xref: /openbmc/qemu/rust/hw/core/src/qdev.rs (revision 5d7a40b5b280cd82f24a9b4e5f4557e200111030)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 
5 //! Bindings to create devices and access device functionality from Rust.
6 
7 use std::{
8     ffi::{c_int, c_void, CStr, CString},
9     ptr::{addr_of, NonNull},
10 };
11 
12 use chardev::Chardev;
13 use common::{callbacks::FnCall, Opaque};
14 use migration::{impl_vmstate_c_struct, VMStateDescription};
15 use qom::{prelude::*, ObjectClass, ObjectImpl, Owned, ParentInit};
16 use util::{Error, Result};
17 
18 pub use crate::bindings::{ClockEvent, DeviceClass, Property, ResetType};
19 use crate::{
20     bindings::{self, qdev_init_gpio_in, qdev_init_gpio_out, ResettableClass},
21     irq::InterruptSource,
22 };
23 
24 /// A safe wrapper around [`bindings::Clock`].
25 #[repr(transparent)]
26 #[derive(Debug, common::Wrapper)]
27 pub struct Clock(Opaque<bindings::Clock>);
28 
29 unsafe impl Send for Clock {}
30 unsafe impl Sync for Clock {}
31 
32 /// A safe wrapper around [`bindings::DeviceState`].
33 #[repr(transparent)]
34 #[derive(Debug, common::Wrapper)]
35 pub struct DeviceState(Opaque<bindings::DeviceState>);
36 
37 unsafe impl Send for DeviceState {}
38 unsafe impl Sync for DeviceState {}
39 
40 /// Trait providing the contents of the `ResettablePhases` struct,
41 /// which is part of the QOM `Resettable` interface.
42 pub trait ResettablePhasesImpl {
43     /// If not None, this is called when the object enters reset. It
44     /// can reset local state of the object, but it must not do anything that
45     /// has a side-effect on other objects, such as raising or lowering an
46     /// [`InterruptSource`], or reading or writing guest memory. It takes the
47     /// reset's type as argument.
48     const ENTER: Option<fn(&Self, ResetType)> = None;
49 
50     /// If not None, this is called when the object for entry into reset, once
51     /// every object in the system which is being reset has had its
52     /// `ResettablePhasesImpl::ENTER` method called. At this point devices
53     /// can do actions that affect other objects.
54     ///
55     /// If in doubt, implement this method.
56     const HOLD: Option<fn(&Self, ResetType)> = None;
57 
58     /// If not None, this phase is called when the object leaves the reset
59     /// state. Actions affecting other objects are permitted.
60     const EXIT: Option<fn(&Self, ResetType)> = None;
61 }
62 
63 /// # Safety
64 ///
65 /// We expect the FFI user of this function to pass a valid pointer that
66 /// can be downcasted to type `T`. We also expect the device is
67 /// readable/writeable from one thread at any time.
68 unsafe extern "C" fn rust_resettable_enter_fn<T: ResettablePhasesImpl>(
69     obj: *mut bindings::Object,
70     typ: ResetType,
71 ) {
72     let state = NonNull::new(obj).unwrap().cast::<T>();
73     T::ENTER.unwrap()(unsafe { state.as_ref() }, typ);
74 }
75 
76 /// # Safety
77 ///
78 /// We expect the FFI user of this function to pass a valid pointer that
79 /// can be downcasted to type `T`. We also expect the device is
80 /// readable/writeable from one thread at any time.
81 unsafe extern "C" fn rust_resettable_hold_fn<T: ResettablePhasesImpl>(
82     obj: *mut bindings::Object,
83     typ: ResetType,
84 ) {
85     let state = NonNull::new(obj).unwrap().cast::<T>();
86     T::HOLD.unwrap()(unsafe { state.as_ref() }, typ);
87 }
88 
89 /// # Safety
90 ///
91 /// We expect the FFI user of this function to pass a valid pointer that
92 /// can be downcasted to type `T`. We also expect the device is
93 /// readable/writeable from one thread at any time.
94 unsafe extern "C" fn rust_resettable_exit_fn<T: ResettablePhasesImpl>(
95     obj: *mut bindings::Object,
96     typ: ResetType,
97 ) {
98     let state = NonNull::new(obj).unwrap().cast::<T>();
99     T::EXIT.unwrap()(unsafe { state.as_ref() }, typ);
100 }
101 
102 /// Helper trait to return pointer to a [`bindings::PropertyInfo`] for a type.
103 ///
104 /// This trait is used by [`qemu_macros::Device`] derive macro.
105 ///
106 /// Base types that already have `qdev_prop_*` globals in the QEMU API should
107 /// use those values as exported by the [`bindings`] module, instead of
108 /// redefining them.
109 ///
110 /// # Safety
111 ///
112 /// This trait is marked as `unsafe` because `BASE_INFO` and `BIT_INFO` must be
113 /// valid raw references to [`bindings::PropertyInfo`].
114 ///
115 /// Note we could not use a regular reference:
116 ///
117 /// ```text
118 /// const VALUE: &bindings::PropertyInfo = ...
119 /// ```
120 ///
121 /// because this results in the following compiler error:
122 ///
123 /// ```text
124 /// constructing invalid value: encountered reference to `extern` static in `const`
125 /// ```
126 ///
127 /// This is because the compiler generally might dereference a normal reference
128 /// during const evaluation, but not in this case (if it did, it'd need to
129 /// dereference the raw pointer so using a `*const` would also fail to compile).
130 ///
131 /// It is the implementer's responsibility to provide a valid
132 /// [`bindings::PropertyInfo`] pointer for the trait implementation to be safe.
133 pub unsafe trait QDevProp {
134     const BASE_INFO: *const bindings::PropertyInfo;
135     const BIT_INFO: *const bindings::PropertyInfo = {
136         panic!("invalid type for bit property");
137     };
138 }
139 
140 macro_rules! impl_qdev_prop {
141     ($type:ty,$info:ident$(, $bit_info:ident)?) => {
142         unsafe impl $crate::qdev::QDevProp for $type {
143             const BASE_INFO: *const $crate::bindings::PropertyInfo =
144                 addr_of!($crate::bindings::$info);
145             $(const BIT_INFO: *const $crate::bindings::PropertyInfo =
146                 addr_of!($crate::bindings::$bit_info);)?
147         }
148     };
149 }
150 
151 impl_qdev_prop!(bool, qdev_prop_bool);
152 impl_qdev_prop!(u8, qdev_prop_uint8);
153 impl_qdev_prop!(u16, qdev_prop_uint16);
154 impl_qdev_prop!(u32, qdev_prop_uint32, qdev_prop_bit);
155 impl_qdev_prop!(u64, qdev_prop_uint64, qdev_prop_bit64);
156 impl_qdev_prop!(usize, qdev_prop_usize);
157 impl_qdev_prop!(i32, qdev_prop_int32);
158 impl_qdev_prop!(i64, qdev_prop_int64);
159 impl_qdev_prop!(chardev::CharFrontend, qdev_prop_chr);
160 
161 /// Trait to define device properties.
162 ///
163 /// # Safety
164 ///
165 /// Caller is responsible for the validity of properties array.
166 pub unsafe trait DevicePropertiesImpl {
167     /// An array providing the properties that the user can set on the
168     /// device.
169     const PROPERTIES: &'static [Property] = &[];
170 }
171 
172 /// Trait providing the contents of [`DeviceClass`].
173 pub trait DeviceImpl:
174     ObjectImpl + ResettablePhasesImpl + DevicePropertiesImpl + IsA<DeviceState>
175 {
176     /// _Realization_ is the second stage of device creation. It contains
177     /// all operations that depend on device properties and can fail (note:
178     /// this is not yet supported for Rust devices).
179     ///
180     /// If not `None`, the parent class's `realize` method is overridden
181     /// with the function pointed to by `REALIZE`.
182     const REALIZE: Option<fn(&Self) -> Result<()>> = None;
183 
184     /// A `VMStateDescription` providing the migration format for the device
185     /// Not a `const` because referencing statics in constants is unstable
186     /// until Rust 1.83.0.
187     const VMSTATE: Option<VMStateDescription<Self>> = None;
188 }
189 
190 /// # Safety
191 ///
192 /// This function is only called through the QOM machinery and
193 /// used by `DeviceClass::class_init`.
194 /// We expect the FFI user of this function to pass a valid pointer that
195 /// can be downcasted to type `T`. We also expect the device is
196 /// readable/writeable from one thread at any time.
197 unsafe extern "C" fn rust_realize_fn<T: DeviceImpl>(
198     dev: *mut bindings::DeviceState,
199     errp: *mut *mut util::bindings::Error,
200 ) {
201     let state = NonNull::new(dev).unwrap().cast::<T>();
202     let result = T::REALIZE.unwrap()(unsafe { state.as_ref() });
203     unsafe {
204         Error::ok_or_propagate(result, errp);
205     }
206 }
207 
208 unsafe impl InterfaceType for ResettableClass {
209     const TYPE_NAME: &'static CStr =
210         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_RESETTABLE_INTERFACE) };
211 }
212 
213 impl ResettableClass {
214     /// Fill in the virtual methods of `ResettableClass` based on the
215     /// definitions in the `ResettablePhasesImpl` trait.
216     pub fn class_init<T: ResettablePhasesImpl>(&mut self) {
217         if <T as ResettablePhasesImpl>::ENTER.is_some() {
218             self.phases.enter = Some(rust_resettable_enter_fn::<T>);
219         }
220         if <T as ResettablePhasesImpl>::HOLD.is_some() {
221             self.phases.hold = Some(rust_resettable_hold_fn::<T>);
222         }
223         if <T as ResettablePhasesImpl>::EXIT.is_some() {
224             self.phases.exit = Some(rust_resettable_exit_fn::<T>);
225         }
226     }
227 }
228 
229 impl DeviceClass {
230     /// Fill in the virtual methods of `DeviceClass` based on the definitions in
231     /// the `DeviceImpl` trait.
232     pub fn class_init<T: DeviceImpl>(&mut self) {
233         if <T as DeviceImpl>::REALIZE.is_some() {
234             self.realize = Some(rust_realize_fn::<T>);
235         }
236         if let Some(ref vmsd) = <T as DeviceImpl>::VMSTATE {
237             self.vmsd = vmsd.as_ref();
238         }
239         let prop = <T as DevicePropertiesImpl>::PROPERTIES;
240         if !prop.is_empty() {
241             unsafe {
242                 bindings::device_class_set_props_n(self, prop.as_ptr(), prop.len());
243             }
244         }
245 
246         ResettableClass::cast::<DeviceState>(self).class_init::<T>();
247         self.parent_class.class_init::<T>();
248     }
249 }
250 
251 unsafe impl ObjectType for DeviceState {
252     type Class = DeviceClass;
253     const TYPE_NAME: &'static CStr =
254         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_DEVICE) };
255 }
256 
257 qom_isa!(DeviceState: Object);
258 
259 /// Initialization methods take a [`ParentInit`] and can be called as
260 /// associated functions.
261 impl DeviceState {
262     /// Add an input clock named `name`.  Invoke the callback with
263     /// `self` as the first parameter for the events that are requested.
264     ///
265     /// The resulting clock is added as a child of `self`, but it also
266     /// stays alive until after `Drop::drop` is called because C code
267     /// keeps an extra reference to it until `device_finalize()` calls
268     /// `qdev_finalize_clocklist()`.  Therefore (unlike most cases in
269     /// which Rust code has a reference to a child object) it would be
270     /// possible for this function to return a `&Clock` too.
271     #[inline]
272     pub fn init_clock_in<T: DeviceImpl, F: for<'a> FnCall<(&'a T, ClockEvent)>>(
273         this: &mut ParentInit<T>,
274         name: &str,
275         _cb: &F,
276         events: ClockEvent,
277     ) -> Owned<Clock>
278     where
279         T::ParentType: IsA<DeviceState>,
280     {
281         fn do_init_clock_in(
282             dev: &DeviceState,
283             name: &str,
284             cb: Option<unsafe extern "C" fn(*mut c_void, ClockEvent)>,
285             events: ClockEvent,
286         ) -> Owned<Clock> {
287             assert!(bql::is_locked());
288 
289             // SAFETY: the clock is heap allocated, but qdev_init_clock_in()
290             // does not gift the reference to its caller; so use Owned::from to
291             // add one.  The callback is disabled automatically when the clock
292             // is unparented, which happens before the device is finalized.
293             unsafe {
294                 let cstr = CString::new(name).unwrap();
295                 let clk = bindings::qdev_init_clock_in(
296                     dev.0.as_mut_ptr(),
297                     cstr.as_ptr(),
298                     cb,
299                     dev.0.as_void_ptr(),
300                     events.0,
301                 );
302 
303                 let clk: &Clock = Clock::from_raw(clk);
304                 Owned::from(clk)
305             }
306         }
307 
308         let cb: Option<unsafe extern "C" fn(*mut c_void, ClockEvent)> = if F::is_some() {
309             unsafe extern "C" fn rust_clock_cb<T, F: for<'a> FnCall<(&'a T, ClockEvent)>>(
310                 opaque: *mut c_void,
311                 event: ClockEvent,
312             ) {
313                 // SAFETY: the opaque is "this", which is indeed a pointer to T
314                 F::call((unsafe { &*(opaque.cast::<T>()) }, event))
315             }
316             Some(rust_clock_cb::<T, F>)
317         } else {
318             None
319         };
320 
321         do_init_clock_in(unsafe { this.upcast_mut() }, name, cb, events)
322     }
323 
324     /// Add an output clock named `name`.
325     ///
326     /// The resulting clock is added as a child of `self`, but it also
327     /// stays alive until after `Drop::drop` is called because C code
328     /// keeps an extra reference to it until `device_finalize()` calls
329     /// `qdev_finalize_clocklist()`.  Therefore (unlike most cases in
330     /// which Rust code has a reference to a child object) it would be
331     /// possible for this function to return a `&Clock` too.
332     #[inline]
333     pub fn init_clock_out<T: DeviceImpl>(this: &mut ParentInit<T>, name: &str) -> Owned<Clock>
334     where
335         T::ParentType: IsA<DeviceState>,
336     {
337         unsafe {
338             let cstr = CString::new(name).unwrap();
339             let dev: &mut DeviceState = this.upcast_mut();
340             let clk = bindings::qdev_init_clock_out(dev.0.as_mut_ptr(), cstr.as_ptr());
341 
342             let clk: &Clock = Clock::from_raw(clk);
343             Owned::from(clk)
344         }
345     }
346 }
347 
348 /// Trait for methods exposed by the [`DeviceState`] class.  The methods can be
349 /// called on all objects that have the trait `IsA<DeviceState>`.
350 ///
351 /// The trait should only be used through the blanket implementation,
352 /// which guarantees safety via `IsA`.
353 pub trait DeviceMethods: ObjectDeref
354 where
355     Self::Target: IsA<DeviceState>,
356 {
357     fn prop_set_chr(&self, propname: &str, chr: &Owned<Chardev>) {
358         assert!(bql::is_locked());
359         let c_propname = CString::new(propname).unwrap();
360         let chr: &Chardev = chr;
361         unsafe {
362             bindings::qdev_prop_set_chr(
363                 self.upcast().as_mut_ptr(),
364                 c_propname.as_ptr(),
365                 chr.as_mut_ptr(),
366             );
367         }
368     }
369 
370     fn init_gpio_in<F: for<'a> FnCall<(&'a Self::Target, u32, u32)>>(
371         &self,
372         num_lines: u32,
373         _cb: F,
374     ) {
375         fn do_init_gpio_in(
376             dev: &DeviceState,
377             num_lines: u32,
378             gpio_in_cb: unsafe extern "C" fn(*mut c_void, c_int, c_int),
379         ) {
380             unsafe {
381                 qdev_init_gpio_in(dev.as_mut_ptr(), Some(gpio_in_cb), num_lines as c_int);
382             }
383         }
384 
385         const { assert!(F::IS_SOME) };
386         unsafe extern "C" fn rust_irq_handler<T, F: for<'a> FnCall<(&'a T, u32, u32)>>(
387             opaque: *mut c_void,
388             line: c_int,
389             level: c_int,
390         ) {
391             // SAFETY: the opaque was passed as a reference to `T`
392             F::call((unsafe { &*(opaque.cast::<T>()) }, line as u32, level as u32))
393         }
394 
395         let gpio_in_cb: unsafe extern "C" fn(*mut c_void, c_int, c_int) =
396             rust_irq_handler::<Self::Target, F>;
397 
398         do_init_gpio_in(self.upcast(), num_lines, gpio_in_cb);
399     }
400 
401     fn init_gpio_out(&self, pins: &[InterruptSource]) {
402         unsafe {
403             qdev_init_gpio_out(
404                 self.upcast().as_mut_ptr(),
405                 InterruptSource::slice_as_ptr(pins),
406                 pins.len() as c_int,
407             );
408         }
409     }
410 }
411 
412 impl<R: ObjectDeref> DeviceMethods for R where R::Target: IsA<DeviceState> {}
413 
414 impl Clock {
415     pub const PERIOD_1SEC: u64 = bindings::CLOCK_PERIOD_1SEC;
416 
417     pub const fn period_from_ns(ns: u64) -> u64 {
418         ns * Self::PERIOD_1SEC / 1_000_000_000
419     }
420 
421     pub const fn period_from_hz(hz: u64) -> u64 {
422         if hz == 0 {
423             0
424         } else {
425             Self::PERIOD_1SEC / hz
426         }
427     }
428 
429     pub const fn period_to_hz(period: u64) -> u64 {
430         if period == 0 {
431             0
432         } else {
433             Self::PERIOD_1SEC / period
434         }
435     }
436 
437     pub const fn period(&self) -> u64 {
438         // SAFETY: Clock is returned by init_clock_in with zero value for period
439         unsafe { &*self.0.as_ptr() }.period
440     }
441 
442     pub const fn hz(&self) -> u64 {
443         Self::period_to_hz(self.period())
444     }
445 }
446 
447 unsafe impl ObjectType for Clock {
448     type Class = ObjectClass;
449     const TYPE_NAME: &'static CStr =
450         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_CLOCK) };
451 }
452 
453 qom_isa!(Clock: Object);
454 
455 impl_vmstate_c_struct!(Clock, bindings::vmstate_clock);
456