_make_0_tmp(TCG_COND_EQ, tmp); 876 break; 877 case 4: /* NUV / UV (!C / C) */ 878 cond = cond_make_0(TCG_COND_EQ, cb_msb); 879 break; 880 case 5: /* ZNV / VNZ (!C | Z / C & !Z) */ 881 tmp = tcg_temp_new(); 882 tcg_gen_neg_reg(tmp, cb_msb); 883 tcg_gen_and_reg(tmp, tmp, res); 884 cond = cond_make_0_tmp(TCG_COND_EQ, tmp); 885 break; 886 case 6: /* SV / NSV (V / !V) */ 887 cond = cond_make_0(TCG_COND_LT, sv); 888 break; 889 case 7: /* OD / EV */ 890 tmp = tcg_temp_new(); 891 tcg_gen_andi_reg(tmp, res, 1); 892 cond = cond_make_0_tmp(TCG_COND_NE, tmp); 893 break; 894 default: 895 g_assert_not_reached(); 896 } 897 if (cf & 1) { 898 cond.c = tcg_invert_cond(cond.c); 899 } 900 901 return cond; 902 } 903 904 /* Similar, but for the special case of subtraction without borrow, we 905 can use the inputs directly. This can allow other computation to be 906 deleted as unused. */ 907 908 static DisasCond do_sub_cond(unsigned cf, TCGv_reg res, 909 TCGv_reg in1, TCGv_reg in2, TCGv_reg sv) 910 { 911 DisasCond cond; 912 913 switch (cf >> 1) { 914 case 1: /* = / <> */ 915 cond = cond_make(TCG_COND_EQ, in1, in2); 916 break; 917 case 2: /* < / >= */ 918 cond = cond_make(TCG_COND_LT, in1, in2); 919 break; 920 case 3: /* <= / > */ 921 cond = cond_make(TCG_COND_LE, in1, in2); 922 break; 923 case 4: /* << / >>= */ 924 cond = cond_make(TCG_COND_LTU, in1, in2); 925 break; 926 case 5: /* <<= / >> */ 927 cond = cond_make(TCG_COND_LEU, in1, in2); 928 break; 929 default: 930 return do_cond(cf, res, NULL, sv); 931 } 932 if (cf & 1) { 933 cond.c = tcg_invert_cond(cond.c); 934 } 935 936 return cond; 937 } 938 939 /* 940 * Similar, but for logicals, where the carry and overflow bits are not 941 * computed, and use of them is undefined. 942 * 943 * Undefined or not, hardware does not trap. It seems reasonable to 944 * assume hardware treats cases c={4,5,6} as if C=0 & V=0, since that's 945 * how cases c={2,3} are treated. 946 */ 947 948 static DisasCond do_log_cond(unsigned cf, TCGv_reg res) 949 { 950 switch (cf) { 951 case 0: /* never */ 952 case 9: /* undef, C */ 953 case 11: /* undef, C & !Z */ 954 case 12: /* undef, V */ 955 return cond_make_f(); 956 957 case 1: /* true */ 958 case 8: /* undef, !C */ 959 case 10: /* undef, !C | Z */ 960 case 13: /* undef, !V */ 961 return cond_make_t(); 962 963 case 2: /* == */ 964 return cond_make_0(TCG_COND_EQ, res); 965 case 3: /* <> */ 966 return cond_make_0(TCG_COND_NE, res); 967 case 4: /* < */ 968 return cond_make_0(TCG_COND_LT, res); 969 case 5: /* >= */ 970 return cond_make_0(TCG_COND_GE, res); 971 case 6: /* <= */ 972 return cond_make_0(TCG_COND_LE, res); 973 case 7: /* > */ 974 return cond_make_0(TCG_COND_GT, res); 975 976 case 14: /* OD */ 977 case 15: /* EV */ 978 return do_cond(cf, res, NULL, NULL); 979 980 default: 981 g_assert_not_reached(); 982 } 983 } 984 985 /* Similar, but for shift/extract/deposit conditions. */ 986 987 static DisasCond do_sed_cond(unsigned orig, TCGv_reg res) 988 { 989 unsigned c, f; 990 991 /* Convert the compressed condition codes to standard. 992 0-2 are the same as logicals (nv,<,<=), while 3 is OD. 993 4-7 are the reverse of 0-3. */ 994 c = orig & 3; 995 if (c == 3) { 996 c = 7; 997 } 998 f = (orig & 4) / 4; 999 1000 return do_log_cond(c * 2 + f, res); 1001 } 1002 1003 /* Similar, but for unit conditions. */ 1004 1005 static DisasCond do_unit_cond(unsigned cf, TCGv_reg res, 1006 TCGv_reg in1, TCGv_reg in2) 1007 { 1008 DisasCond cond; 1009 TCGv_reg tmp, cb = NULL; 1010 1011 if (cf & 8) { 1012 /* Since we want to test lots of carry-out bits all at once, do not 1013 * do our normal thing and compute carry-in of bit B+1 since that 1014 * leaves us with carry bits spread across two words. 1015 */ 1016 cb = tcg_temp_new(); 1017 tmp = tcg_temp_new(); 1018 tcg_gen_or_reg(cb, in1, in2); 1019 tcg_gen_and_reg(tmp, in1, in2); 1020 tcg_gen_andc_reg(cb, cb, res); 1021 tcg_gen_or_reg(cb, cb, tmp); 1022 tcg_temp_free(tmp); 1023 } 1024 1025 switch (cf >> 1) { 1026 case 0: /* never / TR */ 1027 case 1: /* undefined */ 1028 case 5: /* undefined */ 1029 cond = cond_make_f(); 1030 break; 1031 1032 case 2: /* SBZ / NBZ */ 1033 /* See hasless(v,1) from 1034 * https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord 1035 */ 1036 tmp = tcg_temp_new(); 1037 tcg_gen_subi_reg(tmp, res, 0x01010101u); 1038 tcg_gen_andc_reg(tmp, tmp, res); 1039 tcg_gen_andi_reg(tmp, tmp, 0x80808080u); 1040 cond = cond_make_0(TCG_COND_NE, tmp); 1041 tcg_temp_free(tmp); 1042 break; 1043 1044 case 3: /* SHZ / NHZ */ 1045 tmp = tcg_temp_new(); 1046 tcg_gen_subi_reg(tmp, res, 0x00010001u); 1047 tcg_gen_andc_reg(tmp, tmp, res); 1048 tcg_gen_andi_reg(tmp, tmp, 0x80008000u); 1049 cond = cond_make_0(TCG_COND_NE, tmp); 1050 tcg_temp_free(tmp); 1051 break; 1052 1053 case 4: /* SDC / NDC */ 1054 tcg_gen_andi_reg(cb, cb, 0x88888888u); 1055 cond = cond_make_0(TCG_COND_NE, cb); 1056 break; 1057 1058 case 6: /* SBC / NBC */ 1059 tcg_gen_andi_reg(cb, cb, 0x80808080u); 1060 cond = cond_make_0(TCG_COND_NE, cb); 1061 break; 1062 1063 case 7: /* SHC / NHC */ 1064 tcg_gen_andi_reg(cb, cb, 0x80008000u); 1065 cond = cond_make_0(TCG_COND_NE, cb); 1066 break; 1067 1068 default: 1069 g_assert_not_reached(); 1070 } 1071 if (cf & 8) { 1072 tcg_temp_free(cb); 1073 } 1074 if (cf & 1) { 1075 cond.c = tcg_invert_cond(cond.c); 1076 } 1077 1078 return cond; 1079 } 1080 1081 /* Compute signed overflow for addition. */ 1082 static TCGv_reg do_add_sv(DisasContext *ctx, TCGv_reg res, 1083 TCGv_reg in1, TCGv_reg in2) 1084 { 1085 TCGv_reg sv = get_temp(ctx); 1086 TCGv_reg tmp = tcg_temp_new(); 1087 1088 tcg_gen_xor_reg(sv, res, in1); 1089 tcg_gen_xor_reg(tmp, in1, in2); 1090 tcg_gen_andc_reg(sv, sv, tmp); 1091 tcg_temp_free(tmp); 1092 1093 return sv; 1094 } 1095 1096 /* Compute signed overflow for subtraction. */ 1097 static TCGv_reg do_sub_sv(DisasContext *ctx, TCGv_reg res, 1098 TCGv_reg in1, TCGv_reg in2) 1099 { 1100 TCGv_reg sv = get_temp(ctx); 1101 TCGv_reg tmp = tcg_temp_new(); 1102 1103 tcg_gen_xor_reg(sv, res, in1); 1104 tcg_gen_xor_reg(tmp, in1, in2); 1105 tcg_gen_and_reg(sv, sv, tmp); 1106 tcg_temp_free(tmp); 1107 1108 return sv; 1109 } 1110 1111 static void do_add(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1112 TCGv_reg in2, unsigned shift, bool is_l, 1113 bool is_tsv, bool is_tc, bool is_c, unsigned cf) 1114 { 1115 TCGv_reg dest, cb, cb_msb, sv, tmp; 1116 unsigned c = cf >> 1; 1117 DisasCond cond; 1118 1119 dest = tcg_temp_new(); 1120 cb = NULL; 1121 cb_msb = NULL; 1122 1123 if (shift) { 1124 tmp = get_temp(ctx); 1125 tcg_gen_shli_reg(tmp, in1, shift); 1126 in1 = tmp; 1127 } 1128 1129 if (!is_l || cond_need_cb(c)) { 1130 TCGv_reg zero = tcg_constant_reg(0); 1131 cb_msb = get_temp(ctx); 1132 tcg_gen_add2_reg(dest, cb_msb, in1, zero, in2, zero); 1133 if (is_c) { 1134 tcg_gen_add2_reg(dest, cb_msb, dest, cb_msb, cpu_psw_cb_msb, zero); 1135 } 1136 if (!is_l) { 1137 cb = get_temp(ctx); 1138 tcg_gen_xor_reg(cb, in1, in2); 1139 tcg_gen_xor_reg(cb, cb, dest); 1140 } 1141 } else { 1142 tcg_gen_add_reg(dest, in1, in2); 1143 if (is_c) { 1144 tcg_gen_add_reg(dest, dest, cpu_psw_cb_msb); 1145 } 1146 } 1147 1148 /* Compute signed overflow if required. */ 1149 sv = NULL; 1150 if (is_tsv || cond_need_sv(c)) { 1151 sv = do_add_sv(ctx, dest, in1, in2); 1152 if (is_tsv) { 1153 /* ??? Need to include overflow from shift. */ 1154 gen_helper_tsv(cpu_env, sv); 1155 } 1156 } 1157 1158 /* Emit any conditional trap before any writeback. */ 1159 cond = do_cond(cf, dest, cb_msb, sv); 1160 if (is_tc) { 1161 tmp = tcg_temp_new(); 1162 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); 1163 gen_helper_tcond(cpu_env, tmp); 1164 tcg_temp_free(tmp); 1165 } 1166 1167 /* Write back the result. */ 1168 if (!is_l) { 1169 save_or_nullify(ctx, cpu_psw_cb, cb); 1170 save_or_nullify(ctx, cpu_psw_cb_msb, cb_msb); 1171 } 1172 save_gpr(ctx, rt, dest); 1173 tcg_temp_free(dest); 1174 1175 /* Install the new nullification. */ 1176 cond_free(&ctx->null_cond); 1177 ctx->null_cond = cond; 1178 } 1179 1180 static bool do_add_reg(DisasContext *ctx, arg_rrr_cf_sh *a, 1181 bool is_l, bool is_tsv, bool is_tc, bool is_c) 1182 { 1183 TCGv_reg tcg_r1, tcg_r2; 1184 1185 if (a->cf) { 1186 nullify_over(ctx); 1187 } 1188 tcg_r1 = load_gpr(ctx, a->r1); 1189 tcg_r2 = load_gpr(ctx, a->r2); 1190 do_add(ctx, a->t, tcg_r1, tcg_r2, a->sh, is_l, is_tsv, is_tc, is_c, a->cf); 1191 return nullify_end(ctx); 1192 } 1193 1194 static bool do_add_imm(DisasContext *ctx, arg_rri_cf *a, 1195 bool is_tsv, bool is_tc) 1196 { 1197 TCGv_reg tcg_im, tcg_r2; 1198 1199 if (a->cf) { 1200 nullify_over(ctx); 1201 } 1202 tcg_im = load_const(ctx, a->i); 1203 tcg_r2 = load_gpr(ctx, a->r); 1204 do_add(ctx, a->t, tcg_im, tcg_r2, 0, 0, is_tsv, is_tc, 0, a->cf); 1205 return nullify_end(ctx); 1206 } 1207 1208 static void do_sub(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1209 TCGv_reg in2, bool is_tsv, bool is_b, 1210 bool is_tc, unsigned cf) 1211 { 1212 TCGv_reg dest, sv, cb, cb_msb, zero, tmp; 1213 unsigned c = cf >> 1; 1214 DisasCond cond; 1215 1216 dest = tcg_temp_new(); 1217 cb = tcg_temp_new(); 1218 cb_msb = tcg_temp_new(); 1219 1220 zero = tcg_constant_reg(0); 1221 if (is_b) { 1222 /* DEST,C = IN1 + ~IN2 + C. */ 1223 tcg_gen_not_reg(cb, in2); 1224 tcg_gen_add2_reg(dest, cb_msb, in1, zero, cpu_psw_cb_msb, zero); 1225 tcg_gen_add2_reg(dest, cb_msb, dest, cb_msb, cb, zero); 1226 tcg_gen_xor_reg(cb, cb, in1); 1227 tcg_gen_xor_reg(cb, cb, dest); 1228 } else { 1229 /* DEST,C = IN1 + ~IN2 + 1. We can produce the same result in fewer 1230 operations by seeding the high word with 1 and subtracting. */ 1231 tcg_gen_movi_reg(cb_msb, 1); 1232 tcg_gen_sub2_reg(dest, cb_msb, in1, cb_msb, in2, zero); 1233 tcg_gen_eqv_reg(cb, in1, in2); 1234 tcg_gen_xor_reg(cb, cb, dest); 1235 } 1236 1237 /* Compute signed overflow if required. */ 1238 sv = NULL; 1239 if (is_tsv || cond_need_sv(c)) { 1240 sv = do_sub_sv(ctx, dest, in1, in2); 1241 if (is_tsv) { 1242 gen_helper_tsv(cpu_env, sv); 1243 } 1244 } 1245 1246 /* Compute the condition. We cannot use the special case for borrow. */ 1247 if (!is_b) { 1248 cond = do_sub_cond(cf, dest, in1, in2, sv); 1249 } else { 1250 cond = do_cond(cf, dest, cb_msb, sv); 1251 } 1252 1253 /* Emit any conditional trap before any writeback. */ 1254 if (is_tc) { 1255 tmp = tcg_temp_new(); 1256 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); 1257 gen_helper_tcond(cpu_env, tmp); 1258 tcg_temp_free(tmp); 1259 } 1260 1261 /* Write back the result. */ 1262 save_or_nullify(ctx, cpu_psw_cb, cb); 1263 save_or_nullify(ctx, cpu_psw_cb_msb, cb_msb); 1264 save_gpr(ctx, rt, dest); 1265 tcg_temp_free(dest); 1266 tcg_temp_free(cb); 1267 tcg_temp_free(cb_msb); 1268 1269 /* Install the new nullification. */ 1270 cond_free(&ctx->null_cond); 1271 ctx->null_cond = cond; 1272 } 1273 1274 static bool do_sub_reg(DisasContext *ctx, arg_rrr_cf *a, 1275 bool is_tsv, bool is_b, bool is_tc) 1276 { 1277 TCGv_reg tcg_r1, tcg_r2; 1278 1279 if (a->cf) { 1280 nullify_over(ctx); 1281 } 1282 tcg_r1 = load_gpr(ctx, a->r1); 1283 tcg_r2 = load_gpr(ctx, a->r2); 1284 do_sub(ctx, a->t, tcg_r1, tcg_r2, is_tsv, is_b, is_tc, a->cf); 1285 return nullify_end(ctx); 1286 } 1287 1288 static bool do_sub_imm(DisasContext *ctx, arg_rri_cf *a, bool is_tsv) 1289 { 1290 TCGv_reg tcg_im, tcg_r2; 1291 1292 if (a->cf) { 1293 nullify_over(ctx); 1294 } 1295 tcg_im = load_const(ctx, a->i); 1296 tcg_r2 = load_gpr(ctx, a->r); 1297 do_sub(ctx, a->t, tcg_im, tcg_r2, is_tsv, 0, 0, a->cf); 1298 return nullify_end(ctx); 1299 } 1300 1301 static void do_cmpclr(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1302 TCGv_reg in2, unsigned cf) 1303 { 1304 TCGv_reg dest, sv; 1305 DisasCond cond; 1306 1307 dest = tcg_temp_new(); 1308 tcg_gen_sub_reg(dest, in1, in2); 1309 1310 /* Compute signed overflow if required. */ 1311 sv = NULL; 1312 if (cond_need_sv(cf >> 1)) { 1313 sv = do_sub_sv(ctx, dest, in1, in2); 1314 } 1315 1316 /* Form the condition for the compare. */ 1317 cond = do_sub_cond(cf, dest, in1, in2, sv); 1318 1319 /* Clear. */ 1320 tcg_gen_movi_reg(dest, 0); 1321 save_gpr(ctx, rt, dest); 1322 tcg_temp_free(dest); 1323 1324 /* Install the new nullification. */ 1325 cond_free(&ctx->null_cond); 1326 ctx->null_cond = cond; 1327 } 1328 1329 static void do_log(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1330 TCGv_reg in2, unsigned cf, 1331 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) 1332 { 1333 TCGv_reg dest = dest_gpr(ctx, rt); 1334 1335 /* Perform the operation, and writeback. */ 1336 fn(dest, in1, in2); 1337 save_gpr(ctx, rt, dest); 1338 1339 /* Install the new nullification. */ 1340 cond_free(&ctx->null_cond); 1341 if (cf) { 1342 ctx->null_cond = do_log_cond(cf, dest); 1343 } 1344 } 1345 1346 static bool do_log_reg(DisasContext *ctx, arg_rrr_cf *a, 1347 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) 1348 { 1349 TCGv_reg tcg_r1, tcg_r2; 1350 1351 if (a->cf) { 1352 nullify_over(ctx); 1353 } 1354 tcg_r1 = load_gpr(ctx, a->r1); 1355 tcg_r2 = load_gpr(ctx, a->r2); 1356 do_log(ctx, a->t, tcg_r1, tcg_r2, a->cf, fn); 1357 return nullify_end(ctx); 1358 } 1359 1360 static void do_unit(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1361 TCGv_reg in2, unsigned cf, bool is_tc, 1362 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) 1363 { 1364 TCGv_reg dest; 1365 DisasCond cond; 1366 1367 if (cf == 0) { 1368 dest = dest_gpr(ctx, rt); 1369 fn(dest, in1, in2); 1370 save_gpr(ctx, rt, dest); 1371 cond_free(&ctx->null_cond); 1372 } else { 1373 dest = tcg_temp_new(); 1374 fn(dest, in1, in2); 1375 1376 cond = do_unit_cond(cf, dest, in1, in2); 1377 1378 if (is_tc) { 1379 TCGv_reg tmp = tcg_temp_new(); 1380 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); 1381 gen_helper_tcond(cpu_env, tmp); 1382 tcg_temp_free(tmp); 1383 } 1384 save_gpr(ctx, rt, dest); 1385 1386 cond_free(&ctx->null_cond); 1387 ctx->null_cond = cond; 1388 } 1389 } 1390 1391 #ifndef CONFIG_USER_ONLY 1392 /* The "normal" usage is SP >= 0, wherein SP == 0 selects the space 1393 from the top 2 bits of the base register. There are a few system 1394 instructions that have a 3-bit space specifier, for which SR0 is 1395 not special. To handle this, pass ~SP. */ 1396 static TCGv_i64 space_select(DisasContext *ctx, int sp, TCGv_reg base) 1397 { 1398 TCGv_ptr ptr; 1399 TCGv_reg tmp; 1400 TCGv_i64 spc; 1401 1402 if (sp != 0) { 1403 if (sp < 0) { 1404 sp = ~sp; 1405 } 1406 spc = get_temp_tl(ctx); 1407 load_spr(ctx, spc, sp); 1408 return spc; 1409 } 1410 if (ctx->tb_flags & TB_FLAG_SR_SAME) { 1411 return cpu_srH; 1412 } 1413 1414 ptr = tcg_temp_new_ptr(); 1415 tmp = tcg_temp_new(); 1416 spc = get_temp_tl(ctx); 1417 1418 tcg_gen_shri_reg(tmp, base, TARGET_REGISTER_BITS - 5); 1419 tcg_gen_andi_reg(tmp, tmp, 030); 1420 tcg_gen_trunc_reg_ptr(ptr, tmp); 1421 tcg_temp_free(tmp); 1422 1423 tcg_gen_add_ptr(ptr, ptr, cpu_env); 1424 tcg_gen_ld_i64(spc, ptr, offsetof(CPUHPPAState, sr[4])); 1425 tcg_temp_free_ptr(ptr); 1426 1427 return spc; 1428 } 1429 #endif 1430 1431 static void form_gva(DisasContext *ctx, TCGv_tl *pgva, TCGv_reg *pofs, 1432 unsigned rb, unsigned rx, int scale, target_sreg disp, 1433 unsigned sp, int modify, bool is_phys) 1434 { 1435 TCGv_reg base = load_gpr(ctx, rb); 1436 TCGv_reg ofs; 1437 1438 /* Note that RX is mutually exclusive with DISP. */ 1439 if (rx) { 1440 ofs = get_temp(ctx); 1441 tcg_gen_shli_reg(ofs, cpu_gr[rx], scale); 1442 tcg_gen_add_reg(ofs, ofs, base); 1443 } else if (disp || modify) { 1444 ofs = get_temp(ctx); 1445 tcg_gen_addi_reg(ofs, base, disp); 1446 } else { 1447 ofs = base; 1448 } 1449 1450 *pofs = ofs; 1451 #ifdef CONFIG_USER_ONLY 1452 *pgva = (modify <= 0 ? ofs : base); 1453 #else 1454 TCGv_tl addr = get_temp_tl(ctx); 1455 tcg_gen_extu_reg_tl(addr, modify <= 0 ? ofs : base); 1456 if (ctx->tb_flags & PSW_W) { 1457 tcg_gen_andi_tl(addr, addr, 0x3fffffffffffffffull); 1458 } 1459 if (!is_phys) { 1460 tcg_gen_or_tl(addr, addr, space_select(ctx, sp, base)); 1461 } 1462 *pgva = addr; 1463 #endif 1464 } 1465 1466 /* Emit a memory load. The modify parameter should be 1467 * < 0 for pre-modify, 1468 * > 0 for post-modify, 1469 * = 0 for no base register update. 1470 */ 1471 static void do_load_32(DisasContext *ctx, TCGv_i32 dest, unsigned rb, 1472 unsigned rx, int scale, target_sreg disp, 1473 unsigned sp, int modify, MemOp mop) 1474 { 1475 TCGv_reg ofs; 1476 TCGv_tl addr; 1477 1478 /* Caller uses nullify_over/nullify_end. */ 1479 assert(ctx->null_cond.c == TCG_COND_NEVER); 1480 1481 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1482 ctx->mmu_idx == MMU_PHYS_IDX); 1483 tcg_gen_qemu_ld_reg(dest, addr, ctx->mmu_idx, mop); 1484 if (modify) { 1485 save_gpr(ctx, rb, ofs); 1486 } 1487 } 1488 1489 static void do_load_64(DisasContext *ctx, TCGv_i64 dest, unsigned rb, 1490 unsigned rx, int scale, target_sreg disp, 1491 unsigned sp, int modify, MemOp mop) 1492 { 1493 TCGv_reg ofs; 1494 TCGv_tl addr; 1495 1496 /* Caller uses nullify_over/nullify_end. */ 1497 assert(ctx->null_cond.c == TCG_COND_NEVER); 1498 1499 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1500 ctx->mmu_idx == MMU_PHYS_IDX); 1501 tcg_gen_qemu_ld_i64(dest, addr, ctx->mmu_idx, mop); 1502 if (modify) { 1503 save_gpr(ctx, rb, ofs); 1504 } 1505 } 1506 1507 static void do_store_32(DisasContext *ctx, TCGv_i32 src, unsigned rb, 1508 unsigned rx, int scale, target_sreg disp, 1509 unsigned sp, int modify, MemOp mop) 1510 { 1511 TCGv_reg ofs; 1512 TCGv_tl addr; 1513 1514 /* Caller uses nullify_over/nullify_end. */ 1515 assert(ctx->null_cond.c == TCG_COND_NEVER); 1516 1517 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1518 ctx->mmu_idx == MMU_PHYS_IDX); 1519 tcg_gen_qemu_st_i32(src, addr, ctx->mmu_idx, mop); 1520 if (modify) { 1521 save_gpr(ctx, rb, ofs); 1522 } 1523 } 1524 1525 static void do_store_64(DisasContext *ctx, TCGv_i64 src, unsigned rb, 1526 unsigned rx, int scale, target_sreg disp, 1527 unsigned sp, int modify, MemOp mop) 1528 { 1529 TCGv_reg ofs; 1530 TCGv_tl addr; 1531 1532 /* Caller uses nullify_over/nullify_end. */ 1533 assert(ctx->null_cond.c == TCG_COND_NEVER); 1534 1535 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1536 ctx->mmu_idx == MMU_PHYS_IDX); 1537 tcg_gen_qemu_st_i64(src, addr, ctx->mmu_idx, mop); 1538 if (modify) { 1539 save_gpr(ctx, rb, ofs); 1540 } 1541 } 1542 1543 #if TARGET_REGISTER_BITS == 64 1544 #define do_load_reg do_load_64 1545 #define do_store_reg do_store_64 1546 #else 1547 #define do_load_reg do_load_32 1548 #define do_store_reg do_store_32 1549 #endif 1550 1551 static bool do_load(DisasContext *ctx, unsigned rt, unsigned rb, 1552 unsigned rx, int scale, target_sreg disp, 1553 unsigned sp, int modify, MemOp mop) 1554 { 1555 TCGv_reg dest; 1556 1557 nullify_over(ctx); 1558 1559 if (modify == 0) { 1560 /* No base register update. */ 1561 dest = dest_gpr(ctx, rt); 1562 } else { 1563 /* Make sure if RT == RB, we see the result of the load. */ 1564 dest = get_temp(ctx); 1565 } 1566 do_load_reg(ctx, dest, rb, rx, scale, disp, sp, modify, mop); 1567 save_gpr(ctx, rt, dest); 1568 1569 return nullify_end(ctx); 1570 } 1571 1572 static bool do_floadw(DisasContext *ctx, unsigned rt, unsigned rb, 1573 unsigned rx, int scale, target_sreg disp, 1574 unsigned sp, int modify) 1575 { 1576 TCGv_i32 tmp; 1577 1578 nullify_over(ctx); 1579 1580 tmp = tcg_temp_new_i32(); 1581 do_load_32(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEUL); 1582 save_frw_i32(rt, tmp); 1583 tcg_temp_free_i32(tmp); 1584 1585 if (rt == 0) { 1586 gen_helper_loaded_fr0(cpu_env); 1587 } 1588 1589 return nullify_end(ctx); 1590 } 1591 1592 static bool trans_fldw(DisasContext *ctx, arg_ldst *a) 1593 { 1594 return do_floadw(ctx, a->t, a->b, a->x, a->scale ? 2 : 0, 1595 a->disp, a->sp, a->m); 1596 } 1597 1598 static bool do_floadd(DisasContext *ctx, unsigned rt, unsigned rb, 1599 unsigned rx, int scale, target_sreg disp, 1600 unsigned sp, int modify) 1601 { 1602 TCGv_i64 tmp; 1603 1604 nullify_over(ctx); 1605 1606 tmp = tcg_temp_new_i64(); 1607 do_load_64(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEQ); 1608 save_frd(rt, tmp); 1609 tcg_temp_free_i64(tmp); 1610 1611 if (rt == 0) { 1612 gen_helper_loaded_fr0(cpu_env); 1613 } 1614 1615 return nullify_end(ctx); 1616 } 1617 1618 static bool trans_fldd(DisasContext *ctx, arg_ldst *a) 1619 { 1620 return do_floadd(ctx, a->t, a->b, a->x, a->scale ? 3 : 0, 1621 a->disp, a->sp, a->m); 1622 } 1623 1624 static bool do_store(DisasContext *ctx, unsigned rt, unsigned rb, 1625 target_sreg disp, unsigned sp, 1626 int modify, MemOp mop) 1627 { 1628 nullify_over(ctx); 1629 do_store_reg(ctx, load_gpr(ctx, rt), rb, 0, 0, disp, sp, modify, mop); 1630 return nullify_end(ctx); 1631 } 1632 1633 static bool do_fstorew(DisasContext *ctx, unsigned rt, unsigned rb, 1634 unsigned rx, int scale, target_sreg disp, 1635 unsigned sp, int modify) 1636 { 1637 TCGv_i32 tmp; 1638 1639 nullify_over(ctx); 1640 1641 tmp = load_frw_i32(rt); 1642 do_store_32(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEUL); 1643 tcg_temp_free_i32(tmp); 1644 1645 return nullify_end(ctx); 1646 } 1647 1648 static bool trans_fstw(DisasContext *ctx, arg_ldst *a) 1649 { 1650 return do_fstorew(ctx, a->t, a->b, a->x, a->scale ? 2 : 0, 1651 a->disp, a->sp, a->m); 1652 } 1653 1654 static bool do_fstored(DisasContext *ctx, unsigned rt, unsigned rb, 1655 unsigned rx, int scale, target_sreg disp, 1656 unsigned sp, int modify) 1657 { 1658 TCGv_i64 tmp; 1659 1660 nullify_over(ctx); 1661 1662 tmp = load_frd(rt); 1663 do_store_64(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEQ); 1664 tcg_temp_free_i64(tmp); 1665 1666 return nullify_end(ctx); 1667 } 1668 1669 static bool trans_fstd(DisasContext *ctx, arg_ldst *a) 1670 { 1671 return do_fstored(ctx, a->t, a->b, a->x, a->scale ? 3 : 0, 1672 a->disp, a->sp, a->m); 1673 } 1674 1675 static bool do_fop_wew(DisasContext *ctx, unsigned rt, unsigned ra, 1676 void (*func)(TCGv_i32, TCGv_env, TCGv_i32)) 1677 { 1678 TCGv_i32 tmp; 1679 1680 nullify_over(ctx); 1681 tmp = load_frw0_i32(ra); 1682 1683 func(tmp, cpu_env, tmp); 1684 1685 save_frw_i32(rt, tmp); 1686 tcg_temp_free_i32(tmp); 1687 return nullify_end(ctx); 1688 } 1689 1690 static bool do_fop_wed(DisasContext *ctx, unsigned rt, unsigned ra, 1691 void (*func)(TCGv_i32, TCGv_env, TCGv_i64)) 1692 { 1693 TCGv_i32 dst; 1694 TCGv_i64 src; 1695 1696 nullify_over(ctx); 1697 src = load_frd(ra); 1698 dst = tcg_temp_new_i32(); 1699 1700 func(dst, cpu_env, src); 1701 1702 tcg_temp_free_i64(src); 1703 save_frw_i32(rt, dst); 1704 tcg_temp_free_i32(dst); 1705 return nullify_end(ctx); 1706 } 1707 1708 static bool do_fop_ded(DisasContext *ctx, unsigned rt, unsigned ra, 1709 void (*func)(TCGv_i64, TCGv_env, TCGv_i64)) 1710 { 1711 TCGv_i64 tmp; 1712 1713 nullify_over(ctx); 1714 tmp = load_frd0(ra); 1715 1716 func(tmp, cpu_env, tmp); 1717 1718 save_frd(rt, tmp); 1719 tcg_temp_free_i64(tmp); 1720 return nullify_end(ctx); 1721 } 1722 1723 static bool do_fop_dew(DisasContext *ctx, unsigned rt, unsigned ra, 1724 void (*func)(TCGv_i64, TCGv_env, TCGv_i32)) 1725 { 1726 TCGv_i32 src; 1727 TCGv_i64 dst; 1728 1729 nullify_over(ctx); 1730 src = load_frw0_i32(ra); 1731 dst = tcg_temp_new_i64(); 1732 1733 func(dst, cpu_env, src); 1734 1735 tcg_temp_free_i32(src); 1736 save_frd(rt, dst); 1737 tcg_temp_free_i64(dst); 1738 return nullify_end(ctx); 1739 } 1740 1741 static bool do_fop_weww(DisasContext *ctx, unsigned rt, 1742 unsigned ra, unsigned rb, 1743 void (*func)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32)) 1744 { 1745 TCGv_i32 a, b; 1746 1747 nullify_over(ctx); 1748 a = load_frw0_i32(ra); 1749 b = load_frw0_i32(rb); 1750 1751 func(a, cpu_env, a, b); 1752 1753 tcg_temp_free_i32(b); 1754 save_frw_i32(rt, a); 1755 tcg_temp_free_i32(a); 1756 return nullify_end(ctx); 1757 } 1758 1759 static bool do_fop_dedd(DisasContext *ctx, unsigned rt, 1760 unsigned ra, unsigned rb, 1761 void (*func)(TCGv_i64, TCGv_env, TCGv_i64, TCGv_i64)) 1762 { 1763 TCGv_i64 a, b; 1764 1765 nullify_over(ctx); 1766 a = load_frd0(ra); 1767 b = load_frd0(rb); 1768 1769 func(a, cpu_env, a, b); 1770 1771 tcg_temp_free_i64(b); 1772 save_frd(rt, a); 1773 tcg_temp_free_i64(a); 1774 return nullify_end(ctx); 1775 } 1776 1777 /* Emit an unconditional branch to a direct target, which may or may not 1778 have already had nullification handled. */ 1779 static bool do_dbranch(DisasContext *ctx, target_ureg dest, 1780 unsigned link, bool is_n) 1781 { 1782 if (ctx->null_cond.c == TCG_COND_NEVER && ctx->null_lab == NULL) { 1783 if (link != 0) { 1784 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); 1785 } 1786 ctx->iaoq_n = dest; 1787 if (is_n) { 1788 ctx->null_cond.c = TCG_COND_ALWAYS; 1789 } 1790 } else { 1791 nullify_over(ctx); 1792 1793 if (link != 0) { 1794 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); 1795 } 1796 1797 if (is_n && use_nullify_skip(ctx)) { 1798 nullify_set(ctx, 0); 1799 gen_goto_tb(ctx, 0, dest, dest + 4); 1800 } else { 1801 nullify_set(ctx, is_n); 1802 gen_goto_tb(ctx, 0, ctx->iaoq_b, dest); 1803 } 1804 1805 nullify_end(ctx); 1806 1807 nullify_set(ctx, 0); 1808 gen_goto_tb(ctx, 1, ctx->iaoq_b, ctx->iaoq_n); 1809 ctx->base.is_jmp = DISAS_NORETURN; 1810 } 1811 return true; 1812 } 1813 1814 /* Emit a conditional branch to a direct target. If the branch itself 1815 is nullified, we should have already used nullify_over. */ 1816 static bool do_cbranch(DisasContext *ctx, target_sreg disp, bool is_n, 1817 DisasCond *cond) 1818 { 1819 target_ureg dest = iaoq_dest(ctx, disp); 1820 TCGLabel *taken = NULL; 1821 TCGCond c = cond->c; 1822 bool n; 1823 1824 assert(ctx->null_cond.c == TCG_COND_NEVER); 1825 1826 /* Handle TRUE and NEVER as direct branches. */ 1827 if (c == TCG_COND_ALWAYS) { 1828 return do_dbranch(ctx, dest, 0, is_n && disp >= 0); 1829 } 1830 if (c == TCG_COND_NEVER) { 1831 return do_dbranch(ctx, ctx->iaoq_n, 0, is_n && disp < 0); 1832 } 1833 1834 taken = gen_new_label(); 1835 tcg_gen_brcond_reg(c, cond->a0, cond->a1, taken); 1836 cond_free(cond); 1837 1838 /* Not taken: Condition not satisfied; nullify on backward branches. */ 1839 n = is_n && disp < 0; 1840 if (n && use_nullify_skip(ctx)) { 1841 nullify_set(ctx, 0); 1842 gen_goto_tb(ctx, 0, ctx->iaoq_n, ctx->iaoq_n + 4); 1843 } else { 1844 if (!n && ctx->null_lab) { 1845 gen_set_label(ctx->null_lab); 1846 ctx->null_lab = NULL; 1847 } 1848 nullify_set(ctx, n); 1849 if (ctx->iaoq_n == -1) { 1850 /* The temporary iaoq_n_var died at the branch above. 1851 Regenerate it here instead of saving it. */ 1852 tcg_gen_addi_reg(ctx->iaoq_n_var, cpu_iaoq_b, 4); 1853 } 1854 gen_goto_tb(ctx, 0, ctx->iaoq_b, ctx->iaoq_n); 1855 } 1856 1857 gen_set_label(taken); 1858 1859 /* Taken: Condition satisfied; nullify on forward branches. */ 1860 n = is_n && disp >= 0; 1861 if (n && use_nullify_skip(ctx)) { 1862 nullify_set(ctx, 0); 1863 gen_goto_tb(ctx, 1, dest, dest + 4); 1864 } else { 1865 nullify_set(ctx, n); 1866 gen_goto_tb(ctx, 1, ctx->iaoq_b, dest); 1867 } 1868 1869 /* Not taken: the branch itself was nullified. */ 1870 if (ctx->null_lab) { 1871 gen_set_label(ctx->null_lab); 1872 ctx->null_lab = NULL; 1873 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 1874 } else { 1875 ctx->base.is_jmp = DISAS_NORETURN; 1876 } 1877 return true; 1878 } 1879 1880 /* Emit an unconditional branch to an indirect target. This handles 1881 nullification of the branch itself. */ 1882 static bool do_ibranch(DisasContext *ctx, TCGv_reg dest, 1883 unsigned link, bool is_n) 1884 { 1885 TCGv_reg a0, a1, next, tmp; 1886 TCGCond c; 1887 1888 assert(ctx->null_lab == NULL); 1889 1890 if (ctx->null_cond.c == TCG_COND_NEVER) { 1891 if (link != 0) { 1892 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); 1893 } 1894 next = get_temp(ctx); 1895 tcg_gen_mov_reg(next, dest); 1896 if (is_n) { 1897 if (use_nullify_skip(ctx)) { 1898 tcg_gen_mov_reg(cpu_iaoq_f, next); 1899 tcg_gen_addi_reg(cpu_iaoq_b, next, 4); 1900 nullify_set(ctx, 0); 1901 ctx->base.is_jmp = DISAS_IAQ_N_UPDATED; 1902 return true; 1903 } 1904 ctx->null_cond.c = TCG_COND_ALWAYS; 1905 } 1906 ctx->iaoq_n = -1; 1907 ctx->iaoq_n_var = next; 1908 } else if (is_n && use_nullify_skip(ctx)) { 1909 /* The (conditional) branch, B, nullifies the next insn, N, 1910 and we're allowed to skip execution N (no single-step or 1911 tracepoint in effect). Since the goto_ptr that we must use 1912 for the indirect branch consumes no special resources, we 1913 can (conditionally) skip B and continue execution. */ 1914 /* The use_nullify_skip test implies we have a known control path. */ 1915 tcg_debug_assert(ctx->iaoq_b != -1); 1916 tcg_debug_assert(ctx->iaoq_n != -1); 1917 1918 /* We do have to handle the non-local temporary, DEST, before 1919 branching. Since IOAQ_F is not really live at this point, we 1920 can simply store DEST optimistically. Similarly with IAOQ_B. */ 1921 tcg_gen_mov_reg(cpu_iaoq_f, dest); 1922 tcg_gen_addi_reg(cpu_iaoq_b, dest, 4); 1923 1924 nullify_over(ctx); 1925 if (link != 0) { 1926 tcg_gen_movi_reg(cpu_gr[link], ctx->iaoq_n); 1927 } 1928 tcg_gen_lookup_and_goto_ptr(); 1929 return nullify_end(ctx); 1930 } else { 1931 c = ctx->null_cond.c; 1932 a0 = ctx->null_cond.a0; 1933 a1 = ctx->null_cond.a1; 1934 1935 tmp = tcg_temp_new(); 1936 next = get_temp(ctx); 1937 1938 copy_iaoq_entry(tmp, ctx->iaoq_n, ctx->iaoq_n_var); 1939 tcg_gen_movcond_reg(c, next, a0, a1, tmp, dest); 1940 ctx->iaoq_n = -1; 1941 ctx->iaoq_n_var = next; 1942 1943 if (link != 0) { 1944 tcg_gen_movcond_reg(c, cpu_gr[link], a0, a1, cpu_gr[link], tmp); 1945 } 1946 1947 if (is_n) { 1948 /* The branch nullifies the next insn, which means the state of N 1949 after the branch is the inverse of the state of N that applied 1950 to the branch. */ 1951 tcg_gen_setcond_reg(tcg_invert_cond(c), cpu_psw_n, a0, a1); 1952 cond_free(&ctx->null_cond); 1953 ctx->null_cond = cond_make_n(); 1954 ctx->psw_n_nonzero = true; 1955 } else { 1956 cond_free(&ctx->null_cond); 1957 } 1958 } 1959 return true; 1960 } 1961 1962 /* Implement 1963 * if (IAOQ_Front{30..31} < GR[b]{30..31}) 1964 * IAOQ_Next{30..31} ← GR[b]{30..31}; 1965 * else 1966 * IAOQ_Next{30..31} ← IAOQ_Front{30..31}; 1967 * which keeps the privilege level from being increased. 1968 */ 1969 static TCGv_reg do_ibranch_priv(DisasContext *ctx, TCGv_reg offset) 1970 { 1971 TCGv_reg dest; 1972 switch (ctx->privilege) { 1973 case 0: 1974 /* Privilege 0 is maximum and is allowed to decrease. */ 1975 return offset; 1976 case 3: 1977 /* Privilege 3 is minimum and is never allowed to increase. */ 1978 dest = get_temp(ctx); 1979 tcg_gen_ori_reg(dest, offset, 3); 1980 break; 1981 default: 1982 dest = get_temp(ctx); 1983 tcg_gen_andi_reg(dest, offset, -4); 1984 tcg_gen_ori_reg(dest, dest, ctx->privilege); 1985 tcg_gen_movcond_reg(TCG_COND_GTU, dest, dest, offset, dest, offset); 1986 break; 1987 } 1988 return dest; 1989 } 1990 1991 #ifdef CONFIG_USER_ONLY 1992 /* On Linux, page zero is normally marked execute only + gateway. 1993 Therefore normal read or write is supposed to fail, but specific 1994 offsets have kernel code mapped to raise permissions to implement 1995 system calls. Handling this via an explicit check here, rather 1996 in than the "be disp(sr2,r0)" instruction that probably sent us 1997 here, is the easiest way to handle the branch delay slot on the 1998 aforementioned BE. */ 1999 static void do_page_zero(DisasContext *ctx) 2000 { 2001 /* If by some means we get here with PSW[N]=1, that implies that 2002 the B,GATE instruction would be skipped, and we'd fault on the 2003 next insn within the privilaged page. */ 2004 switch (ctx->null_cond.c) { 2005 case TCG_COND_NEVER: 2006 break; 2007 case TCG_COND_ALWAYS: 2008 tcg_gen_movi_reg(cpu_psw_n, 0); 2009 goto do_sigill; 2010 default: 2011 /* Since this is always the first (and only) insn within the 2012 TB, we should know the state of PSW[N] from TB->FLAGS. */ 2013 g_assert_not_reached(); 2014 } 2015 2016 /* Check that we didn't arrive here via some means that allowed 2017 non-sequential instruction execution. Normally the PSW[B] bit 2018 detects this by disallowing the B,GATE instruction to execute 2019 under such conditions. */ 2020 if (ctx->iaoq_b != ctx->iaoq_f + 4) { 2021 goto do_sigill; 2022 } 2023 2024 switch (ctx->iaoq_f & -4) { 2025 case 0x00: /* Null pointer call */ 2026 gen_excp_1(EXCP_IMP); 2027 ctx->base.is_jmp = DISAS_NORETURN; 2028 break; 2029 2030 case 0xb0: /* LWS */ 2031 gen_excp_1(EXCP_SYSCALL_LWS); 2032 ctx->base.is_jmp = DISAS_NORETURN; 2033 break; 2034 2035 case 0xe0: /* SET_THREAD_POINTER */ 2036 tcg_gen_st_reg(cpu_gr[26], cpu_env, offsetof(CPUHPPAState, cr[27])); 2037 tcg_gen_ori_reg(cpu_iaoq_f, cpu_gr[31], 3); 2038 tcg_gen_addi_reg(cpu_iaoq_b, cpu_iaoq_f, 4); 2039 ctx->base.is_jmp = DISAS_IAQ_N_UPDATED; 2040 break; 2041 2042 case 0x100: /* SYSCALL */ 2043 gen_excp_1(EXCP_SYSCALL); 2044 ctx->base.is_jmp = DISAS_NORETURN; 2045 break; 2046 2047 default: 2048 do_sigill: 2049 gen_excp_1(EXCP_ILL); 2050 ctx->base.is_jmp = DISAS_NORETURN; 2051 break; 2052 } 2053 } 2054 #endif 2055 2056 static bool trans_nop(DisasContext *ctx, arg_nop *a) 2057 { 2058 cond_free(&ctx->null_cond); 2059 return true; 2060 } 2061 2062 static bool trans_break(DisasContext *ctx, arg_break *a) 2063 { 2064 return gen_excp_iir(ctx, EXCP_BREAK); 2065 } 2066 2067 static bool trans_sync(DisasContext *ctx, arg_sync *a) 2068 { 2069 /* No point in nullifying the memory barrier. */ 2070 tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL); 2071 2072 cond_free(&ctx->null_cond); 2073 return true; 2074 } 2075 2076 static bool trans_mfia(DisasContext *ctx, arg_mfia *a) 2077 { 2078 unsigned rt = a->t; 2079 TCGv_reg tmp = dest_gpr(ctx, rt); 2080 tcg_gen_movi_reg(tmp, ctx->iaoq_f); 2081 save_gpr(ctx, rt, tmp); 2082 2083 cond_free(&ctx->null_cond); 2084 return true; 2085 } 2086 2087 static bool trans_mfsp(DisasContext *ctx, arg_mfsp *a) 2088 { 2089 unsigned rt = a->t; 2090 unsigned rs = a->sp; 2091 TCGv_i64 t0 = tcg_temp_new_i64(); 2092 TCGv_reg t1 = tcg_temp_new(); 2093 2094 load_spr(ctx, t0, rs); 2095 tcg_gen_shri_i64(t0, t0, 32); 2096 tcg_gen_trunc_i64_reg(t1, t0); 2097 2098 save_gpr(ctx, rt, t1); 2099 tcg_temp_free(t1); 2100 tcg_temp_free_i64(t0); 2101 2102 cond_free(&ctx->null_cond); 2103 return true; 2104 } 2105 2106 static bool trans_mfctl(DisasContext *ctx, arg_mfctl *a) 2107 { 2108 unsigned rt = a->t; 2109 unsigned ctl = a->r; 2110 TCGv_reg tmp; 2111 2112 switch (ctl) { 2113 case CR_SAR: 2114 #ifdef TARGET_HPPA64 2115 if (a->e == 0) { 2116 /* MFSAR without ,W masks low 5 bits. */ 2117 tmp = dest_gpr(ctx, rt); 2118 tcg_gen_andi_reg(tmp, cpu_sar, 31); 2119 save_gpr(ctx, rt, tmp); 2120 goto done; 2121 } 2122 #endif 2123 save_gpr(ctx, rt, cpu_sar); 2124 goto done; 2125 case CR_IT: /* Interval Timer */ 2126 /* FIXME: Respect PSW_S bit. */ 2127 nullify_over(ctx); 2128 tmp = dest_gpr(ctx, rt); 2129 if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) { 2130 gen_io_start(); 2131 gen_helper_read_interval_timer(tmp); 2132 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2133 } else { 2134 gen_helper_read_interval_timer(tmp); 2135 } 2136 save_gpr(ctx, rt, tmp); 2137 return nullify_end(ctx); 2138 case 26: 2139 case 27: 2140 break; 2141 default: 2142 /* All other control registers are privileged. */ 2143 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); 2144 break; 2145 } 2146 2147 tmp = get_temp(ctx); 2148 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2149 save_gpr(ctx, rt, tmp); 2150 2151 done: 2152 cond_free(&ctx->null_cond); 2153 return true; 2154 } 2155 2156 static bool trans_mtsp(DisasContext *ctx, arg_mtsp *a) 2157 { 2158 unsigned rr = a->r; 2159 unsigned rs = a->sp; 2160 TCGv_i64 t64; 2161 2162 if (rs >= 5) { 2163 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); 2164 } 2165 nullify_over(ctx); 2166 2167 t64 = tcg_temp_new_i64(); 2168 tcg_gen_extu_reg_i64(t64, load_gpr(ctx, rr)); 2169 tcg_gen_shli_i64(t64, t64, 32); 2170 2171 if (rs >= 4) { 2172 tcg_gen_st_i64(t64, cpu_env, offsetof(CPUHPPAState, sr[rs])); 2173 ctx->tb_flags &= ~TB_FLAG_SR_SAME; 2174 } else { 2175 tcg_gen_mov_i64(cpu_sr[rs], t64); 2176 } 2177 tcg_temp_free_i64(t64); 2178 2179 return nullify_end(ctx); 2180 } 2181 2182 static bool trans_mtctl(DisasContext *ctx, arg_mtctl *a) 2183 { 2184 unsigned ctl = a->t; 2185 TCGv_reg reg; 2186 TCGv_reg tmp; 2187 2188 if (ctl == CR_SAR) { 2189 reg = load_gpr(ctx, a->r); 2190 tmp = tcg_temp_new(); 2191 tcg_gen_andi_reg(tmp, reg, TARGET_REGISTER_BITS - 1); 2192 save_or_nullify(ctx, cpu_sar, tmp); 2193 tcg_temp_free(tmp); 2194 2195 cond_free(&ctx->null_cond); 2196 return true; 2197 } 2198 2199 /* All other control registers are privileged or read-only. */ 2200 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); 2201 2202 #ifndef CONFIG_USER_ONLY 2203 nullify_over(ctx); 2204 reg = load_gpr(ctx, a->r); 2205 2206 switch (ctl) { 2207 case CR_IT: 2208 gen_helper_write_interval_timer(cpu_env, reg); 2209 break; 2210 case CR_EIRR: 2211 gen_helper_write_eirr(cpu_env, reg); 2212 break; 2213 case CR_EIEM: 2214 gen_helper_write_eiem(cpu_env, reg); 2215 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2216 break; 2217 2218 case CR_IIASQ: 2219 case CR_IIAOQ: 2220 /* FIXME: Respect PSW_Q bit */ 2221 /* The write advances the queue and stores to the back element. */ 2222 tmp = get_temp(ctx); 2223 tcg_gen_ld_reg(tmp, cpu_env, 2224 offsetof(CPUHPPAState, cr_back[ctl - CR_IIASQ])); 2225 tcg_gen_st_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2226 tcg_gen_st_reg(reg, cpu_env, 2227 offsetof(CPUHPPAState, cr_back[ctl - CR_IIASQ])); 2228 break; 2229 2230 case CR_PID1: 2231 case CR_PID2: 2232 case CR_PID3: 2233 case CR_PID4: 2234 tcg_gen_st_reg(reg, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2235 #ifndef CONFIG_USER_ONLY 2236 gen_helper_change_prot_id(cpu_env); 2237 #endif 2238 break; 2239 2240 default: 2241 tcg_gen_st_reg(reg, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2242 break; 2243 } 2244 return nullify_end(ctx); 2245 #endif 2246 } 2247 2248 static bool trans_mtsarcm(DisasContext *ctx, arg_mtsarcm *a) 2249 { 2250 TCGv_reg tmp = tcg_temp_new(); 2251 2252 tcg_gen_not_reg(tmp, load_gpr(ctx, a->r)); 2253 tcg_gen_andi_reg(tmp, tmp, TARGET_REGISTER_BITS - 1); 2254 save_or_nullify(ctx, cpu_sar, tmp); 2255 tcg_temp_free(tmp); 2256 2257 cond_free(&ctx->null_cond); 2258 return true; 2259 } 2260 2261 static bool trans_ldsid(DisasContext *ctx, arg_ldsid *a) 2262 { 2263 TCGv_reg dest = dest_gpr(ctx, a->t); 2264 2265 #ifdef CONFIG_USER_ONLY 2266 /* We don't implement space registers in user mode. */ 2267 tcg_gen_movi_reg(dest, 0); 2268 #else 2269 TCGv_i64 t0 = tcg_temp_new_i64(); 2270 2271 tcg_gen_mov_i64(t0, space_select(ctx, a->sp, load_gpr(ctx, a->b))); 2272 tcg_gen_shri_i64(t0, t0, 32); 2273 tcg_gen_trunc_i64_reg(dest, t0); 2274 2275 tcg_temp_free_i64(t0); 2276 #endif 2277 save_gpr(ctx, a->t, dest); 2278 2279 cond_free(&ctx->null_cond); 2280 return true; 2281 } 2282 2283 static bool trans_rsm(DisasContext *ctx, arg_rsm *a) 2284 { 2285 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2286 #ifndef CONFIG_USER_ONLY 2287 TCGv_reg tmp; 2288 2289 nullify_over(ctx); 2290 2291 tmp = get_temp(ctx); 2292 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, psw)); 2293 tcg_gen_andi_reg(tmp, tmp, ~a->i); 2294 gen_helper_swap_system_mask(tmp, cpu_env, tmp); 2295 save_gpr(ctx, a->t, tmp); 2296 2297 /* Exit the TB to recognize new interrupts, e.g. PSW_M. */ 2298 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2299 return nullify_end(ctx); 2300 #endif 2301 } 2302 2303 static bool trans_ssm(DisasContext *ctx, arg_ssm *a) 2304 { 2305 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2306 #ifndef CONFIG_USER_ONLY 2307 TCGv_reg tmp; 2308 2309 nullify_over(ctx); 2310 2311 tmp = get_temp(ctx); 2312 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, psw)); 2313 tcg_gen_ori_reg(tmp, tmp, a->i); 2314 gen_helper_swap_system_mask(tmp, cpu_env, tmp); 2315 save_gpr(ctx, a->t, tmp); 2316 2317 /* Exit the TB to recognize new interrupts, e.g. PSW_I. */ 2318 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2319 return nullify_end(ctx); 2320 #endif 2321 } 2322 2323 static bool trans_mtsm(DisasContext *ctx, arg_mtsm *a) 2324 { 2325 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2326 #ifndef CONFIG_USER_ONLY 2327 TCGv_reg tmp, reg; 2328 nullify_over(ctx); 2329 2330 reg = load_gpr(ctx, a->r); 2331 tmp = get_temp(ctx); 2332 gen_helper_swap_system_mask(tmp, cpu_env, reg); 2333 2334 /* Exit the TB to recognize new interrupts. */ 2335 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2336 return nullify_end(ctx); 2337 #endif 2338 } 2339 2340 static bool do_rfi(DisasContext *ctx, bool rfi_r) 2341 { 2342 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2343 #ifndef CONFIG_USER_ONLY 2344 nullify_over(ctx); 2345 2346 if (rfi_r) { 2347 gen_helper_rfi_r(cpu_env); 2348 } else { 2349 gen_helper_rfi(cpu_env); 2350 } 2351 /* Exit the TB to recognize new interrupts. */ 2352 if (ctx->base.singlestep_enabled) { 2353 gen_excp_1(EXCP_DEBUG); 2354 } else { 2355 tcg_gen_exit_tb(NULL, 0); 2356 } 2357 ctx->base.is_jmp = DISAS_NORETURN; 2358 2359 return nullify_end(ctx); 2360 #endif 2361 } 2362 2363 static bool trans_rfi(DisasContext *ctx, arg_rfi *a) 2364 { 2365 return do_rfi(ctx, false); 2366 } 2367 2368 static bool trans_rfi_r(DisasContext *ctx, arg_rfi_r *a) 2369 { 2370 return do_rfi(ctx, true); 2371 } 2372 2373 static bool trans_halt(DisasContext *ctx, arg_halt *a) 2374 { 2375 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2376 #ifndef CONFIG_USER_ONLY 2377 nullify_over(ctx); 2378 gen_helper_halt(cpu_env); 2379 ctx->base.is_jmp = DISAS_NORETURN; 2380 return nullify_end(ctx); 2381 #endif 2382 } 2383 2384 static bool trans_reset(DisasContext *ctx, arg_reset *a) 2385 { 2386 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2387 #ifndef CONFIG_USER_ONLY 2388 nullify_over(ctx); 2389 gen_helper_reset(cpu_env); 2390 ctx->base.is_jmp = DISAS_NORETURN; 2391 return nullify_end(ctx); 2392 #endif 2393 } 2394 2395 static bool trans_nop_addrx(DisasContext *ctx, arg_ldst *a) 2396 { 2397 if (a->m) { 2398 TCGv_reg dest = dest_gpr(ctx, a->b); 2399 TCGv_reg src1 = load_gpr(ctx, a->b); 2400 TCGv_reg src2 = load_gpr(ctx, a->x); 2401 2402 /* The only thing we need to do is the base register modification. */ 2403 tcg_gen_add_reg(dest, src1, src2); 2404 save_gpr(ctx, a->b, dest); 2405 } 2406 cond_free(&ctx->null_cond); 2407 return true; 2408 } 2409 2410 static bool trans_probe(DisasContext *ctx, arg_probe *a) 2411 { 2412 TCGv_reg dest, ofs; 2413 TCGv_i32 level, want; 2414 TCGv_tl addr; 2415 2416 nullify_over(ctx); 2417 2418 dest = dest_gpr(ctx, a->t); 2419 form_gva(ctx, &addr, &ofs, a->b, 0, 0, 0, a->sp, 0, false); 2420 2421 if (a->imm) { 2422 level = tcg_constant_i32(a->ri); 2423 } else { 2424 level = tcg_temp_new_i32(); 2425 tcg_gen_trunc_reg_i32(level, load_gpr(ctx, a->ri)); 2426 tcg_gen_andi_i32(level, level, 3); 2427 } 2428 want = tcg_constant_i32(a->write ? PAGE_WRITE : PAGE_READ); 2429 2430 gen_helper_probe(dest, cpu_env, addr, level, want); 2431 2432 tcg_temp_free_i32(level); 2433 2434 save_gpr(ctx, a->t, dest); 2435 return nullify_end(ctx); 2436 } 2437 2438 static bool trans_ixtlbx(DisasContext *ctx, arg_ixtlbx *a) 2439 { 2440 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2441 #ifndef CONFIG_USER_ONLY 2442 TCGv_tl addr; 2443 TCGv_reg ofs, reg; 2444 2445 nullify_over(ctx); 2446 2447 form_gva(ctx, &addr, &ofs, a->b, 0, 0, 0, a->sp, 0, false); 2448 reg = load_gpr(ctx, a->r); 2449 if (a->addr) { 2450 gen_helper_itlba(cpu_env, addr, reg); 2451 } else { 2452 gen_helper_itlbp(cpu_env, addr, reg); 2453 } 2454 2455 /* Exit TB for TLB change if mmu is enabled. */ 2456 if (ctx->tb_flags & PSW_C) { 2457 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2458 } 2459 return nullify_end(ctx); 2460 #endif 2461 } 2462 2463 static bool trans_pxtlbx(DisasContext *ctx, arg_pxtlbx *a) 2464 { 2465 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2466 #ifndef CONFIG_USER_ONLY 2467 TCGv_tl addr; 2468 TCGv_reg ofs; 2469 2470 nullify_over(ctx); 2471 2472 form_gva(ctx, &addr, &ofs, a->b, a->x, 0, 0, a->sp, a->m, false); 2473 if (a->m) { 2474 save_gpr(ctx, a->b, ofs); 2475 } 2476 if (a->local) { 2477 gen_helper_ptlbe(cpu_env); 2478 } else { 2479 gen_helper_ptlb(cpu_env, addr); 2480 } 2481 2482 /* Exit TB for TLB change if mmu is enabled. */ 2483 if (ctx->tb_flags & PSW_C) { 2484 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2485 } 2486 return nullify_end(ctx); 2487 #endif 2488 } 2489 2490 /* 2491 * Implement the pcxl and pcxl2 Fast TLB Insert instructions. 2492 * See 2493 * https://parisc.wiki.kernel.org/images-parisc/a/a9/Pcxl2_ers.pdf 2494 * page 13-9 (195/206) 2495 */ 2496 static bool trans_ixtlbxf(DisasContext *ctx, arg_ixtlbxf *a) 2497 { 2498 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2499 #ifndef CONFIG_USER_ONLY 2500 TCGv_tl addr, atl, stl; 2501 TCGv_reg reg; 2502 2503 nullify_over(ctx); 2504 2505 /* 2506 * FIXME: 2507 * if (not (pcxl or pcxl2)) 2508 * return gen_illegal(ctx); 2509 * 2510 * Note for future: these are 32-bit systems; no hppa64. 2511 */ 2512 2513 atl = tcg_temp_new_tl(); 2514 stl = tcg_temp_new_tl(); 2515 addr = tcg_temp_new_tl(); 2516 2517 tcg_gen_ld32u_i64(stl, cpu_env, 2518 a->data ? offsetof(CPUHPPAState, cr[CR_ISR]) 2519 : offsetof(CPUHPPAState, cr[CR_IIASQ])); 2520 tcg_gen_ld32u_i64(atl, cpu_env, 2521 a->data ? offsetof(CPUHPPAState, cr[CR_IOR]) 2522 : offsetof(CPUHPPAState, cr[CR_IIAOQ])); 2523 tcg_gen_shli_i64(stl, stl, 32); 2524 tcg_gen_or_tl(addr, atl, stl); 2525 tcg_temp_free_tl(atl); 2526 tcg_temp_free_tl(stl); 2527 2528 reg = load_gpr(ctx, a->r); 2529 if (a->addr) { 2530 gen_helper_itlba(cpu_env, addr, reg); 2531 } else { 2532 gen_helper_itlbp(cpu_env, addr, reg); 2533 } 2534 tcg_temp_free_tl(addr); 2535 2536 /* Exit TB for TLB change if mmu is enabled. */ 2537 if (ctx->tb_flags & PSW_C) { 2538 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2539 } 2540 return nullify_end(ctx); 2541 #endif 2542 } 2543 2544 static bool trans_lpa(DisasContext *ctx, arg_ldst *a) 2545 { 2546 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2547 #ifndef CONFIG_USER_ONLY 2548 TCGv_tl vaddr; 2549 TCGv_reg ofs, paddr; 2550 2551 nullify_over(ctx); 2552 2553 form_gva(ctx, &vaddr, &ofs, a->b, a->x, 0, 0, a->sp, a->m, false); 2554 2555 paddr = tcg_temp_new(); 2556 gen_helper_lpa(paddr, cpu_env, vaddr); 2557 2558 /* Note that physical address result overrides base modification. */ 2559 if (a->m) { 2560 save_gpr(ctx, a->b, ofs); 2561 } 2562 save_gpr(ctx, a->t, paddr); 2563 tcg_temp_free(paddr); 2564 2565 return nullify_end(ctx); 2566 #endif 2567 } 2568 2569 static bool trans_lci(DisasContext *ctx, arg_lci *a) 2570 { 2571 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2572 2573 /* The Coherence Index is an implementation-defined function of the 2574 physical address. Two addresses with the same CI have a coherent 2575 view of the cache. Our implementation is to return 0 for all, 2576 since the entire address space is coherent. */ 2577 save_gpr(ctx, a->t, tcg_constant_reg(0)); 2578 2579 cond_free(&ctx->null_cond); 2580 return true; 2581 } 2582 2583 static bool trans_add(DisasContext *ctx, arg_rrr_cf_sh *a) 2584 { 2585 return do_add_reg(ctx, a, false, false, false, false); 2586 } 2587 2588 static bool trans_add_l(DisasContext *ctx, arg_rrr_cf_sh *a) 2589 { 2590 return do_add_reg(ctx, a, true, false, false, false); 2591 } 2592 2593 static bool trans_add_tsv(DisasContext *ctx, arg_rrr_cf_sh *a) 2594 { 2595 return do_add_reg(ctx, a, false, true, false, false); 2596 } 2597 2598 static bool trans_add_c(DisasContext *ctx, arg_rrr_cf_sh *a) 2599 { 2600 return do_add_reg(ctx, a, false, false, false, true); 2601 } 2602 2603 static bool trans_add_c_tsv(DisasContext *ctx, arg_rrr_cf_sh *a) 2604 { 2605 return do_add_reg(ctx, a, false, true, false, true); 2606 } 2607 2608 static bool trans_sub(DisasContext *ctx, arg_rrr_cf *a) 2609 { 2610 return do_sub_reg(ctx, a, false, false, false); 2611 } 2612 2613 static bool trans_sub_tsv(DisasContext *ctx, arg_rrr_cf *a) 2614 { 2615 return do_sub_reg(ctx, a, true, false, false); 2616 } 2617 2618 static bool trans_sub_tc(DisasContext *ctx, arg_rrr_cf *a) 2619 { 2620 return do_sub_reg(ctx, a, false, false, true); 2621 } 2622 2623 static bool trans_sub_tsv_tc(DisasContext *ctx, arg_rrr_cf *a) 2624 { 2625 return do_sub_reg(ctx, a, true, false, true); 2626 } 2627 2628 static bool trans_sub_b(DisasContext *ctx, arg_rrr_cf *a) 2629 { 2630 return do_sub_reg(ctx, a, false, true, false); 2631 } 2632 2633 static bool trans_sub_b_tsv(DisasContext *ctx, arg_rrr_cf *a) 2634 { 2635 return do_sub_reg(ctx, a, true, true, false); 2636 } 2637 2638 static bool trans_andcm(DisasContext *ctx, arg_rrr_cf *a) 2639 { 2640 return do_log_reg(ctx, a, tcg_gen_andc_reg); 2641 } 2642 2643 static bool trans_and(DisasContext *ctx, arg_rrr_cf *a) 2644 { 2645 return do_log_reg(ctx, a, tcg_gen_and_reg); 2646 } 2647 2648 static bool trans_or(DisasContext *ctx, arg_rrr_cf *a) 2649 { 2650 if (a->cf == 0) { 2651 unsigned r2 = a->r2; 2652 unsigned r1 = a->r1; 2653 unsigned rt = a->t; 2654 2655 if (rt == 0) { /* NOP */ 2656 cond_free(&ctx->null_cond); 2657 return true; 2658 } 2659 if (r2 == 0) { /* COPY */ 2660 if (r1 == 0) { 2661 TCGv_reg dest = dest_gpr(ctx, rt); 2662 tcg_gen_movi_reg(dest, 0); 2663 save_gpr(ctx, rt, dest); 2664 } else { 2665 save_gpr(ctx, rt, cpu_gr[r1]); 2666 } 2667 cond_free(&ctx->null_cond); 2668 return true; 2669 } 2670 #ifndef CONFIG_USER_ONLY 2671 /* These are QEMU extensions and are nops in the real architecture: 2672 * 2673 * or %r10,%r10,%r10 -- idle loop; wait for interrupt 2674 * or %r31,%r31,%r31 -- death loop; offline cpu 2675 * currently implemented as idle. 2676 */ 2677 if ((rt == 10 || rt == 31) && r1 == rt && r2 == rt) { /* PAUSE */ 2678 /* No need to check for supervisor, as userland can only pause 2679 until the next timer interrupt. */ 2680 nullify_over(ctx); 2681 2682 /* Advance the instruction queue. */ 2683 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); 2684 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_n, ctx->iaoq_n_var); 2685 nullify_set(ctx, 0); 2686 2687 /* Tell the qemu main loop to halt until this cpu has work. */ 2688 tcg_gen_st_i32(tcg_constant_i32(1), cpu_env, 2689 offsetof(CPUState, halted) - offsetof(HPPACPU, env)); 2690 gen_excp_1(EXCP_HALTED); 2691 ctx->base.is_jmp = DISAS_NORETURN; 2692 2693 return nullify_end(ctx); 2694 } 2695 #endif 2696 } 2697 return do_log_reg(ctx, a, tcg_gen_or_reg); 2698 } 2699 2700 static bool trans_xor(DisasContext *ctx, arg_rrr_cf *a) 2701 { 2702 return do_log_reg(ctx, a, tcg_gen_xor_reg); 2703 } 2704 2705 static bool trans_cmpclr(DisasContext *ctx, arg_rrr_cf *a) 2706 { 2707 TCGv_reg tcg_r1, tcg_r2; 2708 2709 if (a->cf) { 2710 nullify_over(ctx); 2711 } 2712 tcg_r1 = load_gpr(ctx, a->r1); 2713 tcg_r2 = load_gpr(ctx, a->r2); 2714 do_cmpclr(ctx, a->t, tcg_r1, tcg_r2, a->cf); 2715 return nullify_end(ctx); 2716 } 2717 2718 static bool trans_uxor(DisasContext *ctx, arg_rrr_cf *a) 2719 { 2720 TCGv_reg tcg_r1, tcg_r2; 2721 2722 if (a->cf) { 2723 nullify_over(ctx); 2724 } 2725 tcg_r1 = load_gpr(ctx, a->r1); 2726 tcg_r2 = load_gpr(ctx, a->r2); 2727 do_unit(ctx, a->t, tcg_r1, tcg_r2, a->cf, false, tcg_gen_xor_reg); 2728 return nullify_end(ctx); 2729 } 2730 2731 static bool do_uaddcm(DisasContext *ctx, arg_rrr_cf *a, bool is_tc) 2732 { 2733 TCGv_reg tcg_r1, tcg_r2, tmp; 2734 2735 if (a->cf) { 2736 nullify_over(ctx); 2737 } 2738 tcg_r1 = load_gpr(ctx, a->r1); 2739 tcg_r2 = load_gpr(ctx, a->r2); 2740 tmp = get_temp(ctx); 2741 tcg_gen_not_reg(tmp, tcg_r2); 2742 do_unit(ctx, a->t, tcg_r1, tmp, a->cf, is_tc, tcg_gen_add_reg); 2743 return nullify_end(ctx); 2744 } 2745 2746 static bool trans_uaddcm(DisasContext *ctx, arg_rrr_cf *a) 2747 { 2748 return do_uaddcm(ctx, a, false); 2749 } 2750 2751 static bool trans_uaddcm_tc(DisasContext *ctx, arg_rrr_cf *a) 2752 { 2753 return do_uaddcm(ctx, a, true); 2754 } 2755 2756 static bool do_dcor(DisasContext *ctx, arg_rr_cf *a, bool is_i) 2757 { 2758 TCGv_reg tmp; 2759 2760 nullify_over(ctx); 2761 2762 tmp = get_temp(ctx); 2763 tcg_gen_shri_reg(tmp, cpu_psw_cb, 3); 2764 if (!is_i) { 2765 tcg_gen_not_reg(tmp, tmp); 2766 } 2767 tcg_gen_andi_reg(tmp, tmp, 0x11111111); 2768 tcg_gen_muli_reg(tmp, tmp, 6); 2769 do_unit(ctx, a->t, load_gpr(ctx, a->r), tmp, a->cf, false, 2770 is_i ? tcg_gen_add_reg : tcg_gen_sub_reg); 2771 return nullify_end(ctx); 2772 } 2773 2774 static bool trans_dcor(DisasContext *ctx, arg_rr_cf *a) 2775 { 2776 return do_dcor(ctx, a, false); 2777 } 2778 2779 static bool trans_dcor_i(DisasContext *ctx, arg_rr_cf *a) 2780 { 2781 return do_dcor(ctx, a, true); 2782 } 2783 2784 static bool trans_ds(DisasContext *ctx, arg_rrr_cf *a) 2785 { 2786 TCGv_reg dest, add1, add2, addc, zero, in1, in2; 2787 2788 nullify_over(ctx); 2789 2790 in1 = load_gpr(ctx, a->r1); 2791 in2 = load_gpr(ctx, a->r2); 2792 2793 add1 = tcg_temp_new(); 2794 add2 = tcg_temp_new(); 2795 addc = tcg_temp_new(); 2796 dest = tcg_temp_new(); 2797 zero = tcg_constant_reg(0); 2798 2799 /* Form R1 << 1 | PSW[CB]{8}. */ 2800 tcg_gen_add_reg(add1, in1, in1); 2801 tcg_gen_add_reg(add1, add1, cpu_psw_cb_msb); 2802 2803 /* Add or subtract R2, depending on PSW[V]. Proper computation of 2804 carry{8} requires that we subtract via + ~R2 + 1, as described in 2805 the manual. By extracting and masking V, we can produce the 2806 proper inputs to the addition without movcond. */ 2807 tcg_gen_sari_reg(addc, cpu_psw_v, TARGET_REGISTER_BITS - 1); 2808 tcg_gen_xor_reg(add2, in2, addc); 2809 tcg_gen_andi_reg(addc, addc, 1); 2810 /* ??? This is only correct for 32-bit. */ 2811 tcg_gen_add2_i32(dest, cpu_psw_cb_msb, add1, zero, add2, zero); 2812 tcg_gen_add2_i32(dest, cpu_psw_cb_msb, dest, cpu_psw_cb_msb, addc, zero); 2813 2814 tcg_temp_free(addc); 2815 2816 /* Write back the result register. */ 2817 save_gpr(ctx, a->t, dest); 2818 2819 /* Write back PSW[CB]. */ 2820 tcg_gen_xor_reg(cpu_psw_cb, add1, add2); 2821 tcg_gen_xor_reg(cpu_psw_cb, cpu_psw_cb, dest); 2822 2823 /* Write back PSW[V] for the division step. */ 2824 tcg_gen_neg_reg(cpu_psw_v, cpu_psw_cb_msb); 2825 tcg_gen_xor_reg(cpu_psw_v, cpu_psw_v, in2); 2826 2827 /* Install the new nullification. */ 2828 if (a->cf) { 2829 TCGv_reg sv = NULL; 2830 if (cond_need_sv(a->cf >> 1)) { 2831 /* ??? The lshift is supposed to contribute to overflow. */ 2832 sv = do_add_sv(ctx, dest, add1, add2); 2833 } 2834 ctx->null_cond = do_cond(a->cf, dest, cpu_psw_cb_msb, sv); 2835 } 2836 2837 tcg_temp_free(add1); 2838 tcg_temp_free(add2); 2839 tcg_temp_free(dest); 2840 2841 return nullify_end(ctx); 2842 } 2843 2844 static bool trans_addi(DisasContext *ctx, arg_rri_cf *a) 2845 { 2846 return do_add_imm(ctx, a, false, false); 2847 } 2848 2849 static bool trans_addi_tsv(DisasContext *ctx, arg_rri_cf *a) 2850 { 2851 return do_add_imm(ctx, a, true, false); 2852 } 2853 2854 static bool trans_addi_tc(DisasContext *ctx, arg_rri_cf *a) 2855 { 2856 return do_add_imm(ctx, a, false, true); 2857 } 2858 2859 static bool trans_addi_tc_tsv(DisasContext *ctx, arg_rri_cf *a) 2860 { 2861 return do_add_imm(ctx, a, true, true); 2862 } 2863 2864 static bool trans_subi(DisasContext *ctx, arg_rri_cf *a) 2865 { 2866 return do_sub_imm(ctx, a, false); 2867 } 2868 2869 static bool trans_subi_tsv(DisasContext *ctx, arg_rri_cf *a) 2870 { 2871 return do_sub_imm(ctx, a, true); 2872 } 2873 2874 static bool trans_cmpiclr(DisasContext *ctx, arg_rri_cf *a) 2875 { 2876 TCGv_reg tcg_im, tcg_r2; 2877 2878 if (a->cf) { 2879 nullify_over(ctx); 2880 } 2881 2882 tcg_im = load_const(ctx, a->i); 2883 tcg_r2 = load_gpr(ctx, a->r); 2884 do_cmpclr(ctx, a->t, tcg_im, tcg_r2, a->cf); 2885 2886 return nullify_end(ctx); 2887 } 2888 2889 static bool trans_ld(DisasContext *ctx, arg_ldst *a) 2890 { 2891 return do_load(ctx, a->t, a->b, a->x, a->scale ? a->size : 0, 2892 a->disp, a->sp, a->m, a->size | MO_TE); 2893 } 2894 2895 static bool trans_st(DisasContext *ctx, arg_ldst *a) 2896 { 2897 assert(a->x == 0 && a->scale == 0); 2898 return do_store(ctx, a->t, a->b, a->disp, a->sp, a->m, a->size | MO_TE); 2899 } 2900 2901 static bool trans_ldc(DisasContext *ctx, arg_ldst *a) 2902 { 2903 MemOp mop = MO_TE | MO_ALIGN | a->size; 2904 TCGv_reg zero, dest, ofs; 2905 TCGv_tl addr; 2906 2907 nullify_over(ctx); 2908 2909 if (a->m) { 2910 /* Base register modification. Make sure if RT == RB, 2911 we see the result of the load. */ 2912 dest = get_temp(ctx); 2913 } else { 2914 dest = dest_gpr(ctx, a->t); 2915 } 2916 2917 form_gva(ctx, &addr, &ofs, a->b, a->x, a->scale ? a->size : 0, 2918 a->disp, a->sp, a->m, ctx->mmu_idx == MMU_PHYS_IDX); 2919 2920 /* 2921 * For hppa1.1, LDCW is undefined unless aligned mod 16. 2922 * However actual hardware succeeds with aligned mod 4. 2923 * Detect this case and log a GUEST_ERROR. 2924 * 2925 * TODO: HPPA64 relaxes the over-alignment requirement 2926 * with the ,co completer. 2927 */ 2928 gen_helper_ldc_check(addr); 2929 2930 zero = tcg_constant_reg(0); 2931 tcg_gen_atomic_xchg_reg(dest, addr, zero, ctx->mmu_idx, mop); 2932 2933 if (a->m) { 2934 save_gpr(ctx, a->b, ofs); 2935 } 2936 save_gpr(ctx, a->t, dest); 2937 2938 return nullify_end(ctx); 2939 } 2940 2941 static bool trans_stby(DisasContext *ctx, arg_stby *a) 2942 { 2943 TCGv_reg ofs, val; 2944 TCGv_tl addr; 2945 2946 nullify_over(ctx); 2947 2948 form_gva(ctx, &addr, &ofs, a->b, 0, 0, a->disp, a->sp, a->m, 2949 ctx->mmu_idx == MMU_PHYS_IDX); 2950 val = load_gpr(ctx, a->r); 2951 if (a->a) { 2952 if (tb_cflags(ctx->base.tb) & CF_PARALLEL) { 2953 gen_helper_stby_e_parallel(cpu_env, addr, val); 2954 } else { 2955 gen_helper_stby_e(cpu_env, addr, val); 2956 } 2957 } else { 2958 if (tb_cflags(ctx->base.tb) & CF_PARALLEL) { 2959 gen_helper_stby_b_parallel(cpu_env, addr, val); 2960 } else { 2961 gen_helper_stby_b(cpu_env, addr, val); 2962 } 2963 } 2964 if (a->m) { 2965 tcg_gen_andi_reg(ofs, ofs, ~3); 2966 save_gpr(ctx, a->b, ofs); 2967 } 2968 2969 return nullify_end(ctx); 2970 } 2971 2972 static bool trans_lda(DisasContext *ctx, arg_ldst *a) 2973 { 2974 int hold_mmu_idx = ctx->mmu_idx; 2975 2976 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2977 ctx->mmu_idx = MMU_PHYS_IDX; 2978 trans_ld(ctx, a); 2979 ctx->mmu_idx = hold_mmu_idx; 2980 return true; 2981 } 2982 2983 static bool trans_sta(DisasContext *ctx, arg_ldst *a) 2984 { 2985 int hold_mmu_idx = ctx->mmu_idx; 2986 2987 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2988 ctx->mmu_idx = MMU_PHYS_IDX; 2989 trans_st(ctx, a); 2990 ctx->mmu_idx = hold_mmu_idx; 2991 return true; 2992 } 2993 2994 static bool trans_ldil(DisasContext *ctx, arg_ldil *a) 2995 { 2996 TCGv_reg tcg_rt = dest_gpr(ctx, a->t); 2997 2998 tcg_gen_movi_reg(tcg_rt, a->i); 2999 save_gpr(ctx, a->t, tcg_rt); 3000 cond_free(&ctx->null_cond); 3001 return true; 3002 } 3003 3004 static bool trans_addil(DisasContext *ctx, arg_addil *a) 3005 { 3006 TCGv_reg tcg_rt = load_gpr(ctx, a->r); 3007 TCGv_reg tcg_r1 = dest_gpr(ctx, 1); 3008 3009 tcg_gen_addi_reg(tcg_r1, tcg_rt, a->i); 3010 save_gpr(ctx, 1, tcg_r1); 3011 cond_free(&ctx->null_cond); 3012 return true; 3013 } 3014 3015 static bool trans_ldo(DisasContext *ctx, arg_ldo *a) 3016 { 3017 TCGv_reg tcg_rt = dest_gpr(ctx, a->t); 3018 3019 /* Special case rb == 0, for the LDI pseudo-op. 3020 The COPY pseudo-op is handled for free within tcg_gen_addi_tl. */ 3021 if (a->b == 0) { 3022 tcg_gen_movi_reg(tcg_rt, a->i); 3023 } else { 3024 tcg_gen_addi_reg(tcg_rt, cpu_gr[a->b], a->i); 3025 } 3026 save_gpr(ctx, a->t, tcg_rt); 3027 cond_free(&ctx->null_cond); 3028 return true; 3029 } 3030 3031 static bool do_cmpb(DisasContext *ctx, unsigned r, TCGv_reg in1, 3032 unsigned c, unsigned f, unsigned n, int disp) 3033 { 3034 TCGv_reg dest, in2, sv; 3035 DisasCond cond; 3036 3037 in2 = load_gpr(ctx, r); 3038 dest = get_temp(ctx); 3039 3040 tcg_gen_sub_reg(dest, in1, in2); 3041 3042 sv = NULL; 3043 if (cond_need_sv(c)) { 3044 sv = do_sub_sv(ctx, dest, in1, in2); 3045 } 3046 3047 cond = do_sub_cond(c * 2 + f, dest, in1, in2, sv); 3048 return do_cbranch(ctx, disp, n, &cond); 3049 } 3050 3051 static bool trans_cmpb(DisasContext *ctx, arg_cmpb *a) 3052 { 3053 nullify_over(ctx); 3054 return do_cmpb(ctx, a->r2, load_gpr(ctx, a->r1), a->c, a->f, a->n, a->disp); 3055 } 3056 3057 static bool trans_cmpbi(DisasContext *ctx, arg_cmpbi *a) 3058 { 3059 nullify_over(ctx); 3060 return do_cmpb(ctx, a->r, load_const(ctx, a->i), a->c, a->f, a->n, a->disp); 3061 } 3062 3063 static bool do_addb(DisasContext *ctx, unsigned r, TCGv_reg in1, 3064 unsigned c, unsigned f, unsigned n, int disp) 3065 { 3066 TCGv_reg dest, in2, sv, cb_msb; 3067 DisasCond cond; 3068 3069 in2 = load_gpr(ctx, r); 3070 dest = tcg_temp_new(); 3071 sv = NULL; 3072 cb_msb = NULL; 3073 3074 if (cond_need_cb(c)) { 3075 cb_msb = get_temp(ctx); 3076 tcg_gen_movi_reg(cb_msb, 0); 3077 tcg_gen_add2_reg(dest, cb_msb, in1, cb_msb, in2, cb_msb); 3078 } else { 3079 tcg_gen_add_reg(dest, in1, in2); 3080 } 3081 if (cond_need_sv(c)) { 3082 sv = do_add_sv(ctx, dest, in1, in2); 3083 } 3084 3085 cond = do_cond(c * 2 + f, dest, cb_msb, sv); 3086 save_gpr(ctx, r, dest); 3087 tcg_temp_free(dest); 3088 return do_cbranch(ctx, disp, n, &cond); 3089 } 3090 3091 static bool trans_addb(DisasContext *ctx, arg_addb *a) 3092 { 3093 nullify_over(ctx); 3094 return do_addb(ctx, a->r2, load_gpr(ctx, a->r1), a->c, a->f, a->n, a->disp); 3095 } 3096 3097 static bool trans_addbi(DisasContext *ctx, arg_addbi *a) 3098 { 3099 nullify_over(ctx); 3100 return do_addb(ctx, a->r, load_const(ctx, a->i), a->c, a->f, a->n, a->disp); 3101 } 3102 3103 static bool trans_bb_sar(DisasContext *ctx, arg_bb_sar *a) 3104 { 3105 TCGv_reg tmp, tcg_r; 3106 DisasCond cond; 3107 3108 nullify_over(ctx); 3109 3110 tmp = tcg_temp_new(); 3111 tcg_r = load_gpr(ctx, a->r); 3112 tcg_gen_shl_reg(tmp, tcg_r, cpu_sar); 3113 3114 cond = cond_make_0(a->c ? TCG_COND_GE : TCG_COND_LT, tmp); 3115 tcg_temp_free(tmp); 3116 return do_cbranch(ctx, a->disp, a->n, &cond); 3117 } 3118 3119 static bool trans_bb_imm(DisasContext *ctx, arg_bb_imm *a) 3120 { 3121 TCGv_reg tmp, tcg_r; 3122 DisasCond cond; 3123 3124 nullify_over(ctx); 3125 3126 tmp = tcg_temp_new(); 3127 tcg_r = load_gpr(ctx, a->r); 3128 tcg_gen_shli_reg(tmp, tcg_r, a->p); 3129 3130 cond = cond_make_0(a->c ? TCG_COND_GE : TCG_COND_LT, tmp); 3131 tcg_temp_free(tmp); 3132 return do_cbranch(ctx, a->disp, a->n, &cond); 3133 } 3134 3135 static bool trans_movb(DisasContext *ctx, arg_movb *a) 3136 { 3137 TCGv_reg dest; 3138 DisasCond cond; 3139 3140 nullify_over(ctx); 3141 3142 dest = dest_gpr(ctx, a->r2); 3143 if (a->r1 == 0) { 3144 tcg_gen_movi_reg(dest, 0); 3145 } else { 3146 tcg_gen_mov_reg(dest, cpu_gr[a->r1]); 3147 } 3148 3149 cond = do_sed_cond(a->c, dest); 3150 return do_cbranch(ctx, a->disp, a->n, &cond); 3151 } 3152 3153 static bool trans_movbi(DisasContext *ctx, arg_movbi *a) 3154 { 3155 TCGv_reg dest; 3156 DisasCond cond; 3157 3158 nullify_over(ctx); 3159 3160 dest = dest_gpr(ctx, a->r); 3161 tcg_gen_movi_reg(dest, a->i); 3162 3163 cond = do_sed_cond(a->c, dest); 3164 return do_cbranch(ctx, a->disp, a->n, &cond); 3165 } 3166 3167 static bool trans_shrpw_sar(DisasContext *ctx, arg_shrpw_sar *a) 3168 { 3169 TCGv_reg dest; 3170 3171 if (a->c) { 3172 nullify_over(ctx); 3173 } 3174 3175 dest = dest_gpr(ctx, a->t); 3176 if (a->r1 == 0) { 3177 tcg_gen_ext32u_reg(dest, load_gpr(ctx, a->r2)); 3178 tcg_gen_shr_reg(dest, dest, cpu_sar); 3179 } else if (a->r1 == a->r2) { 3180 TCGv_i32 t32 = tcg_temp_new_i32(); 3181 tcg_gen_trunc_reg_i32(t32, load_gpr(ctx, a->r2)); 3182 tcg_gen_rotr_i32(t32, t32, cpu_sar); 3183 tcg_gen_extu_i32_reg(dest, t32); 3184 tcg_temp_free_i32(t32); 3185 } else { 3186 TCGv_i64 t = tcg_temp_new_i64(); 3187 TCGv_i64 s = tcg_temp_new_i64(); 3188 3189 tcg_gen_concat_reg_i64(t, load_gpr(ctx, a->r2), load_gpr(ctx, a->r1)); 3190 tcg_gen_extu_reg_i64(s, cpu_sar); 3191 tcg_gen_shr_i64(t, t, s); 3192 tcg_gen_trunc_i64_reg(dest, t); 3193 3194 tcg_temp_free_i64(t); 3195 tcg_temp_free_i64(s); 3196 } 3197 save_gpr(ctx, a->t, dest); 3198 3199 /* Install the new nullification. */ 3200 cond_free(&ctx->null_cond); 3201 if (a->c) { 3202 ctx->null_cond = do_sed_cond(a->c, dest); 3203 } 3204 return nullify_end(ctx); 3205 } 3206 3207 static bool trans_shrpw_imm(DisasContext *ctx, arg_shrpw_imm *a) 3208 { 3209 unsigned sa = 31 - a->cpos; 3210 TCGv_reg dest, t2; 3211 3212 if (a->c) { 3213 nullify_over(ctx); 3214 } 3215 3216 dest = dest_gpr(ctx, a->t); 3217 t2 = load_gpr(ctx, a->r2); 3218 if (a->r1 == a->r2) { 3219 TCGv_i32 t32 = tcg_temp_new_i32(); 3220 tcg_gen_trunc_reg_i32(t32, t2); 3221 tcg_gen_rotri_i32(t32, t32, sa); 3222 tcg_gen_extu_i32_reg(dest, t32); 3223 tcg_temp_free_i32(t32); 3224 } else if (a->r1 == 0) { 3225 tcg_gen_extract_reg(dest, t2, sa, 32 - sa); 3226 } else { 3227 TCGv_reg t0 = tcg_temp_new(); 3228 tcg_gen_extract_reg(t0, t2, sa, 32 - sa); 3229 tcg_gen_deposit_reg(dest, t0, cpu_gr[a->r1], 32 - sa, sa); 3230 tcg_temp_free(t0); 3231 } 3232 save_gpr(ctx, a->t, dest); 3233 3234 /* Install the new nullification. */ 3235 cond_free(&ctx->null_cond); 3236 if (a->c) { 3237 ctx->null_cond = do_sed_cond(a->c, dest); 3238 } 3239 return nullify_end(ctx); 3240 } 3241 3242 static bool trans_extrw_sar(DisasContext *ctx, arg_extrw_sar *a) 3243 { 3244 unsigned len = 32 - a->clen; 3245 TCGv_reg dest, src, tmp; 3246 3247 if (a->c) { 3248 nullify_over(ctx); 3249 } 3250 3251 dest = dest_gpr(ctx, a->t); 3252 src = load_gpr(ctx, a->r); 3253 tmp = tcg_temp_new(); 3254 3255 /* Recall that SAR is using big-endian bit numbering. */ 3256 tcg_gen_xori_reg(tmp, cpu_sar, TARGET_REGISTER_BITS - 1); 3257 if (a->se) { 3258 tcg_gen_sar_reg(dest, src, tmp); 3259 tcg_gen_sextract_reg(dest, dest, 0, len); 3260 } else { 3261 tcg_gen_shr_reg(dest, src, tmp); 3262 tcg_gen_extract_reg(dest, dest, 0, len); 3263 } 3264 tcg_temp_free(tmp); 3265 save_gpr(ctx, a->t, dest); 3266 3267 /* Install the new nullification. */ 3268 cond_free(&ctx->null_cond); 3269 if (a->c) { 3270 ctx->null_cond = do_sed_cond(a->c, dest); 3271 } 3272 return nullify_end(ctx); 3273 } 3274 3275 static bool trans_extrw_imm(DisasContext *ctx, arg_extrw_imm *a) 3276 { 3277 unsigned len = 32 - a->clen; 3278 unsigned cpos = 31 - a->pos; 3279 TCGv_reg dest, src; 3280 3281 if (a->c) { 3282 nullify_over(ctx); 3283 } 3284 3285 dest = dest_gpr(ctx, a->t); 3286 src = load_gpr(ctx, a->r); 3287 if (a->se) { 3288 tcg_gen_sextract_reg(dest, src, cpos, len); 3289 } else { 3290 tcg_gen_extract_reg(dest, src, cpos, len); 3291 } 3292 save_gpr(ctx, a->t, dest); 3293 3294 /* Install the new nullification. */ 3295 cond_free(&ctx->null_cond); 3296 if (a->c) { 3297 ctx->null_cond = do_sed_cond(a->c, dest); 3298 } 3299 return nullify_end(ctx); 3300 } 3301 3302 static bool trans_depwi_imm(DisasContext *ctx, arg_depwi_imm *a) 3303 { 3304 unsigned len = 32 - a->clen; 3305 target_sreg mask0, mask1; 3306 TCGv_reg dest; 3307 3308 if (a->c) { 3309 nullify_over(ctx); 3310 } 3311 if (a->cpos + len > 32) { 3312 len = 32 - a->cpos; 3313 } 3314 3315 dest = dest_gpr(ctx, a->t); 3316 mask0 = deposit64(0, a->cpos, len, a->i); 3317 mask1 = deposit64(-1, a->cpos, len, a->i); 3318 3319 if (a->nz) { 3320 TCGv_reg src = load_gpr(ctx, a->t); 3321 if (mask1 != -1) { 3322 tcg_gen_andi_reg(dest, src, mask1); 3323 src = dest; 3324 } 3325 tcg_gen_ori_reg(dest, src, mask0); 3326 } else { 3327 tcg_gen_movi_reg(dest, mask0); 3328 } 3329 save_gpr(ctx, a->t, dest); 3330 3331 /* Install the new nullification. */ 3332 cond_free(&ctx->null_cond); 3333 if (a->c) { 3334 ctx->null_cond = do_sed_cond(a->c, dest); 3335 } 3336 return nullify_end(ctx); 3337 } 3338 3339 static bool trans_depw_imm(DisasContext *ctx, arg_depw_imm *a) 3340 { 3341 unsigned rs = a->nz ? a->t : 0; 3342 unsigned len = 32 - a->clen; 3343 TCGv_reg dest, val; 3344 3345 if (a->c) { 3346 nullify_over(ctx); 3347 } 3348 if (a->cpos + len > 32) { 3349 len = 32 - a->cpos; 3350 } 3351 3352 dest = dest_gpr(ctx, a->t); 3353 val = load_gpr(ctx, a->r); 3354 if (rs == 0) { 3355 tcg_gen_deposit_z_reg(dest, val, a->cpos, len); 3356 } else { 3357 tcg_gen_deposit_reg(dest, cpu_gr[rs], val, a->cpos, len); 3358 } 3359 save_gpr(ctx, a->t, dest); 3360 3361 /* Install the new nullification. */ 3362 cond_free(&ctx->null_cond); 3363 if (a->c) { 3364 ctx->null_cond = do_sed_cond(a->c, dest); 3365 } 3366 return nullify_end(ctx); 3367 } 3368 3369 static bool do_depw_sar(DisasContext *ctx, unsigned rt, unsigned c, 3370 unsigned nz, unsigned clen, TCGv_reg val) 3371 { 3372 unsigned rs = nz ? rt : 0; 3373 unsigned len = 32 - clen; 3374 TCGv_reg mask, tmp, shift, dest; 3375 unsigned msb = 1U << (len - 1); 3376 3377 dest = dest_gpr(ctx, rt); 3378 shift = tcg_temp_new(); 3379 tmp = tcg_temp_new(); 3380 3381 /* Convert big-endian bit numbering in SAR to left-shift. */ 3382 tcg_gen_xori_reg(shift, cpu_sar, TARGET_REGISTER_BITS - 1); 3383 3384 mask = tcg_const_reg(msb + (msb - 1)); 3385 tcg_gen_and_reg(tmp, val, mask); 3386 if (rs) { 3387 tcg_gen_shl_reg(mask, mask, shift); 3388 tcg_gen_shl_reg(tmp, tmp, shift); 3389 tcg_gen_andc_reg(dest, cpu_gr[rs], mask); 3390 tcg_gen_or_reg(dest, dest, tmp); 3391 } else { 3392 tcg_gen_shl_reg(dest, tmp, shift); 3393 } 3394 tcg_temp_free(shift); 3395 tcg_temp_free(mask); 3396 tcg_temp_free(tmp); 3397 save_gpr(ctx, rt, dest); 3398 3399 /* Install the new nullification. */ 3400 cond_free(&ctx->null_cond); 3401 if (c) { 3402 ctx->null_cond = do_sed_cond(c, dest); 3403 } 3404 return nullify_end(ctx); 3405 } 3406 3407 static bool trans_depw_sar(DisasContext *ctx, arg_depw_sar *a) 3408 { 3409 if (a->c) { 3410 nullify_over(ctx); 3411 } 3412 return do_depw_sar(ctx, a->t, a->c, a->nz, a->clen, load_gpr(ctx, a->r)); 3413 } 3414 3415 static bool trans_depwi_sar(DisasContext *ctx, arg_depwi_sar *a) 3416 { 3417 if (a->c) { 3418 nullify_over(ctx); 3419 } 3420 return do_depw_sar(ctx, a->t, a->c, a->nz, a->clen, load_const(ctx, a->i)); 3421 } 3422 3423 static bool trans_be(DisasContext *ctx, arg_be *a) 3424 { 3425 TCGv_reg tmp; 3426 3427 #ifdef CONFIG_USER_ONLY 3428 /* ??? It seems like there should be a good way of using 3429 "be disp(sr2, r0)", the canonical gateway entry mechanism 3430 to our advantage. But that appears to be inconvenient to 3431 manage along side branch delay slots. Therefore we handle 3432 entry into the gateway page via absolute address. */ 3433 /* Since we don't implement spaces, just branch. Do notice the special 3434 case of "be disp(*,r0)" using a direct branch to disp, so that we can 3435 goto_tb to the TB containing the syscall. */ 3436 if (a->b == 0) { 3437 return do_dbranch(ctx, a->disp, a->l, a->n); 3438 } 3439 #else 3440 nullify_over(ctx); 3441 #endif 3442 3443 tmp = get_temp(ctx); 3444 tcg_gen_addi_reg(tmp, load_gpr(ctx, a->b), a->disp); 3445 tmp = do_ibranch_priv(ctx, tmp); 3446 3447 #ifdef CONFIG_USER_ONLY 3448 return do_ibranch(ctx, tmp, a->l, a->n); 3449 #else 3450 TCGv_i64 new_spc = tcg_temp_new_i64(); 3451 3452 load_spr(ctx, new_spc, a->sp); 3453 if (a->l) { 3454 copy_iaoq_entry(cpu_gr[31], ctx->iaoq_n, ctx->iaoq_n_var); 3455 tcg_gen_mov_i64(cpu_sr[0], cpu_iasq_f); 3456 } 3457 if (a->n && use_nullify_skip(ctx)) { 3458 tcg_gen_mov_reg(cpu_iaoq_f, tmp); 3459 tcg_gen_addi_reg(cpu_iaoq_b, cpu_iaoq_f, 4); 3460 tcg_gen_mov_i64(cpu_iasq_f, new_spc); 3461 tcg_gen_mov_i64(cpu_iasq_b, cpu_iasq_f); 3462 } else { 3463 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); 3464 if (ctx->iaoq_b == -1) { 3465 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); 3466 } 3467 tcg_gen_mov_reg(cpu_iaoq_b, tmp); 3468 tcg_gen_mov_i64(cpu_iasq_b, new_spc); 3469 nullify_set(ctx, a->n); 3470 } 3471 tcg_temp_free_i64(new_spc); 3472 tcg_gen_lookup_and_goto_ptr(); 3473 ctx->base.is_jmp = DISAS_NORETURN; 3474 return nullify_end(ctx); 3475 #endif 3476 } 3477 3478 static bool trans_bl(DisasContext *ctx, arg_bl *a) 3479 { 3480 return do_dbranch(ctx, iaoq_dest(ctx, a->disp), a->l, a->n); 3481 } 3482 3483 static bool trans_b_gate(DisasContext *ctx, arg_b_gate *a) 3484 { 3485 target_ureg dest = iaoq_dest(ctx, a->disp); 3486 3487 nullify_over(ctx); 3488 3489 /* Make sure the caller hasn't done something weird with the queue. 3490 * ??? This is not quite the same as the PSW[B] bit, which would be 3491 * expensive to track. Real hardware will trap for 3492 * b gateway 3493 * b gateway+4 (in delay slot of first branch) 3494 * However, checking for a non-sequential instruction queue *will* 3495 * diagnose the security hole 3496 * b gateway 3497 * b evil 3498 * in which instructions at evil would run with increased privs. 3499 */ 3500 if (ctx->iaoq_b == -1 || ctx->iaoq_b != ctx->iaoq_f + 4) { 3501 return gen_illegal(ctx); 3502 } 3503 3504 #ifndef CONFIG_USER_ONLY 3505 if (ctx->tb_flags & PSW_C) { 3506 CPUHPPAState *env = ctx->cs->env_ptr; 3507 int type = hppa_artype_for_page(env, ctx->base.pc_next); 3508 /* If we could not find a TLB entry, then we need to generate an 3509 ITLB miss exception so the kernel will provide it. 3510 The resulting TLB fill operation will invalidate this TB and 3511 we will re-translate, at which point we *will* be able to find 3512 the TLB entry and determine if this is in fact a gateway page. */ 3513 if (type < 0) { 3514 gen_excp(ctx, EXCP_ITLB_MISS); 3515 return true; 3516 } 3517 /* No change for non-gateway pages or for priv decrease. */ 3518 if (type >= 4 && type - 4 < ctx->privilege) { 3519 dest = deposit32(dest, 0, 2, type - 4); 3520 } 3521 } else { 3522 dest &= -4; /* priv = 0 */ 3523 } 3524 #endif 3525 3526 if (a->l) { 3527 TCGv_reg tmp = dest_gpr(ctx, a->l); 3528 if (ctx->privilege < 3) { 3529 tcg_gen_andi_reg(tmp, tmp, -4); 3530 } 3531 tcg_gen_ori_reg(tmp, tmp, ctx->privilege); 3532 save_gpr(ctx, a->l, tmp); 3533 } 3534 3535 return do_dbranch(ctx, dest, 0, a->n); 3536 } 3537 3538 static bool trans_blr(DisasContext *ctx, arg_blr *a) 3539 { 3540 if (a->x) { 3541 TCGv_reg tmp = get_temp(ctx); 3542 tcg_gen_shli_reg(tmp, load_gpr(ctx, a->x), 3); 3543 tcg_gen_addi_reg(tmp, tmp, ctx->iaoq_f + 8); 3544 /* The computation here never changes privilege level. */ 3545 return do_ibranch(ctx, tmp, a->l, a->n); 3546 } else { 3547 /* BLR R0,RX is a good way to load PC+8 into RX. */ 3548 return do_dbranch(ctx, ctx->iaoq_f + 8, a->l, a->n); 3549 } 3550 } 3551 3552 static bool trans_bv(DisasContext *ctx, arg_bv *a) 3553 { 3554 TCGv_reg dest; 3555 3556 if (a->x == 0) { 3557 dest = load_gpr(ctx, a->b); 3558 } else { 3559 dest = get_temp(ctx); 3560 tcg_gen_shli_reg(dest, load_gpr(ctx, a->x), 3); 3561 tcg_gen_add_reg(dest, dest, load_gpr(ctx, a->b)); 3562 } 3563 dest = do_ibranch_priv(ctx, dest); 3564 return do_ibranch(ctx, dest, 0, a->n); 3565 } 3566 3567 static bool trans_bve(DisasContext *ctx, arg_bve *a) 3568 { 3569 TCGv_reg dest; 3570 3571 #ifdef CONFIG_USER_ONLY 3572 dest = do_ibranch_priv(ctx, load_gpr(ctx, a->b)); 3573 return do_ibranch(ctx, dest, a->l, a->n); 3574 #else 3575 nullify_over(ctx); 3576 dest = do_ibranch_priv(ctx, load_gpr(ctx, a->b)); 3577 3578 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); 3579 if (ctx->iaoq_b == -1) { 3580 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); 3581 } 3582 copy_iaoq_entry(cpu_iaoq_b, -1, dest); 3583 tcg_gen_mov_i64(cpu_iasq_b, space_select(ctx, 0, dest)); 3584 if (a->l) { 3585 copy_iaoq_entry(cpu_gr[a->l], ctx->iaoq_n, ctx->iaoq_n_var); 3586 } 3587 nullify_set(ctx, a->n); 3588 tcg_gen_lookup_and_goto_ptr(); 3589 ctx->base.is_jmp = DISAS_NORETURN; 3590 return nullify_end(ctx); 3591 #endif 3592 } 3593 3594 /* 3595 * Float class 0 3596 */ 3597 3598 static void gen_fcpy_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3599 { 3600 tcg_gen_mov_i32(dst, src); 3601 } 3602 3603 static bool trans_fcpy_f(DisasContext *ctx, arg_fclass01 *a) 3604 { 3605 return do_fop_wew(ctx, a->t, a->r, gen_fcpy_f); 3606 } 3607 3608 static void gen_fcpy_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3609 { 3610 tcg_gen_mov_i64(dst, src); 3611 } 3612 3613 static bool trans_fcpy_d(DisasContext *ctx, arg_fclass01 *a) 3614 { 3615 return do_fop_ded(ctx, a->t, a->r, gen_fcpy_d); 3616 } 3617 3618 static void gen_fabs_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3619 { 3620 tcg_gen_andi_i32(dst, src, INT32_MAX); 3621 } 3622 3623 static bool trans_fabs_f(DisasContext *ctx, arg_fclass01 *a) 3624 { 3625 return do_fop_wew(ctx, a->t, a->r, gen_fabs_f); 3626 } 3627 3628 static void gen_fabs_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3629 { 3630 tcg_gen_andi_i64(dst, src, INT64_MAX); 3631 } 3632 3633 static bool trans_fabs_d(DisasContext *ctx, arg_fclass01 *a) 3634 { 3635 return do_fop_ded(ctx, a->t, a->r, gen_fabs_d); 3636 } 3637 3638 static bool trans_fsqrt_f(DisasContext *ctx, arg_fclass01 *a) 3639 { 3640 return do_fop_wew(ctx, a->t, a->r, gen_helper_fsqrt_s); 3641 } 3642 3643 static bool trans_fsqrt_d(DisasContext *ctx, arg_fclass01 *a) 3644 { 3645 return do_fop_ded(ctx, a->t, a->r, gen_helper_fsqrt_d); 3646 } 3647 3648 static bool trans_frnd_f(DisasContext *ctx, arg_fclass01 *a) 3649 { 3650 return do_fop_wew(ctx, a->t, a->r, gen_helper_frnd_s); 3651 } 3652 3653 static bool trans_frnd_d(DisasContext *ctx, arg_fclass01 *a) 3654 { 3655 return do_fop_ded(ctx, a->t, a->r, gen_helper_frnd_d); 3656 } 3657 3658 static void gen_fneg_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3659 { 3660 tcg_gen_xori_i32(dst, src, INT32_MIN); 3661 } 3662 3663 static bool trans_fneg_f(DisasContext *ctx, arg_fclass01 *a) 3664 { 3665 return do_fop_wew(ctx, a->t, a->r, gen_fneg_f); 3666 } 3667 3668 static void gen_fneg_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3669 { 3670 tcg_gen_xori_i64(dst, src, INT64_MIN); 3671 } 3672 3673 static bool trans_fneg_d(DisasContext *ctx, arg_fclass01 *a) 3674 { 3675 return do_fop_ded(ctx, a->t, a->r, gen_fneg_d); 3676 } 3677 3678 static void gen_fnegabs_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3679 { 3680 tcg_gen_ori_i32(dst, src, INT32_MIN); 3681 } 3682 3683 static bool trans_fnegabs_f(DisasContext *ctx, arg_fclass01 *a) 3684 { 3685 return do_fop_wew(ctx, a->t, a->r, gen_fnegabs_f); 3686 } 3687 3688 static void gen_fnegabs_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3689 { 3690 tcg_gen_ori_i64(dst, src, INT64_MIN); 3691 } 3692 3693 static bool trans_fnegabs_d(DisasContext *ctx, arg_fclass01 *a) 3694 { 3695 return do_fop_ded(ctx, a->t, a->r, gen_fnegabs_d); 3696 } 3697 3698 /* 3699 * Float class 1 3700 */ 3701 3702 static bool trans_fcnv_d_f(DisasContext *ctx, arg_fclass01 *a) 3703 { 3704 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_s); 3705 } 3706 3707 static bool trans_fcnv_f_d(DisasContext *ctx, arg_fclass01 *a) 3708 { 3709 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_d); 3710 } 3711 3712 static bool trans_fcnv_w_f(DisasContext *ctx, arg_fclass01 *a) 3713 { 3714 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_w_s); 3715 } 3716 3717 static bool trans_fcnv_q_f(DisasContext *ctx, arg_fclass01 *a) 3718 { 3719 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_dw_s); 3720 } 3721 3722 static bool trans_fcnv_w_d(DisasContext *ctx, arg_fclass01 *a) 3723 { 3724 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_w_d); 3725 } 3726 3727 static bool trans_fcnv_q_d(DisasContext *ctx, arg_fclass01 *a) 3728 { 3729 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_dw_d); 3730 } 3731 3732 static bool trans_fcnv_f_w(DisasContext *ctx, arg_fclass01 *a) 3733 { 3734 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_s_w); 3735 } 3736 3737 static bool trans_fcnv_d_w(DisasContext *ctx, arg_fclass01 *a) 3738 { 3739 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_w); 3740 } 3741 3742 static bool trans_fcnv_f_q(DisasContext *ctx, arg_fclass01 *a) 3743 { 3744 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_dw); 3745 } 3746 3747 static bool trans_fcnv_d_q(DisasContext *ctx, arg_fclass01 *a) 3748 { 3749 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_d_dw); 3750 } 3751 3752 static bool trans_fcnv_t_f_w(DisasContext *ctx, arg_fclass01 *a) 3753 { 3754 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_t_s_w); 3755 } 3756 3757 static bool trans_fcnv_t_d_w(DisasContext *ctx, arg_fclass01 *a) 3758 { 3759 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_t_d_w); 3760 } 3761 3762 static bool trans_fcnv_t_f_q(DisasContext *ctx, arg_fclass01 *a) 3763 { 3764 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_t_s_dw); 3765 } 3766 3767 static bool trans_fcnv_t_d_q(DisasContext *ctx, arg_fclass01 *a) 3768 { 3769 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_t_d_dw); 3770 } 3771 3772 static bool trans_fcnv_uw_f(DisasContext *ctx, arg_fclass01 *a) 3773 { 3774 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_uw_s); 3775 } 3776 3777 static bool trans_fcnv_uq_f(DisasContext *ctx, arg_fclass01 *a) 3778 { 3779 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_udw_s); 3780 } 3781 3782 static bool trans_fcnv_uw_d(DisasContext *ctx, arg_fclass01 *a) 3783 { 3784 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_uw_d); 3785 } 3786 3787 static bool trans_fcnv_uq_d(DisasContext *ctx, arg_fclass01 *a) 3788 { 3789 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_udw_d); 3790 } 3791 3792 static bool trans_fcnv_f_uw(DisasContext *ctx, arg_fclass01 *a) 3793 { 3794 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_s_uw); 3795 } 3796 3797 static bool trans_fcnv_d_uw(DisasContext *ctx, arg_fclass01 *a) 3798 { 3799 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_uw); 3800 } 3801 3802 static bool trans_fcnv_f_uq(DisasContext *ctx, arg_fclass01 *a) 3803 { 3804 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_udw); 3805 } 3806 3807 static bool trans_fcnv_d_uq(DisasContext *ctx, arg_fclass01 *a) 3808 { 3809 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_d_udw); 3810 } 3811 3812 static bool trans_fcnv_t_f_uw(DisasContext *ctx, arg_fclass01 *a) 3813 { 3814 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_t_s_uw); 3815 } 3816 3817 static bool trans_fcnv_t_d_uw(DisasContext *ctx, arg_fclass01 *a) 3818 { 3819 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_t_d_uw); 3820 } 3821 3822 static bool trans_fcnv_t_f_uq(DisasContext *ctx, arg_fclass01 *a) 3823 { 3824 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_t_s_udw); 3825 } 3826 3827 static bool trans_fcnv_t_d_uq(DisasContext *ctx, arg_fclass01 *a) 3828 { 3829 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_t_d_udw); 3830 } 3831 3832 /* 3833 * Float class 2 3834 */ 3835 3836 static bool trans_fcmp_f(DisasContext *ctx, arg_fclass2 *a) 3837 { 3838 TCGv_i32 ta, tb, tc, ty; 3839 3840 nullify_over(ctx); 3841 3842 ta = load_frw0_i32(a->r1); 3843 tb = load_frw0_i32(a->r2); 3844 ty = tcg_constant_i32(a->y); 3845 tc = tcg_constant_i32(a->c); 3846 3847 gen_helper_fcmp_s(cpu_env, ta, tb, ty, tc); 3848 3849 tcg_temp_free_i32(ta); 3850 tcg_temp_free_i32(tb); 3851 3852 return nullify_end(ctx); 3853 } 3854 3855 static bool trans_fcmp_d(DisasContext *ctx, arg_fclass2 *a) 3856 { 3857 TCGv_i64 ta, tb; 3858 TCGv_i32 tc, ty; 3859 3860 nullify_over(ctx); 3861 3862 ta = load_frd0(a->r1); 3863 tb = load_frd0(a->r2); 3864 ty = tcg_constant_i32(a->y); 3865 tc = tcg_constant_i32(a->c); 3866 3867 gen_helper_fcmp_d(cpu_env, ta, tb, ty, tc); 3868 3869 tcg_temp_free_i64(ta); 3870 tcg_temp_free_i64(tb); 3871 3872 return nullify_end(ctx); 3873 } 3874 3875 static bool trans_ftest(DisasContext *ctx, arg_ftest *a) 3876 { 3877 TCGv_reg t; 3878 3879 nullify_over(ctx); 3880 3881 t = get_temp(ctx); 3882 tcg_gen_ld32u_reg(t, cpu_env, offsetof(CPUHPPAState, fr0_shadow)); 3883 3884 if (a->y == 1) { 3885 int mask; 3886 bool inv = false; 3887 3888 switch (a->c) { 3889 case 0: /* simple */ 3890 tcg_gen_andi_reg(t, t, 0x4000000); 3891 ctx->null_cond = cond_make_0(TCG_COND_NE, t); 3892 goto done; 3893 case 2: /* rej */ 3894 inv = true; 3895 /* fallthru */ 3896 case 1: /* acc */ 3897 mask = 0x43ff800; 3898 break; 3899 case 6: /* rej8 */ 3900 inv = true; 3901 /* fallthru */ 3902 case 5: /* acc8 */ 3903 mask = 0x43f8000; 3904 break; 3905 case 9: /* acc6 */ 3906 mask = 0x43e0000; 3907 break; 3908 case 13: /* acc4 */ 3909 mask = 0x4380000; 3910 break; 3911 case 17: /* acc2 */ 3912 mask = 0x4200000; 3913 break; 3914 default: 3915 gen_illegal(ctx); 3916 return true; 3917 } 3918 if (inv) { 3919 TCGv_reg c = load_const(ctx, mask); 3920 tcg_gen_or_reg(t, t, c); 3921 ctx->null_cond = cond_make(TCG_COND_EQ, t, c); 3922 } else { 3923 tcg_gen_andi_reg(t, t, mask); 3924 ctx->null_cond = cond_make_0(TCG_COND_EQ, t); 3925 } 3926 } else { 3927 unsigned cbit = (a->y ^ 1) - 1; 3928 3929 tcg_gen_extract_reg(t, t, 21 - cbit, 1); 3930 ctx->null_cond = cond_make_0(TCG_COND_NE, t); 3931 tcg_temp_free(t); 3932 } 3933 3934 done: 3935 return nullify_end(ctx); 3936 } 3937 3938 /* 3939 * Float class 2 3940 */ 3941 3942 static bool trans_fadd_f(DisasContext *ctx, arg_fclass3 *a) 3943 { 3944 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fadd_s); 3945 } 3946 3947 static bool trans_fadd_d(DisasContext *ctx, arg_fclass3 *a) 3948 { 3949 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fadd_d); 3950 } 3951 3952 static bool trans_fsub_f(DisasContext *ctx, arg_fclass3 *a) 3953 { 3954 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fsub_s); 3955 } 3956 3957 static bool trans_fsub_d(DisasContext *ctx, arg_fclass3 *a) 3958 { 3959 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fsub_d); 3960 } 3961 3962 static bool trans_fmpy_f(DisasContext *ctx, arg_fclass3 *a) 3963 { 3964 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fmpy_s); 3965 } 3966 3967 static bool trans_fmpy_d(DisasContext *ctx, arg_fclass3 *a) 3968 { 3969 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fmpy_d); 3970 } 3971 3972 static bool trans_fdiv_f(DisasContext *ctx, arg_fclass3 *a) 3973 { 3974 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fdiv_s); 3975 } 3976 3977 static bool trans_fdiv_d(DisasContext *ctx, arg_fclass3 *a) 3978 { 3979 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fdiv_d); 3980 } 3981 3982 static bool trans_xmpyu(DisasContext *ctx, arg_xmpyu *a) 3983 { 3984 TCGv_i64 x, y; 3985 3986 nullify_over(ctx); 3987 3988 x = load_frw0_i64(a->r1); 3989 y = load_frw0_i64(a->r2); 3990 tcg_gen_mul_i64(x, x, y); 3991 save_frd(a->t, x); 3992 tcg_temp_free_i64(x); 3993 tcg_temp_free_i64(y); 3994 3995 return nullify_end(ctx); 3996 } 3997 3998 /* Convert the fmpyadd single-precision register encodings to standard. */ 3999 static inline int fmpyadd_s_reg(unsigned r) 4000 { 4001 return (r & 16) * 2 + 16 + (r & 15); 4002 } 4003 4004 static bool do_fmpyadd_s(DisasContext *ctx, arg_mpyadd *a, bool is_sub) 4005 { 4006 int tm = fmpyadd_s_reg(a->tm); 4007 int ra = fmpyadd_s_reg(a->ra); 4008 int ta = fmpyadd_s_reg(a->ta); 4009 int rm2 = fmpyadd_s_reg(a->rm2); 4010 int rm1 = fmpyadd_s_reg(a->rm1); 4011 4012 nullify_over(ctx); 4013 4014 do_fop_weww(ctx, tm, rm1, rm2, gen_helper_fmpy_s); 4015 do_fop_weww(ctx, ta, ta, ra, 4016 is_sub ? gen_helper_fsub_s : gen_helper_fadd_s); 4017 4018 return nullify_end(ctx); 4019 } 4020 4021 static bool trans_fmpyadd_f(DisasContext *ctx, arg_mpyadd *a) 4022 { 4023 return do_fmpyadd_s(ctx, a, false); 4024 } 4025 4026 static bool trans_fmpysub_f(DisasContext *ctx, arg_mpyadd *a) 4027 { 4028 return do_fmpyadd_s(ctx, a, true); 4029 } 4030 4031 static bool do_fmpyadd_d(DisasContext *ctx, arg_mpyadd *a, bool is_sub) 4032 { 4033 nullify_over(ctx); 4034 4035 do_fop_dedd(ctx, a->tm, a->rm1, a->rm2, gen_helper_fmpy_d); 4036 do_fop_dedd(ctx, a->ta, a->ta, a->ra, 4037 is_sub ? gen_helper_fsub_d : gen_helper_fadd_d); 4038 4039 return nullify_end(ctx); 4040 } 4041 4042 static bool trans_fmpyadd_d(DisasContext *ctx, arg_mpyadd *a) 4043 { 4044 return do_fmpyadd_d(ctx, a, false); 4045 } 4046 4047 static bool trans_fmpysub_d(DisasContext *ctx, arg_mpyadd *a) 4048 { 4049 return do_fmpyadd_d(ctx, a, true); 4050 } 4051 4052 static bool trans_fmpyfadd_f(DisasContext *ctx, arg_fmpyfadd_f *a) 4053 { 4054 TCGv_i32 x, y, z; 4055 4056 nullify_over(ctx); 4057 x = load_frw0_i32(a->rm1); 4058 y = load_frw0_i32(a->rm2); 4059 z = load_frw0_i32(a->ra3); 4060 4061 if (a->neg) { 4062 gen_helper_fmpynfadd_s(x, cpu_env, x, y, z); 4063 } else { 4064 gen_helper_fmpyfadd_s(x, cpu_env, x, y, z); 4065 } 4066 4067 tcg_temp_free_i32(y); 4068 tcg_temp_free_i32(z); 4069 save_frw_i32(a->t, x); 4070 tcg_temp_free_i32(x); 4071 return nullify_end(ctx); 4072 } 4073 4074 static bool trans_fmpyfadd_d(DisasContext *ctx, arg_fmpyfadd_d *a) 4075 { 4076 TCGv_i64 x, y, z; 4077 4078 nullify_over(ctx); 4079 x = load_frd0(a->rm1); 4080 y = load_frd0(a->rm2); 4081 z = load_frd0(a->ra3); 4082 4083 if (a->neg) { 4084 gen_helper_fmpynfadd_d(x, cpu_env, x, y, z); 4085 } else { 4086 gen_helper_fmpyfadd_d(x, cpu_env, x, y, z); 4087 } 4088 4089 tcg_temp_free_i64(y); 4090 tcg_temp_free_i64(z); 4091 save_frd(a->t, x); 4092 tcg_temp_free_i64(x); 4093 return nullify_end(ctx); 4094 } 4095 4096 static bool trans_diag(DisasContext *ctx, arg_diag *a) 4097 { 4098 qemu_log_mask(LOG_UNIMP, "DIAG opcode ignored\n"); 4099 cond_free(&ctx->null_cond); 4100 return true; 4101 } 4102 4103 static void hppa_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 4104 { 4105 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4106 int bound; 4107 4108 ctx->cs = cs; 4109 ctx->tb_flags = ctx->base.tb->flags; 4110 4111 #ifdef CONFIG_USER_ONLY 4112 ctx->privilege = MMU_USER_IDX; 4113 ctx->mmu_idx = MMU_USER_IDX; 4114 ctx->iaoq_f = ctx->base.pc_first | MMU_USER_IDX; 4115 ctx->iaoq_b = ctx->base.tb->cs_base | MMU_USER_IDX; 4116 #else 4117 ctx->privilege = (ctx->tb_flags >> TB_FLAG_PRIV_SHIFT) & 3; 4118 ctx->mmu_idx = (ctx->tb_flags & PSW_D ? ctx->privilege : MMU_PHYS_IDX); 4119 4120 /* Recover the IAOQ values from the GVA + PRIV. */ 4121 uint64_t cs_base = ctx->base.tb->cs_base; 4122 uint64_t iasq_f = cs_base & ~0xffffffffull; 4123 int32_t diff = cs_base; 4124 4125 ctx->iaoq_f = (ctx->base.pc_first & ~iasq_f) + ctx->privilege; 4126 ctx->iaoq_b = (diff ? ctx->iaoq_f + diff : -1); 4127 #endif 4128 ctx->iaoq_n = -1; 4129 ctx->iaoq_n_var = NULL; 4130 4131 /* Bound the number of instructions by those left on the page. */ 4132 bound = -(ctx->base.pc_first | TARGET_PAGE_MASK) / 4; 4133 ctx->base.max_insns = MIN(ctx->base.max_insns, bound); 4134 4135 ctx->ntempr = 0; 4136 ctx->ntempl = 0; 4137 memset(ctx->tempr, 0, sizeof(ctx->tempr)); 4138 memset(ctx->templ, 0, sizeof(ctx->templ)); 4139 } 4140 4141 static void hppa_tr_tb_start(DisasContextBase *dcbase, CPUState *cs) 4142 { 4143 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4144 4145 /* Seed the nullification status from PSW[N], as saved in TB->FLAGS. */ 4146 ctx->null_cond = cond_make_f(); 4147 ctx->psw_n_nonzero = false; 4148 if (ctx->tb_flags & PSW_N) { 4149 ctx->null_cond.c = TCG_COND_ALWAYS; 4150 ctx->psw_n_nonzero = true; 4151 } 4152 ctx->null_lab = NULL; 4153 } 4154 4155 static void hppa_tr_insn_start(DisasContextBase *dcbase, CPUState *cs) 4156 { 4157 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4158 4159 tcg_gen_insn_start(ctx->iaoq_f, ctx->iaoq_b); 4160 } 4161 4162 static void hppa_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) 4163 { 4164 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4165 CPUHPPAState *env = cs->env_ptr; 4166 DisasJumpType ret; 4167 int i, n; 4168 4169 /* Execute one insn. */ 4170 #ifdef CONFIG_USER_ONLY 4171 if (ctx->base.pc_next < TARGET_PAGE_SIZE) { 4172 do_page_zero(ctx); 4173 ret = ctx->base.is_jmp; 4174 assert(ret != DISAS_NEXT); 4175 } else 4176 #endif 4177 { 4178 /* Always fetch the insn, even if nullified, so that we check 4179 the page permissions for execute. */ 4180 uint32_t insn = translator_ldl(env, ctx->base.pc_next); 4181 4182 /* Set up the IA queue for the next insn. 4183 This will be overwritten by a branch. */ 4184 if (ctx->iaoq_b == -1) { 4185 ctx->iaoq_n = -1; 4186 ctx->iaoq_n_var = get_temp(ctx); 4187 tcg_gen_addi_reg(ctx->iaoq_n_var, cpu_iaoq_b, 4); 4188 } else { 4189 ctx->iaoq_n = ctx->iaoq_b + 4; 4190 ctx->iaoq_n_var = NULL; 4191 } 4192 4193 if (unlikely(ctx->null_cond.c == TCG_COND_ALWAYS)) { 4194 ctx->null_cond.c = TCG_COND_NEVER; 4195 ret = DISAS_NEXT; 4196 } else { 4197 ctx->insn = insn; 4198 if (!decode(ctx, insn)) { 4199 gen_illegal(ctx); 4200 } 4201 ret = ctx->base.is_jmp; 4202 assert(ctx->null_lab == NULL); 4203 } 4204 } 4205 4206 /* Free any temporaries allocated. */ 4207 for (i = 0, n = ctx->ntempr; i < n; ++i) { 4208 tcg_temp_free(ctx->tempr[i]); 4209 ctx->tempr[i] = NULL; 4210 } 4211 for (i = 0, n = ctx->ntempl; i < n; ++i) { 4212 tcg_temp_free_tl(ctx->templ[i]); 4213 ctx->templ[i] = NULL; 4214 } 4215 ctx->ntempr = 0; 4216 ctx->ntempl = 0; 4217 4218 /* Advance the insn queue. Note that this check also detects 4219 a priority change within the instruction queue. */ 4220 if (ret == DISAS_NEXT && ctx->iaoq_b != ctx->iaoq_f + 4) { 4221 if (ctx->iaoq_b != -1 && ctx->iaoq_n != -1 4222 && use_goto_tb(ctx, ctx->iaoq_b) 4223 && (ctx->null_cond.c == TCG_COND_NEVER 4224 || ctx->null_cond.c == TCG_COND_ALWAYS)) { 4225 nullify_set(ctx, ctx->null_cond.c == TCG_COND_ALWAYS); 4226 gen_goto_tb(ctx, 0, ctx->iaoq_b, ctx->iaoq_n); 4227 ctx->base.is_jmp = ret = DISAS_NORETURN; 4228 } else { 4229 ctx->base.is_jmp = ret = DISAS_IAQ_N_STALE; 4230 } 4231 } 4232 ctx->iaoq_f = ctx->iaoq_b; 4233 ctx->iaoq_b = ctx->iaoq_n; 4234 ctx->base.pc_next += 4; 4235 4236 switch (ret) { 4237 case DISAS_NORETURN: 4238 case DISAS_IAQ_N_UPDATED: 4239 break; 4240 4241 case DISAS_NEXT: 4242 case DISAS_IAQ_N_STALE: 4243 case DISAS_IAQ_N_STALE_EXIT: 4244 if (ctx->iaoq_f == -1) { 4245 tcg_gen_mov_reg(cpu_iaoq_f, cpu_iaoq_b); 4246 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_n, ctx->iaoq_n_var); 4247 #ifndef CONFIG_USER_ONLY 4248 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); 4249 #endif 4250 nullify_save(ctx); 4251 ctx->base.is_jmp = (ret == DISAS_IAQ_N_STALE_EXIT 4252 ? DISAS_EXIT 4253 : DISAS_IAQ_N_UPDATED); 4254 } else if (ctx->iaoq_b == -1) { 4255 tcg_gen_mov_reg(cpu_iaoq_b, ctx->iaoq_n_var); 4256 } 4257 break; 4258 4259 default: 4260 g_assert_not_reached(); 4261 } 4262 } 4263 4264 static void hppa_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs) 4265 { 4266 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4267 DisasJumpType is_jmp = ctx->base.is_jmp; 4268 4269 switch (is_jmp) { 4270 case DISAS_NORETURN: 4271 break; 4272 case DISAS_TOO_MANY: 4273 case DISAS_IAQ_N_STALE: 4274 case DISAS_IAQ_N_STALE_EXIT: 4275 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_f, cpu_iaoq_f); 4276 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_b, cpu_iaoq_b); 4277 nullify_save(ctx); 4278 /* FALLTHRU */ 4279 case DISAS_IAQ_N_UPDATED: 4280 if (ctx->base.singlestep_enabled) { 4281 gen_excp_1(EXCP_DEBUG); 4282 } else if (is_jmp != DISAS_IAQ_N_STALE_EXIT) { 4283 tcg_gen_lookup_and_goto_ptr(); 4284 } 4285 /* FALLTHRU */ 4286 case DISAS_EXIT: 4287 tcg_gen_exit_tb(NULL, 0); 4288 break; 4289 default: 4290 g_assert_not_reached(); 4291 } 4292 } 4293 4294 static void hppa_tr_disas_log(const DisasContextBase *dcbase, CPUState *cs) 4295 { 4296 target_ulong pc = dcbase->pc_first; 4297 4298 #ifdef CONFIG_USER_ONLY 4299 switch (pc) { 4300 case 0x00: 4301 qemu_log("IN:\n0x00000000: (null)\n"); 4302 return; 4303 case 0xb0: 4304 qemu_log("IN:\n0x000000b0: light-weight-syscall\n"); 4305 return; 4306 case 0xe0: 4307 qemu_log("IN:\n0x000000e0: set-thread-pointer-syscall\n"); 4308 return; 4309 case 0x100: 4310 qemu_log("IN:\n0x00000100: syscall\n"); 4311 return; 4312 } 4313 #endif 4314 4315 qemu_log("IN: %s\n", lookup_symbol(pc)); 4316 log_target_disas(cs, pc, dcbase->tb->size); 4317 } 4318 4319 static const TranslatorOps hppa_tr_ops = { 4320 .init_disas_context = hppa_tr_init_disas_context, 4321 .tb_start = hppa_tr_tb_start, 4322 .insn_start = hppa_tr_insn_start, 4323 .translate_insn = hppa_tr_translate_insn, 4324 .tb_stop = hppa_tr_tb_stop, 4325 .disas_log = hppa_tr_disas_log, 4326 }; 4327 4328 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) 4329 { 4330 DisasContext ctx; 4331 translator_loop(&hppa_tr_ops, &ctx.base, cs, tb, max_insns); 4332 } 4333 4334 void restore_state_to_opc(CPUHPPAState *env, TranslationBlock *tb, 4335 target_ulong *data) 4336 { 4337 env->iaoq_f = data[0]; 4338 if (data[1] != (target_ureg)-1) { 4339 env->iaoq_b = data[1]; 4340 } 4341 /* Since we were executing the instruction at IAOQ_F, and took some 4342 sort of action that provoked the cpu_restore_state, we can infer 4343 that the instruction was not nullified. */ 4344 env->psw_n = 0; 4345 } 4346