1 /* 2 * HPPA emulation cpu translation for qemu. 3 * 4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "disas/disas.h" 23 #include "qemu/host-utils.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg-op.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/helper-proto.h" 28 #include "exec/helper-gen.h" 29 #include "exec/translator.h" 30 #include "trace-tcg.h" 31 #include "exec/log.h" 32 33 /* Since we have a distinction between register size and address size, 34 we need to redefine all of these. */ 35 36 #undef TCGv 37 #undef tcg_temp_new 38 #undef tcg_global_reg_new 39 #undef tcg_global_mem_new 40 #undef tcg_temp_local_new 41 #undef tcg_temp_free 42 43 #if TARGET_LONG_BITS == 64 44 #define TCGv_tl TCGv_i64 45 #define tcg_temp_new_tl tcg_temp_new_i64 46 #define tcg_temp_free_tl tcg_temp_free_i64 47 #if TARGET_REGISTER_BITS == 64 48 #define tcg_gen_extu_reg_tl tcg_gen_mov_i64 49 #else 50 #define tcg_gen_extu_reg_tl tcg_gen_extu_i32_i64 51 #endif 52 #else 53 #define TCGv_tl TCGv_i32 54 #define tcg_temp_new_tl tcg_temp_new_i32 55 #define tcg_temp_free_tl tcg_temp_free_i32 56 #define tcg_gen_extu_reg_tl tcg_gen_mov_i32 57 #endif 58 59 #if TARGET_REGISTER_BITS == 64 60 #define TCGv_reg TCGv_i64 61 62 #define tcg_temp_new tcg_temp_new_i64 63 #define tcg_global_reg_new tcg_global_reg_new_i64 64 #define tcg_global_mem_new tcg_global_mem_new_i64 65 #define tcg_temp_local_new tcg_temp_local_new_i64 66 #define tcg_temp_free tcg_temp_free_i64 67 68 #define tcg_gen_movi_reg tcg_gen_movi_i64 69 #define tcg_gen_mov_reg tcg_gen_mov_i64 70 #define tcg_gen_ld8u_reg tcg_gen_ld8u_i64 71 #define tcg_gen_ld8s_reg tcg_gen_ld8s_i64 72 #define tcg_gen_ld16u_reg tcg_gen_ld16u_i64 73 #define tcg_gen_ld16s_reg tcg_gen_ld16s_i64 74 #define tcg_gen_ld32u_reg tcg_gen_ld32u_i64 75 #define tcg_gen_ld32s_reg tcg_gen_ld32s_i64 76 #define tcg_gen_ld_reg tcg_gen_ld_i64 77 #define tcg_gen_st8_reg tcg_gen_st8_i64 78 #define tcg_gen_st16_reg tcg_gen_st16_i64 79 #define tcg_gen_st32_reg tcg_gen_st32_i64 80 #define tcg_gen_st_reg tcg_gen_st_i64 81 #define tcg_gen_add_reg tcg_gen_add_i64 82 #define tcg_gen_addi_reg tcg_gen_addi_i64 83 #define tcg_gen_sub_reg tcg_gen_sub_i64 84 #define tcg_gen_neg_reg tcg_gen_neg_i64 85 #define tcg_gen_subfi_reg tcg_gen_subfi_i64 86 #define tcg_gen_subi_reg tcg_gen_subi_i64 87 #define tcg_gen_and_reg tcg_gen_and_i64 88 #define tcg_gen_andi_reg tcg_gen_andi_i64 89 #define tcg_gen_or_reg tcg_gen_or_i64 90 #define tcg_gen_ori_reg tcg_gen_ori_i64 91 #define tcg_gen_xor_reg tcg_gen_xor_i64 92 #define tcg_gen_xori_reg tcg_gen_xori_i64 93 #define tcg_gen_not_reg tcg_gen_not_i64 94 #define tcg_gen_shl_reg tcg_gen_shl_i64 95 #define tcg_gen_shli_reg tcg_gen_shli_i64 96 #define tcg_gen_shr_reg tcg_gen_shr_i64 97 #define tcg_gen_shri_reg tcg_gen_shri_i64 98 #define tcg_gen_sar_reg tcg_gen_sar_i64 99 #define tcg_gen_sari_reg tcg_gen_sari_i64 100 #define tcg_gen_brcond_reg tcg_gen_brcond_i64 101 #define tcg_gen_brcondi_reg tcg_gen_brcondi_i64 102 #define tcg_gen_setcond_reg tcg_gen_setcond_i64 103 #define tcg_gen_setcondi_reg tcg_gen_setcondi_i64 104 #define tcg_gen_mul_reg tcg_gen_mul_i64 105 #define tcg_gen_muli_reg tcg_gen_muli_i64 106 #define tcg_gen_div_reg tcg_gen_div_i64 107 #define tcg_gen_rem_reg tcg_gen_rem_i64 108 #define tcg_gen_divu_reg tcg_gen_divu_i64 109 #define tcg_gen_remu_reg tcg_gen_remu_i64 110 #define tcg_gen_discard_reg tcg_gen_discard_i64 111 #define tcg_gen_trunc_reg_i32 tcg_gen_extrl_i64_i32 112 #define tcg_gen_trunc_i64_reg tcg_gen_mov_i64 113 #define tcg_gen_extu_i32_reg tcg_gen_extu_i32_i64 114 #define tcg_gen_ext_i32_reg tcg_gen_ext_i32_i64 115 #define tcg_gen_extu_reg_i64 tcg_gen_mov_i64 116 #define tcg_gen_ext_reg_i64 tcg_gen_mov_i64 117 #define tcg_gen_ext8u_reg tcg_gen_ext8u_i64 118 #define tcg_gen_ext8s_reg tcg_gen_ext8s_i64 119 #define tcg_gen_ext16u_reg tcg_gen_ext16u_i64 120 #define tcg_gen_ext16s_reg tcg_gen_ext16s_i64 121 #define tcg_gen_ext32u_reg tcg_gen_ext32u_i64 122 #define tcg_gen_ext32s_reg tcg_gen_ext32s_i64 123 #define tcg_gen_bswap16_reg tcg_gen_bswap16_i64 124 #define tcg_gen_bswap32_reg tcg_gen_bswap32_i64 125 #define tcg_gen_bswap64_reg tcg_gen_bswap64_i64 126 #define tcg_gen_concat_reg_i64 tcg_gen_concat32_i64 127 #define tcg_gen_andc_reg tcg_gen_andc_i64 128 #define tcg_gen_eqv_reg tcg_gen_eqv_i64 129 #define tcg_gen_nand_reg tcg_gen_nand_i64 130 #define tcg_gen_nor_reg tcg_gen_nor_i64 131 #define tcg_gen_orc_reg tcg_gen_orc_i64 132 #define tcg_gen_clz_reg tcg_gen_clz_i64 133 #define tcg_gen_ctz_reg tcg_gen_ctz_i64 134 #define tcg_gen_clzi_reg tcg_gen_clzi_i64 135 #define tcg_gen_ctzi_reg tcg_gen_ctzi_i64 136 #define tcg_gen_clrsb_reg tcg_gen_clrsb_i64 137 #define tcg_gen_ctpop_reg tcg_gen_ctpop_i64 138 #define tcg_gen_rotl_reg tcg_gen_rotl_i64 139 #define tcg_gen_rotli_reg tcg_gen_rotli_i64 140 #define tcg_gen_rotr_reg tcg_gen_rotr_i64 141 #define tcg_gen_rotri_reg tcg_gen_rotri_i64 142 #define tcg_gen_deposit_reg tcg_gen_deposit_i64 143 #define tcg_gen_deposit_z_reg tcg_gen_deposit_z_i64 144 #define tcg_gen_extract_reg tcg_gen_extract_i64 145 #define tcg_gen_sextract_reg tcg_gen_sextract_i64 146 #define tcg_const_reg tcg_const_i64 147 #define tcg_const_local_reg tcg_const_local_i64 148 #define tcg_gen_movcond_reg tcg_gen_movcond_i64 149 #define tcg_gen_add2_reg tcg_gen_add2_i64 150 #define tcg_gen_sub2_reg tcg_gen_sub2_i64 151 #define tcg_gen_qemu_ld_reg tcg_gen_qemu_ld_i64 152 #define tcg_gen_qemu_st_reg tcg_gen_qemu_st_i64 153 #define tcg_gen_atomic_xchg_reg tcg_gen_atomic_xchg_i64 154 #define tcg_gen_trunc_reg_ptr tcg_gen_trunc_i64_ptr 155 #else 156 #define TCGv_reg TCGv_i32 157 #define tcg_temp_new tcg_temp_new_i32 158 #define tcg_global_reg_new tcg_global_reg_new_i32 159 #define tcg_global_mem_new tcg_global_mem_new_i32 160 #define tcg_temp_local_new tcg_temp_local_new_i32 161 #define tcg_temp_free tcg_temp_free_i32 162 163 #define tcg_gen_movi_reg tcg_gen_movi_i32 164 #define tcg_gen_mov_reg tcg_gen_mov_i32 165 #define tcg_gen_ld8u_reg tcg_gen_ld8u_i32 166 #define tcg_gen_ld8s_reg tcg_gen_ld8s_i32 167 #define tcg_gen_ld16u_reg tcg_gen_ld16u_i32 168 #define tcg_gen_ld16s_reg tcg_gen_ld16s_i32 169 #define tcg_gen_ld32u_reg tcg_gen_ld_i32 170 #define tcg_gen_ld32s_reg tcg_gen_ld_i32 171 #define tcg_gen_ld_reg tcg_gen_ld_i32 172 #define tcg_gen_st8_reg tcg_gen_st8_i32 173 #define tcg_gen_st16_reg tcg_gen_st16_i32 174 #define tcg_gen_st32_reg tcg_gen_st32_i32 175 #define tcg_gen_st_reg tcg_gen_st_i32 176 #define tcg_gen_add_reg tcg_gen_add_i32 177 #define tcg_gen_addi_reg tcg_gen_addi_i32 178 #define tcg_gen_sub_reg tcg_gen_sub_i32 179 #define tcg_gen_neg_reg tcg_gen_neg_i32 180 #define tcg_gen_subfi_reg tcg_gen_subfi_i32 181 #define tcg_gen_subi_reg tcg_gen_subi_i32 182 #define tcg_gen_and_reg tcg_gen_and_i32 183 #define tcg_gen_andi_reg tcg_gen_andi_i32 184 #define tcg_gen_or_reg tcg_gen_or_i32 185 #define tcg_gen_ori_reg tcg_gen_ori_i32 186 #define tcg_gen_xor_reg tcg_gen_xor_i32 187 #define tcg_gen_xori_reg tcg_gen_xori_i32 188 #define tcg_gen_not_reg tcg_gen_not_i32 189 #define tcg_gen_shl_reg tcg_gen_shl_i32 190 #define tcg_gen_shli_reg tcg_gen_shli_i32 191 #define tcg_gen_shr_reg tcg_gen_shr_i32 192 #define tcg_gen_shri_reg tcg_gen_shri_i32 193 #define tcg_gen_sar_reg tcg_gen_sar_i32 194 #define tcg_gen_sari_reg tcg_gen_sari_i32 195 #define tcg_gen_brcond_reg tcg_gen_brcond_i32 196 #define tcg_gen_brcondi_reg tcg_gen_brcondi_i32 197 #define tcg_gen_setcond_reg tcg_gen_setcond_i32 198 #define tcg_gen_setcondi_reg tcg_gen_setcondi_i32 199 #define tcg_gen_mul_reg tcg_gen_mul_i32 200 #define tcg_gen_muli_reg tcg_gen_muli_i32 201 #define tcg_gen_div_reg tcg_gen_div_i32 202 #define tcg_gen_rem_reg tcg_gen_rem_i32 203 #define tcg_gen_divu_reg tcg_gen_divu_i32 204 #define tcg_gen_remu_reg tcg_gen_remu_i32 205 #define tcg_gen_discard_reg tcg_gen_discard_i32 206 #define tcg_gen_trunc_reg_i32 tcg_gen_mov_i32 207 #define tcg_gen_trunc_i64_reg tcg_gen_extrl_i64_i32 208 #define tcg_gen_extu_i32_reg tcg_gen_mov_i32 209 #define tcg_gen_ext_i32_reg tcg_gen_mov_i32 210 #define tcg_gen_extu_reg_i64 tcg_gen_extu_i32_i64 211 #define tcg_gen_ext_reg_i64 tcg_gen_ext_i32_i64 212 #define tcg_gen_ext8u_reg tcg_gen_ext8u_i32 213 #define tcg_gen_ext8s_reg tcg_gen_ext8s_i32 214 #define tcg_gen_ext16u_reg tcg_gen_ext16u_i32 215 #define tcg_gen_ext16s_reg tcg_gen_ext16s_i32 216 #define tcg_gen_ext32u_reg tcg_gen_mov_i32 217 #define tcg_gen_ext32s_reg tcg_gen_mov_i32 218 #define tcg_gen_bswap16_reg tcg_gen_bswap16_i32 219 #define tcg_gen_bswap32_reg tcg_gen_bswap32_i32 220 #define tcg_gen_concat_reg_i64 tcg_gen_concat_i32_i64 221 #define tcg_gen_andc_reg tcg_gen_andc_i32 222 #define tcg_gen_eqv_reg tcg_gen_eqv_i32 223 #define tcg_gen_nand_reg tcg_gen_nand_i32 224 #define tcg_gen_nor_reg tcg_gen_nor_i32 225 #define tcg_gen_orc_reg tcg_gen_orc_i32 226 #define tcg_gen_clz_reg tcg_gen_clz_i32 227 #define tcg_gen_ctz_reg tcg_gen_ctz_i32 228 #define tcg_gen_clzi_reg tcg_gen_clzi_i32 229 #define tcg_gen_ctzi_reg tcg_gen_ctzi_i32 230 #define tcg_gen_clrsb_reg tcg_gen_clrsb_i32 231 #define tcg_gen_ctpop_reg tcg_gen_ctpop_i32 232 #define tcg_gen_rotl_reg tcg_gen_rotl_i32 233 #define tcg_gen_rotli_reg tcg_gen_rotli_i32 234 #define tcg_gen_rotr_reg tcg_gen_rotr_i32 235 #define tcg_gen_rotri_reg tcg_gen_rotri_i32 236 #define tcg_gen_deposit_reg tcg_gen_deposit_i32 237 #define tcg_gen_deposit_z_reg tcg_gen_deposit_z_i32 238 #define tcg_gen_extract_reg tcg_gen_extract_i32 239 #define tcg_gen_sextract_reg tcg_gen_sextract_i32 240 #define tcg_const_reg tcg_const_i32 241 #define tcg_const_local_reg tcg_const_local_i32 242 #define tcg_gen_movcond_reg tcg_gen_movcond_i32 243 #define tcg_gen_add2_reg tcg_gen_add2_i32 244 #define tcg_gen_sub2_reg tcg_gen_sub2_i32 245 #define tcg_gen_qemu_ld_reg tcg_gen_qemu_ld_i32 246 #define tcg_gen_qemu_st_reg tcg_gen_qemu_st_i32 247 #define tcg_gen_atomic_xchg_reg tcg_gen_atomic_xchg_i32 248 #define tcg_gen_trunc_reg_ptr tcg_gen_ext_i32_ptr 249 #endif /* TARGET_REGISTER_BITS */ 250 251 typedef struct DisasCond { 252 TCGCond c; 253 TCGv_reg a0, a1; 254 bool a0_is_n; 255 bool a1_is_0; 256 } DisasCond; 257 258 typedef struct DisasContext { 259 DisasContextBase base; 260 CPUState *cs; 261 262 target_ureg iaoq_f; 263 target_ureg iaoq_b; 264 target_ureg iaoq_n; 265 TCGv_reg iaoq_n_var; 266 267 int ntempr, ntempl; 268 TCGv_reg tempr[8]; 269 TCGv_tl templ[4]; 270 271 DisasCond null_cond; 272 TCGLabel *null_lab; 273 274 uint32_t insn; 275 uint32_t tb_flags; 276 int mmu_idx; 277 int privilege; 278 bool psw_n_nonzero; 279 } DisasContext; 280 281 /* Note that ssm/rsm instructions number PSW_W and PSW_E differently. */ 282 static int expand_sm_imm(DisasContext *ctx, int val) 283 { 284 if (val & PSW_SM_E) { 285 val = (val & ~PSW_SM_E) | PSW_E; 286 } 287 if (val & PSW_SM_W) { 288 val = (val & ~PSW_SM_W) | PSW_W; 289 } 290 return val; 291 } 292 293 /* Inverted space register indicates 0 means sr0 not inferred from base. */ 294 static int expand_sr3x(DisasContext *ctx, int val) 295 { 296 return ~val; 297 } 298 299 /* Convert the M:A bits within a memory insn to the tri-state value 300 we use for the final M. */ 301 static int ma_to_m(DisasContext *ctx, int val) 302 { 303 return val & 2 ? (val & 1 ? -1 : 1) : 0; 304 } 305 306 /* Convert the sign of the displacement to a pre or post-modify. */ 307 static int pos_to_m(DisasContext *ctx, int val) 308 { 309 return val ? 1 : -1; 310 } 311 312 static int neg_to_m(DisasContext *ctx, int val) 313 { 314 return val ? -1 : 1; 315 } 316 317 /* Used for branch targets and fp memory ops. */ 318 static int expand_shl2(DisasContext *ctx, int val) 319 { 320 return val << 2; 321 } 322 323 /* Used for fp memory ops. */ 324 static int expand_shl3(DisasContext *ctx, int val) 325 { 326 return val << 3; 327 } 328 329 /* Used for assemble_21. */ 330 static int expand_shl11(DisasContext *ctx, int val) 331 { 332 return val << 11; 333 } 334 335 336 /* Include the auto-generated decoder. */ 337 #include "decode.inc.c" 338 339 /* We are not using a goto_tb (for whatever reason), but have updated 340 the iaq (for whatever reason), so don't do it again on exit. */ 341 #define DISAS_IAQ_N_UPDATED DISAS_TARGET_0 342 343 /* We are exiting the TB, but have neither emitted a goto_tb, nor 344 updated the iaq for the next instruction to be executed. */ 345 #define DISAS_IAQ_N_STALE DISAS_TARGET_1 346 347 /* Similarly, but we want to return to the main loop immediately 348 to recognize unmasked interrupts. */ 349 #define DISAS_IAQ_N_STALE_EXIT DISAS_TARGET_2 350 #define DISAS_EXIT DISAS_TARGET_3 351 352 /* global register indexes */ 353 static TCGv_reg cpu_gr[32]; 354 static TCGv_i64 cpu_sr[4]; 355 static TCGv_i64 cpu_srH; 356 static TCGv_reg cpu_iaoq_f; 357 static TCGv_reg cpu_iaoq_b; 358 static TCGv_i64 cpu_iasq_f; 359 static TCGv_i64 cpu_iasq_b; 360 static TCGv_reg cpu_sar; 361 static TCGv_reg cpu_psw_n; 362 static TCGv_reg cpu_psw_v; 363 static TCGv_reg cpu_psw_cb; 364 static TCGv_reg cpu_psw_cb_msb; 365 366 #include "exec/gen-icount.h" 367 368 void hppa_translate_init(void) 369 { 370 #define DEF_VAR(V) { &cpu_##V, #V, offsetof(CPUHPPAState, V) } 371 372 typedef struct { TCGv_reg *var; const char *name; int ofs; } GlobalVar; 373 static const GlobalVar vars[] = { 374 { &cpu_sar, "sar", offsetof(CPUHPPAState, cr[CR_SAR]) }, 375 DEF_VAR(psw_n), 376 DEF_VAR(psw_v), 377 DEF_VAR(psw_cb), 378 DEF_VAR(psw_cb_msb), 379 DEF_VAR(iaoq_f), 380 DEF_VAR(iaoq_b), 381 }; 382 383 #undef DEF_VAR 384 385 /* Use the symbolic register names that match the disassembler. */ 386 static const char gr_names[32][4] = { 387 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 388 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 389 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 390 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" 391 }; 392 /* SR[4-7] are not global registers so that we can index them. */ 393 static const char sr_names[5][4] = { 394 "sr0", "sr1", "sr2", "sr3", "srH" 395 }; 396 397 int i; 398 399 cpu_gr[0] = NULL; 400 for (i = 1; i < 32; i++) { 401 cpu_gr[i] = tcg_global_mem_new(cpu_env, 402 offsetof(CPUHPPAState, gr[i]), 403 gr_names[i]); 404 } 405 for (i = 0; i < 4; i++) { 406 cpu_sr[i] = tcg_global_mem_new_i64(cpu_env, 407 offsetof(CPUHPPAState, sr[i]), 408 sr_names[i]); 409 } 410 cpu_srH = tcg_global_mem_new_i64(cpu_env, 411 offsetof(CPUHPPAState, sr[4]), 412 sr_names[4]); 413 414 for (i = 0; i < ARRAY_SIZE(vars); ++i) { 415 const GlobalVar *v = &vars[i]; 416 *v->var = tcg_global_mem_new(cpu_env, v->ofs, v->name); 417 } 418 419 cpu_iasq_f = tcg_global_mem_new_i64(cpu_env, 420 offsetof(CPUHPPAState, iasq_f), 421 "iasq_f"); 422 cpu_iasq_b = tcg_global_mem_new_i64(cpu_env, 423 offsetof(CPUHPPAState, iasq_b), 424 "iasq_b"); 425 } 426 427 static DisasCond cond_make_f(void) 428 { 429 return (DisasCond){ 430 .c = TCG_COND_NEVER, 431 .a0 = NULL, 432 .a1 = NULL, 433 }; 434 } 435 436 static DisasCond cond_make_t(void) 437 { 438 return (DisasCond){ 439 .c = TCG_COND_ALWAYS, 440 .a0 = NULL, 441 .a1 = NULL, 442 }; 443 } 444 445 static DisasCond cond_make_n(void) 446 { 447 return (DisasCond){ 448 .c = TCG_COND_NE, 449 .a0 = cpu_psw_n, 450 .a0_is_n = true, 451 .a1 = NULL, 452 .a1_is_0 = true 453 }; 454 } 455 456 static DisasCond cond_make_0_tmp(TCGCond c, TCGv_reg a0) 457 { 458 assert (c != TCG_COND_NEVER && c != TCG_COND_ALWAYS); 459 return (DisasCond){ 460 .c = c, .a0 = a0, .a1_is_0 = true 461 }; 462 } 463 464 static DisasCond cond_make_0(TCGCond c, TCGv_reg a0) 465 { 466 TCGv_reg tmp = tcg_temp_new(); 467 tcg_gen_mov_reg(tmp, a0); 468 return cond_make_0_tmp(c, tmp); 469 } 470 471 static DisasCond cond_make(TCGCond c, TCGv_reg a0, TCGv_reg a1) 472 { 473 DisasCond r = { .c = c }; 474 475 assert (c != TCG_COND_NEVER && c != TCG_COND_ALWAYS); 476 r.a0 = tcg_temp_new(); 477 tcg_gen_mov_reg(r.a0, a0); 478 r.a1 = tcg_temp_new(); 479 tcg_gen_mov_reg(r.a1, a1); 480 481 return r; 482 } 483 484 static void cond_prep(DisasCond *cond) 485 { 486 if (cond->a1_is_0) { 487 cond->a1_is_0 = false; 488 cond->a1 = tcg_const_reg(0); 489 } 490 } 491 492 static void cond_free(DisasCond *cond) 493 { 494 switch (cond->c) { 495 default: 496 if (!cond->a0_is_n) { 497 tcg_temp_free(cond->a0); 498 } 499 if (!cond->a1_is_0) { 500 tcg_temp_free(cond->a1); 501 } 502 cond->a0_is_n = false; 503 cond->a1_is_0 = false; 504 cond->a0 = NULL; 505 cond->a1 = NULL; 506 /* fallthru */ 507 case TCG_COND_ALWAYS: 508 cond->c = TCG_COND_NEVER; 509 break; 510 case TCG_COND_NEVER: 511 break; 512 } 513 } 514 515 static TCGv_reg get_temp(DisasContext *ctx) 516 { 517 unsigned i = ctx->ntempr++; 518 g_assert(i < ARRAY_SIZE(ctx->tempr)); 519 return ctx->tempr[i] = tcg_temp_new(); 520 } 521 522 #ifndef CONFIG_USER_ONLY 523 static TCGv_tl get_temp_tl(DisasContext *ctx) 524 { 525 unsigned i = ctx->ntempl++; 526 g_assert(i < ARRAY_SIZE(ctx->templ)); 527 return ctx->templ[i] = tcg_temp_new_tl(); 528 } 529 #endif 530 531 static TCGv_reg load_const(DisasContext *ctx, target_sreg v) 532 { 533 TCGv_reg t = get_temp(ctx); 534 tcg_gen_movi_reg(t, v); 535 return t; 536 } 537 538 static TCGv_reg load_gpr(DisasContext *ctx, unsigned reg) 539 { 540 if (reg == 0) { 541 TCGv_reg t = get_temp(ctx); 542 tcg_gen_movi_reg(t, 0); 543 return t; 544 } else { 545 return cpu_gr[reg]; 546 } 547 } 548 549 static TCGv_reg dest_gpr(DisasContext *ctx, unsigned reg) 550 { 551 if (reg == 0 || ctx->null_cond.c != TCG_COND_NEVER) { 552 return get_temp(ctx); 553 } else { 554 return cpu_gr[reg]; 555 } 556 } 557 558 static void save_or_nullify(DisasContext *ctx, TCGv_reg dest, TCGv_reg t) 559 { 560 if (ctx->null_cond.c != TCG_COND_NEVER) { 561 cond_prep(&ctx->null_cond); 562 tcg_gen_movcond_reg(ctx->null_cond.c, dest, ctx->null_cond.a0, 563 ctx->null_cond.a1, dest, t); 564 } else { 565 tcg_gen_mov_reg(dest, t); 566 } 567 } 568 569 static void save_gpr(DisasContext *ctx, unsigned reg, TCGv_reg t) 570 { 571 if (reg != 0) { 572 save_or_nullify(ctx, cpu_gr[reg], t); 573 } 574 } 575 576 #ifdef HOST_WORDS_BIGENDIAN 577 # define HI_OFS 0 578 # define LO_OFS 4 579 #else 580 # define HI_OFS 4 581 # define LO_OFS 0 582 #endif 583 584 static TCGv_i32 load_frw_i32(unsigned rt) 585 { 586 TCGv_i32 ret = tcg_temp_new_i32(); 587 tcg_gen_ld_i32(ret, cpu_env, 588 offsetof(CPUHPPAState, fr[rt & 31]) 589 + (rt & 32 ? LO_OFS : HI_OFS)); 590 return ret; 591 } 592 593 static TCGv_i32 load_frw0_i32(unsigned rt) 594 { 595 if (rt == 0) { 596 return tcg_const_i32(0); 597 } else { 598 return load_frw_i32(rt); 599 } 600 } 601 602 static TCGv_i64 load_frw0_i64(unsigned rt) 603 { 604 if (rt == 0) { 605 return tcg_const_i64(0); 606 } else { 607 TCGv_i64 ret = tcg_temp_new_i64(); 608 tcg_gen_ld32u_i64(ret, cpu_env, 609 offsetof(CPUHPPAState, fr[rt & 31]) 610 + (rt & 32 ? LO_OFS : HI_OFS)); 611 return ret; 612 } 613 } 614 615 static void save_frw_i32(unsigned rt, TCGv_i32 val) 616 { 617 tcg_gen_st_i32(val, cpu_env, 618 offsetof(CPUHPPAState, fr[rt & 31]) 619 + (rt & 32 ? LO_OFS : HI_OFS)); 620 } 621 622 #undef HI_OFS 623 #undef LO_OFS 624 625 static TCGv_i64 load_frd(unsigned rt) 626 { 627 TCGv_i64 ret = tcg_temp_new_i64(); 628 tcg_gen_ld_i64(ret, cpu_env, offsetof(CPUHPPAState, fr[rt])); 629 return ret; 630 } 631 632 static TCGv_i64 load_frd0(unsigned rt) 633 { 634 if (rt == 0) { 635 return tcg_const_i64(0); 636 } else { 637 return load_frd(rt); 638 } 639 } 640 641 static void save_frd(unsigned rt, TCGv_i64 val) 642 { 643 tcg_gen_st_i64(val, cpu_env, offsetof(CPUHPPAState, fr[rt])); 644 } 645 646 static void load_spr(DisasContext *ctx, TCGv_i64 dest, unsigned reg) 647 { 648 #ifdef CONFIG_USER_ONLY 649 tcg_gen_movi_i64(dest, 0); 650 #else 651 if (reg < 4) { 652 tcg_gen_mov_i64(dest, cpu_sr[reg]); 653 } else if (ctx->tb_flags & TB_FLAG_SR_SAME) { 654 tcg_gen_mov_i64(dest, cpu_srH); 655 } else { 656 tcg_gen_ld_i64(dest, cpu_env, offsetof(CPUHPPAState, sr[reg])); 657 } 658 #endif 659 } 660 661 /* Skip over the implementation of an insn that has been nullified. 662 Use this when the insn is too complex for a conditional move. */ 663 static void nullify_over(DisasContext *ctx) 664 { 665 if (ctx->null_cond.c != TCG_COND_NEVER) { 666 /* The always condition should have been handled in the main loop. */ 667 assert(ctx->null_cond.c != TCG_COND_ALWAYS); 668 669 ctx->null_lab = gen_new_label(); 670 cond_prep(&ctx->null_cond); 671 672 /* If we're using PSW[N], copy it to a temp because... */ 673 if (ctx->null_cond.a0_is_n) { 674 ctx->null_cond.a0_is_n = false; 675 ctx->null_cond.a0 = tcg_temp_new(); 676 tcg_gen_mov_reg(ctx->null_cond.a0, cpu_psw_n); 677 } 678 /* ... we clear it before branching over the implementation, 679 so that (1) it's clear after nullifying this insn and 680 (2) if this insn nullifies the next, PSW[N] is valid. */ 681 if (ctx->psw_n_nonzero) { 682 ctx->psw_n_nonzero = false; 683 tcg_gen_movi_reg(cpu_psw_n, 0); 684 } 685 686 tcg_gen_brcond_reg(ctx->null_cond.c, ctx->null_cond.a0, 687 ctx->null_cond.a1, ctx->null_lab); 688 cond_free(&ctx->null_cond); 689 } 690 } 691 692 /* Save the current nullification state to PSW[N]. */ 693 static void nullify_save(DisasContext *ctx) 694 { 695 if (ctx->null_cond.c == TCG_COND_NEVER) { 696 if (ctx->psw_n_nonzero) { 697 tcg_gen_movi_reg(cpu_psw_n, 0); 698 } 699 return; 700 } 701 if (!ctx->null_cond.a0_is_n) { 702 cond_prep(&ctx->null_cond); 703 tcg_gen_setcond_reg(ctx->null_cond.c, cpu_psw_n, 704 ctx->null_cond.a0, ctx->null_cond.a1); 705 ctx->psw_n_nonzero = true; 706 } 707 cond_free(&ctx->null_cond); 708 } 709 710 /* Set a PSW[N] to X. The intention is that this is used immediately 711 before a goto_tb/exit_tb, so that there is no fallthru path to other 712 code within the TB. Therefore we do not update psw_n_nonzero. */ 713 static void nullify_set(DisasContext *ctx, bool x) 714 { 715 if (ctx->psw_n_nonzero || x) { 716 tcg_gen_movi_reg(cpu_psw_n, x); 717 } 718 } 719 720 /* Mark the end of an instruction that may have been nullified. 721 This is the pair to nullify_over. Always returns true so that 722 it may be tail-called from a translate function. */ 723 static bool nullify_end(DisasContext *ctx) 724 { 725 TCGLabel *null_lab = ctx->null_lab; 726 DisasJumpType status = ctx->base.is_jmp; 727 728 /* For NEXT, NORETURN, STALE, we can easily continue (or exit). 729 For UPDATED, we cannot update on the nullified path. */ 730 assert(status != DISAS_IAQ_N_UPDATED); 731 732 if (likely(null_lab == NULL)) { 733 /* The current insn wasn't conditional or handled the condition 734 applied to it without a branch, so the (new) setting of 735 NULL_COND can be applied directly to the next insn. */ 736 return true; 737 } 738 ctx->null_lab = NULL; 739 740 if (likely(ctx->null_cond.c == TCG_COND_NEVER)) { 741 /* The next instruction will be unconditional, 742 and NULL_COND already reflects that. */ 743 gen_set_label(null_lab); 744 } else { 745 /* The insn that we just executed is itself nullifying the next 746 instruction. Store the condition in the PSW[N] global. 747 We asserted PSW[N] = 0 in nullify_over, so that after the 748 label we have the proper value in place. */ 749 nullify_save(ctx); 750 gen_set_label(null_lab); 751 ctx->null_cond = cond_make_n(); 752 } 753 if (status == DISAS_NORETURN) { 754 ctx->base.is_jmp = DISAS_NEXT; 755 } 756 return true; 757 } 758 759 static void copy_iaoq_entry(TCGv_reg dest, target_ureg ival, TCGv_reg vval) 760 { 761 if (unlikely(ival == -1)) { 762 tcg_gen_mov_reg(dest, vval); 763 } else { 764 tcg_gen_movi_reg(dest, ival); 765 } 766 } 767 768 static inline target_ureg iaoq_dest(DisasContext *ctx, target_sreg disp) 769 { 770 return ctx->iaoq_f + disp + 8; 771 } 772 773 static void gen_excp_1(int exception) 774 { 775 TCGv_i32 t = tcg_const_i32(exception); 776 gen_helper_excp(cpu_env, t); 777 tcg_temp_free_i32(t); 778 } 779 780 static void gen_excp(DisasContext *ctx, int exception) 781 { 782 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_f, cpu_iaoq_f); 783 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_b, cpu_iaoq_b); 784 nullify_save(ctx); 785 gen_excp_1(exception); 786 ctx->base.is_jmp = DISAS_NORETURN; 787 } 788 789 static bool gen_excp_iir(DisasContext *ctx, int exc) 790 { 791 TCGv_reg tmp; 792 793 nullify_over(ctx); 794 tmp = tcg_const_reg(ctx->insn); 795 tcg_gen_st_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[CR_IIR])); 796 tcg_temp_free(tmp); 797 gen_excp(ctx, exc); 798 return nullify_end(ctx); 799 } 800 801 static bool gen_illegal(DisasContext *ctx) 802 { 803 return gen_excp_iir(ctx, EXCP_ILL); 804 } 805 806 #ifdef CONFIG_USER_ONLY 807 #define CHECK_MOST_PRIVILEGED(EXCP) \ 808 return gen_excp_iir(ctx, EXCP) 809 #else 810 #define CHECK_MOST_PRIVILEGED(EXCP) \ 811 do { \ 812 if (ctx->privilege != 0) { \ 813 return gen_excp_iir(ctx, EXCP); \ 814 } \ 815 } while (0) 816 #endif 817 818 static bool use_goto_tb(DisasContext *ctx, target_ureg dest) 819 { 820 /* Suppress goto_tb for page crossing, IO, or single-steping. */ 821 return !(((ctx->base.pc_first ^ dest) & TARGET_PAGE_MASK) 822 || (tb_cflags(ctx->base.tb) & CF_LAST_IO) 823 || ctx->base.singlestep_enabled); 824 } 825 826 /* If the next insn is to be nullified, and it's on the same page, 827 and we're not attempting to set a breakpoint on it, then we can 828 totally skip the nullified insn. This avoids creating and 829 executing a TB that merely branches to the next TB. */ 830 static bool use_nullify_skip(DisasContext *ctx) 831 { 832 return (((ctx->iaoq_b ^ ctx->iaoq_f) & TARGET_PAGE_MASK) == 0 833 && !cpu_breakpoint_test(ctx->cs, ctx->iaoq_b, BP_ANY)); 834 } 835 836 static void gen_goto_tb(DisasContext *ctx, int which, 837 target_ureg f, target_ureg b) 838 { 839 if (f != -1 && b != -1 && use_goto_tb(ctx, f)) { 840 tcg_gen_goto_tb(which); 841 tcg_gen_movi_reg(cpu_iaoq_f, f); 842 tcg_gen_movi_reg(cpu_iaoq_b, b); 843 tcg_gen_exit_tb(ctx->base.tb, which); 844 } else { 845 copy_iaoq_entry(cpu_iaoq_f, f, cpu_iaoq_b); 846 copy_iaoq_entry(cpu_iaoq_b, b, ctx->iaoq_n_var); 847 if (ctx->base.singlestep_enabled) { 848 gen_excp_1(EXCP_DEBUG); 849 } else { 850 tcg_gen_lookup_and_goto_ptr(); 851 } 852 } 853 } 854 855 static bool cond_need_sv(int c) 856 { 857 return c == 2 || c == 3 || c == 6; 858 } 859 860 static bool cond_need_cb(int c) 861 { 862 return c == 4 || c == 5; 863 } 864 865 /* 866 * Compute conditional for arithmetic. See Page 5-3, Table 5-1, of 867 * the Parisc 1.1 Architecture Reference Manual for details. 868 */ 869 870 static DisasCond do_cond(unsigned cf, TCGv_reg res, 871 TCGv_reg cb_msb, TCGv_reg sv) 872 { 873 DisasCond cond; 874 TCGv_reg tmp; 875 876 switch (cf >> 1) { 877 case 0: /* Never / TR (0 / 1) */ 878 cond = cond_make_f(); 879 break; 880 case 1: /* = / <> (Z / !Z) */ 881 cond = cond_make_0(TCG_COND_EQ, res); 882 break; 883 case 2: /* < / >= (N ^ V / !(N ^ V) */ 884 tmp = tcg_temp_new(); 885 tcg_gen_xor_reg(tmp, res, sv); 886 cond = cond_make_0_tmp(TCG_COND_LT, tmp); 887 break; 888 case 3: /* <= / > (N ^ V) | Z / !((N ^ V) | Z) */ 889 /* 890 * Simplify: 891 * (N ^ V) | Z 892 * ((res < 0) ^ (sv < 0)) | !res 893 * ((res ^ sv) < 0) | !res 894 * (~(res ^ sv) >= 0) | !res 895 * !(~(res ^ sv) >> 31) | !res 896 * !(~(res ^ sv) >> 31 & res) 897 */ 898 tmp = tcg_temp_new(); 899 tcg_gen_eqv_reg(tmp, res, sv); 900 tcg_gen_sari_reg(tmp, tmp, TARGET_REGISTER_BITS - 1); 901 tcg_gen_and_reg(tmp, tmp, res); 902 cond = cond_make_0_tmp(TCG_COND_EQ, tmp); 903 break; 904 case 4: /* NUV / UV (!C / C) */ 905 cond = cond_make_0(TCG_COND_EQ, cb_msb); 906 break; 907 case 5: /* ZNV / VNZ (!C | Z / C & !Z) */ 908 tmp = tcg_temp_new(); 909 tcg_gen_neg_reg(tmp, cb_msb); 910 tcg_gen_and_reg(tmp, tmp, res); 911 cond = cond_make_0_tmp(TCG_COND_EQ, tmp); 912 break; 913 case 6: /* SV / NSV (V / !V) */ 914 cond = cond_make_0(TCG_COND_LT, sv); 915 break; 916 case 7: /* OD / EV */ 917 tmp = tcg_temp_new(); 918 tcg_gen_andi_reg(tmp, res, 1); 919 cond = cond_make_0_tmp(TCG_COND_NE, tmp); 920 break; 921 default: 922 g_assert_not_reached(); 923 } 924 if (cf & 1) { 925 cond.c = tcg_invert_cond(cond.c); 926 } 927 928 return cond; 929 } 930 931 /* Similar, but for the special case of subtraction without borrow, we 932 can use the inputs directly. This can allow other computation to be 933 deleted as unused. */ 934 935 static DisasCond do_sub_cond(unsigned cf, TCGv_reg res, 936 TCGv_reg in1, TCGv_reg in2, TCGv_reg sv) 937 { 938 DisasCond cond; 939 940 switch (cf >> 1) { 941 case 1: /* = / <> */ 942 cond = cond_make(TCG_COND_EQ, in1, in2); 943 break; 944 case 2: /* < / >= */ 945 cond = cond_make(TCG_COND_LT, in1, in2); 946 break; 947 case 3: /* <= / > */ 948 cond = cond_make(TCG_COND_LE, in1, in2); 949 break; 950 case 4: /* << / >>= */ 951 cond = cond_make(TCG_COND_LTU, in1, in2); 952 break; 953 case 5: /* <<= / >> */ 954 cond = cond_make(TCG_COND_LEU, in1, in2); 955 break; 956 default: 957 return do_cond(cf, res, NULL, sv); 958 } 959 if (cf & 1) { 960 cond.c = tcg_invert_cond(cond.c); 961 } 962 963 return cond; 964 } 965 966 /* 967 * Similar, but for logicals, where the carry and overflow bits are not 968 * computed, and use of them is undefined. 969 * 970 * Undefined or not, hardware does not trap. It seems reasonable to 971 * assume hardware treats cases c={4,5,6} as if C=0 & V=0, since that's 972 * how cases c={2,3} are treated. 973 */ 974 975 static DisasCond do_log_cond(unsigned cf, TCGv_reg res) 976 { 977 switch (cf) { 978 case 0: /* never */ 979 case 9: /* undef, C */ 980 case 11: /* undef, C & !Z */ 981 case 12: /* undef, V */ 982 return cond_make_f(); 983 984 case 1: /* true */ 985 case 8: /* undef, !C */ 986 case 10: /* undef, !C | Z */ 987 case 13: /* undef, !V */ 988 return cond_make_t(); 989 990 case 2: /* == */ 991 return cond_make_0(TCG_COND_EQ, res); 992 case 3: /* <> */ 993 return cond_make_0(TCG_COND_NE, res); 994 case 4: /* < */ 995 return cond_make_0(TCG_COND_LT, res); 996 case 5: /* >= */ 997 return cond_make_0(TCG_COND_GE, res); 998 case 6: /* <= */ 999 return cond_make_0(TCG_COND_LE, res); 1000 case 7: /* > */ 1001 return cond_make_0(TCG_COND_GT, res); 1002 1003 case 14: /* OD */ 1004 case 15: /* EV */ 1005 return do_cond(cf, res, NULL, NULL); 1006 1007 default: 1008 g_assert_not_reached(); 1009 } 1010 } 1011 1012 /* Similar, but for shift/extract/deposit conditions. */ 1013 1014 static DisasCond do_sed_cond(unsigned orig, TCGv_reg res) 1015 { 1016 unsigned c, f; 1017 1018 /* Convert the compressed condition codes to standard. 1019 0-2 are the same as logicals (nv,<,<=), while 3 is OD. 1020 4-7 are the reverse of 0-3. */ 1021 c = orig & 3; 1022 if (c == 3) { 1023 c = 7; 1024 } 1025 f = (orig & 4) / 4; 1026 1027 return do_log_cond(c * 2 + f, res); 1028 } 1029 1030 /* Similar, but for unit conditions. */ 1031 1032 static DisasCond do_unit_cond(unsigned cf, TCGv_reg res, 1033 TCGv_reg in1, TCGv_reg in2) 1034 { 1035 DisasCond cond; 1036 TCGv_reg tmp, cb = NULL; 1037 1038 if (cf & 8) { 1039 /* Since we want to test lots of carry-out bits all at once, do not 1040 * do our normal thing and compute carry-in of bit B+1 since that 1041 * leaves us with carry bits spread across two words. 1042 */ 1043 cb = tcg_temp_new(); 1044 tmp = tcg_temp_new(); 1045 tcg_gen_or_reg(cb, in1, in2); 1046 tcg_gen_and_reg(tmp, in1, in2); 1047 tcg_gen_andc_reg(cb, cb, res); 1048 tcg_gen_or_reg(cb, cb, tmp); 1049 tcg_temp_free(tmp); 1050 } 1051 1052 switch (cf >> 1) { 1053 case 0: /* never / TR */ 1054 case 1: /* undefined */ 1055 case 5: /* undefined */ 1056 cond = cond_make_f(); 1057 break; 1058 1059 case 2: /* SBZ / NBZ */ 1060 /* See hasless(v,1) from 1061 * https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord 1062 */ 1063 tmp = tcg_temp_new(); 1064 tcg_gen_subi_reg(tmp, res, 0x01010101u); 1065 tcg_gen_andc_reg(tmp, tmp, res); 1066 tcg_gen_andi_reg(tmp, tmp, 0x80808080u); 1067 cond = cond_make_0(TCG_COND_NE, tmp); 1068 tcg_temp_free(tmp); 1069 break; 1070 1071 case 3: /* SHZ / NHZ */ 1072 tmp = tcg_temp_new(); 1073 tcg_gen_subi_reg(tmp, res, 0x00010001u); 1074 tcg_gen_andc_reg(tmp, tmp, res); 1075 tcg_gen_andi_reg(tmp, tmp, 0x80008000u); 1076 cond = cond_make_0(TCG_COND_NE, tmp); 1077 tcg_temp_free(tmp); 1078 break; 1079 1080 case 4: /* SDC / NDC */ 1081 tcg_gen_andi_reg(cb, cb, 0x88888888u); 1082 cond = cond_make_0(TCG_COND_NE, cb); 1083 break; 1084 1085 case 6: /* SBC / NBC */ 1086 tcg_gen_andi_reg(cb, cb, 0x80808080u); 1087 cond = cond_make_0(TCG_COND_NE, cb); 1088 break; 1089 1090 case 7: /* SHC / NHC */ 1091 tcg_gen_andi_reg(cb, cb, 0x80008000u); 1092 cond = cond_make_0(TCG_COND_NE, cb); 1093 break; 1094 1095 default: 1096 g_assert_not_reached(); 1097 } 1098 if (cf & 8) { 1099 tcg_temp_free(cb); 1100 } 1101 if (cf & 1) { 1102 cond.c = tcg_invert_cond(cond.c); 1103 } 1104 1105 return cond; 1106 } 1107 1108 /* Compute signed overflow for addition. */ 1109 static TCGv_reg do_add_sv(DisasContext *ctx, TCGv_reg res, 1110 TCGv_reg in1, TCGv_reg in2) 1111 { 1112 TCGv_reg sv = get_temp(ctx); 1113 TCGv_reg tmp = tcg_temp_new(); 1114 1115 tcg_gen_xor_reg(sv, res, in1); 1116 tcg_gen_xor_reg(tmp, in1, in2); 1117 tcg_gen_andc_reg(sv, sv, tmp); 1118 tcg_temp_free(tmp); 1119 1120 return sv; 1121 } 1122 1123 /* Compute signed overflow for subtraction. */ 1124 static TCGv_reg do_sub_sv(DisasContext *ctx, TCGv_reg res, 1125 TCGv_reg in1, TCGv_reg in2) 1126 { 1127 TCGv_reg sv = get_temp(ctx); 1128 TCGv_reg tmp = tcg_temp_new(); 1129 1130 tcg_gen_xor_reg(sv, res, in1); 1131 tcg_gen_xor_reg(tmp, in1, in2); 1132 tcg_gen_and_reg(sv, sv, tmp); 1133 tcg_temp_free(tmp); 1134 1135 return sv; 1136 } 1137 1138 static void do_add(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1139 TCGv_reg in2, unsigned shift, bool is_l, 1140 bool is_tsv, bool is_tc, bool is_c, unsigned cf) 1141 { 1142 TCGv_reg dest, cb, cb_msb, sv, tmp; 1143 unsigned c = cf >> 1; 1144 DisasCond cond; 1145 1146 dest = tcg_temp_new(); 1147 cb = NULL; 1148 cb_msb = NULL; 1149 1150 if (shift) { 1151 tmp = get_temp(ctx); 1152 tcg_gen_shli_reg(tmp, in1, shift); 1153 in1 = tmp; 1154 } 1155 1156 if (!is_l || cond_need_cb(c)) { 1157 TCGv_reg zero = tcg_const_reg(0); 1158 cb_msb = get_temp(ctx); 1159 tcg_gen_add2_reg(dest, cb_msb, in1, zero, in2, zero); 1160 if (is_c) { 1161 tcg_gen_add2_reg(dest, cb_msb, dest, cb_msb, cpu_psw_cb_msb, zero); 1162 } 1163 tcg_temp_free(zero); 1164 if (!is_l) { 1165 cb = get_temp(ctx); 1166 tcg_gen_xor_reg(cb, in1, in2); 1167 tcg_gen_xor_reg(cb, cb, dest); 1168 } 1169 } else { 1170 tcg_gen_add_reg(dest, in1, in2); 1171 if (is_c) { 1172 tcg_gen_add_reg(dest, dest, cpu_psw_cb_msb); 1173 } 1174 } 1175 1176 /* Compute signed overflow if required. */ 1177 sv = NULL; 1178 if (is_tsv || cond_need_sv(c)) { 1179 sv = do_add_sv(ctx, dest, in1, in2); 1180 if (is_tsv) { 1181 /* ??? Need to include overflow from shift. */ 1182 gen_helper_tsv(cpu_env, sv); 1183 } 1184 } 1185 1186 /* Emit any conditional trap before any writeback. */ 1187 cond = do_cond(cf, dest, cb_msb, sv); 1188 if (is_tc) { 1189 cond_prep(&cond); 1190 tmp = tcg_temp_new(); 1191 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); 1192 gen_helper_tcond(cpu_env, tmp); 1193 tcg_temp_free(tmp); 1194 } 1195 1196 /* Write back the result. */ 1197 if (!is_l) { 1198 save_or_nullify(ctx, cpu_psw_cb, cb); 1199 save_or_nullify(ctx, cpu_psw_cb_msb, cb_msb); 1200 } 1201 save_gpr(ctx, rt, dest); 1202 tcg_temp_free(dest); 1203 1204 /* Install the new nullification. */ 1205 cond_free(&ctx->null_cond); 1206 ctx->null_cond = cond; 1207 } 1208 1209 static bool do_add_reg(DisasContext *ctx, arg_rrr_cf_sh *a, 1210 bool is_l, bool is_tsv, bool is_tc, bool is_c) 1211 { 1212 TCGv_reg tcg_r1, tcg_r2; 1213 1214 if (a->cf) { 1215 nullify_over(ctx); 1216 } 1217 tcg_r1 = load_gpr(ctx, a->r1); 1218 tcg_r2 = load_gpr(ctx, a->r2); 1219 do_add(ctx, a->t, tcg_r1, tcg_r2, a->sh, is_l, is_tsv, is_tc, is_c, a->cf); 1220 return nullify_end(ctx); 1221 } 1222 1223 static bool do_add_imm(DisasContext *ctx, arg_rri_cf *a, 1224 bool is_tsv, bool is_tc) 1225 { 1226 TCGv_reg tcg_im, tcg_r2; 1227 1228 if (a->cf) { 1229 nullify_over(ctx); 1230 } 1231 tcg_im = load_const(ctx, a->i); 1232 tcg_r2 = load_gpr(ctx, a->r); 1233 do_add(ctx, a->t, tcg_im, tcg_r2, 0, 0, is_tsv, is_tc, 0, a->cf); 1234 return nullify_end(ctx); 1235 } 1236 1237 static void do_sub(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1238 TCGv_reg in2, bool is_tsv, bool is_b, 1239 bool is_tc, unsigned cf) 1240 { 1241 TCGv_reg dest, sv, cb, cb_msb, zero, tmp; 1242 unsigned c = cf >> 1; 1243 DisasCond cond; 1244 1245 dest = tcg_temp_new(); 1246 cb = tcg_temp_new(); 1247 cb_msb = tcg_temp_new(); 1248 1249 zero = tcg_const_reg(0); 1250 if (is_b) { 1251 /* DEST,C = IN1 + ~IN2 + C. */ 1252 tcg_gen_not_reg(cb, in2); 1253 tcg_gen_add2_reg(dest, cb_msb, in1, zero, cpu_psw_cb_msb, zero); 1254 tcg_gen_add2_reg(dest, cb_msb, dest, cb_msb, cb, zero); 1255 tcg_gen_xor_reg(cb, cb, in1); 1256 tcg_gen_xor_reg(cb, cb, dest); 1257 } else { 1258 /* DEST,C = IN1 + ~IN2 + 1. We can produce the same result in fewer 1259 operations by seeding the high word with 1 and subtracting. */ 1260 tcg_gen_movi_reg(cb_msb, 1); 1261 tcg_gen_sub2_reg(dest, cb_msb, in1, cb_msb, in2, zero); 1262 tcg_gen_eqv_reg(cb, in1, in2); 1263 tcg_gen_xor_reg(cb, cb, dest); 1264 } 1265 tcg_temp_free(zero); 1266 1267 /* Compute signed overflow if required. */ 1268 sv = NULL; 1269 if (is_tsv || cond_need_sv(c)) { 1270 sv = do_sub_sv(ctx, dest, in1, in2); 1271 if (is_tsv) { 1272 gen_helper_tsv(cpu_env, sv); 1273 } 1274 } 1275 1276 /* Compute the condition. We cannot use the special case for borrow. */ 1277 if (!is_b) { 1278 cond = do_sub_cond(cf, dest, in1, in2, sv); 1279 } else { 1280 cond = do_cond(cf, dest, cb_msb, sv); 1281 } 1282 1283 /* Emit any conditional trap before any writeback. */ 1284 if (is_tc) { 1285 cond_prep(&cond); 1286 tmp = tcg_temp_new(); 1287 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); 1288 gen_helper_tcond(cpu_env, tmp); 1289 tcg_temp_free(tmp); 1290 } 1291 1292 /* Write back the result. */ 1293 save_or_nullify(ctx, cpu_psw_cb, cb); 1294 save_or_nullify(ctx, cpu_psw_cb_msb, cb_msb); 1295 save_gpr(ctx, rt, dest); 1296 tcg_temp_free(dest); 1297 1298 /* Install the new nullification. */ 1299 cond_free(&ctx->null_cond); 1300 ctx->null_cond = cond; 1301 } 1302 1303 static bool do_sub_reg(DisasContext *ctx, arg_rrr_cf *a, 1304 bool is_tsv, bool is_b, bool is_tc) 1305 { 1306 TCGv_reg tcg_r1, tcg_r2; 1307 1308 if (a->cf) { 1309 nullify_over(ctx); 1310 } 1311 tcg_r1 = load_gpr(ctx, a->r1); 1312 tcg_r2 = load_gpr(ctx, a->r2); 1313 do_sub(ctx, a->t, tcg_r1, tcg_r2, is_tsv, is_b, is_tc, a->cf); 1314 return nullify_end(ctx); 1315 } 1316 1317 static bool do_sub_imm(DisasContext *ctx, arg_rri_cf *a, bool is_tsv) 1318 { 1319 TCGv_reg tcg_im, tcg_r2; 1320 1321 if (a->cf) { 1322 nullify_over(ctx); 1323 } 1324 tcg_im = load_const(ctx, a->i); 1325 tcg_r2 = load_gpr(ctx, a->r); 1326 do_sub(ctx, a->t, tcg_im, tcg_r2, is_tsv, 0, 0, a->cf); 1327 return nullify_end(ctx); 1328 } 1329 1330 static void do_cmpclr(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1331 TCGv_reg in2, unsigned cf) 1332 { 1333 TCGv_reg dest, sv; 1334 DisasCond cond; 1335 1336 dest = tcg_temp_new(); 1337 tcg_gen_sub_reg(dest, in1, in2); 1338 1339 /* Compute signed overflow if required. */ 1340 sv = NULL; 1341 if (cond_need_sv(cf >> 1)) { 1342 sv = do_sub_sv(ctx, dest, in1, in2); 1343 } 1344 1345 /* Form the condition for the compare. */ 1346 cond = do_sub_cond(cf, dest, in1, in2, sv); 1347 1348 /* Clear. */ 1349 tcg_gen_movi_reg(dest, 0); 1350 save_gpr(ctx, rt, dest); 1351 tcg_temp_free(dest); 1352 1353 /* Install the new nullification. */ 1354 cond_free(&ctx->null_cond); 1355 ctx->null_cond = cond; 1356 } 1357 1358 static void do_log(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1359 TCGv_reg in2, unsigned cf, 1360 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) 1361 { 1362 TCGv_reg dest = dest_gpr(ctx, rt); 1363 1364 /* Perform the operation, and writeback. */ 1365 fn(dest, in1, in2); 1366 save_gpr(ctx, rt, dest); 1367 1368 /* Install the new nullification. */ 1369 cond_free(&ctx->null_cond); 1370 if (cf) { 1371 ctx->null_cond = do_log_cond(cf, dest); 1372 } 1373 } 1374 1375 static bool do_log_reg(DisasContext *ctx, arg_rrr_cf *a, 1376 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) 1377 { 1378 TCGv_reg tcg_r1, tcg_r2; 1379 1380 if (a->cf) { 1381 nullify_over(ctx); 1382 } 1383 tcg_r1 = load_gpr(ctx, a->r1); 1384 tcg_r2 = load_gpr(ctx, a->r2); 1385 do_log(ctx, a->t, tcg_r1, tcg_r2, a->cf, fn); 1386 return nullify_end(ctx); 1387 } 1388 1389 static void do_unit(DisasContext *ctx, unsigned rt, TCGv_reg in1, 1390 TCGv_reg in2, unsigned cf, bool is_tc, 1391 void (*fn)(TCGv_reg, TCGv_reg, TCGv_reg)) 1392 { 1393 TCGv_reg dest; 1394 DisasCond cond; 1395 1396 if (cf == 0) { 1397 dest = dest_gpr(ctx, rt); 1398 fn(dest, in1, in2); 1399 save_gpr(ctx, rt, dest); 1400 cond_free(&ctx->null_cond); 1401 } else { 1402 dest = tcg_temp_new(); 1403 fn(dest, in1, in2); 1404 1405 cond = do_unit_cond(cf, dest, in1, in2); 1406 1407 if (is_tc) { 1408 TCGv_reg tmp = tcg_temp_new(); 1409 cond_prep(&cond); 1410 tcg_gen_setcond_reg(cond.c, tmp, cond.a0, cond.a1); 1411 gen_helper_tcond(cpu_env, tmp); 1412 tcg_temp_free(tmp); 1413 } 1414 save_gpr(ctx, rt, dest); 1415 1416 cond_free(&ctx->null_cond); 1417 ctx->null_cond = cond; 1418 } 1419 } 1420 1421 #ifndef CONFIG_USER_ONLY 1422 /* The "normal" usage is SP >= 0, wherein SP == 0 selects the space 1423 from the top 2 bits of the base register. There are a few system 1424 instructions that have a 3-bit space specifier, for which SR0 is 1425 not special. To handle this, pass ~SP. */ 1426 static TCGv_i64 space_select(DisasContext *ctx, int sp, TCGv_reg base) 1427 { 1428 TCGv_ptr ptr; 1429 TCGv_reg tmp; 1430 TCGv_i64 spc; 1431 1432 if (sp != 0) { 1433 if (sp < 0) { 1434 sp = ~sp; 1435 } 1436 spc = get_temp_tl(ctx); 1437 load_spr(ctx, spc, sp); 1438 return spc; 1439 } 1440 if (ctx->tb_flags & TB_FLAG_SR_SAME) { 1441 return cpu_srH; 1442 } 1443 1444 ptr = tcg_temp_new_ptr(); 1445 tmp = tcg_temp_new(); 1446 spc = get_temp_tl(ctx); 1447 1448 tcg_gen_shri_reg(tmp, base, TARGET_REGISTER_BITS - 5); 1449 tcg_gen_andi_reg(tmp, tmp, 030); 1450 tcg_gen_trunc_reg_ptr(ptr, tmp); 1451 tcg_temp_free(tmp); 1452 1453 tcg_gen_add_ptr(ptr, ptr, cpu_env); 1454 tcg_gen_ld_i64(spc, ptr, offsetof(CPUHPPAState, sr[4])); 1455 tcg_temp_free_ptr(ptr); 1456 1457 return spc; 1458 } 1459 #endif 1460 1461 static void form_gva(DisasContext *ctx, TCGv_tl *pgva, TCGv_reg *pofs, 1462 unsigned rb, unsigned rx, int scale, target_sreg disp, 1463 unsigned sp, int modify, bool is_phys) 1464 { 1465 TCGv_reg base = load_gpr(ctx, rb); 1466 TCGv_reg ofs; 1467 1468 /* Note that RX is mutually exclusive with DISP. */ 1469 if (rx) { 1470 ofs = get_temp(ctx); 1471 tcg_gen_shli_reg(ofs, cpu_gr[rx], scale); 1472 tcg_gen_add_reg(ofs, ofs, base); 1473 } else if (disp || modify) { 1474 ofs = get_temp(ctx); 1475 tcg_gen_addi_reg(ofs, base, disp); 1476 } else { 1477 ofs = base; 1478 } 1479 1480 *pofs = ofs; 1481 #ifdef CONFIG_USER_ONLY 1482 *pgva = (modify <= 0 ? ofs : base); 1483 #else 1484 TCGv_tl addr = get_temp_tl(ctx); 1485 tcg_gen_extu_reg_tl(addr, modify <= 0 ? ofs : base); 1486 if (ctx->tb_flags & PSW_W) { 1487 tcg_gen_andi_tl(addr, addr, 0x3fffffffffffffffull); 1488 } 1489 if (!is_phys) { 1490 tcg_gen_or_tl(addr, addr, space_select(ctx, sp, base)); 1491 } 1492 *pgva = addr; 1493 #endif 1494 } 1495 1496 /* Emit a memory load. The modify parameter should be 1497 * < 0 for pre-modify, 1498 * > 0 for post-modify, 1499 * = 0 for no base register update. 1500 */ 1501 static void do_load_32(DisasContext *ctx, TCGv_i32 dest, unsigned rb, 1502 unsigned rx, int scale, target_sreg disp, 1503 unsigned sp, int modify, MemOp mop) 1504 { 1505 TCGv_reg ofs; 1506 TCGv_tl addr; 1507 1508 /* Caller uses nullify_over/nullify_end. */ 1509 assert(ctx->null_cond.c == TCG_COND_NEVER); 1510 1511 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1512 ctx->mmu_idx == MMU_PHYS_IDX); 1513 tcg_gen_qemu_ld_reg(dest, addr, ctx->mmu_idx, mop); 1514 if (modify) { 1515 save_gpr(ctx, rb, ofs); 1516 } 1517 } 1518 1519 static void do_load_64(DisasContext *ctx, TCGv_i64 dest, unsigned rb, 1520 unsigned rx, int scale, target_sreg disp, 1521 unsigned sp, int modify, MemOp mop) 1522 { 1523 TCGv_reg ofs; 1524 TCGv_tl addr; 1525 1526 /* Caller uses nullify_over/nullify_end. */ 1527 assert(ctx->null_cond.c == TCG_COND_NEVER); 1528 1529 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1530 ctx->mmu_idx == MMU_PHYS_IDX); 1531 tcg_gen_qemu_ld_i64(dest, addr, ctx->mmu_idx, mop); 1532 if (modify) { 1533 save_gpr(ctx, rb, ofs); 1534 } 1535 } 1536 1537 static void do_store_32(DisasContext *ctx, TCGv_i32 src, unsigned rb, 1538 unsigned rx, int scale, target_sreg disp, 1539 unsigned sp, int modify, MemOp mop) 1540 { 1541 TCGv_reg ofs; 1542 TCGv_tl addr; 1543 1544 /* Caller uses nullify_over/nullify_end. */ 1545 assert(ctx->null_cond.c == TCG_COND_NEVER); 1546 1547 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1548 ctx->mmu_idx == MMU_PHYS_IDX); 1549 tcg_gen_qemu_st_i32(src, addr, ctx->mmu_idx, mop); 1550 if (modify) { 1551 save_gpr(ctx, rb, ofs); 1552 } 1553 } 1554 1555 static void do_store_64(DisasContext *ctx, TCGv_i64 src, unsigned rb, 1556 unsigned rx, int scale, target_sreg disp, 1557 unsigned sp, int modify, MemOp mop) 1558 { 1559 TCGv_reg ofs; 1560 TCGv_tl addr; 1561 1562 /* Caller uses nullify_over/nullify_end. */ 1563 assert(ctx->null_cond.c == TCG_COND_NEVER); 1564 1565 form_gva(ctx, &addr, &ofs, rb, rx, scale, disp, sp, modify, 1566 ctx->mmu_idx == MMU_PHYS_IDX); 1567 tcg_gen_qemu_st_i64(src, addr, ctx->mmu_idx, mop); 1568 if (modify) { 1569 save_gpr(ctx, rb, ofs); 1570 } 1571 } 1572 1573 #if TARGET_REGISTER_BITS == 64 1574 #define do_load_reg do_load_64 1575 #define do_store_reg do_store_64 1576 #else 1577 #define do_load_reg do_load_32 1578 #define do_store_reg do_store_32 1579 #endif 1580 1581 static bool do_load(DisasContext *ctx, unsigned rt, unsigned rb, 1582 unsigned rx, int scale, target_sreg disp, 1583 unsigned sp, int modify, MemOp mop) 1584 { 1585 TCGv_reg dest; 1586 1587 nullify_over(ctx); 1588 1589 if (modify == 0) { 1590 /* No base register update. */ 1591 dest = dest_gpr(ctx, rt); 1592 } else { 1593 /* Make sure if RT == RB, we see the result of the load. */ 1594 dest = get_temp(ctx); 1595 } 1596 do_load_reg(ctx, dest, rb, rx, scale, disp, sp, modify, mop); 1597 save_gpr(ctx, rt, dest); 1598 1599 return nullify_end(ctx); 1600 } 1601 1602 static bool do_floadw(DisasContext *ctx, unsigned rt, unsigned rb, 1603 unsigned rx, int scale, target_sreg disp, 1604 unsigned sp, int modify) 1605 { 1606 TCGv_i32 tmp; 1607 1608 nullify_over(ctx); 1609 1610 tmp = tcg_temp_new_i32(); 1611 do_load_32(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEUL); 1612 save_frw_i32(rt, tmp); 1613 tcg_temp_free_i32(tmp); 1614 1615 if (rt == 0) { 1616 gen_helper_loaded_fr0(cpu_env); 1617 } 1618 1619 return nullify_end(ctx); 1620 } 1621 1622 static bool trans_fldw(DisasContext *ctx, arg_ldst *a) 1623 { 1624 return do_floadw(ctx, a->t, a->b, a->x, a->scale ? 2 : 0, 1625 a->disp, a->sp, a->m); 1626 } 1627 1628 static bool do_floadd(DisasContext *ctx, unsigned rt, unsigned rb, 1629 unsigned rx, int scale, target_sreg disp, 1630 unsigned sp, int modify) 1631 { 1632 TCGv_i64 tmp; 1633 1634 nullify_over(ctx); 1635 1636 tmp = tcg_temp_new_i64(); 1637 do_load_64(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEQ); 1638 save_frd(rt, tmp); 1639 tcg_temp_free_i64(tmp); 1640 1641 if (rt == 0) { 1642 gen_helper_loaded_fr0(cpu_env); 1643 } 1644 1645 return nullify_end(ctx); 1646 } 1647 1648 static bool trans_fldd(DisasContext *ctx, arg_ldst *a) 1649 { 1650 return do_floadd(ctx, a->t, a->b, a->x, a->scale ? 3 : 0, 1651 a->disp, a->sp, a->m); 1652 } 1653 1654 static bool do_store(DisasContext *ctx, unsigned rt, unsigned rb, 1655 target_sreg disp, unsigned sp, 1656 int modify, MemOp mop) 1657 { 1658 nullify_over(ctx); 1659 do_store_reg(ctx, load_gpr(ctx, rt), rb, 0, 0, disp, sp, modify, mop); 1660 return nullify_end(ctx); 1661 } 1662 1663 static bool do_fstorew(DisasContext *ctx, unsigned rt, unsigned rb, 1664 unsigned rx, int scale, target_sreg disp, 1665 unsigned sp, int modify) 1666 { 1667 TCGv_i32 tmp; 1668 1669 nullify_over(ctx); 1670 1671 tmp = load_frw_i32(rt); 1672 do_store_32(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEUL); 1673 tcg_temp_free_i32(tmp); 1674 1675 return nullify_end(ctx); 1676 } 1677 1678 static bool trans_fstw(DisasContext *ctx, arg_ldst *a) 1679 { 1680 return do_fstorew(ctx, a->t, a->b, a->x, a->scale ? 2 : 0, 1681 a->disp, a->sp, a->m); 1682 } 1683 1684 static bool do_fstored(DisasContext *ctx, unsigned rt, unsigned rb, 1685 unsigned rx, int scale, target_sreg disp, 1686 unsigned sp, int modify) 1687 { 1688 TCGv_i64 tmp; 1689 1690 nullify_over(ctx); 1691 1692 tmp = load_frd(rt); 1693 do_store_64(ctx, tmp, rb, rx, scale, disp, sp, modify, MO_TEQ); 1694 tcg_temp_free_i64(tmp); 1695 1696 return nullify_end(ctx); 1697 } 1698 1699 static bool trans_fstd(DisasContext *ctx, arg_ldst *a) 1700 { 1701 return do_fstored(ctx, a->t, a->b, a->x, a->scale ? 3 : 0, 1702 a->disp, a->sp, a->m); 1703 } 1704 1705 static bool do_fop_wew(DisasContext *ctx, unsigned rt, unsigned ra, 1706 void (*func)(TCGv_i32, TCGv_env, TCGv_i32)) 1707 { 1708 TCGv_i32 tmp; 1709 1710 nullify_over(ctx); 1711 tmp = load_frw0_i32(ra); 1712 1713 func(tmp, cpu_env, tmp); 1714 1715 save_frw_i32(rt, tmp); 1716 tcg_temp_free_i32(tmp); 1717 return nullify_end(ctx); 1718 } 1719 1720 static bool do_fop_wed(DisasContext *ctx, unsigned rt, unsigned ra, 1721 void (*func)(TCGv_i32, TCGv_env, TCGv_i64)) 1722 { 1723 TCGv_i32 dst; 1724 TCGv_i64 src; 1725 1726 nullify_over(ctx); 1727 src = load_frd(ra); 1728 dst = tcg_temp_new_i32(); 1729 1730 func(dst, cpu_env, src); 1731 1732 tcg_temp_free_i64(src); 1733 save_frw_i32(rt, dst); 1734 tcg_temp_free_i32(dst); 1735 return nullify_end(ctx); 1736 } 1737 1738 static bool do_fop_ded(DisasContext *ctx, unsigned rt, unsigned ra, 1739 void (*func)(TCGv_i64, TCGv_env, TCGv_i64)) 1740 { 1741 TCGv_i64 tmp; 1742 1743 nullify_over(ctx); 1744 tmp = load_frd0(ra); 1745 1746 func(tmp, cpu_env, tmp); 1747 1748 save_frd(rt, tmp); 1749 tcg_temp_free_i64(tmp); 1750 return nullify_end(ctx); 1751 } 1752 1753 static bool do_fop_dew(DisasContext *ctx, unsigned rt, unsigned ra, 1754 void (*func)(TCGv_i64, TCGv_env, TCGv_i32)) 1755 { 1756 TCGv_i32 src; 1757 TCGv_i64 dst; 1758 1759 nullify_over(ctx); 1760 src = load_frw0_i32(ra); 1761 dst = tcg_temp_new_i64(); 1762 1763 func(dst, cpu_env, src); 1764 1765 tcg_temp_free_i32(src); 1766 save_frd(rt, dst); 1767 tcg_temp_free_i64(dst); 1768 return nullify_end(ctx); 1769 } 1770 1771 static bool do_fop_weww(DisasContext *ctx, unsigned rt, 1772 unsigned ra, unsigned rb, 1773 void (*func)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32)) 1774 { 1775 TCGv_i32 a, b; 1776 1777 nullify_over(ctx); 1778 a = load_frw0_i32(ra); 1779 b = load_frw0_i32(rb); 1780 1781 func(a, cpu_env, a, b); 1782 1783 tcg_temp_free_i32(b); 1784 save_frw_i32(rt, a); 1785 tcg_temp_free_i32(a); 1786 return nullify_end(ctx); 1787 } 1788 1789 static bool do_fop_dedd(DisasContext *ctx, unsigned rt, 1790 unsigned ra, unsigned rb, 1791 void (*func)(TCGv_i64, TCGv_env, TCGv_i64, TCGv_i64)) 1792 { 1793 TCGv_i64 a, b; 1794 1795 nullify_over(ctx); 1796 a = load_frd0(ra); 1797 b = load_frd0(rb); 1798 1799 func(a, cpu_env, a, b); 1800 1801 tcg_temp_free_i64(b); 1802 save_frd(rt, a); 1803 tcg_temp_free_i64(a); 1804 return nullify_end(ctx); 1805 } 1806 1807 /* Emit an unconditional branch to a direct target, which may or may not 1808 have already had nullification handled. */ 1809 static bool do_dbranch(DisasContext *ctx, target_ureg dest, 1810 unsigned link, bool is_n) 1811 { 1812 if (ctx->null_cond.c == TCG_COND_NEVER && ctx->null_lab == NULL) { 1813 if (link != 0) { 1814 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); 1815 } 1816 ctx->iaoq_n = dest; 1817 if (is_n) { 1818 ctx->null_cond.c = TCG_COND_ALWAYS; 1819 } 1820 } else { 1821 nullify_over(ctx); 1822 1823 if (link != 0) { 1824 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); 1825 } 1826 1827 if (is_n && use_nullify_skip(ctx)) { 1828 nullify_set(ctx, 0); 1829 gen_goto_tb(ctx, 0, dest, dest + 4); 1830 } else { 1831 nullify_set(ctx, is_n); 1832 gen_goto_tb(ctx, 0, ctx->iaoq_b, dest); 1833 } 1834 1835 nullify_end(ctx); 1836 1837 nullify_set(ctx, 0); 1838 gen_goto_tb(ctx, 1, ctx->iaoq_b, ctx->iaoq_n); 1839 ctx->base.is_jmp = DISAS_NORETURN; 1840 } 1841 return true; 1842 } 1843 1844 /* Emit a conditional branch to a direct target. If the branch itself 1845 is nullified, we should have already used nullify_over. */ 1846 static bool do_cbranch(DisasContext *ctx, target_sreg disp, bool is_n, 1847 DisasCond *cond) 1848 { 1849 target_ureg dest = iaoq_dest(ctx, disp); 1850 TCGLabel *taken = NULL; 1851 TCGCond c = cond->c; 1852 bool n; 1853 1854 assert(ctx->null_cond.c == TCG_COND_NEVER); 1855 1856 /* Handle TRUE and NEVER as direct branches. */ 1857 if (c == TCG_COND_ALWAYS) { 1858 return do_dbranch(ctx, dest, 0, is_n && disp >= 0); 1859 } 1860 if (c == TCG_COND_NEVER) { 1861 return do_dbranch(ctx, ctx->iaoq_n, 0, is_n && disp < 0); 1862 } 1863 1864 taken = gen_new_label(); 1865 cond_prep(cond); 1866 tcg_gen_brcond_reg(c, cond->a0, cond->a1, taken); 1867 cond_free(cond); 1868 1869 /* Not taken: Condition not satisfied; nullify on backward branches. */ 1870 n = is_n && disp < 0; 1871 if (n && use_nullify_skip(ctx)) { 1872 nullify_set(ctx, 0); 1873 gen_goto_tb(ctx, 0, ctx->iaoq_n, ctx->iaoq_n + 4); 1874 } else { 1875 if (!n && ctx->null_lab) { 1876 gen_set_label(ctx->null_lab); 1877 ctx->null_lab = NULL; 1878 } 1879 nullify_set(ctx, n); 1880 if (ctx->iaoq_n == -1) { 1881 /* The temporary iaoq_n_var died at the branch above. 1882 Regenerate it here instead of saving it. */ 1883 tcg_gen_addi_reg(ctx->iaoq_n_var, cpu_iaoq_b, 4); 1884 } 1885 gen_goto_tb(ctx, 0, ctx->iaoq_b, ctx->iaoq_n); 1886 } 1887 1888 gen_set_label(taken); 1889 1890 /* Taken: Condition satisfied; nullify on forward branches. */ 1891 n = is_n && disp >= 0; 1892 if (n && use_nullify_skip(ctx)) { 1893 nullify_set(ctx, 0); 1894 gen_goto_tb(ctx, 1, dest, dest + 4); 1895 } else { 1896 nullify_set(ctx, n); 1897 gen_goto_tb(ctx, 1, ctx->iaoq_b, dest); 1898 } 1899 1900 /* Not taken: the branch itself was nullified. */ 1901 if (ctx->null_lab) { 1902 gen_set_label(ctx->null_lab); 1903 ctx->null_lab = NULL; 1904 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 1905 } else { 1906 ctx->base.is_jmp = DISAS_NORETURN; 1907 } 1908 return true; 1909 } 1910 1911 /* Emit an unconditional branch to an indirect target. This handles 1912 nullification of the branch itself. */ 1913 static bool do_ibranch(DisasContext *ctx, TCGv_reg dest, 1914 unsigned link, bool is_n) 1915 { 1916 TCGv_reg a0, a1, next, tmp; 1917 TCGCond c; 1918 1919 assert(ctx->null_lab == NULL); 1920 1921 if (ctx->null_cond.c == TCG_COND_NEVER) { 1922 if (link != 0) { 1923 copy_iaoq_entry(cpu_gr[link], ctx->iaoq_n, ctx->iaoq_n_var); 1924 } 1925 next = get_temp(ctx); 1926 tcg_gen_mov_reg(next, dest); 1927 if (is_n) { 1928 if (use_nullify_skip(ctx)) { 1929 tcg_gen_mov_reg(cpu_iaoq_f, next); 1930 tcg_gen_addi_reg(cpu_iaoq_b, next, 4); 1931 nullify_set(ctx, 0); 1932 ctx->base.is_jmp = DISAS_IAQ_N_UPDATED; 1933 return true; 1934 } 1935 ctx->null_cond.c = TCG_COND_ALWAYS; 1936 } 1937 ctx->iaoq_n = -1; 1938 ctx->iaoq_n_var = next; 1939 } else if (is_n && use_nullify_skip(ctx)) { 1940 /* The (conditional) branch, B, nullifies the next insn, N, 1941 and we're allowed to skip execution N (no single-step or 1942 tracepoint in effect). Since the goto_ptr that we must use 1943 for the indirect branch consumes no special resources, we 1944 can (conditionally) skip B and continue execution. */ 1945 /* The use_nullify_skip test implies we have a known control path. */ 1946 tcg_debug_assert(ctx->iaoq_b != -1); 1947 tcg_debug_assert(ctx->iaoq_n != -1); 1948 1949 /* We do have to handle the non-local temporary, DEST, before 1950 branching. Since IOAQ_F is not really live at this point, we 1951 can simply store DEST optimistically. Similarly with IAOQ_B. */ 1952 tcg_gen_mov_reg(cpu_iaoq_f, dest); 1953 tcg_gen_addi_reg(cpu_iaoq_b, dest, 4); 1954 1955 nullify_over(ctx); 1956 if (link != 0) { 1957 tcg_gen_movi_reg(cpu_gr[link], ctx->iaoq_n); 1958 } 1959 tcg_gen_lookup_and_goto_ptr(); 1960 return nullify_end(ctx); 1961 } else { 1962 cond_prep(&ctx->null_cond); 1963 c = ctx->null_cond.c; 1964 a0 = ctx->null_cond.a0; 1965 a1 = ctx->null_cond.a1; 1966 1967 tmp = tcg_temp_new(); 1968 next = get_temp(ctx); 1969 1970 copy_iaoq_entry(tmp, ctx->iaoq_n, ctx->iaoq_n_var); 1971 tcg_gen_movcond_reg(c, next, a0, a1, tmp, dest); 1972 ctx->iaoq_n = -1; 1973 ctx->iaoq_n_var = next; 1974 1975 if (link != 0) { 1976 tcg_gen_movcond_reg(c, cpu_gr[link], a0, a1, cpu_gr[link], tmp); 1977 } 1978 1979 if (is_n) { 1980 /* The branch nullifies the next insn, which means the state of N 1981 after the branch is the inverse of the state of N that applied 1982 to the branch. */ 1983 tcg_gen_setcond_reg(tcg_invert_cond(c), cpu_psw_n, a0, a1); 1984 cond_free(&ctx->null_cond); 1985 ctx->null_cond = cond_make_n(); 1986 ctx->psw_n_nonzero = true; 1987 } else { 1988 cond_free(&ctx->null_cond); 1989 } 1990 } 1991 return true; 1992 } 1993 1994 /* Implement 1995 * if (IAOQ_Front{30..31} < GR[b]{30..31}) 1996 * IAOQ_Next{30..31} ← GR[b]{30..31}; 1997 * else 1998 * IAOQ_Next{30..31} ← IAOQ_Front{30..31}; 1999 * which keeps the privilege level from being increased. 2000 */ 2001 static TCGv_reg do_ibranch_priv(DisasContext *ctx, TCGv_reg offset) 2002 { 2003 TCGv_reg dest; 2004 switch (ctx->privilege) { 2005 case 0: 2006 /* Privilege 0 is maximum and is allowed to decrease. */ 2007 return offset; 2008 case 3: 2009 /* Privilege 3 is minimum and is never allowed to increase. */ 2010 dest = get_temp(ctx); 2011 tcg_gen_ori_reg(dest, offset, 3); 2012 break; 2013 default: 2014 dest = get_temp(ctx); 2015 tcg_gen_andi_reg(dest, offset, -4); 2016 tcg_gen_ori_reg(dest, dest, ctx->privilege); 2017 tcg_gen_movcond_reg(TCG_COND_GTU, dest, dest, offset, dest, offset); 2018 break; 2019 } 2020 return dest; 2021 } 2022 2023 #ifdef CONFIG_USER_ONLY 2024 /* On Linux, page zero is normally marked execute only + gateway. 2025 Therefore normal read or write is supposed to fail, but specific 2026 offsets have kernel code mapped to raise permissions to implement 2027 system calls. Handling this via an explicit check here, rather 2028 in than the "be disp(sr2,r0)" instruction that probably sent us 2029 here, is the easiest way to handle the branch delay slot on the 2030 aforementioned BE. */ 2031 static void do_page_zero(DisasContext *ctx) 2032 { 2033 /* If by some means we get here with PSW[N]=1, that implies that 2034 the B,GATE instruction would be skipped, and we'd fault on the 2035 next insn within the privilaged page. */ 2036 switch (ctx->null_cond.c) { 2037 case TCG_COND_NEVER: 2038 break; 2039 case TCG_COND_ALWAYS: 2040 tcg_gen_movi_reg(cpu_psw_n, 0); 2041 goto do_sigill; 2042 default: 2043 /* Since this is always the first (and only) insn within the 2044 TB, we should know the state of PSW[N] from TB->FLAGS. */ 2045 g_assert_not_reached(); 2046 } 2047 2048 /* Check that we didn't arrive here via some means that allowed 2049 non-sequential instruction execution. Normally the PSW[B] bit 2050 detects this by disallowing the B,GATE instruction to execute 2051 under such conditions. */ 2052 if (ctx->iaoq_b != ctx->iaoq_f + 4) { 2053 goto do_sigill; 2054 } 2055 2056 switch (ctx->iaoq_f & -4) { 2057 case 0x00: /* Null pointer call */ 2058 gen_excp_1(EXCP_IMP); 2059 ctx->base.is_jmp = DISAS_NORETURN; 2060 break; 2061 2062 case 0xb0: /* LWS */ 2063 gen_excp_1(EXCP_SYSCALL_LWS); 2064 ctx->base.is_jmp = DISAS_NORETURN; 2065 break; 2066 2067 case 0xe0: /* SET_THREAD_POINTER */ 2068 tcg_gen_st_reg(cpu_gr[26], cpu_env, offsetof(CPUHPPAState, cr[27])); 2069 tcg_gen_ori_reg(cpu_iaoq_f, cpu_gr[31], 3); 2070 tcg_gen_addi_reg(cpu_iaoq_b, cpu_iaoq_f, 4); 2071 ctx->base.is_jmp = DISAS_IAQ_N_UPDATED; 2072 break; 2073 2074 case 0x100: /* SYSCALL */ 2075 gen_excp_1(EXCP_SYSCALL); 2076 ctx->base.is_jmp = DISAS_NORETURN; 2077 break; 2078 2079 default: 2080 do_sigill: 2081 gen_excp_1(EXCP_ILL); 2082 ctx->base.is_jmp = DISAS_NORETURN; 2083 break; 2084 } 2085 } 2086 #endif 2087 2088 static bool trans_nop(DisasContext *ctx, arg_nop *a) 2089 { 2090 cond_free(&ctx->null_cond); 2091 return true; 2092 } 2093 2094 static bool trans_break(DisasContext *ctx, arg_break *a) 2095 { 2096 return gen_excp_iir(ctx, EXCP_BREAK); 2097 } 2098 2099 static bool trans_sync(DisasContext *ctx, arg_sync *a) 2100 { 2101 /* No point in nullifying the memory barrier. */ 2102 tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL); 2103 2104 cond_free(&ctx->null_cond); 2105 return true; 2106 } 2107 2108 static bool trans_mfia(DisasContext *ctx, arg_mfia *a) 2109 { 2110 unsigned rt = a->t; 2111 TCGv_reg tmp = dest_gpr(ctx, rt); 2112 tcg_gen_movi_reg(tmp, ctx->iaoq_f); 2113 save_gpr(ctx, rt, tmp); 2114 2115 cond_free(&ctx->null_cond); 2116 return true; 2117 } 2118 2119 static bool trans_mfsp(DisasContext *ctx, arg_mfsp *a) 2120 { 2121 unsigned rt = a->t; 2122 unsigned rs = a->sp; 2123 TCGv_i64 t0 = tcg_temp_new_i64(); 2124 TCGv_reg t1 = tcg_temp_new(); 2125 2126 load_spr(ctx, t0, rs); 2127 tcg_gen_shri_i64(t0, t0, 32); 2128 tcg_gen_trunc_i64_reg(t1, t0); 2129 2130 save_gpr(ctx, rt, t1); 2131 tcg_temp_free(t1); 2132 tcg_temp_free_i64(t0); 2133 2134 cond_free(&ctx->null_cond); 2135 return true; 2136 } 2137 2138 static bool trans_mfctl(DisasContext *ctx, arg_mfctl *a) 2139 { 2140 unsigned rt = a->t; 2141 unsigned ctl = a->r; 2142 TCGv_reg tmp; 2143 2144 switch (ctl) { 2145 case CR_SAR: 2146 #ifdef TARGET_HPPA64 2147 if (a->e == 0) { 2148 /* MFSAR without ,W masks low 5 bits. */ 2149 tmp = dest_gpr(ctx, rt); 2150 tcg_gen_andi_reg(tmp, cpu_sar, 31); 2151 save_gpr(ctx, rt, tmp); 2152 goto done; 2153 } 2154 #endif 2155 save_gpr(ctx, rt, cpu_sar); 2156 goto done; 2157 case CR_IT: /* Interval Timer */ 2158 /* FIXME: Respect PSW_S bit. */ 2159 nullify_over(ctx); 2160 tmp = dest_gpr(ctx, rt); 2161 if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) { 2162 gen_io_start(); 2163 gen_helper_read_interval_timer(tmp); 2164 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2165 } else { 2166 gen_helper_read_interval_timer(tmp); 2167 } 2168 save_gpr(ctx, rt, tmp); 2169 return nullify_end(ctx); 2170 case 26: 2171 case 27: 2172 break; 2173 default: 2174 /* All other control registers are privileged. */ 2175 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); 2176 break; 2177 } 2178 2179 tmp = get_temp(ctx); 2180 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2181 save_gpr(ctx, rt, tmp); 2182 2183 done: 2184 cond_free(&ctx->null_cond); 2185 return true; 2186 } 2187 2188 static bool trans_mtsp(DisasContext *ctx, arg_mtsp *a) 2189 { 2190 unsigned rr = a->r; 2191 unsigned rs = a->sp; 2192 TCGv_i64 t64; 2193 2194 if (rs >= 5) { 2195 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); 2196 } 2197 nullify_over(ctx); 2198 2199 t64 = tcg_temp_new_i64(); 2200 tcg_gen_extu_reg_i64(t64, load_gpr(ctx, rr)); 2201 tcg_gen_shli_i64(t64, t64, 32); 2202 2203 if (rs >= 4) { 2204 tcg_gen_st_i64(t64, cpu_env, offsetof(CPUHPPAState, sr[rs])); 2205 ctx->tb_flags &= ~TB_FLAG_SR_SAME; 2206 } else { 2207 tcg_gen_mov_i64(cpu_sr[rs], t64); 2208 } 2209 tcg_temp_free_i64(t64); 2210 2211 return nullify_end(ctx); 2212 } 2213 2214 static bool trans_mtctl(DisasContext *ctx, arg_mtctl *a) 2215 { 2216 unsigned ctl = a->t; 2217 TCGv_reg reg; 2218 TCGv_reg tmp; 2219 2220 if (ctl == CR_SAR) { 2221 reg = load_gpr(ctx, a->r); 2222 tmp = tcg_temp_new(); 2223 tcg_gen_andi_reg(tmp, reg, TARGET_REGISTER_BITS - 1); 2224 save_or_nullify(ctx, cpu_sar, tmp); 2225 tcg_temp_free(tmp); 2226 2227 cond_free(&ctx->null_cond); 2228 return true; 2229 } 2230 2231 /* All other control registers are privileged or read-only. */ 2232 CHECK_MOST_PRIVILEGED(EXCP_PRIV_REG); 2233 2234 #ifndef CONFIG_USER_ONLY 2235 nullify_over(ctx); 2236 reg = load_gpr(ctx, a->r); 2237 2238 switch (ctl) { 2239 case CR_IT: 2240 gen_helper_write_interval_timer(cpu_env, reg); 2241 break; 2242 case CR_EIRR: 2243 gen_helper_write_eirr(cpu_env, reg); 2244 break; 2245 case CR_EIEM: 2246 gen_helper_write_eiem(cpu_env, reg); 2247 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2248 break; 2249 2250 case CR_IIASQ: 2251 case CR_IIAOQ: 2252 /* FIXME: Respect PSW_Q bit */ 2253 /* The write advances the queue and stores to the back element. */ 2254 tmp = get_temp(ctx); 2255 tcg_gen_ld_reg(tmp, cpu_env, 2256 offsetof(CPUHPPAState, cr_back[ctl - CR_IIASQ])); 2257 tcg_gen_st_reg(tmp, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2258 tcg_gen_st_reg(reg, cpu_env, 2259 offsetof(CPUHPPAState, cr_back[ctl - CR_IIASQ])); 2260 break; 2261 2262 case CR_PID1: 2263 case CR_PID2: 2264 case CR_PID3: 2265 case CR_PID4: 2266 tcg_gen_st_reg(reg, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2267 #ifndef CONFIG_USER_ONLY 2268 gen_helper_change_prot_id(cpu_env); 2269 #endif 2270 break; 2271 2272 default: 2273 tcg_gen_st_reg(reg, cpu_env, offsetof(CPUHPPAState, cr[ctl])); 2274 break; 2275 } 2276 return nullify_end(ctx); 2277 #endif 2278 } 2279 2280 static bool trans_mtsarcm(DisasContext *ctx, arg_mtsarcm *a) 2281 { 2282 TCGv_reg tmp = tcg_temp_new(); 2283 2284 tcg_gen_not_reg(tmp, load_gpr(ctx, a->r)); 2285 tcg_gen_andi_reg(tmp, tmp, TARGET_REGISTER_BITS - 1); 2286 save_or_nullify(ctx, cpu_sar, tmp); 2287 tcg_temp_free(tmp); 2288 2289 cond_free(&ctx->null_cond); 2290 return true; 2291 } 2292 2293 static bool trans_ldsid(DisasContext *ctx, arg_ldsid *a) 2294 { 2295 TCGv_reg dest = dest_gpr(ctx, a->t); 2296 2297 #ifdef CONFIG_USER_ONLY 2298 /* We don't implement space registers in user mode. */ 2299 tcg_gen_movi_reg(dest, 0); 2300 #else 2301 TCGv_i64 t0 = tcg_temp_new_i64(); 2302 2303 tcg_gen_mov_i64(t0, space_select(ctx, a->sp, load_gpr(ctx, a->b))); 2304 tcg_gen_shri_i64(t0, t0, 32); 2305 tcg_gen_trunc_i64_reg(dest, t0); 2306 2307 tcg_temp_free_i64(t0); 2308 #endif 2309 save_gpr(ctx, a->t, dest); 2310 2311 cond_free(&ctx->null_cond); 2312 return true; 2313 } 2314 2315 static bool trans_rsm(DisasContext *ctx, arg_rsm *a) 2316 { 2317 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2318 #ifndef CONFIG_USER_ONLY 2319 TCGv_reg tmp; 2320 2321 nullify_over(ctx); 2322 2323 tmp = get_temp(ctx); 2324 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, psw)); 2325 tcg_gen_andi_reg(tmp, tmp, ~a->i); 2326 gen_helper_swap_system_mask(tmp, cpu_env, tmp); 2327 save_gpr(ctx, a->t, tmp); 2328 2329 /* Exit the TB to recognize new interrupts, e.g. PSW_M. */ 2330 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2331 return nullify_end(ctx); 2332 #endif 2333 } 2334 2335 static bool trans_ssm(DisasContext *ctx, arg_ssm *a) 2336 { 2337 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2338 #ifndef CONFIG_USER_ONLY 2339 TCGv_reg tmp; 2340 2341 nullify_over(ctx); 2342 2343 tmp = get_temp(ctx); 2344 tcg_gen_ld_reg(tmp, cpu_env, offsetof(CPUHPPAState, psw)); 2345 tcg_gen_ori_reg(tmp, tmp, a->i); 2346 gen_helper_swap_system_mask(tmp, cpu_env, tmp); 2347 save_gpr(ctx, a->t, tmp); 2348 2349 /* Exit the TB to recognize new interrupts, e.g. PSW_I. */ 2350 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2351 return nullify_end(ctx); 2352 #endif 2353 } 2354 2355 static bool trans_mtsm(DisasContext *ctx, arg_mtsm *a) 2356 { 2357 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2358 #ifndef CONFIG_USER_ONLY 2359 TCGv_reg tmp, reg; 2360 nullify_over(ctx); 2361 2362 reg = load_gpr(ctx, a->r); 2363 tmp = get_temp(ctx); 2364 gen_helper_swap_system_mask(tmp, cpu_env, reg); 2365 2366 /* Exit the TB to recognize new interrupts. */ 2367 ctx->base.is_jmp = DISAS_IAQ_N_STALE_EXIT; 2368 return nullify_end(ctx); 2369 #endif 2370 } 2371 2372 static bool do_rfi(DisasContext *ctx, bool rfi_r) 2373 { 2374 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2375 #ifndef CONFIG_USER_ONLY 2376 nullify_over(ctx); 2377 2378 if (rfi_r) { 2379 gen_helper_rfi_r(cpu_env); 2380 } else { 2381 gen_helper_rfi(cpu_env); 2382 } 2383 /* Exit the TB to recognize new interrupts. */ 2384 if (ctx->base.singlestep_enabled) { 2385 gen_excp_1(EXCP_DEBUG); 2386 } else { 2387 tcg_gen_exit_tb(NULL, 0); 2388 } 2389 ctx->base.is_jmp = DISAS_NORETURN; 2390 2391 return nullify_end(ctx); 2392 #endif 2393 } 2394 2395 static bool trans_rfi(DisasContext *ctx, arg_rfi *a) 2396 { 2397 return do_rfi(ctx, false); 2398 } 2399 2400 static bool trans_rfi_r(DisasContext *ctx, arg_rfi_r *a) 2401 { 2402 return do_rfi(ctx, true); 2403 } 2404 2405 static bool trans_halt(DisasContext *ctx, arg_halt *a) 2406 { 2407 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2408 #ifndef CONFIG_USER_ONLY 2409 nullify_over(ctx); 2410 gen_helper_halt(cpu_env); 2411 ctx->base.is_jmp = DISAS_NORETURN; 2412 return nullify_end(ctx); 2413 #endif 2414 } 2415 2416 static bool trans_reset(DisasContext *ctx, arg_reset *a) 2417 { 2418 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2419 #ifndef CONFIG_USER_ONLY 2420 nullify_over(ctx); 2421 gen_helper_reset(cpu_env); 2422 ctx->base.is_jmp = DISAS_NORETURN; 2423 return nullify_end(ctx); 2424 #endif 2425 } 2426 2427 static bool trans_nop_addrx(DisasContext *ctx, arg_ldst *a) 2428 { 2429 if (a->m) { 2430 TCGv_reg dest = dest_gpr(ctx, a->b); 2431 TCGv_reg src1 = load_gpr(ctx, a->b); 2432 TCGv_reg src2 = load_gpr(ctx, a->x); 2433 2434 /* The only thing we need to do is the base register modification. */ 2435 tcg_gen_add_reg(dest, src1, src2); 2436 save_gpr(ctx, a->b, dest); 2437 } 2438 cond_free(&ctx->null_cond); 2439 return true; 2440 } 2441 2442 static bool trans_probe(DisasContext *ctx, arg_probe *a) 2443 { 2444 TCGv_reg dest, ofs; 2445 TCGv_i32 level, want; 2446 TCGv_tl addr; 2447 2448 nullify_over(ctx); 2449 2450 dest = dest_gpr(ctx, a->t); 2451 form_gva(ctx, &addr, &ofs, a->b, 0, 0, 0, a->sp, 0, false); 2452 2453 if (a->imm) { 2454 level = tcg_const_i32(a->ri); 2455 } else { 2456 level = tcg_temp_new_i32(); 2457 tcg_gen_trunc_reg_i32(level, load_gpr(ctx, a->ri)); 2458 tcg_gen_andi_i32(level, level, 3); 2459 } 2460 want = tcg_const_i32(a->write ? PAGE_WRITE : PAGE_READ); 2461 2462 gen_helper_probe(dest, cpu_env, addr, level, want); 2463 2464 tcg_temp_free_i32(want); 2465 tcg_temp_free_i32(level); 2466 2467 save_gpr(ctx, a->t, dest); 2468 return nullify_end(ctx); 2469 } 2470 2471 static bool trans_ixtlbx(DisasContext *ctx, arg_ixtlbx *a) 2472 { 2473 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2474 #ifndef CONFIG_USER_ONLY 2475 TCGv_tl addr; 2476 TCGv_reg ofs, reg; 2477 2478 nullify_over(ctx); 2479 2480 form_gva(ctx, &addr, &ofs, a->b, 0, 0, 0, a->sp, 0, false); 2481 reg = load_gpr(ctx, a->r); 2482 if (a->addr) { 2483 gen_helper_itlba(cpu_env, addr, reg); 2484 } else { 2485 gen_helper_itlbp(cpu_env, addr, reg); 2486 } 2487 2488 /* Exit TB for TLB change if mmu is enabled. */ 2489 if (ctx->tb_flags & PSW_C) { 2490 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2491 } 2492 return nullify_end(ctx); 2493 #endif 2494 } 2495 2496 static bool trans_pxtlbx(DisasContext *ctx, arg_pxtlbx *a) 2497 { 2498 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2499 #ifndef CONFIG_USER_ONLY 2500 TCGv_tl addr; 2501 TCGv_reg ofs; 2502 2503 nullify_over(ctx); 2504 2505 form_gva(ctx, &addr, &ofs, a->b, a->x, 0, 0, a->sp, a->m, false); 2506 if (a->m) { 2507 save_gpr(ctx, a->b, ofs); 2508 } 2509 if (a->local) { 2510 gen_helper_ptlbe(cpu_env); 2511 } else { 2512 gen_helper_ptlb(cpu_env, addr); 2513 } 2514 2515 /* Exit TB for TLB change if mmu is enabled. */ 2516 if (ctx->tb_flags & PSW_C) { 2517 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2518 } 2519 return nullify_end(ctx); 2520 #endif 2521 } 2522 2523 /* 2524 * Implement the pcxl and pcxl2 Fast TLB Insert instructions. 2525 * See 2526 * https://parisc.wiki.kernel.org/images-parisc/a/a9/Pcxl2_ers.pdf 2527 * page 13-9 (195/206) 2528 */ 2529 static bool trans_ixtlbxf(DisasContext *ctx, arg_ixtlbxf *a) 2530 { 2531 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2532 #ifndef CONFIG_USER_ONLY 2533 TCGv_tl addr, atl, stl; 2534 TCGv_reg reg; 2535 2536 nullify_over(ctx); 2537 2538 /* 2539 * FIXME: 2540 * if (not (pcxl or pcxl2)) 2541 * return gen_illegal(ctx); 2542 * 2543 * Note for future: these are 32-bit systems; no hppa64. 2544 */ 2545 2546 atl = tcg_temp_new_tl(); 2547 stl = tcg_temp_new_tl(); 2548 addr = tcg_temp_new_tl(); 2549 2550 tcg_gen_ld32u_i64(stl, cpu_env, 2551 a->data ? offsetof(CPUHPPAState, cr[CR_ISR]) 2552 : offsetof(CPUHPPAState, cr[CR_IIASQ])); 2553 tcg_gen_ld32u_i64(atl, cpu_env, 2554 a->data ? offsetof(CPUHPPAState, cr[CR_IOR]) 2555 : offsetof(CPUHPPAState, cr[CR_IIAOQ])); 2556 tcg_gen_shli_i64(stl, stl, 32); 2557 tcg_gen_or_tl(addr, atl, stl); 2558 tcg_temp_free_tl(atl); 2559 tcg_temp_free_tl(stl); 2560 2561 reg = load_gpr(ctx, a->r); 2562 if (a->addr) { 2563 gen_helper_itlba(cpu_env, addr, reg); 2564 } else { 2565 gen_helper_itlbp(cpu_env, addr, reg); 2566 } 2567 tcg_temp_free_tl(addr); 2568 2569 /* Exit TB for TLB change if mmu is enabled. */ 2570 if (ctx->tb_flags & PSW_C) { 2571 ctx->base.is_jmp = DISAS_IAQ_N_STALE; 2572 } 2573 return nullify_end(ctx); 2574 #endif 2575 } 2576 2577 static bool trans_lpa(DisasContext *ctx, arg_ldst *a) 2578 { 2579 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2580 #ifndef CONFIG_USER_ONLY 2581 TCGv_tl vaddr; 2582 TCGv_reg ofs, paddr; 2583 2584 nullify_over(ctx); 2585 2586 form_gva(ctx, &vaddr, &ofs, a->b, a->x, 0, 0, a->sp, a->m, false); 2587 2588 paddr = tcg_temp_new(); 2589 gen_helper_lpa(paddr, cpu_env, vaddr); 2590 2591 /* Note that physical address result overrides base modification. */ 2592 if (a->m) { 2593 save_gpr(ctx, a->b, ofs); 2594 } 2595 save_gpr(ctx, a->t, paddr); 2596 tcg_temp_free(paddr); 2597 2598 return nullify_end(ctx); 2599 #endif 2600 } 2601 2602 static bool trans_lci(DisasContext *ctx, arg_lci *a) 2603 { 2604 TCGv_reg ci; 2605 2606 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 2607 2608 /* The Coherence Index is an implementation-defined function of the 2609 physical address. Two addresses with the same CI have a coherent 2610 view of the cache. Our implementation is to return 0 for all, 2611 since the entire address space is coherent. */ 2612 ci = tcg_const_reg(0); 2613 save_gpr(ctx, a->t, ci); 2614 tcg_temp_free(ci); 2615 2616 cond_free(&ctx->null_cond); 2617 return true; 2618 } 2619 2620 static bool trans_add(DisasContext *ctx, arg_rrr_cf_sh *a) 2621 { 2622 return do_add_reg(ctx, a, false, false, false, false); 2623 } 2624 2625 static bool trans_add_l(DisasContext *ctx, arg_rrr_cf_sh *a) 2626 { 2627 return do_add_reg(ctx, a, true, false, false, false); 2628 } 2629 2630 static bool trans_add_tsv(DisasContext *ctx, arg_rrr_cf_sh *a) 2631 { 2632 return do_add_reg(ctx, a, false, true, false, false); 2633 } 2634 2635 static bool trans_add_c(DisasContext *ctx, arg_rrr_cf_sh *a) 2636 { 2637 return do_add_reg(ctx, a, false, false, false, true); 2638 } 2639 2640 static bool trans_add_c_tsv(DisasContext *ctx, arg_rrr_cf_sh *a) 2641 { 2642 return do_add_reg(ctx, a, false, true, false, true); 2643 } 2644 2645 static bool trans_sub(DisasContext *ctx, arg_rrr_cf *a) 2646 { 2647 return do_sub_reg(ctx, a, false, false, false); 2648 } 2649 2650 static bool trans_sub_tsv(DisasContext *ctx, arg_rrr_cf *a) 2651 { 2652 return do_sub_reg(ctx, a, true, false, false); 2653 } 2654 2655 static bool trans_sub_tc(DisasContext *ctx, arg_rrr_cf *a) 2656 { 2657 return do_sub_reg(ctx, a, false, false, true); 2658 } 2659 2660 static bool trans_sub_tsv_tc(DisasContext *ctx, arg_rrr_cf *a) 2661 { 2662 return do_sub_reg(ctx, a, true, false, true); 2663 } 2664 2665 static bool trans_sub_b(DisasContext *ctx, arg_rrr_cf *a) 2666 { 2667 return do_sub_reg(ctx, a, false, true, false); 2668 } 2669 2670 static bool trans_sub_b_tsv(DisasContext *ctx, arg_rrr_cf *a) 2671 { 2672 return do_sub_reg(ctx, a, true, true, false); 2673 } 2674 2675 static bool trans_andcm(DisasContext *ctx, arg_rrr_cf *a) 2676 { 2677 return do_log_reg(ctx, a, tcg_gen_andc_reg); 2678 } 2679 2680 static bool trans_and(DisasContext *ctx, arg_rrr_cf *a) 2681 { 2682 return do_log_reg(ctx, a, tcg_gen_and_reg); 2683 } 2684 2685 static bool trans_or(DisasContext *ctx, arg_rrr_cf *a) 2686 { 2687 if (a->cf == 0) { 2688 unsigned r2 = a->r2; 2689 unsigned r1 = a->r1; 2690 unsigned rt = a->t; 2691 2692 if (rt == 0) { /* NOP */ 2693 cond_free(&ctx->null_cond); 2694 return true; 2695 } 2696 if (r2 == 0) { /* COPY */ 2697 if (r1 == 0) { 2698 TCGv_reg dest = dest_gpr(ctx, rt); 2699 tcg_gen_movi_reg(dest, 0); 2700 save_gpr(ctx, rt, dest); 2701 } else { 2702 save_gpr(ctx, rt, cpu_gr[r1]); 2703 } 2704 cond_free(&ctx->null_cond); 2705 return true; 2706 } 2707 #ifndef CONFIG_USER_ONLY 2708 /* These are QEMU extensions and are nops in the real architecture: 2709 * 2710 * or %r10,%r10,%r10 -- idle loop; wait for interrupt 2711 * or %r31,%r31,%r31 -- death loop; offline cpu 2712 * currently implemented as idle. 2713 */ 2714 if ((rt == 10 || rt == 31) && r1 == rt && r2 == rt) { /* PAUSE */ 2715 TCGv_i32 tmp; 2716 2717 /* No need to check for supervisor, as userland can only pause 2718 until the next timer interrupt. */ 2719 nullify_over(ctx); 2720 2721 /* Advance the instruction queue. */ 2722 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); 2723 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_n, ctx->iaoq_n_var); 2724 nullify_set(ctx, 0); 2725 2726 /* Tell the qemu main loop to halt until this cpu has work. */ 2727 tmp = tcg_const_i32(1); 2728 tcg_gen_st_i32(tmp, cpu_env, -offsetof(HPPACPU, env) + 2729 offsetof(CPUState, halted)); 2730 tcg_temp_free_i32(tmp); 2731 gen_excp_1(EXCP_HALTED); 2732 ctx->base.is_jmp = DISAS_NORETURN; 2733 2734 return nullify_end(ctx); 2735 } 2736 #endif 2737 } 2738 return do_log_reg(ctx, a, tcg_gen_or_reg); 2739 } 2740 2741 static bool trans_xor(DisasContext *ctx, arg_rrr_cf *a) 2742 { 2743 return do_log_reg(ctx, a, tcg_gen_xor_reg); 2744 } 2745 2746 static bool trans_cmpclr(DisasContext *ctx, arg_rrr_cf *a) 2747 { 2748 TCGv_reg tcg_r1, tcg_r2; 2749 2750 if (a->cf) { 2751 nullify_over(ctx); 2752 } 2753 tcg_r1 = load_gpr(ctx, a->r1); 2754 tcg_r2 = load_gpr(ctx, a->r2); 2755 do_cmpclr(ctx, a->t, tcg_r1, tcg_r2, a->cf); 2756 return nullify_end(ctx); 2757 } 2758 2759 static bool trans_uxor(DisasContext *ctx, arg_rrr_cf *a) 2760 { 2761 TCGv_reg tcg_r1, tcg_r2; 2762 2763 if (a->cf) { 2764 nullify_over(ctx); 2765 } 2766 tcg_r1 = load_gpr(ctx, a->r1); 2767 tcg_r2 = load_gpr(ctx, a->r2); 2768 do_unit(ctx, a->t, tcg_r1, tcg_r2, a->cf, false, tcg_gen_xor_reg); 2769 return nullify_end(ctx); 2770 } 2771 2772 static bool do_uaddcm(DisasContext *ctx, arg_rrr_cf *a, bool is_tc) 2773 { 2774 TCGv_reg tcg_r1, tcg_r2, tmp; 2775 2776 if (a->cf) { 2777 nullify_over(ctx); 2778 } 2779 tcg_r1 = load_gpr(ctx, a->r1); 2780 tcg_r2 = load_gpr(ctx, a->r2); 2781 tmp = get_temp(ctx); 2782 tcg_gen_not_reg(tmp, tcg_r2); 2783 do_unit(ctx, a->t, tcg_r1, tmp, a->cf, is_tc, tcg_gen_add_reg); 2784 return nullify_end(ctx); 2785 } 2786 2787 static bool trans_uaddcm(DisasContext *ctx, arg_rrr_cf *a) 2788 { 2789 return do_uaddcm(ctx, a, false); 2790 } 2791 2792 static bool trans_uaddcm_tc(DisasContext *ctx, arg_rrr_cf *a) 2793 { 2794 return do_uaddcm(ctx, a, true); 2795 } 2796 2797 static bool do_dcor(DisasContext *ctx, arg_rr_cf *a, bool is_i) 2798 { 2799 TCGv_reg tmp; 2800 2801 nullify_over(ctx); 2802 2803 tmp = get_temp(ctx); 2804 tcg_gen_shri_reg(tmp, cpu_psw_cb, 3); 2805 if (!is_i) { 2806 tcg_gen_not_reg(tmp, tmp); 2807 } 2808 tcg_gen_andi_reg(tmp, tmp, 0x11111111); 2809 tcg_gen_muli_reg(tmp, tmp, 6); 2810 do_unit(ctx, a->t, load_gpr(ctx, a->r), tmp, a->cf, false, 2811 is_i ? tcg_gen_add_reg : tcg_gen_sub_reg); 2812 return nullify_end(ctx); 2813 } 2814 2815 static bool trans_dcor(DisasContext *ctx, arg_rr_cf *a) 2816 { 2817 return do_dcor(ctx, a, false); 2818 } 2819 2820 static bool trans_dcor_i(DisasContext *ctx, arg_rr_cf *a) 2821 { 2822 return do_dcor(ctx, a, true); 2823 } 2824 2825 static bool trans_ds(DisasContext *ctx, arg_rrr_cf *a) 2826 { 2827 TCGv_reg dest, add1, add2, addc, zero, in1, in2; 2828 2829 nullify_over(ctx); 2830 2831 in1 = load_gpr(ctx, a->r1); 2832 in2 = load_gpr(ctx, a->r2); 2833 2834 add1 = tcg_temp_new(); 2835 add2 = tcg_temp_new(); 2836 addc = tcg_temp_new(); 2837 dest = tcg_temp_new(); 2838 zero = tcg_const_reg(0); 2839 2840 /* Form R1 << 1 | PSW[CB]{8}. */ 2841 tcg_gen_add_reg(add1, in1, in1); 2842 tcg_gen_add_reg(add1, add1, cpu_psw_cb_msb); 2843 2844 /* Add or subtract R2, depending on PSW[V]. Proper computation of 2845 carry{8} requires that we subtract via + ~R2 + 1, as described in 2846 the manual. By extracting and masking V, we can produce the 2847 proper inputs to the addition without movcond. */ 2848 tcg_gen_sari_reg(addc, cpu_psw_v, TARGET_REGISTER_BITS - 1); 2849 tcg_gen_xor_reg(add2, in2, addc); 2850 tcg_gen_andi_reg(addc, addc, 1); 2851 /* ??? This is only correct for 32-bit. */ 2852 tcg_gen_add2_i32(dest, cpu_psw_cb_msb, add1, zero, add2, zero); 2853 tcg_gen_add2_i32(dest, cpu_psw_cb_msb, dest, cpu_psw_cb_msb, addc, zero); 2854 2855 tcg_temp_free(addc); 2856 tcg_temp_free(zero); 2857 2858 /* Write back the result register. */ 2859 save_gpr(ctx, a->t, dest); 2860 2861 /* Write back PSW[CB]. */ 2862 tcg_gen_xor_reg(cpu_psw_cb, add1, add2); 2863 tcg_gen_xor_reg(cpu_psw_cb, cpu_psw_cb, dest); 2864 2865 /* Write back PSW[V] for the division step. */ 2866 tcg_gen_neg_reg(cpu_psw_v, cpu_psw_cb_msb); 2867 tcg_gen_xor_reg(cpu_psw_v, cpu_psw_v, in2); 2868 2869 /* Install the new nullification. */ 2870 if (a->cf) { 2871 TCGv_reg sv = NULL; 2872 if (cond_need_sv(a->cf >> 1)) { 2873 /* ??? The lshift is supposed to contribute to overflow. */ 2874 sv = do_add_sv(ctx, dest, add1, add2); 2875 } 2876 ctx->null_cond = do_cond(a->cf, dest, cpu_psw_cb_msb, sv); 2877 } 2878 2879 tcg_temp_free(add1); 2880 tcg_temp_free(add2); 2881 tcg_temp_free(dest); 2882 2883 return nullify_end(ctx); 2884 } 2885 2886 static bool trans_addi(DisasContext *ctx, arg_rri_cf *a) 2887 { 2888 return do_add_imm(ctx, a, false, false); 2889 } 2890 2891 static bool trans_addi_tsv(DisasContext *ctx, arg_rri_cf *a) 2892 { 2893 return do_add_imm(ctx, a, true, false); 2894 } 2895 2896 static bool trans_addi_tc(DisasContext *ctx, arg_rri_cf *a) 2897 { 2898 return do_add_imm(ctx, a, false, true); 2899 } 2900 2901 static bool trans_addi_tc_tsv(DisasContext *ctx, arg_rri_cf *a) 2902 { 2903 return do_add_imm(ctx, a, true, true); 2904 } 2905 2906 static bool trans_subi(DisasContext *ctx, arg_rri_cf *a) 2907 { 2908 return do_sub_imm(ctx, a, false); 2909 } 2910 2911 static bool trans_subi_tsv(DisasContext *ctx, arg_rri_cf *a) 2912 { 2913 return do_sub_imm(ctx, a, true); 2914 } 2915 2916 static bool trans_cmpiclr(DisasContext *ctx, arg_rri_cf *a) 2917 { 2918 TCGv_reg tcg_im, tcg_r2; 2919 2920 if (a->cf) { 2921 nullify_over(ctx); 2922 } 2923 2924 tcg_im = load_const(ctx, a->i); 2925 tcg_r2 = load_gpr(ctx, a->r); 2926 do_cmpclr(ctx, a->t, tcg_im, tcg_r2, a->cf); 2927 2928 return nullify_end(ctx); 2929 } 2930 2931 static bool trans_ld(DisasContext *ctx, arg_ldst *a) 2932 { 2933 return do_load(ctx, a->t, a->b, a->x, a->scale ? a->size : 0, 2934 a->disp, a->sp, a->m, a->size | MO_TE); 2935 } 2936 2937 static bool trans_st(DisasContext *ctx, arg_ldst *a) 2938 { 2939 assert(a->x == 0 && a->scale == 0); 2940 return do_store(ctx, a->t, a->b, a->disp, a->sp, a->m, a->size | MO_TE); 2941 } 2942 2943 static bool trans_ldc(DisasContext *ctx, arg_ldst *a) 2944 { 2945 MemOp mop = MO_TE | MO_ALIGN | a->size; 2946 TCGv_reg zero, dest, ofs; 2947 TCGv_tl addr; 2948 2949 nullify_over(ctx); 2950 2951 if (a->m) { 2952 /* Base register modification. Make sure if RT == RB, 2953 we see the result of the load. */ 2954 dest = get_temp(ctx); 2955 } else { 2956 dest = dest_gpr(ctx, a->t); 2957 } 2958 2959 form_gva(ctx, &addr, &ofs, a->b, a->x, a->scale ? a->size : 0, 2960 a->disp, a->sp, a->m, ctx->mmu_idx == MMU_PHYS_IDX); 2961 2962 /* 2963 * For hppa1.1, LDCW is undefined unless aligned mod 16. 2964 * However actual hardware succeeds with aligned mod 4. 2965 * Detect this case and log a GUEST_ERROR. 2966 * 2967 * TODO: HPPA64 relaxes the over-alignment requirement 2968 * with the ,co completer. 2969 */ 2970 gen_helper_ldc_check(addr); 2971 2972 zero = tcg_const_reg(0); 2973 tcg_gen_atomic_xchg_reg(dest, addr, zero, ctx->mmu_idx, mop); 2974 tcg_temp_free(zero); 2975 2976 if (a->m) { 2977 save_gpr(ctx, a->b, ofs); 2978 } 2979 save_gpr(ctx, a->t, dest); 2980 2981 return nullify_end(ctx); 2982 } 2983 2984 static bool trans_stby(DisasContext *ctx, arg_stby *a) 2985 { 2986 TCGv_reg ofs, val; 2987 TCGv_tl addr; 2988 2989 nullify_over(ctx); 2990 2991 form_gva(ctx, &addr, &ofs, a->b, 0, 0, a->disp, a->sp, a->m, 2992 ctx->mmu_idx == MMU_PHYS_IDX); 2993 val = load_gpr(ctx, a->r); 2994 if (a->a) { 2995 if (tb_cflags(ctx->base.tb) & CF_PARALLEL) { 2996 gen_helper_stby_e_parallel(cpu_env, addr, val); 2997 } else { 2998 gen_helper_stby_e(cpu_env, addr, val); 2999 } 3000 } else { 3001 if (tb_cflags(ctx->base.tb) & CF_PARALLEL) { 3002 gen_helper_stby_b_parallel(cpu_env, addr, val); 3003 } else { 3004 gen_helper_stby_b(cpu_env, addr, val); 3005 } 3006 } 3007 if (a->m) { 3008 tcg_gen_andi_reg(ofs, ofs, ~3); 3009 save_gpr(ctx, a->b, ofs); 3010 } 3011 3012 return nullify_end(ctx); 3013 } 3014 3015 static bool trans_lda(DisasContext *ctx, arg_ldst *a) 3016 { 3017 int hold_mmu_idx = ctx->mmu_idx; 3018 3019 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 3020 ctx->mmu_idx = MMU_PHYS_IDX; 3021 trans_ld(ctx, a); 3022 ctx->mmu_idx = hold_mmu_idx; 3023 return true; 3024 } 3025 3026 static bool trans_sta(DisasContext *ctx, arg_ldst *a) 3027 { 3028 int hold_mmu_idx = ctx->mmu_idx; 3029 3030 CHECK_MOST_PRIVILEGED(EXCP_PRIV_OPR); 3031 ctx->mmu_idx = MMU_PHYS_IDX; 3032 trans_st(ctx, a); 3033 ctx->mmu_idx = hold_mmu_idx; 3034 return true; 3035 } 3036 3037 static bool trans_ldil(DisasContext *ctx, arg_ldil *a) 3038 { 3039 TCGv_reg tcg_rt = dest_gpr(ctx, a->t); 3040 3041 tcg_gen_movi_reg(tcg_rt, a->i); 3042 save_gpr(ctx, a->t, tcg_rt); 3043 cond_free(&ctx->null_cond); 3044 return true; 3045 } 3046 3047 static bool trans_addil(DisasContext *ctx, arg_addil *a) 3048 { 3049 TCGv_reg tcg_rt = load_gpr(ctx, a->r); 3050 TCGv_reg tcg_r1 = dest_gpr(ctx, 1); 3051 3052 tcg_gen_addi_reg(tcg_r1, tcg_rt, a->i); 3053 save_gpr(ctx, 1, tcg_r1); 3054 cond_free(&ctx->null_cond); 3055 return true; 3056 } 3057 3058 static bool trans_ldo(DisasContext *ctx, arg_ldo *a) 3059 { 3060 TCGv_reg tcg_rt = dest_gpr(ctx, a->t); 3061 3062 /* Special case rb == 0, for the LDI pseudo-op. 3063 The COPY pseudo-op is handled for free within tcg_gen_addi_tl. */ 3064 if (a->b == 0) { 3065 tcg_gen_movi_reg(tcg_rt, a->i); 3066 } else { 3067 tcg_gen_addi_reg(tcg_rt, cpu_gr[a->b], a->i); 3068 } 3069 save_gpr(ctx, a->t, tcg_rt); 3070 cond_free(&ctx->null_cond); 3071 return true; 3072 } 3073 3074 static bool do_cmpb(DisasContext *ctx, unsigned r, TCGv_reg in1, 3075 unsigned c, unsigned f, unsigned n, int disp) 3076 { 3077 TCGv_reg dest, in2, sv; 3078 DisasCond cond; 3079 3080 in2 = load_gpr(ctx, r); 3081 dest = get_temp(ctx); 3082 3083 tcg_gen_sub_reg(dest, in1, in2); 3084 3085 sv = NULL; 3086 if (cond_need_sv(c)) { 3087 sv = do_sub_sv(ctx, dest, in1, in2); 3088 } 3089 3090 cond = do_sub_cond(c * 2 + f, dest, in1, in2, sv); 3091 return do_cbranch(ctx, disp, n, &cond); 3092 } 3093 3094 static bool trans_cmpb(DisasContext *ctx, arg_cmpb *a) 3095 { 3096 nullify_over(ctx); 3097 return do_cmpb(ctx, a->r2, load_gpr(ctx, a->r1), a->c, a->f, a->n, a->disp); 3098 } 3099 3100 static bool trans_cmpbi(DisasContext *ctx, arg_cmpbi *a) 3101 { 3102 nullify_over(ctx); 3103 return do_cmpb(ctx, a->r, load_const(ctx, a->i), a->c, a->f, a->n, a->disp); 3104 } 3105 3106 static bool do_addb(DisasContext *ctx, unsigned r, TCGv_reg in1, 3107 unsigned c, unsigned f, unsigned n, int disp) 3108 { 3109 TCGv_reg dest, in2, sv, cb_msb; 3110 DisasCond cond; 3111 3112 in2 = load_gpr(ctx, r); 3113 dest = tcg_temp_new(); 3114 sv = NULL; 3115 cb_msb = NULL; 3116 3117 if (cond_need_cb(c)) { 3118 cb_msb = get_temp(ctx); 3119 tcg_gen_movi_reg(cb_msb, 0); 3120 tcg_gen_add2_reg(dest, cb_msb, in1, cb_msb, in2, cb_msb); 3121 } else { 3122 tcg_gen_add_reg(dest, in1, in2); 3123 } 3124 if (cond_need_sv(c)) { 3125 sv = do_add_sv(ctx, dest, in1, in2); 3126 } 3127 3128 cond = do_cond(c * 2 + f, dest, cb_msb, sv); 3129 save_gpr(ctx, r, dest); 3130 tcg_temp_free(dest); 3131 return do_cbranch(ctx, disp, n, &cond); 3132 } 3133 3134 static bool trans_addb(DisasContext *ctx, arg_addb *a) 3135 { 3136 nullify_over(ctx); 3137 return do_addb(ctx, a->r2, load_gpr(ctx, a->r1), a->c, a->f, a->n, a->disp); 3138 } 3139 3140 static bool trans_addbi(DisasContext *ctx, arg_addbi *a) 3141 { 3142 nullify_over(ctx); 3143 return do_addb(ctx, a->r, load_const(ctx, a->i), a->c, a->f, a->n, a->disp); 3144 } 3145 3146 static bool trans_bb_sar(DisasContext *ctx, arg_bb_sar *a) 3147 { 3148 TCGv_reg tmp, tcg_r; 3149 DisasCond cond; 3150 3151 nullify_over(ctx); 3152 3153 tmp = tcg_temp_new(); 3154 tcg_r = load_gpr(ctx, a->r); 3155 tcg_gen_shl_reg(tmp, tcg_r, cpu_sar); 3156 3157 cond = cond_make_0(a->c ? TCG_COND_GE : TCG_COND_LT, tmp); 3158 tcg_temp_free(tmp); 3159 return do_cbranch(ctx, a->disp, a->n, &cond); 3160 } 3161 3162 static bool trans_bb_imm(DisasContext *ctx, arg_bb_imm *a) 3163 { 3164 TCGv_reg tmp, tcg_r; 3165 DisasCond cond; 3166 3167 nullify_over(ctx); 3168 3169 tmp = tcg_temp_new(); 3170 tcg_r = load_gpr(ctx, a->r); 3171 tcg_gen_shli_reg(tmp, tcg_r, a->p); 3172 3173 cond = cond_make_0(a->c ? TCG_COND_GE : TCG_COND_LT, tmp); 3174 tcg_temp_free(tmp); 3175 return do_cbranch(ctx, a->disp, a->n, &cond); 3176 } 3177 3178 static bool trans_movb(DisasContext *ctx, arg_movb *a) 3179 { 3180 TCGv_reg dest; 3181 DisasCond cond; 3182 3183 nullify_over(ctx); 3184 3185 dest = dest_gpr(ctx, a->r2); 3186 if (a->r1 == 0) { 3187 tcg_gen_movi_reg(dest, 0); 3188 } else { 3189 tcg_gen_mov_reg(dest, cpu_gr[a->r1]); 3190 } 3191 3192 cond = do_sed_cond(a->c, dest); 3193 return do_cbranch(ctx, a->disp, a->n, &cond); 3194 } 3195 3196 static bool trans_movbi(DisasContext *ctx, arg_movbi *a) 3197 { 3198 TCGv_reg dest; 3199 DisasCond cond; 3200 3201 nullify_over(ctx); 3202 3203 dest = dest_gpr(ctx, a->r); 3204 tcg_gen_movi_reg(dest, a->i); 3205 3206 cond = do_sed_cond(a->c, dest); 3207 return do_cbranch(ctx, a->disp, a->n, &cond); 3208 } 3209 3210 static bool trans_shrpw_sar(DisasContext *ctx, arg_shrpw_sar *a) 3211 { 3212 TCGv_reg dest; 3213 3214 if (a->c) { 3215 nullify_over(ctx); 3216 } 3217 3218 dest = dest_gpr(ctx, a->t); 3219 if (a->r1 == 0) { 3220 tcg_gen_ext32u_reg(dest, load_gpr(ctx, a->r2)); 3221 tcg_gen_shr_reg(dest, dest, cpu_sar); 3222 } else if (a->r1 == a->r2) { 3223 TCGv_i32 t32 = tcg_temp_new_i32(); 3224 tcg_gen_trunc_reg_i32(t32, load_gpr(ctx, a->r2)); 3225 tcg_gen_rotr_i32(t32, t32, cpu_sar); 3226 tcg_gen_extu_i32_reg(dest, t32); 3227 tcg_temp_free_i32(t32); 3228 } else { 3229 TCGv_i64 t = tcg_temp_new_i64(); 3230 TCGv_i64 s = tcg_temp_new_i64(); 3231 3232 tcg_gen_concat_reg_i64(t, load_gpr(ctx, a->r2), load_gpr(ctx, a->r1)); 3233 tcg_gen_extu_reg_i64(s, cpu_sar); 3234 tcg_gen_shr_i64(t, t, s); 3235 tcg_gen_trunc_i64_reg(dest, t); 3236 3237 tcg_temp_free_i64(t); 3238 tcg_temp_free_i64(s); 3239 } 3240 save_gpr(ctx, a->t, dest); 3241 3242 /* Install the new nullification. */ 3243 cond_free(&ctx->null_cond); 3244 if (a->c) { 3245 ctx->null_cond = do_sed_cond(a->c, dest); 3246 } 3247 return nullify_end(ctx); 3248 } 3249 3250 static bool trans_shrpw_imm(DisasContext *ctx, arg_shrpw_imm *a) 3251 { 3252 unsigned sa = 31 - a->cpos; 3253 TCGv_reg dest, t2; 3254 3255 if (a->c) { 3256 nullify_over(ctx); 3257 } 3258 3259 dest = dest_gpr(ctx, a->t); 3260 t2 = load_gpr(ctx, a->r2); 3261 if (a->r1 == a->r2) { 3262 TCGv_i32 t32 = tcg_temp_new_i32(); 3263 tcg_gen_trunc_reg_i32(t32, t2); 3264 tcg_gen_rotri_i32(t32, t32, sa); 3265 tcg_gen_extu_i32_reg(dest, t32); 3266 tcg_temp_free_i32(t32); 3267 } else if (a->r1 == 0) { 3268 tcg_gen_extract_reg(dest, t2, sa, 32 - sa); 3269 } else { 3270 TCGv_reg t0 = tcg_temp_new(); 3271 tcg_gen_extract_reg(t0, t2, sa, 32 - sa); 3272 tcg_gen_deposit_reg(dest, t0, cpu_gr[a->r1], 32 - sa, sa); 3273 tcg_temp_free(t0); 3274 } 3275 save_gpr(ctx, a->t, dest); 3276 3277 /* Install the new nullification. */ 3278 cond_free(&ctx->null_cond); 3279 if (a->c) { 3280 ctx->null_cond = do_sed_cond(a->c, dest); 3281 } 3282 return nullify_end(ctx); 3283 } 3284 3285 static bool trans_extrw_sar(DisasContext *ctx, arg_extrw_sar *a) 3286 { 3287 unsigned len = 32 - a->clen; 3288 TCGv_reg dest, src, tmp; 3289 3290 if (a->c) { 3291 nullify_over(ctx); 3292 } 3293 3294 dest = dest_gpr(ctx, a->t); 3295 src = load_gpr(ctx, a->r); 3296 tmp = tcg_temp_new(); 3297 3298 /* Recall that SAR is using big-endian bit numbering. */ 3299 tcg_gen_xori_reg(tmp, cpu_sar, TARGET_REGISTER_BITS - 1); 3300 if (a->se) { 3301 tcg_gen_sar_reg(dest, src, tmp); 3302 tcg_gen_sextract_reg(dest, dest, 0, len); 3303 } else { 3304 tcg_gen_shr_reg(dest, src, tmp); 3305 tcg_gen_extract_reg(dest, dest, 0, len); 3306 } 3307 tcg_temp_free(tmp); 3308 save_gpr(ctx, a->t, dest); 3309 3310 /* Install the new nullification. */ 3311 cond_free(&ctx->null_cond); 3312 if (a->c) { 3313 ctx->null_cond = do_sed_cond(a->c, dest); 3314 } 3315 return nullify_end(ctx); 3316 } 3317 3318 static bool trans_extrw_imm(DisasContext *ctx, arg_extrw_imm *a) 3319 { 3320 unsigned len = 32 - a->clen; 3321 unsigned cpos = 31 - a->pos; 3322 TCGv_reg dest, src; 3323 3324 if (a->c) { 3325 nullify_over(ctx); 3326 } 3327 3328 dest = dest_gpr(ctx, a->t); 3329 src = load_gpr(ctx, a->r); 3330 if (a->se) { 3331 tcg_gen_sextract_reg(dest, src, cpos, len); 3332 } else { 3333 tcg_gen_extract_reg(dest, src, cpos, len); 3334 } 3335 save_gpr(ctx, a->t, dest); 3336 3337 /* Install the new nullification. */ 3338 cond_free(&ctx->null_cond); 3339 if (a->c) { 3340 ctx->null_cond = do_sed_cond(a->c, dest); 3341 } 3342 return nullify_end(ctx); 3343 } 3344 3345 static bool trans_depwi_imm(DisasContext *ctx, arg_depwi_imm *a) 3346 { 3347 unsigned len = 32 - a->clen; 3348 target_sreg mask0, mask1; 3349 TCGv_reg dest; 3350 3351 if (a->c) { 3352 nullify_over(ctx); 3353 } 3354 if (a->cpos + len > 32) { 3355 len = 32 - a->cpos; 3356 } 3357 3358 dest = dest_gpr(ctx, a->t); 3359 mask0 = deposit64(0, a->cpos, len, a->i); 3360 mask1 = deposit64(-1, a->cpos, len, a->i); 3361 3362 if (a->nz) { 3363 TCGv_reg src = load_gpr(ctx, a->t); 3364 if (mask1 != -1) { 3365 tcg_gen_andi_reg(dest, src, mask1); 3366 src = dest; 3367 } 3368 tcg_gen_ori_reg(dest, src, mask0); 3369 } else { 3370 tcg_gen_movi_reg(dest, mask0); 3371 } 3372 save_gpr(ctx, a->t, dest); 3373 3374 /* Install the new nullification. */ 3375 cond_free(&ctx->null_cond); 3376 if (a->c) { 3377 ctx->null_cond = do_sed_cond(a->c, dest); 3378 } 3379 return nullify_end(ctx); 3380 } 3381 3382 static bool trans_depw_imm(DisasContext *ctx, arg_depw_imm *a) 3383 { 3384 unsigned rs = a->nz ? a->t : 0; 3385 unsigned len = 32 - a->clen; 3386 TCGv_reg dest, val; 3387 3388 if (a->c) { 3389 nullify_over(ctx); 3390 } 3391 if (a->cpos + len > 32) { 3392 len = 32 - a->cpos; 3393 } 3394 3395 dest = dest_gpr(ctx, a->t); 3396 val = load_gpr(ctx, a->r); 3397 if (rs == 0) { 3398 tcg_gen_deposit_z_reg(dest, val, a->cpos, len); 3399 } else { 3400 tcg_gen_deposit_reg(dest, cpu_gr[rs], val, a->cpos, len); 3401 } 3402 save_gpr(ctx, a->t, dest); 3403 3404 /* Install the new nullification. */ 3405 cond_free(&ctx->null_cond); 3406 if (a->c) { 3407 ctx->null_cond = do_sed_cond(a->c, dest); 3408 } 3409 return nullify_end(ctx); 3410 } 3411 3412 static bool do_depw_sar(DisasContext *ctx, unsigned rt, unsigned c, 3413 unsigned nz, unsigned clen, TCGv_reg val) 3414 { 3415 unsigned rs = nz ? rt : 0; 3416 unsigned len = 32 - clen; 3417 TCGv_reg mask, tmp, shift, dest; 3418 unsigned msb = 1U << (len - 1); 3419 3420 dest = dest_gpr(ctx, rt); 3421 shift = tcg_temp_new(); 3422 tmp = tcg_temp_new(); 3423 3424 /* Convert big-endian bit numbering in SAR to left-shift. */ 3425 tcg_gen_xori_reg(shift, cpu_sar, TARGET_REGISTER_BITS - 1); 3426 3427 mask = tcg_const_reg(msb + (msb - 1)); 3428 tcg_gen_and_reg(tmp, val, mask); 3429 if (rs) { 3430 tcg_gen_shl_reg(mask, mask, shift); 3431 tcg_gen_shl_reg(tmp, tmp, shift); 3432 tcg_gen_andc_reg(dest, cpu_gr[rs], mask); 3433 tcg_gen_or_reg(dest, dest, tmp); 3434 } else { 3435 tcg_gen_shl_reg(dest, tmp, shift); 3436 } 3437 tcg_temp_free(shift); 3438 tcg_temp_free(mask); 3439 tcg_temp_free(tmp); 3440 save_gpr(ctx, rt, dest); 3441 3442 /* Install the new nullification. */ 3443 cond_free(&ctx->null_cond); 3444 if (c) { 3445 ctx->null_cond = do_sed_cond(c, dest); 3446 } 3447 return nullify_end(ctx); 3448 } 3449 3450 static bool trans_depw_sar(DisasContext *ctx, arg_depw_sar *a) 3451 { 3452 if (a->c) { 3453 nullify_over(ctx); 3454 } 3455 return do_depw_sar(ctx, a->t, a->c, a->nz, a->clen, load_gpr(ctx, a->r)); 3456 } 3457 3458 static bool trans_depwi_sar(DisasContext *ctx, arg_depwi_sar *a) 3459 { 3460 if (a->c) { 3461 nullify_over(ctx); 3462 } 3463 return do_depw_sar(ctx, a->t, a->c, a->nz, a->clen, load_const(ctx, a->i)); 3464 } 3465 3466 static bool trans_be(DisasContext *ctx, arg_be *a) 3467 { 3468 TCGv_reg tmp; 3469 3470 #ifdef CONFIG_USER_ONLY 3471 /* ??? It seems like there should be a good way of using 3472 "be disp(sr2, r0)", the canonical gateway entry mechanism 3473 to our advantage. But that appears to be inconvenient to 3474 manage along side branch delay slots. Therefore we handle 3475 entry into the gateway page via absolute address. */ 3476 /* Since we don't implement spaces, just branch. Do notice the special 3477 case of "be disp(*,r0)" using a direct branch to disp, so that we can 3478 goto_tb to the TB containing the syscall. */ 3479 if (a->b == 0) { 3480 return do_dbranch(ctx, a->disp, a->l, a->n); 3481 } 3482 #else 3483 nullify_over(ctx); 3484 #endif 3485 3486 tmp = get_temp(ctx); 3487 tcg_gen_addi_reg(tmp, load_gpr(ctx, a->b), a->disp); 3488 tmp = do_ibranch_priv(ctx, tmp); 3489 3490 #ifdef CONFIG_USER_ONLY 3491 return do_ibranch(ctx, tmp, a->l, a->n); 3492 #else 3493 TCGv_i64 new_spc = tcg_temp_new_i64(); 3494 3495 load_spr(ctx, new_spc, a->sp); 3496 if (a->l) { 3497 copy_iaoq_entry(cpu_gr[31], ctx->iaoq_n, ctx->iaoq_n_var); 3498 tcg_gen_mov_i64(cpu_sr[0], cpu_iasq_f); 3499 } 3500 if (a->n && use_nullify_skip(ctx)) { 3501 tcg_gen_mov_reg(cpu_iaoq_f, tmp); 3502 tcg_gen_addi_reg(cpu_iaoq_b, cpu_iaoq_f, 4); 3503 tcg_gen_mov_i64(cpu_iasq_f, new_spc); 3504 tcg_gen_mov_i64(cpu_iasq_b, cpu_iasq_f); 3505 } else { 3506 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); 3507 if (ctx->iaoq_b == -1) { 3508 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); 3509 } 3510 tcg_gen_mov_reg(cpu_iaoq_b, tmp); 3511 tcg_gen_mov_i64(cpu_iasq_b, new_spc); 3512 nullify_set(ctx, a->n); 3513 } 3514 tcg_temp_free_i64(new_spc); 3515 tcg_gen_lookup_and_goto_ptr(); 3516 ctx->base.is_jmp = DISAS_NORETURN; 3517 return nullify_end(ctx); 3518 #endif 3519 } 3520 3521 static bool trans_bl(DisasContext *ctx, arg_bl *a) 3522 { 3523 return do_dbranch(ctx, iaoq_dest(ctx, a->disp), a->l, a->n); 3524 } 3525 3526 static bool trans_b_gate(DisasContext *ctx, arg_b_gate *a) 3527 { 3528 target_ureg dest = iaoq_dest(ctx, a->disp); 3529 3530 nullify_over(ctx); 3531 3532 /* Make sure the caller hasn't done something weird with the queue. 3533 * ??? This is not quite the same as the PSW[B] bit, which would be 3534 * expensive to track. Real hardware will trap for 3535 * b gateway 3536 * b gateway+4 (in delay slot of first branch) 3537 * However, checking for a non-sequential instruction queue *will* 3538 * diagnose the security hole 3539 * b gateway 3540 * b evil 3541 * in which instructions at evil would run with increased privs. 3542 */ 3543 if (ctx->iaoq_b == -1 || ctx->iaoq_b != ctx->iaoq_f + 4) { 3544 return gen_illegal(ctx); 3545 } 3546 3547 #ifndef CONFIG_USER_ONLY 3548 if (ctx->tb_flags & PSW_C) { 3549 CPUHPPAState *env = ctx->cs->env_ptr; 3550 int type = hppa_artype_for_page(env, ctx->base.pc_next); 3551 /* If we could not find a TLB entry, then we need to generate an 3552 ITLB miss exception so the kernel will provide it. 3553 The resulting TLB fill operation will invalidate this TB and 3554 we will re-translate, at which point we *will* be able to find 3555 the TLB entry and determine if this is in fact a gateway page. */ 3556 if (type < 0) { 3557 gen_excp(ctx, EXCP_ITLB_MISS); 3558 return true; 3559 } 3560 /* No change for non-gateway pages or for priv decrease. */ 3561 if (type >= 4 && type - 4 < ctx->privilege) { 3562 dest = deposit32(dest, 0, 2, type - 4); 3563 } 3564 } else { 3565 dest &= -4; /* priv = 0 */ 3566 } 3567 #endif 3568 3569 if (a->l) { 3570 TCGv_reg tmp = dest_gpr(ctx, a->l); 3571 if (ctx->privilege < 3) { 3572 tcg_gen_andi_reg(tmp, tmp, -4); 3573 } 3574 tcg_gen_ori_reg(tmp, tmp, ctx->privilege); 3575 save_gpr(ctx, a->l, tmp); 3576 } 3577 3578 return do_dbranch(ctx, dest, 0, a->n); 3579 } 3580 3581 static bool trans_blr(DisasContext *ctx, arg_blr *a) 3582 { 3583 if (a->x) { 3584 TCGv_reg tmp = get_temp(ctx); 3585 tcg_gen_shli_reg(tmp, load_gpr(ctx, a->x), 3); 3586 tcg_gen_addi_reg(tmp, tmp, ctx->iaoq_f + 8); 3587 /* The computation here never changes privilege level. */ 3588 return do_ibranch(ctx, tmp, a->l, a->n); 3589 } else { 3590 /* BLR R0,RX is a good way to load PC+8 into RX. */ 3591 return do_dbranch(ctx, ctx->iaoq_f + 8, a->l, a->n); 3592 } 3593 } 3594 3595 static bool trans_bv(DisasContext *ctx, arg_bv *a) 3596 { 3597 TCGv_reg dest; 3598 3599 if (a->x == 0) { 3600 dest = load_gpr(ctx, a->b); 3601 } else { 3602 dest = get_temp(ctx); 3603 tcg_gen_shli_reg(dest, load_gpr(ctx, a->x), 3); 3604 tcg_gen_add_reg(dest, dest, load_gpr(ctx, a->b)); 3605 } 3606 dest = do_ibranch_priv(ctx, dest); 3607 return do_ibranch(ctx, dest, 0, a->n); 3608 } 3609 3610 static bool trans_bve(DisasContext *ctx, arg_bve *a) 3611 { 3612 TCGv_reg dest; 3613 3614 #ifdef CONFIG_USER_ONLY 3615 dest = do_ibranch_priv(ctx, load_gpr(ctx, a->b)); 3616 return do_ibranch(ctx, dest, a->l, a->n); 3617 #else 3618 nullify_over(ctx); 3619 dest = do_ibranch_priv(ctx, load_gpr(ctx, a->b)); 3620 3621 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_b, cpu_iaoq_b); 3622 if (ctx->iaoq_b == -1) { 3623 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); 3624 } 3625 copy_iaoq_entry(cpu_iaoq_b, -1, dest); 3626 tcg_gen_mov_i64(cpu_iasq_b, space_select(ctx, 0, dest)); 3627 if (a->l) { 3628 copy_iaoq_entry(cpu_gr[a->l], ctx->iaoq_n, ctx->iaoq_n_var); 3629 } 3630 nullify_set(ctx, a->n); 3631 tcg_gen_lookup_and_goto_ptr(); 3632 ctx->base.is_jmp = DISAS_NORETURN; 3633 return nullify_end(ctx); 3634 #endif 3635 } 3636 3637 /* 3638 * Float class 0 3639 */ 3640 3641 static void gen_fcpy_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3642 { 3643 tcg_gen_mov_i32(dst, src); 3644 } 3645 3646 static bool trans_fcpy_f(DisasContext *ctx, arg_fclass01 *a) 3647 { 3648 return do_fop_wew(ctx, a->t, a->r, gen_fcpy_f); 3649 } 3650 3651 static void gen_fcpy_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3652 { 3653 tcg_gen_mov_i64(dst, src); 3654 } 3655 3656 static bool trans_fcpy_d(DisasContext *ctx, arg_fclass01 *a) 3657 { 3658 return do_fop_ded(ctx, a->t, a->r, gen_fcpy_d); 3659 } 3660 3661 static void gen_fabs_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3662 { 3663 tcg_gen_andi_i32(dst, src, INT32_MAX); 3664 } 3665 3666 static bool trans_fabs_f(DisasContext *ctx, arg_fclass01 *a) 3667 { 3668 return do_fop_wew(ctx, a->t, a->r, gen_fabs_f); 3669 } 3670 3671 static void gen_fabs_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3672 { 3673 tcg_gen_andi_i64(dst, src, INT64_MAX); 3674 } 3675 3676 static bool trans_fabs_d(DisasContext *ctx, arg_fclass01 *a) 3677 { 3678 return do_fop_ded(ctx, a->t, a->r, gen_fabs_d); 3679 } 3680 3681 static bool trans_fsqrt_f(DisasContext *ctx, arg_fclass01 *a) 3682 { 3683 return do_fop_wew(ctx, a->t, a->r, gen_helper_fsqrt_s); 3684 } 3685 3686 static bool trans_fsqrt_d(DisasContext *ctx, arg_fclass01 *a) 3687 { 3688 return do_fop_ded(ctx, a->t, a->r, gen_helper_fsqrt_d); 3689 } 3690 3691 static bool trans_frnd_f(DisasContext *ctx, arg_fclass01 *a) 3692 { 3693 return do_fop_wew(ctx, a->t, a->r, gen_helper_frnd_s); 3694 } 3695 3696 static bool trans_frnd_d(DisasContext *ctx, arg_fclass01 *a) 3697 { 3698 return do_fop_ded(ctx, a->t, a->r, gen_helper_frnd_d); 3699 } 3700 3701 static void gen_fneg_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3702 { 3703 tcg_gen_xori_i32(dst, src, INT32_MIN); 3704 } 3705 3706 static bool trans_fneg_f(DisasContext *ctx, arg_fclass01 *a) 3707 { 3708 return do_fop_wew(ctx, a->t, a->r, gen_fneg_f); 3709 } 3710 3711 static void gen_fneg_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3712 { 3713 tcg_gen_xori_i64(dst, src, INT64_MIN); 3714 } 3715 3716 static bool trans_fneg_d(DisasContext *ctx, arg_fclass01 *a) 3717 { 3718 return do_fop_ded(ctx, a->t, a->r, gen_fneg_d); 3719 } 3720 3721 static void gen_fnegabs_f(TCGv_i32 dst, TCGv_env unused, TCGv_i32 src) 3722 { 3723 tcg_gen_ori_i32(dst, src, INT32_MIN); 3724 } 3725 3726 static bool trans_fnegabs_f(DisasContext *ctx, arg_fclass01 *a) 3727 { 3728 return do_fop_wew(ctx, a->t, a->r, gen_fnegabs_f); 3729 } 3730 3731 static void gen_fnegabs_d(TCGv_i64 dst, TCGv_env unused, TCGv_i64 src) 3732 { 3733 tcg_gen_ori_i64(dst, src, INT64_MIN); 3734 } 3735 3736 static bool trans_fnegabs_d(DisasContext *ctx, arg_fclass01 *a) 3737 { 3738 return do_fop_ded(ctx, a->t, a->r, gen_fnegabs_d); 3739 } 3740 3741 /* 3742 * Float class 1 3743 */ 3744 3745 static bool trans_fcnv_d_f(DisasContext *ctx, arg_fclass01 *a) 3746 { 3747 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_s); 3748 } 3749 3750 static bool trans_fcnv_f_d(DisasContext *ctx, arg_fclass01 *a) 3751 { 3752 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_d); 3753 } 3754 3755 static bool trans_fcnv_w_f(DisasContext *ctx, arg_fclass01 *a) 3756 { 3757 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_w_s); 3758 } 3759 3760 static bool trans_fcnv_q_f(DisasContext *ctx, arg_fclass01 *a) 3761 { 3762 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_dw_s); 3763 } 3764 3765 static bool trans_fcnv_w_d(DisasContext *ctx, arg_fclass01 *a) 3766 { 3767 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_w_d); 3768 } 3769 3770 static bool trans_fcnv_q_d(DisasContext *ctx, arg_fclass01 *a) 3771 { 3772 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_dw_d); 3773 } 3774 3775 static bool trans_fcnv_f_w(DisasContext *ctx, arg_fclass01 *a) 3776 { 3777 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_s_w); 3778 } 3779 3780 static bool trans_fcnv_d_w(DisasContext *ctx, arg_fclass01 *a) 3781 { 3782 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_w); 3783 } 3784 3785 static bool trans_fcnv_f_q(DisasContext *ctx, arg_fclass01 *a) 3786 { 3787 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_dw); 3788 } 3789 3790 static bool trans_fcnv_d_q(DisasContext *ctx, arg_fclass01 *a) 3791 { 3792 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_d_dw); 3793 } 3794 3795 static bool trans_fcnv_t_f_w(DisasContext *ctx, arg_fclass01 *a) 3796 { 3797 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_t_s_w); 3798 } 3799 3800 static bool trans_fcnv_t_d_w(DisasContext *ctx, arg_fclass01 *a) 3801 { 3802 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_t_d_w); 3803 } 3804 3805 static bool trans_fcnv_t_f_q(DisasContext *ctx, arg_fclass01 *a) 3806 { 3807 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_t_s_dw); 3808 } 3809 3810 static bool trans_fcnv_t_d_q(DisasContext *ctx, arg_fclass01 *a) 3811 { 3812 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_t_d_dw); 3813 } 3814 3815 static bool trans_fcnv_uw_f(DisasContext *ctx, arg_fclass01 *a) 3816 { 3817 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_uw_s); 3818 } 3819 3820 static bool trans_fcnv_uq_f(DisasContext *ctx, arg_fclass01 *a) 3821 { 3822 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_udw_s); 3823 } 3824 3825 static bool trans_fcnv_uw_d(DisasContext *ctx, arg_fclass01 *a) 3826 { 3827 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_uw_d); 3828 } 3829 3830 static bool trans_fcnv_uq_d(DisasContext *ctx, arg_fclass01 *a) 3831 { 3832 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_udw_d); 3833 } 3834 3835 static bool trans_fcnv_f_uw(DisasContext *ctx, arg_fclass01 *a) 3836 { 3837 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_s_uw); 3838 } 3839 3840 static bool trans_fcnv_d_uw(DisasContext *ctx, arg_fclass01 *a) 3841 { 3842 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_d_uw); 3843 } 3844 3845 static bool trans_fcnv_f_uq(DisasContext *ctx, arg_fclass01 *a) 3846 { 3847 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_s_udw); 3848 } 3849 3850 static bool trans_fcnv_d_uq(DisasContext *ctx, arg_fclass01 *a) 3851 { 3852 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_d_udw); 3853 } 3854 3855 static bool trans_fcnv_t_f_uw(DisasContext *ctx, arg_fclass01 *a) 3856 { 3857 return do_fop_wew(ctx, a->t, a->r, gen_helper_fcnv_t_s_uw); 3858 } 3859 3860 static bool trans_fcnv_t_d_uw(DisasContext *ctx, arg_fclass01 *a) 3861 { 3862 return do_fop_wed(ctx, a->t, a->r, gen_helper_fcnv_t_d_uw); 3863 } 3864 3865 static bool trans_fcnv_t_f_uq(DisasContext *ctx, arg_fclass01 *a) 3866 { 3867 return do_fop_dew(ctx, a->t, a->r, gen_helper_fcnv_t_s_udw); 3868 } 3869 3870 static bool trans_fcnv_t_d_uq(DisasContext *ctx, arg_fclass01 *a) 3871 { 3872 return do_fop_ded(ctx, a->t, a->r, gen_helper_fcnv_t_d_udw); 3873 } 3874 3875 /* 3876 * Float class 2 3877 */ 3878 3879 static bool trans_fcmp_f(DisasContext *ctx, arg_fclass2 *a) 3880 { 3881 TCGv_i32 ta, tb, tc, ty; 3882 3883 nullify_over(ctx); 3884 3885 ta = load_frw0_i32(a->r1); 3886 tb = load_frw0_i32(a->r2); 3887 ty = tcg_const_i32(a->y); 3888 tc = tcg_const_i32(a->c); 3889 3890 gen_helper_fcmp_s(cpu_env, ta, tb, ty, tc); 3891 3892 tcg_temp_free_i32(ta); 3893 tcg_temp_free_i32(tb); 3894 tcg_temp_free_i32(ty); 3895 tcg_temp_free_i32(tc); 3896 3897 return nullify_end(ctx); 3898 } 3899 3900 static bool trans_fcmp_d(DisasContext *ctx, arg_fclass2 *a) 3901 { 3902 TCGv_i64 ta, tb; 3903 TCGv_i32 tc, ty; 3904 3905 nullify_over(ctx); 3906 3907 ta = load_frd0(a->r1); 3908 tb = load_frd0(a->r2); 3909 ty = tcg_const_i32(a->y); 3910 tc = tcg_const_i32(a->c); 3911 3912 gen_helper_fcmp_d(cpu_env, ta, tb, ty, tc); 3913 3914 tcg_temp_free_i64(ta); 3915 tcg_temp_free_i64(tb); 3916 tcg_temp_free_i32(ty); 3917 tcg_temp_free_i32(tc); 3918 3919 return nullify_end(ctx); 3920 } 3921 3922 static bool trans_ftest(DisasContext *ctx, arg_ftest *a) 3923 { 3924 TCGv_reg t; 3925 3926 nullify_over(ctx); 3927 3928 t = get_temp(ctx); 3929 tcg_gen_ld32u_reg(t, cpu_env, offsetof(CPUHPPAState, fr0_shadow)); 3930 3931 if (a->y == 1) { 3932 int mask; 3933 bool inv = false; 3934 3935 switch (a->c) { 3936 case 0: /* simple */ 3937 tcg_gen_andi_reg(t, t, 0x4000000); 3938 ctx->null_cond = cond_make_0(TCG_COND_NE, t); 3939 goto done; 3940 case 2: /* rej */ 3941 inv = true; 3942 /* fallthru */ 3943 case 1: /* acc */ 3944 mask = 0x43ff800; 3945 break; 3946 case 6: /* rej8 */ 3947 inv = true; 3948 /* fallthru */ 3949 case 5: /* acc8 */ 3950 mask = 0x43f8000; 3951 break; 3952 case 9: /* acc6 */ 3953 mask = 0x43e0000; 3954 break; 3955 case 13: /* acc4 */ 3956 mask = 0x4380000; 3957 break; 3958 case 17: /* acc2 */ 3959 mask = 0x4200000; 3960 break; 3961 default: 3962 gen_illegal(ctx); 3963 return true; 3964 } 3965 if (inv) { 3966 TCGv_reg c = load_const(ctx, mask); 3967 tcg_gen_or_reg(t, t, c); 3968 ctx->null_cond = cond_make(TCG_COND_EQ, t, c); 3969 } else { 3970 tcg_gen_andi_reg(t, t, mask); 3971 ctx->null_cond = cond_make_0(TCG_COND_EQ, t); 3972 } 3973 } else { 3974 unsigned cbit = (a->y ^ 1) - 1; 3975 3976 tcg_gen_extract_reg(t, t, 21 - cbit, 1); 3977 ctx->null_cond = cond_make_0(TCG_COND_NE, t); 3978 tcg_temp_free(t); 3979 } 3980 3981 done: 3982 return nullify_end(ctx); 3983 } 3984 3985 /* 3986 * Float class 2 3987 */ 3988 3989 static bool trans_fadd_f(DisasContext *ctx, arg_fclass3 *a) 3990 { 3991 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fadd_s); 3992 } 3993 3994 static bool trans_fadd_d(DisasContext *ctx, arg_fclass3 *a) 3995 { 3996 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fadd_d); 3997 } 3998 3999 static bool trans_fsub_f(DisasContext *ctx, arg_fclass3 *a) 4000 { 4001 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fsub_s); 4002 } 4003 4004 static bool trans_fsub_d(DisasContext *ctx, arg_fclass3 *a) 4005 { 4006 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fsub_d); 4007 } 4008 4009 static bool trans_fmpy_f(DisasContext *ctx, arg_fclass3 *a) 4010 { 4011 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fmpy_s); 4012 } 4013 4014 static bool trans_fmpy_d(DisasContext *ctx, arg_fclass3 *a) 4015 { 4016 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fmpy_d); 4017 } 4018 4019 static bool trans_fdiv_f(DisasContext *ctx, arg_fclass3 *a) 4020 { 4021 return do_fop_weww(ctx, a->t, a->r1, a->r2, gen_helper_fdiv_s); 4022 } 4023 4024 static bool trans_fdiv_d(DisasContext *ctx, arg_fclass3 *a) 4025 { 4026 return do_fop_dedd(ctx, a->t, a->r1, a->r2, gen_helper_fdiv_d); 4027 } 4028 4029 static bool trans_xmpyu(DisasContext *ctx, arg_xmpyu *a) 4030 { 4031 TCGv_i64 x, y; 4032 4033 nullify_over(ctx); 4034 4035 x = load_frw0_i64(a->r1); 4036 y = load_frw0_i64(a->r2); 4037 tcg_gen_mul_i64(x, x, y); 4038 save_frd(a->t, x); 4039 tcg_temp_free_i64(x); 4040 tcg_temp_free_i64(y); 4041 4042 return nullify_end(ctx); 4043 } 4044 4045 /* Convert the fmpyadd single-precision register encodings to standard. */ 4046 static inline int fmpyadd_s_reg(unsigned r) 4047 { 4048 return (r & 16) * 2 + 16 + (r & 15); 4049 } 4050 4051 static bool do_fmpyadd_s(DisasContext *ctx, arg_mpyadd *a, bool is_sub) 4052 { 4053 int tm = fmpyadd_s_reg(a->tm); 4054 int ra = fmpyadd_s_reg(a->ra); 4055 int ta = fmpyadd_s_reg(a->ta); 4056 int rm2 = fmpyadd_s_reg(a->rm2); 4057 int rm1 = fmpyadd_s_reg(a->rm1); 4058 4059 nullify_over(ctx); 4060 4061 do_fop_weww(ctx, tm, rm1, rm2, gen_helper_fmpy_s); 4062 do_fop_weww(ctx, ta, ta, ra, 4063 is_sub ? gen_helper_fsub_s : gen_helper_fadd_s); 4064 4065 return nullify_end(ctx); 4066 } 4067 4068 static bool trans_fmpyadd_f(DisasContext *ctx, arg_mpyadd *a) 4069 { 4070 return do_fmpyadd_s(ctx, a, false); 4071 } 4072 4073 static bool trans_fmpysub_f(DisasContext *ctx, arg_mpyadd *a) 4074 { 4075 return do_fmpyadd_s(ctx, a, true); 4076 } 4077 4078 static bool do_fmpyadd_d(DisasContext *ctx, arg_mpyadd *a, bool is_sub) 4079 { 4080 nullify_over(ctx); 4081 4082 do_fop_dedd(ctx, a->tm, a->rm1, a->rm2, gen_helper_fmpy_d); 4083 do_fop_dedd(ctx, a->ta, a->ta, a->ra, 4084 is_sub ? gen_helper_fsub_d : gen_helper_fadd_d); 4085 4086 return nullify_end(ctx); 4087 } 4088 4089 static bool trans_fmpyadd_d(DisasContext *ctx, arg_mpyadd *a) 4090 { 4091 return do_fmpyadd_d(ctx, a, false); 4092 } 4093 4094 static bool trans_fmpysub_d(DisasContext *ctx, arg_mpyadd *a) 4095 { 4096 return do_fmpyadd_d(ctx, a, true); 4097 } 4098 4099 static bool trans_fmpyfadd_f(DisasContext *ctx, arg_fmpyfadd_f *a) 4100 { 4101 TCGv_i32 x, y, z; 4102 4103 nullify_over(ctx); 4104 x = load_frw0_i32(a->rm1); 4105 y = load_frw0_i32(a->rm2); 4106 z = load_frw0_i32(a->ra3); 4107 4108 if (a->neg) { 4109 gen_helper_fmpynfadd_s(x, cpu_env, x, y, z); 4110 } else { 4111 gen_helper_fmpyfadd_s(x, cpu_env, x, y, z); 4112 } 4113 4114 tcg_temp_free_i32(y); 4115 tcg_temp_free_i32(z); 4116 save_frw_i32(a->t, x); 4117 tcg_temp_free_i32(x); 4118 return nullify_end(ctx); 4119 } 4120 4121 static bool trans_fmpyfadd_d(DisasContext *ctx, arg_fmpyfadd_d *a) 4122 { 4123 TCGv_i64 x, y, z; 4124 4125 nullify_over(ctx); 4126 x = load_frd0(a->rm1); 4127 y = load_frd0(a->rm2); 4128 z = load_frd0(a->ra3); 4129 4130 if (a->neg) { 4131 gen_helper_fmpynfadd_d(x, cpu_env, x, y, z); 4132 } else { 4133 gen_helper_fmpyfadd_d(x, cpu_env, x, y, z); 4134 } 4135 4136 tcg_temp_free_i64(y); 4137 tcg_temp_free_i64(z); 4138 save_frd(a->t, x); 4139 tcg_temp_free_i64(x); 4140 return nullify_end(ctx); 4141 } 4142 4143 static bool trans_diag(DisasContext *ctx, arg_diag *a) 4144 { 4145 qemu_log_mask(LOG_UNIMP, "DIAG opcode ignored\n"); 4146 cond_free(&ctx->null_cond); 4147 return true; 4148 } 4149 4150 static void hppa_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 4151 { 4152 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4153 int bound; 4154 4155 ctx->cs = cs; 4156 ctx->tb_flags = ctx->base.tb->flags; 4157 4158 #ifdef CONFIG_USER_ONLY 4159 ctx->privilege = MMU_USER_IDX; 4160 ctx->mmu_idx = MMU_USER_IDX; 4161 ctx->iaoq_f = ctx->base.pc_first | MMU_USER_IDX; 4162 ctx->iaoq_b = ctx->base.tb->cs_base | MMU_USER_IDX; 4163 #else 4164 ctx->privilege = (ctx->tb_flags >> TB_FLAG_PRIV_SHIFT) & 3; 4165 ctx->mmu_idx = (ctx->tb_flags & PSW_D ? ctx->privilege : MMU_PHYS_IDX); 4166 4167 /* Recover the IAOQ values from the GVA + PRIV. */ 4168 uint64_t cs_base = ctx->base.tb->cs_base; 4169 uint64_t iasq_f = cs_base & ~0xffffffffull; 4170 int32_t diff = cs_base; 4171 4172 ctx->iaoq_f = (ctx->base.pc_first & ~iasq_f) + ctx->privilege; 4173 ctx->iaoq_b = (diff ? ctx->iaoq_f + diff : -1); 4174 #endif 4175 ctx->iaoq_n = -1; 4176 ctx->iaoq_n_var = NULL; 4177 4178 /* Bound the number of instructions by those left on the page. */ 4179 bound = -(ctx->base.pc_first | TARGET_PAGE_MASK) / 4; 4180 ctx->base.max_insns = MIN(ctx->base.max_insns, bound); 4181 4182 ctx->ntempr = 0; 4183 ctx->ntempl = 0; 4184 memset(ctx->tempr, 0, sizeof(ctx->tempr)); 4185 memset(ctx->templ, 0, sizeof(ctx->templ)); 4186 } 4187 4188 static void hppa_tr_tb_start(DisasContextBase *dcbase, CPUState *cs) 4189 { 4190 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4191 4192 /* Seed the nullification status from PSW[N], as saved in TB->FLAGS. */ 4193 ctx->null_cond = cond_make_f(); 4194 ctx->psw_n_nonzero = false; 4195 if (ctx->tb_flags & PSW_N) { 4196 ctx->null_cond.c = TCG_COND_ALWAYS; 4197 ctx->psw_n_nonzero = true; 4198 } 4199 ctx->null_lab = NULL; 4200 } 4201 4202 static void hppa_tr_insn_start(DisasContextBase *dcbase, CPUState *cs) 4203 { 4204 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4205 4206 tcg_gen_insn_start(ctx->iaoq_f, ctx->iaoq_b); 4207 } 4208 4209 static bool hppa_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cs, 4210 const CPUBreakpoint *bp) 4211 { 4212 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4213 4214 gen_excp(ctx, EXCP_DEBUG); 4215 ctx->base.pc_next += 4; 4216 return true; 4217 } 4218 4219 static void hppa_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) 4220 { 4221 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4222 CPUHPPAState *env = cs->env_ptr; 4223 DisasJumpType ret; 4224 int i, n; 4225 4226 /* Execute one insn. */ 4227 #ifdef CONFIG_USER_ONLY 4228 if (ctx->base.pc_next < TARGET_PAGE_SIZE) { 4229 do_page_zero(ctx); 4230 ret = ctx->base.is_jmp; 4231 assert(ret != DISAS_NEXT); 4232 } else 4233 #endif 4234 { 4235 /* Always fetch the insn, even if nullified, so that we check 4236 the page permissions for execute. */ 4237 uint32_t insn = translator_ldl(env, ctx->base.pc_next); 4238 4239 /* Set up the IA queue for the next insn. 4240 This will be overwritten by a branch. */ 4241 if (ctx->iaoq_b == -1) { 4242 ctx->iaoq_n = -1; 4243 ctx->iaoq_n_var = get_temp(ctx); 4244 tcg_gen_addi_reg(ctx->iaoq_n_var, cpu_iaoq_b, 4); 4245 } else { 4246 ctx->iaoq_n = ctx->iaoq_b + 4; 4247 ctx->iaoq_n_var = NULL; 4248 } 4249 4250 if (unlikely(ctx->null_cond.c == TCG_COND_ALWAYS)) { 4251 ctx->null_cond.c = TCG_COND_NEVER; 4252 ret = DISAS_NEXT; 4253 } else { 4254 ctx->insn = insn; 4255 if (!decode(ctx, insn)) { 4256 gen_illegal(ctx); 4257 } 4258 ret = ctx->base.is_jmp; 4259 assert(ctx->null_lab == NULL); 4260 } 4261 } 4262 4263 /* Free any temporaries allocated. */ 4264 for (i = 0, n = ctx->ntempr; i < n; ++i) { 4265 tcg_temp_free(ctx->tempr[i]); 4266 ctx->tempr[i] = NULL; 4267 } 4268 for (i = 0, n = ctx->ntempl; i < n; ++i) { 4269 tcg_temp_free_tl(ctx->templ[i]); 4270 ctx->templ[i] = NULL; 4271 } 4272 ctx->ntempr = 0; 4273 ctx->ntempl = 0; 4274 4275 /* Advance the insn queue. Note that this check also detects 4276 a priority change within the instruction queue. */ 4277 if (ret == DISAS_NEXT && ctx->iaoq_b != ctx->iaoq_f + 4) { 4278 if (ctx->iaoq_b != -1 && ctx->iaoq_n != -1 4279 && use_goto_tb(ctx, ctx->iaoq_b) 4280 && (ctx->null_cond.c == TCG_COND_NEVER 4281 || ctx->null_cond.c == TCG_COND_ALWAYS)) { 4282 nullify_set(ctx, ctx->null_cond.c == TCG_COND_ALWAYS); 4283 gen_goto_tb(ctx, 0, ctx->iaoq_b, ctx->iaoq_n); 4284 ctx->base.is_jmp = ret = DISAS_NORETURN; 4285 } else { 4286 ctx->base.is_jmp = ret = DISAS_IAQ_N_STALE; 4287 } 4288 } 4289 ctx->iaoq_f = ctx->iaoq_b; 4290 ctx->iaoq_b = ctx->iaoq_n; 4291 ctx->base.pc_next += 4; 4292 4293 switch (ret) { 4294 case DISAS_NORETURN: 4295 case DISAS_IAQ_N_UPDATED: 4296 break; 4297 4298 case DISAS_NEXT: 4299 case DISAS_IAQ_N_STALE: 4300 case DISAS_IAQ_N_STALE_EXIT: 4301 if (ctx->iaoq_f == -1) { 4302 tcg_gen_mov_reg(cpu_iaoq_f, cpu_iaoq_b); 4303 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_n, ctx->iaoq_n_var); 4304 #ifndef CONFIG_USER_ONLY 4305 tcg_gen_mov_i64(cpu_iasq_f, cpu_iasq_b); 4306 #endif 4307 nullify_save(ctx); 4308 ctx->base.is_jmp = (ret == DISAS_IAQ_N_STALE_EXIT 4309 ? DISAS_EXIT 4310 : DISAS_IAQ_N_UPDATED); 4311 } else if (ctx->iaoq_b == -1) { 4312 tcg_gen_mov_reg(cpu_iaoq_b, ctx->iaoq_n_var); 4313 } 4314 break; 4315 4316 default: 4317 g_assert_not_reached(); 4318 } 4319 } 4320 4321 static void hppa_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs) 4322 { 4323 DisasContext *ctx = container_of(dcbase, DisasContext, base); 4324 DisasJumpType is_jmp = ctx->base.is_jmp; 4325 4326 switch (is_jmp) { 4327 case DISAS_NORETURN: 4328 break; 4329 case DISAS_TOO_MANY: 4330 case DISAS_IAQ_N_STALE: 4331 case DISAS_IAQ_N_STALE_EXIT: 4332 copy_iaoq_entry(cpu_iaoq_f, ctx->iaoq_f, cpu_iaoq_f); 4333 copy_iaoq_entry(cpu_iaoq_b, ctx->iaoq_b, cpu_iaoq_b); 4334 nullify_save(ctx); 4335 /* FALLTHRU */ 4336 case DISAS_IAQ_N_UPDATED: 4337 if (ctx->base.singlestep_enabled) { 4338 gen_excp_1(EXCP_DEBUG); 4339 } else if (is_jmp != DISAS_IAQ_N_STALE_EXIT) { 4340 tcg_gen_lookup_and_goto_ptr(); 4341 } 4342 /* FALLTHRU */ 4343 case DISAS_EXIT: 4344 tcg_gen_exit_tb(NULL, 0); 4345 break; 4346 default: 4347 g_assert_not_reached(); 4348 } 4349 } 4350 4351 static void hppa_tr_disas_log(const DisasContextBase *dcbase, CPUState *cs) 4352 { 4353 target_ulong pc = dcbase->pc_first; 4354 4355 #ifdef CONFIG_USER_ONLY 4356 switch (pc) { 4357 case 0x00: 4358 qemu_log("IN:\n0x00000000: (null)\n"); 4359 return; 4360 case 0xb0: 4361 qemu_log("IN:\n0x000000b0: light-weight-syscall\n"); 4362 return; 4363 case 0xe0: 4364 qemu_log("IN:\n0x000000e0: set-thread-pointer-syscall\n"); 4365 return; 4366 case 0x100: 4367 qemu_log("IN:\n0x00000100: syscall\n"); 4368 return; 4369 } 4370 #endif 4371 4372 qemu_log("IN: %s\n", lookup_symbol(pc)); 4373 log_target_disas(cs, pc, dcbase->tb->size); 4374 } 4375 4376 static const TranslatorOps hppa_tr_ops = { 4377 .init_disas_context = hppa_tr_init_disas_context, 4378 .tb_start = hppa_tr_tb_start, 4379 .insn_start = hppa_tr_insn_start, 4380 .breakpoint_check = hppa_tr_breakpoint_check, 4381 .translate_insn = hppa_tr_translate_insn, 4382 .tb_stop = hppa_tr_tb_stop, 4383 .disas_log = hppa_tr_disas_log, 4384 }; 4385 4386 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) 4387 { 4388 DisasContext ctx; 4389 translator_loop(&hppa_tr_ops, &ctx.base, cs, tb, max_insns); 4390 } 4391 4392 void restore_state_to_opc(CPUHPPAState *env, TranslationBlock *tb, 4393 target_ulong *data) 4394 { 4395 env->iaoq_f = data[0]; 4396 if (data[1] != (target_ureg)-1) { 4397 env->iaoq_b = data[1]; 4398 } 4399 /* Since we were executing the instruction at IAOQ_F, and took some 4400 sort of action that provoked the cpu_restore_state, we can infer 4401 that the instruction was not nullified. */ 4402 env->psw_n = 0; 4403 } 4404