1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * 6 * Authors: 7 * Anthony Liguori <aliguori@us.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #ifndef QEMU_KVM_H 15 #define QEMU_KVM_H 16 17 #include "qemu/queue.h" 18 #include "qom/cpu.h" 19 #include "exec/memattrs.h" 20 #include "hw/irq.h" 21 22 #ifdef NEED_CPU_H 23 # ifdef CONFIG_KVM 24 # include <linux/kvm.h> 25 # include <linux/kvm_para.h> 26 # define CONFIG_KVM_IS_POSSIBLE 27 # endif 28 #else 29 # define CONFIG_KVM_IS_POSSIBLE 30 #endif 31 32 #ifdef CONFIG_KVM_IS_POSSIBLE 33 34 extern bool kvm_allowed; 35 extern bool kvm_kernel_irqchip; 36 extern bool kvm_split_irqchip; 37 extern bool kvm_async_interrupts_allowed; 38 extern bool kvm_halt_in_kernel_allowed; 39 extern bool kvm_eventfds_allowed; 40 extern bool kvm_irqfds_allowed; 41 extern bool kvm_resamplefds_allowed; 42 extern bool kvm_msi_via_irqfd_allowed; 43 extern bool kvm_gsi_routing_allowed; 44 extern bool kvm_gsi_direct_mapping; 45 extern bool kvm_readonly_mem_allowed; 46 extern bool kvm_direct_msi_allowed; 47 extern bool kvm_ioeventfd_any_length_allowed; 48 extern bool kvm_msi_use_devid; 49 50 #define kvm_enabled() (kvm_allowed) 51 /** 52 * kvm_irqchip_in_kernel: 53 * 54 * Returns: true if the user asked us to create an in-kernel 55 * irqchip via the "kernel_irqchip=on" machine option. 56 * What this actually means is architecture and machine model 57 * specific: on PC, for instance, it means that the LAPIC, 58 * IOAPIC and PIT are all in kernel. This function should never 59 * be used from generic target-independent code: use one of the 60 * following functions or some other specific check instead. 61 */ 62 #define kvm_irqchip_in_kernel() (kvm_kernel_irqchip) 63 64 /** 65 * kvm_irqchip_is_split: 66 * 67 * Returns: true if the user asked us to split the irqchip 68 * implementation between user and kernel space. The details are 69 * architecture and machine specific. On PC, it means that the PIC, 70 * IOAPIC, and PIT are in user space while the LAPIC is in the kernel. 71 */ 72 #define kvm_irqchip_is_split() (kvm_split_irqchip) 73 74 /** 75 * kvm_async_interrupts_enabled: 76 * 77 * Returns: true if we can deliver interrupts to KVM 78 * asynchronously (ie by ioctl from any thread at any time) 79 * rather than having to do interrupt delivery synchronously 80 * (where the vcpu must be stopped at a suitable point first). 81 */ 82 #define kvm_async_interrupts_enabled() (kvm_async_interrupts_allowed) 83 84 /** 85 * kvm_halt_in_kernel 86 * 87 * Returns: true if halted cpus should still get a KVM_RUN ioctl to run 88 * inside of kernel space. This only works if MP state is implemented. 89 */ 90 #define kvm_halt_in_kernel() (kvm_halt_in_kernel_allowed) 91 92 /** 93 * kvm_eventfds_enabled: 94 * 95 * Returns: true if we can use eventfds to receive notifications 96 * from a KVM CPU (ie the kernel supports eventds and we are running 97 * with a configuration where it is meaningful to use them). 98 */ 99 #define kvm_eventfds_enabled() (kvm_eventfds_allowed) 100 101 /** 102 * kvm_irqfds_enabled: 103 * 104 * Returns: true if we can use irqfds to inject interrupts into 105 * a KVM CPU (ie the kernel supports irqfds and we are running 106 * with a configuration where it is meaningful to use them). 107 */ 108 #define kvm_irqfds_enabled() (kvm_irqfds_allowed) 109 110 /** 111 * kvm_resamplefds_enabled: 112 * 113 * Returns: true if we can use resamplefds to inject interrupts into 114 * a KVM CPU (ie the kernel supports resamplefds and we are running 115 * with a configuration where it is meaningful to use them). 116 */ 117 #define kvm_resamplefds_enabled() (kvm_resamplefds_allowed) 118 119 /** 120 * kvm_msi_via_irqfd_enabled: 121 * 122 * Returns: true if we can route a PCI MSI (Message Signaled Interrupt) 123 * to a KVM CPU via an irqfd. This requires that the kernel supports 124 * this and that we're running in a configuration that permits it. 125 */ 126 #define kvm_msi_via_irqfd_enabled() (kvm_msi_via_irqfd_allowed) 127 128 /** 129 * kvm_gsi_routing_enabled: 130 * 131 * Returns: true if GSI routing is enabled (ie the kernel supports 132 * it and we're running in a configuration that permits it). 133 */ 134 #define kvm_gsi_routing_enabled() (kvm_gsi_routing_allowed) 135 136 /** 137 * kvm_gsi_direct_mapping: 138 * 139 * Returns: true if GSI direct mapping is enabled. 140 */ 141 #define kvm_gsi_direct_mapping() (kvm_gsi_direct_mapping) 142 143 /** 144 * kvm_readonly_mem_enabled: 145 * 146 * Returns: true if KVM readonly memory is enabled (ie the kernel 147 * supports it and we're running in a configuration that permits it). 148 */ 149 #define kvm_readonly_mem_enabled() (kvm_readonly_mem_allowed) 150 151 /** 152 * kvm_direct_msi_enabled: 153 * 154 * Returns: true if KVM allows direct MSI injection. 155 */ 156 #define kvm_direct_msi_enabled() (kvm_direct_msi_allowed) 157 158 /** 159 * kvm_ioeventfd_any_length_enabled: 160 * Returns: true if KVM allows any length io eventfd. 161 */ 162 #define kvm_ioeventfd_any_length_enabled() (kvm_ioeventfd_any_length_allowed) 163 164 /** 165 * kvm_msi_devid_required: 166 * Returns: true if KVM requires a device id to be provided while 167 * defining an MSI routing entry. 168 */ 169 #define kvm_msi_devid_required() (kvm_msi_use_devid) 170 171 #else 172 173 #define kvm_enabled() (0) 174 #define kvm_irqchip_in_kernel() (false) 175 #define kvm_irqchip_is_split() (false) 176 #define kvm_async_interrupts_enabled() (false) 177 #define kvm_halt_in_kernel() (false) 178 #define kvm_eventfds_enabled() (false) 179 #define kvm_irqfds_enabled() (false) 180 #define kvm_resamplefds_enabled() (false) 181 #define kvm_msi_via_irqfd_enabled() (false) 182 #define kvm_gsi_routing_allowed() (false) 183 #define kvm_gsi_direct_mapping() (false) 184 #define kvm_readonly_mem_enabled() (false) 185 #define kvm_direct_msi_enabled() (false) 186 #define kvm_ioeventfd_any_length_enabled() (false) 187 #define kvm_msi_devid_required() (false) 188 189 #endif /* CONFIG_KVM_IS_POSSIBLE */ 190 191 struct kvm_run; 192 struct kvm_lapic_state; 193 struct kvm_irq_routing_entry; 194 195 typedef struct KVMCapabilityInfo { 196 const char *name; 197 int value; 198 } KVMCapabilityInfo; 199 200 #define KVM_CAP_INFO(CAP) { "KVM_CAP_" stringify(CAP), KVM_CAP_##CAP } 201 #define KVM_CAP_LAST_INFO { NULL, 0 } 202 203 struct KVMState; 204 typedef struct KVMState KVMState; 205 extern KVMState *kvm_state; 206 207 /* external API */ 208 209 bool kvm_has_free_slot(MachineState *ms); 210 int kvm_has_sync_mmu(void); 211 int kvm_has_vcpu_events(void); 212 int kvm_has_robust_singlestep(void); 213 int kvm_has_debugregs(void); 214 int kvm_has_pit_state2(void); 215 int kvm_has_many_ioeventfds(void); 216 int kvm_has_gsi_routing(void); 217 int kvm_has_intx_set_mask(void); 218 219 int kvm_init_vcpu(CPUState *cpu); 220 int kvm_cpu_exec(CPUState *cpu); 221 int kvm_destroy_vcpu(CPUState *cpu); 222 223 /** 224 * kvm_arm_supports_user_irq 225 * 226 * Not all KVM implementations support notifications for kernel generated 227 * interrupt events to user space. This function indicates whether the current 228 * KVM implementation does support them. 229 * 230 * Returns: true if KVM supports using kernel generated IRQs from user space 231 */ 232 bool kvm_arm_supports_user_irq(void); 233 234 #ifdef NEED_CPU_H 235 #include "cpu.h" 236 237 void kvm_flush_coalesced_mmio_buffer(void); 238 239 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 240 target_ulong len, int type); 241 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 242 target_ulong len, int type); 243 void kvm_remove_all_breakpoints(CPUState *cpu); 244 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap); 245 246 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr); 247 int kvm_on_sigbus(int code, void *addr); 248 249 /* interface with exec.c */ 250 251 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)); 252 253 /* internal API */ 254 255 int kvm_ioctl(KVMState *s, int type, ...); 256 257 int kvm_vm_ioctl(KVMState *s, int type, ...); 258 259 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...); 260 261 /** 262 * kvm_device_ioctl - call an ioctl on a kvm device 263 * @fd: The KVM device file descriptor as returned from KVM_CREATE_DEVICE 264 * @type: The device-ctrl ioctl number 265 * 266 * Returns: -errno on error, nonnegative on success 267 */ 268 int kvm_device_ioctl(int fd, int type, ...); 269 270 /** 271 * kvm_vm_check_attr - check for existence of a specific vm attribute 272 * @s: The KVMState pointer 273 * @group: the group 274 * @attr: the attribute of that group to query for 275 * 276 * Returns: 1 if the attribute exists 277 * 0 if the attribute either does not exist or if the vm device 278 * interface is unavailable 279 */ 280 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr); 281 282 /** 283 * kvm_device_check_attr - check for existence of a specific device attribute 284 * @fd: The device file descriptor 285 * @group: the group 286 * @attr: the attribute of that group to query for 287 * 288 * Returns: 1 if the attribute exists 289 * 0 if the attribute either does not exist or if the vm device 290 * interface is unavailable 291 */ 292 int kvm_device_check_attr(int fd, uint32_t group, uint64_t attr); 293 294 /** 295 * kvm_device_access - set or get value of a specific vm attribute 296 * @fd: The device file descriptor 297 * @group: the group 298 * @attr: the attribute of that group to set or get 299 * @val: pointer to a storage area for the value 300 * @write: true for set and false for get operation 301 * @errp: error object handle 302 * 303 * Returns: 0 on success 304 * < 0 on error 305 * Use kvm_device_check_attr() in order to check for the availability 306 * of optional attributes. 307 */ 308 int kvm_device_access(int fd, int group, uint64_t attr, 309 void *val, bool write, Error **errp); 310 311 /** 312 * kvm_create_device - create a KVM device for the device control API 313 * @KVMState: The KVMState pointer 314 * @type: The KVM device type (see Documentation/virtual/kvm/devices in the 315 * kernel source) 316 * @test: If true, only test if device can be created, but don't actually 317 * create the device. 318 * 319 * Returns: -errno on error, nonnegative on success: @test ? 0 : device fd; 320 */ 321 int kvm_create_device(KVMState *s, uint64_t type, bool test); 322 323 /** 324 * kvm_device_supported - probe whether KVM supports specific device 325 * 326 * @vmfd: The fd handler for VM 327 * @type: type of device 328 * 329 * @return: true if supported, otherwise false. 330 */ 331 bool kvm_device_supported(int vmfd, uint64_t type); 332 333 /* Arch specific hooks */ 334 335 extern const KVMCapabilityInfo kvm_arch_required_capabilities[]; 336 337 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run); 338 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run); 339 340 int kvm_arch_handle_exit(CPUState *cpu, struct kvm_run *run); 341 342 int kvm_arch_process_async_events(CPUState *cpu); 343 344 int kvm_arch_get_registers(CPUState *cpu); 345 346 /* state subset only touched by the VCPU itself during runtime */ 347 #define KVM_PUT_RUNTIME_STATE 1 348 /* state subset modified during VCPU reset */ 349 #define KVM_PUT_RESET_STATE 2 350 /* full state set, modified during initialization or on vmload */ 351 #define KVM_PUT_FULL_STATE 3 352 353 int kvm_arch_put_registers(CPUState *cpu, int level); 354 355 int kvm_arch_init(MachineState *ms, KVMState *s); 356 357 int kvm_arch_init_vcpu(CPUState *cpu); 358 359 bool kvm_vcpu_id_is_valid(int vcpu_id); 360 361 /* Returns VCPU ID to be used on KVM_CREATE_VCPU ioctl() */ 362 unsigned long kvm_arch_vcpu_id(CPUState *cpu); 363 364 #ifdef TARGET_I386 365 #define KVM_HAVE_MCE_INJECTION 1 366 void kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr); 367 #endif 368 369 void kvm_arch_init_irq_routing(KVMState *s); 370 371 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 372 uint64_t address, uint32_t data, PCIDevice *dev); 373 374 /* Notify arch about newly added MSI routes */ 375 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 376 int vector, PCIDevice *dev); 377 /* Notify arch about released MSI routes */ 378 int kvm_arch_release_virq_post(int virq); 379 380 int kvm_arch_msi_data_to_gsi(uint32_t data); 381 382 int kvm_set_irq(KVMState *s, int irq, int level); 383 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg); 384 385 void kvm_irqchip_add_irq_route(KVMState *s, int gsi, int irqchip, int pin); 386 387 void kvm_get_apic_state(DeviceState *d, struct kvm_lapic_state *kapic); 388 389 struct kvm_guest_debug; 390 struct kvm_debug_exit_arch; 391 392 struct kvm_sw_breakpoint { 393 target_ulong pc; 394 target_ulong saved_insn; 395 int use_count; 396 QTAILQ_ENTRY(kvm_sw_breakpoint) entry; 397 }; 398 399 QTAILQ_HEAD(kvm_sw_breakpoint_head, kvm_sw_breakpoint); 400 401 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 402 target_ulong pc); 403 404 int kvm_sw_breakpoints_active(CPUState *cpu); 405 406 int kvm_arch_insert_sw_breakpoint(CPUState *cpu, 407 struct kvm_sw_breakpoint *bp); 408 int kvm_arch_remove_sw_breakpoint(CPUState *cpu, 409 struct kvm_sw_breakpoint *bp); 410 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 411 target_ulong len, int type); 412 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 413 target_ulong len, int type); 414 void kvm_arch_remove_all_hw_breakpoints(void); 415 416 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg); 417 418 bool kvm_arch_stop_on_emulation_error(CPUState *cpu); 419 420 int kvm_check_extension(KVMState *s, unsigned int extension); 421 422 int kvm_vm_check_extension(KVMState *s, unsigned int extension); 423 424 #define kvm_vm_enable_cap(s, capability, cap_flags, ...) \ 425 ({ \ 426 struct kvm_enable_cap cap = { \ 427 .cap = capability, \ 428 .flags = cap_flags, \ 429 }; \ 430 uint64_t args_tmp[] = { __VA_ARGS__ }; \ 431 size_t n = MIN(ARRAY_SIZE(args_tmp), ARRAY_SIZE(cap.args)); \ 432 memcpy(cap.args, args_tmp, n * sizeof(cap.args[0])); \ 433 kvm_vm_ioctl(s, KVM_ENABLE_CAP, &cap); \ 434 }) 435 436 #define kvm_vcpu_enable_cap(cpu, capability, cap_flags, ...) \ 437 ({ \ 438 struct kvm_enable_cap cap = { \ 439 .cap = capability, \ 440 .flags = cap_flags, \ 441 }; \ 442 uint64_t args_tmp[] = { __VA_ARGS__ }; \ 443 size_t n = MIN(ARRAY_SIZE(args_tmp), ARRAY_SIZE(cap.args)); \ 444 memcpy(cap.args, args_tmp, n * sizeof(cap.args[0])); \ 445 kvm_vcpu_ioctl(cpu, KVM_ENABLE_CAP, &cap); \ 446 }) 447 448 uint32_t kvm_arch_get_supported_cpuid(KVMState *env, uint32_t function, 449 uint32_t index, int reg); 450 451 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len); 452 453 #if !defined(CONFIG_USER_ONLY) 454 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram_addr, 455 hwaddr *phys_addr); 456 #endif 457 458 #endif /* NEED_CPU_H */ 459 460 void kvm_cpu_synchronize_state(CPUState *cpu); 461 void kvm_cpu_synchronize_post_reset(CPUState *cpu); 462 void kvm_cpu_synchronize_post_init(CPUState *cpu); 463 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu); 464 465 void kvm_init_cpu_signals(CPUState *cpu); 466 467 /** 468 * kvm_irqchip_add_msi_route - Add MSI route for specific vector 469 * @s: KVM state 470 * @vector: which vector to add. This can be either MSI/MSIX 471 * vector. The function will automatically detect whether 472 * MSI/MSIX is enabled, and fetch corresponding MSI 473 * message. 474 * @dev: Owner PCI device to add the route. If @dev is specified 475 * as @NULL, an empty MSI message will be inited. 476 * @return: virq (>=0) when success, errno (<0) when failed. 477 */ 478 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev); 479 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 480 PCIDevice *dev); 481 void kvm_irqchip_commit_routes(KVMState *s); 482 void kvm_irqchip_release_virq(KVMState *s, int virq); 483 484 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter); 485 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint); 486 487 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 488 EventNotifier *rn, int virq); 489 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 490 int virq); 491 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 492 EventNotifier *rn, qemu_irq irq); 493 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 494 qemu_irq irq); 495 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi); 496 void kvm_pc_gsi_handler(void *opaque, int n, int level); 497 void kvm_pc_setup_irq_routing(bool pci_enabled); 498 void kvm_init_irq_routing(KVMState *s); 499 500 /** 501 * kvm_arch_irqchip_create: 502 * @KVMState: The KVMState pointer 503 * @MachineState: The MachineState pointer 504 * 505 * Allow architectures to create an in-kernel irq chip themselves. 506 * 507 * Returns: < 0: error 508 * 0: irq chip was not created 509 * > 0: irq chip was created 510 */ 511 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s); 512 513 /** 514 * kvm_set_one_reg - set a register value in KVM via KVM_SET_ONE_REG ioctl 515 * @id: The register ID 516 * @source: The pointer to the value to be set. It must point to a variable 517 * of the correct type/size for the register being accessed. 518 * 519 * Returns: 0 on success, or a negative errno on failure. 520 */ 521 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source); 522 523 /** 524 * kvm_get_one_reg - get a register value from KVM via KVM_GET_ONE_REG ioctl 525 * @id: The register ID 526 * @target: The pointer where the value is to be stored. It must point to a 527 * variable of the correct type/size for the register being accessed. 528 * 529 * Returns: 0 on success, or a negative errno on failure. 530 */ 531 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target); 532 struct ppc_radix_page_info *kvm_get_radix_page_info(void); 533 int kvm_get_max_memslots(void); 534 #endif 535