xref: /openbmc/qemu/include/hw/core/cpu.h (revision 06d4c71f)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 
34 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
35                                      void *opaque);
36 
37 /**
38  * vaddr:
39  * Type wide enough to contain any #target_ulong virtual address.
40  */
41 typedef uint64_t vaddr;
42 #define VADDR_PRId PRId64
43 #define VADDR_PRIu PRIu64
44 #define VADDR_PRIo PRIo64
45 #define VADDR_PRIx PRIx64
46 #define VADDR_PRIX PRIX64
47 #define VADDR_MAX UINT64_MAX
48 
49 /**
50  * SECTION:cpu
51  * @section_id: QEMU-cpu
52  * @title: CPU Class
53  * @short_description: Base class for all CPUs
54  */
55 
56 #define TYPE_CPU "cpu"
57 
58 /* Since this macro is used a lot in hot code paths and in conjunction with
59  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
60  * an unchecked cast.
61  */
62 #define CPU(obj) ((CPUState *)(obj))
63 
64 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
65 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
66 
67 typedef enum MMUAccessType {
68     MMU_DATA_LOAD  = 0,
69     MMU_DATA_STORE = 1,
70     MMU_INST_FETCH = 2
71 } MMUAccessType;
72 
73 typedef struct CPUWatchpoint CPUWatchpoint;
74 
75 struct TranslationBlock;
76 
77 /**
78  * CPUClass:
79  * @class_by_name: Callback to map -cpu command line model name to an
80  * instantiatable CPU type.
81  * @parse_features: Callback to parse command line arguments.
82  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
83  * @has_work: Callback for checking if there is work to do.
84  * @do_interrupt: Callback for interrupt handling.
85  * @do_unaligned_access: Callback for unaligned access handling, if
86  * the target defines #TARGET_ALIGNED_ONLY.
87  * @do_transaction_failed: Callback for handling failed memory transactions
88  * (ie bus faults or external aborts; not MMU faults)
89  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
90  * runtime configurable endianness is currently big-endian. Non-configurable
91  * CPUs can use the default implementation of this method. This method should
92  * not be used by any callers other than the pre-1.0 virtio devices.
93  * @memory_rw_debug: Callback for GDB memory access.
94  * @dump_state: Callback for dumping state.
95  * @dump_statistics: Callback for dumping statistics.
96  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
97  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
98  * @get_memory_mapping: Callback for obtaining the memory mappings.
99  * @set_pc: Callback for setting the Program Counter register. This
100  *       should have the semantics used by the target architecture when
101  *       setting the PC from a source such as an ELF file entry point;
102  *       for example on Arm it will also set the Thumb mode bit based
103  *       on the least significant bit of the new PC value.
104  *       If the target behaviour here is anything other than "set
105  *       the PC register to the value passed in" then the target must
106  *       also implement the synchronize_from_tb hook.
107  * @synchronize_from_tb: Callback for synchronizing state from a TCG
108  *       #TranslationBlock. This is called when we abandon execution
109  *       of a TB before starting it, and must set all parts of the CPU
110  *       state which the previous TB in the chain may not have updated.
111  *       This always includes at least the program counter; some targets
112  *       will need to do more. If this hook is not implemented then the
113  *       default is to call @set_pc(tb->pc).
114  * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
115  *       address fault.  For system mode, if the access is valid, call
116  *       tlb_set_page and return true; if the access is invalid, and
117  *       probe is true, return false; otherwise raise an exception and
118  *       do not return.  For user-only mode, always raise an exception
119  *       and do not return.
120  * @get_phys_page_debug: Callback for obtaining a physical address.
121  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
122  *       associated memory transaction attributes to use for the access.
123  *       CPUs which use memory transaction attributes should implement this
124  *       instead of get_phys_page_debug.
125  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
126  *       a memory access with the specified memory transaction attributes.
127  * @gdb_read_register: Callback for letting GDB read a register.
128  * @gdb_write_register: Callback for letting GDB write a register.
129  * @debug_check_watchpoint: Callback: return true if the architectural
130  *       watchpoint whose address has matched should really fire.
131  * @debug_excp_handler: Callback for handling debug exceptions.
132  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
133  * 64-bit VM coredump.
134  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
135  * note to a 32-bit VM coredump.
136  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
137  * 32-bit VM coredump.
138  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
139  * note to a 32-bit VM coredump.
140  * @vmsd: State description for migration.
141  * @gdb_num_core_regs: Number of core registers accessible to GDB.
142  * @gdb_core_xml_file: File name for core registers GDB XML description.
143  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
144  *           before the insn which triggers a watchpoint rather than after it.
145  * @gdb_arch_name: Optional callback that returns the architecture name known
146  * to GDB. The caller must free the returned string with g_free.
147  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
148  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
149  *   or NULL if the CPU doesn't have a dynamically generated content for it.
150  * @cpu_exec_enter: Callback for cpu_exec preparation.
151  * @cpu_exec_exit: Callback for cpu_exec cleanup.
152  * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
153  * @disas_set_info: Setup architecture specific components of disassembly info
154  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
155  * address before attempting to match it against watchpoints.
156  *
157  * Represents a CPU family or model.
158  */
159 typedef struct CPUClass {
160     /*< private >*/
161     DeviceClass parent_class;
162     /*< public >*/
163 
164     ObjectClass *(*class_by_name)(const char *cpu_model);
165     void (*parse_features)(const char *typename, char *str, Error **errp);
166 
167     int reset_dump_flags;
168     bool (*has_work)(CPUState *cpu);
169     void (*do_interrupt)(CPUState *cpu);
170     void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
171                                 MMUAccessType access_type,
172                                 int mmu_idx, uintptr_t retaddr);
173     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
174                                   unsigned size, MMUAccessType access_type,
175                                   int mmu_idx, MemTxAttrs attrs,
176                                   MemTxResult response, uintptr_t retaddr);
177     bool (*virtio_is_big_endian)(CPUState *cpu);
178     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
179                            uint8_t *buf, int len, bool is_write);
180     void (*dump_state)(CPUState *cpu, FILE *, int flags);
181     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
182     void (*dump_statistics)(CPUState *cpu, int flags);
183     int64_t (*get_arch_id)(CPUState *cpu);
184     bool (*get_paging_enabled)(const CPUState *cpu);
185     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
186                                Error **errp);
187     void (*set_pc)(CPUState *cpu, vaddr value);
188     void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
189     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
190                      MMUAccessType access_type, int mmu_idx,
191                      bool probe, uintptr_t retaddr);
192     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
193     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
194                                         MemTxAttrs *attrs);
195     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
196     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
197     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
198     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
199     void (*debug_excp_handler)(CPUState *cpu);
200 
201     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
202                             int cpuid, void *opaque);
203     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
204                                 void *opaque);
205     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
206                             int cpuid, void *opaque);
207     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
208                                 void *opaque);
209 
210     const VMStateDescription *vmsd;
211     const char *gdb_core_xml_file;
212     gchar * (*gdb_arch_name)(CPUState *cpu);
213     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
214     void (*cpu_exec_enter)(CPUState *cpu);
215     void (*cpu_exec_exit)(CPUState *cpu);
216     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
217 
218     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
219     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
220     void (*tcg_initialize)(void);
221 
222     /* Keep non-pointer data at the end to minimize holes.  */
223     int gdb_num_core_regs;
224     bool gdb_stop_before_watchpoint;
225 } CPUClass;
226 
227 /*
228  * Low 16 bits: number of cycles left, used only in icount mode.
229  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
230  * for this CPU and return to its top level loop (even in non-icount mode).
231  * This allows a single read-compare-cbranch-write sequence to test
232  * for both decrementer underflow and exceptions.
233  */
234 typedef union IcountDecr {
235     uint32_t u32;
236     struct {
237 #ifdef HOST_WORDS_BIGENDIAN
238         uint16_t high;
239         uint16_t low;
240 #else
241         uint16_t low;
242         uint16_t high;
243 #endif
244     } u16;
245 } IcountDecr;
246 
247 typedef struct CPUBreakpoint {
248     vaddr pc;
249     int flags; /* BP_* */
250     QTAILQ_ENTRY(CPUBreakpoint) entry;
251 } CPUBreakpoint;
252 
253 struct CPUWatchpoint {
254     vaddr vaddr;
255     vaddr len;
256     vaddr hitaddr;
257     MemTxAttrs hitattrs;
258     int flags; /* BP_* */
259     QTAILQ_ENTRY(CPUWatchpoint) entry;
260 };
261 
262 struct KVMState;
263 struct kvm_run;
264 
265 struct hax_vcpu_state;
266 
267 #define TB_JMP_CACHE_BITS 12
268 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
269 
270 /* work queue */
271 
272 /* The union type allows passing of 64 bit target pointers on 32 bit
273  * hosts in a single parameter
274  */
275 typedef union {
276     int           host_int;
277     unsigned long host_ulong;
278     void         *host_ptr;
279     vaddr         target_ptr;
280 } run_on_cpu_data;
281 
282 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
283 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
284 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
285 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
286 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
287 
288 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
289 
290 struct qemu_work_item;
291 
292 #define CPU_UNSET_NUMA_NODE_ID -1
293 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
294 
295 /**
296  * CPUState:
297  * @cpu_index: CPU index (informative).
298  * @cluster_index: Identifies which cluster this CPU is in.
299  *   For boards which don't define clusters or for "loose" CPUs not assigned
300  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
301  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
302  *   QOM parent.
303  * @nr_cores: Number of cores within this CPU package.
304  * @nr_threads: Number of threads within this CPU.
305  * @running: #true if CPU is currently running (lockless).
306  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
307  * valid under cpu_list_lock.
308  * @created: Indicates whether the CPU thread has been successfully created.
309  * @interrupt_request: Indicates a pending interrupt request.
310  * @halted: Nonzero if the CPU is in suspended state.
311  * @stop: Indicates a pending stop request.
312  * @stopped: Indicates the CPU has been artificially stopped.
313  * @unplug: Indicates a pending CPU unplug request.
314  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
315  * @singlestep_enabled: Flags for single-stepping.
316  * @icount_extra: Instructions until next timer event.
317  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
318  * requires that IO only be performed on the last instruction of a TB
319  * so that interrupts take effect immediately.
320  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
321  *            AddressSpaces this CPU has)
322  * @num_ases: number of CPUAddressSpaces in @cpu_ases
323  * @as: Pointer to the first AddressSpace, for the convenience of targets which
324  *      only have a single AddressSpace
325  * @env_ptr: Pointer to subclass-specific CPUArchState field.
326  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
327  * @gdb_regs: Additional GDB registers.
328  * @gdb_num_regs: Number of total registers accessible to GDB.
329  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
330  * @next_cpu: Next CPU sharing TB cache.
331  * @opaque: User data.
332  * @mem_io_pc: Host Program Counter at which the memory was accessed.
333  * @kvm_fd: vCPU file descriptor for KVM.
334  * @work_mutex: Lock to prevent multiple access to queued_work_*.
335  * @queued_work_first: First asynchronous work pending.
336  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
337  *                        to @trace_dstate).
338  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
339  * @plugin_mask: Plugin event bitmap. Modified only via async work.
340  * @ignore_memory_transaction_failures: Cached copy of the MachineState
341  *    flag of the same name: allows the board to suppress calling of the
342  *    CPU do_transaction_failed hook function.
343  *
344  * State of one CPU core or thread.
345  */
346 struct CPUState {
347     /*< private >*/
348     DeviceState parent_obj;
349     /*< public >*/
350 
351     int nr_cores;
352     int nr_threads;
353 
354     struct QemuThread *thread;
355 #ifdef _WIN32
356     HANDLE hThread;
357 #endif
358     int thread_id;
359     bool running, has_waiter;
360     struct QemuCond *halt_cond;
361     bool thread_kicked;
362     bool created;
363     bool stop;
364     bool stopped;
365     bool unplug;
366     bool crash_occurred;
367     bool exit_request;
368     bool in_exclusive_context;
369     uint32_t cflags_next_tb;
370     /* updates protected by BQL */
371     uint32_t interrupt_request;
372     int singlestep_enabled;
373     int64_t icount_budget;
374     int64_t icount_extra;
375     uint64_t random_seed;
376     sigjmp_buf jmp_env;
377 
378     QemuMutex work_mutex;
379     struct qemu_work_item *queued_work_first, *queued_work_last;
380 
381     CPUAddressSpace *cpu_ases;
382     int num_ases;
383     AddressSpace *as;
384     MemoryRegion *memory;
385 
386     void *env_ptr; /* CPUArchState */
387     IcountDecr *icount_decr_ptr;
388 
389     /* Accessed in parallel; all accesses must be atomic */
390     struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
391 
392     struct GDBRegisterState *gdb_regs;
393     int gdb_num_regs;
394     int gdb_num_g_regs;
395     QTAILQ_ENTRY(CPUState) node;
396 
397     /* ice debug support */
398     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
399 
400     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
401     CPUWatchpoint *watchpoint_hit;
402 
403     void *opaque;
404 
405     /* In order to avoid passing too many arguments to the MMIO helpers,
406      * we store some rarely used information in the CPU context.
407      */
408     uintptr_t mem_io_pc;
409 
410     int kvm_fd;
411     struct KVMState *kvm_state;
412     struct kvm_run *kvm_run;
413 
414     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
415     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
416     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
417 
418     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
419 
420     GArray *plugin_mem_cbs;
421 
422     /* TODO Move common fields from CPUArchState here. */
423     int cpu_index;
424     int cluster_index;
425     uint32_t halted;
426     uint32_t can_do_io;
427     int32_t exception_index;
428 
429     /* shared by kvm, hax and hvf */
430     bool vcpu_dirty;
431 
432     /* Used to keep track of an outstanding cpu throttle thread for migration
433      * autoconverge
434      */
435     bool throttle_thread_scheduled;
436 
437     bool ignore_memory_transaction_failures;
438 
439     struct hax_vcpu_state *hax_vcpu;
440 
441     int hvf_fd;
442 
443     /* track IOMMUs whose translations we've cached in the TCG TLB */
444     GArray *iommu_notifiers;
445 };
446 
447 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
448 extern CPUTailQ cpus;
449 
450 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
451 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
452 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
453 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
454     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
455 
456 extern __thread CPUState *current_cpu;
457 
458 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
459 {
460     unsigned int i;
461 
462     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
463         atomic_set(&cpu->tb_jmp_cache[i], NULL);
464     }
465 }
466 
467 /**
468  * qemu_tcg_mttcg_enabled:
469  * Check whether we are running MultiThread TCG or not.
470  *
471  * Returns: %true if we are in MTTCG mode %false otherwise.
472  */
473 extern bool mttcg_enabled;
474 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
475 
476 /**
477  * cpu_paging_enabled:
478  * @cpu: The CPU whose state is to be inspected.
479  *
480  * Returns: %true if paging is enabled, %false otherwise.
481  */
482 bool cpu_paging_enabled(const CPUState *cpu);
483 
484 /**
485  * cpu_get_memory_mapping:
486  * @cpu: The CPU whose memory mappings are to be obtained.
487  * @list: Where to write the memory mappings to.
488  * @errp: Pointer for reporting an #Error.
489  */
490 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
491                             Error **errp);
492 
493 /**
494  * cpu_write_elf64_note:
495  * @f: pointer to a function that writes memory to a file
496  * @cpu: The CPU whose memory is to be dumped
497  * @cpuid: ID number of the CPU
498  * @opaque: pointer to the CPUState struct
499  */
500 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
501                          int cpuid, void *opaque);
502 
503 /**
504  * cpu_write_elf64_qemunote:
505  * @f: pointer to a function that writes memory to a file
506  * @cpu: The CPU whose memory is to be dumped
507  * @cpuid: ID number of the CPU
508  * @opaque: pointer to the CPUState struct
509  */
510 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
511                              void *opaque);
512 
513 /**
514  * cpu_write_elf32_note:
515  * @f: pointer to a function that writes memory to a file
516  * @cpu: The CPU whose memory is to be dumped
517  * @cpuid: ID number of the CPU
518  * @opaque: pointer to the CPUState struct
519  */
520 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
521                          int cpuid, void *opaque);
522 
523 /**
524  * cpu_write_elf32_qemunote:
525  * @f: pointer to a function that writes memory to a file
526  * @cpu: The CPU whose memory is to be dumped
527  * @cpuid: ID number of the CPU
528  * @opaque: pointer to the CPUState struct
529  */
530 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
531                              void *opaque);
532 
533 /**
534  * cpu_get_crash_info:
535  * @cpu: The CPU to get crash information for
536  *
537  * Gets the previously saved crash information.
538  * Caller is responsible for freeing the data.
539  */
540 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
541 
542 /**
543  * CPUDumpFlags:
544  * @CPU_DUMP_CODE:
545  * @CPU_DUMP_FPU: dump FPU register state, not just integer
546  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
547  */
548 enum CPUDumpFlags {
549     CPU_DUMP_CODE = 0x00010000,
550     CPU_DUMP_FPU  = 0x00020000,
551     CPU_DUMP_CCOP = 0x00040000,
552 };
553 
554 /**
555  * cpu_dump_state:
556  * @cpu: The CPU whose state is to be dumped.
557  * @f: If non-null, dump to this stream, else to current print sink.
558  *
559  * Dumps CPU state.
560  */
561 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
562 
563 /**
564  * cpu_dump_statistics:
565  * @cpu: The CPU whose state is to be dumped.
566  * @flags: Flags what to dump.
567  *
568  * Dump CPU statistics to the current monitor if we have one, else to
569  * stdout.
570  */
571 void cpu_dump_statistics(CPUState *cpu, int flags);
572 
573 #ifndef CONFIG_USER_ONLY
574 /**
575  * cpu_get_phys_page_attrs_debug:
576  * @cpu: The CPU to obtain the physical page address for.
577  * @addr: The virtual address.
578  * @attrs: Updated on return with the memory transaction attributes to use
579  *         for this access.
580  *
581  * Obtains the physical page corresponding to a virtual one, together
582  * with the corresponding memory transaction attributes to use for the access.
583  * Use it only for debugging because no protection checks are done.
584  *
585  * Returns: Corresponding physical page address or -1 if no page found.
586  */
587 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
588                                                    MemTxAttrs *attrs)
589 {
590     CPUClass *cc = CPU_GET_CLASS(cpu);
591 
592     if (cc->get_phys_page_attrs_debug) {
593         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
594     }
595     /* Fallback for CPUs which don't implement the _attrs_ hook */
596     *attrs = MEMTXATTRS_UNSPECIFIED;
597     return cc->get_phys_page_debug(cpu, addr);
598 }
599 
600 /**
601  * cpu_get_phys_page_debug:
602  * @cpu: The CPU to obtain the physical page address for.
603  * @addr: The virtual address.
604  *
605  * Obtains the physical page corresponding to a virtual one.
606  * Use it only for debugging because no protection checks are done.
607  *
608  * Returns: Corresponding physical page address or -1 if no page found.
609  */
610 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
611 {
612     MemTxAttrs attrs = {};
613 
614     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
615 }
616 
617 /** cpu_asidx_from_attrs:
618  * @cpu: CPU
619  * @attrs: memory transaction attributes
620  *
621  * Returns the address space index specifying the CPU AddressSpace
622  * to use for a memory access with the given transaction attributes.
623  */
624 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
625 {
626     CPUClass *cc = CPU_GET_CLASS(cpu);
627     int ret = 0;
628 
629     if (cc->asidx_from_attrs) {
630         ret = cc->asidx_from_attrs(cpu, attrs);
631         assert(ret < cpu->num_ases && ret >= 0);
632     }
633     return ret;
634 }
635 #endif
636 
637 /**
638  * cpu_list_add:
639  * @cpu: The CPU to be added to the list of CPUs.
640  */
641 void cpu_list_add(CPUState *cpu);
642 
643 /**
644  * cpu_list_remove:
645  * @cpu: The CPU to be removed from the list of CPUs.
646  */
647 void cpu_list_remove(CPUState *cpu);
648 
649 /**
650  * cpu_reset:
651  * @cpu: The CPU whose state is to be reset.
652  */
653 void cpu_reset(CPUState *cpu);
654 
655 /**
656  * cpu_class_by_name:
657  * @typename: The CPU base type.
658  * @cpu_model: The model string without any parameters.
659  *
660  * Looks up a CPU #ObjectClass matching name @cpu_model.
661  *
662  * Returns: A #CPUClass or %NULL if not matching class is found.
663  */
664 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
665 
666 /**
667  * cpu_create:
668  * @typename: The CPU type.
669  *
670  * Instantiates a CPU and realizes the CPU.
671  *
672  * Returns: A #CPUState or %NULL if an error occurred.
673  */
674 CPUState *cpu_create(const char *typename);
675 
676 /**
677  * parse_cpu_option:
678  * @cpu_option: The -cpu option including optional parameters.
679  *
680  * processes optional parameters and registers them as global properties
681  *
682  * Returns: type of CPU to create or prints error and terminates process
683  *          if an error occurred.
684  */
685 const char *parse_cpu_option(const char *cpu_option);
686 
687 /**
688  * cpu_has_work:
689  * @cpu: The vCPU to check.
690  *
691  * Checks whether the CPU has work to do.
692  *
693  * Returns: %true if the CPU has work, %false otherwise.
694  */
695 static inline bool cpu_has_work(CPUState *cpu)
696 {
697     CPUClass *cc = CPU_GET_CLASS(cpu);
698 
699     g_assert(cc->has_work);
700     return cc->has_work(cpu);
701 }
702 
703 /**
704  * qemu_cpu_is_self:
705  * @cpu: The vCPU to check against.
706  *
707  * Checks whether the caller is executing on the vCPU thread.
708  *
709  * Returns: %true if called from @cpu's thread, %false otherwise.
710  */
711 bool qemu_cpu_is_self(CPUState *cpu);
712 
713 /**
714  * qemu_cpu_kick:
715  * @cpu: The vCPU to kick.
716  *
717  * Kicks @cpu's thread.
718  */
719 void qemu_cpu_kick(CPUState *cpu);
720 
721 /**
722  * cpu_is_stopped:
723  * @cpu: The CPU to check.
724  *
725  * Checks whether the CPU is stopped.
726  *
727  * Returns: %true if run state is not running or if artificially stopped;
728  * %false otherwise.
729  */
730 bool cpu_is_stopped(CPUState *cpu);
731 
732 /**
733  * do_run_on_cpu:
734  * @cpu: The vCPU to run on.
735  * @func: The function to be executed.
736  * @data: Data to pass to the function.
737  * @mutex: Mutex to release while waiting for @func to run.
738  *
739  * Used internally in the implementation of run_on_cpu.
740  */
741 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
742                    QemuMutex *mutex);
743 
744 /**
745  * run_on_cpu:
746  * @cpu: The vCPU to run on.
747  * @func: The function to be executed.
748  * @data: Data to pass to the function.
749  *
750  * Schedules the function @func for execution on the vCPU @cpu.
751  */
752 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
753 
754 /**
755  * async_run_on_cpu:
756  * @cpu: The vCPU to run on.
757  * @func: The function to be executed.
758  * @data: Data to pass to the function.
759  *
760  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
761  */
762 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
763 
764 /**
765  * async_safe_run_on_cpu:
766  * @cpu: The vCPU to run on.
767  * @func: The function to be executed.
768  * @data: Data to pass to the function.
769  *
770  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
771  * while all other vCPUs are sleeping.
772  *
773  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
774  * BQL.
775  */
776 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
777 
778 /**
779  * cpu_in_exclusive_context()
780  * @cpu: The vCPU to check
781  *
782  * Returns true if @cpu is an exclusive context, for example running
783  * something which has previously been queued via async_safe_run_on_cpu().
784  */
785 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
786 {
787     return cpu->in_exclusive_context;
788 }
789 
790 /**
791  * qemu_get_cpu:
792  * @index: The CPUState@cpu_index value of the CPU to obtain.
793  *
794  * Gets a CPU matching @index.
795  *
796  * Returns: The CPU or %NULL if there is no matching CPU.
797  */
798 CPUState *qemu_get_cpu(int index);
799 
800 /**
801  * cpu_exists:
802  * @id: Guest-exposed CPU ID to lookup.
803  *
804  * Search for CPU with specified ID.
805  *
806  * Returns: %true - CPU is found, %false - CPU isn't found.
807  */
808 bool cpu_exists(int64_t id);
809 
810 /**
811  * cpu_by_arch_id:
812  * @id: Guest-exposed CPU ID of the CPU to obtain.
813  *
814  * Get a CPU with matching @id.
815  *
816  * Returns: The CPU or %NULL if there is no matching CPU.
817  */
818 CPUState *cpu_by_arch_id(int64_t id);
819 
820 /**
821  * cpu_throttle_set:
822  * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
823  *
824  * Throttles all vcpus by forcing them to sleep for the given percentage of
825  * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
826  * (example: 10ms sleep for every 30ms awake).
827  *
828  * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
829  * Once the throttling starts, it will remain in effect until cpu_throttle_stop
830  * is called.
831  */
832 void cpu_throttle_set(int new_throttle_pct);
833 
834 /**
835  * cpu_throttle_stop:
836  *
837  * Stops the vcpu throttling started by cpu_throttle_set.
838  */
839 void cpu_throttle_stop(void);
840 
841 /**
842  * cpu_throttle_active:
843  *
844  * Returns: %true if the vcpus are currently being throttled, %false otherwise.
845  */
846 bool cpu_throttle_active(void);
847 
848 /**
849  * cpu_throttle_get_percentage:
850  *
851  * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
852  *
853  * Returns: The throttle percentage in range 1 to 99.
854  */
855 int cpu_throttle_get_percentage(void);
856 
857 #ifndef CONFIG_USER_ONLY
858 
859 typedef void (*CPUInterruptHandler)(CPUState *, int);
860 
861 extern CPUInterruptHandler cpu_interrupt_handler;
862 
863 /**
864  * cpu_interrupt:
865  * @cpu: The CPU to set an interrupt on.
866  * @mask: The interrupts to set.
867  *
868  * Invokes the interrupt handler.
869  */
870 static inline void cpu_interrupt(CPUState *cpu, int mask)
871 {
872     cpu_interrupt_handler(cpu, mask);
873 }
874 
875 #else /* USER_ONLY */
876 
877 void cpu_interrupt(CPUState *cpu, int mask);
878 
879 #endif /* USER_ONLY */
880 
881 #ifdef NEED_CPU_H
882 
883 #ifdef CONFIG_SOFTMMU
884 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
885                                         MMUAccessType access_type,
886                                         int mmu_idx, uintptr_t retaddr)
887 {
888     CPUClass *cc = CPU_GET_CLASS(cpu);
889 
890     cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
891 }
892 
893 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
894                                           vaddr addr, unsigned size,
895                                           MMUAccessType access_type,
896                                           int mmu_idx, MemTxAttrs attrs,
897                                           MemTxResult response,
898                                           uintptr_t retaddr)
899 {
900     CPUClass *cc = CPU_GET_CLASS(cpu);
901 
902     if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
903         cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
904                                   mmu_idx, attrs, response, retaddr);
905     }
906 }
907 #endif
908 
909 #endif /* NEED_CPU_H */
910 
911 /**
912  * cpu_set_pc:
913  * @cpu: The CPU to set the program counter for.
914  * @addr: Program counter value.
915  *
916  * Sets the program counter for a CPU.
917  */
918 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
919 {
920     CPUClass *cc = CPU_GET_CLASS(cpu);
921 
922     cc->set_pc(cpu, addr);
923 }
924 
925 /**
926  * cpu_reset_interrupt:
927  * @cpu: The CPU to clear the interrupt on.
928  * @mask: The interrupt mask to clear.
929  *
930  * Resets interrupts on the vCPU @cpu.
931  */
932 void cpu_reset_interrupt(CPUState *cpu, int mask);
933 
934 /**
935  * cpu_exit:
936  * @cpu: The CPU to exit.
937  *
938  * Requests the CPU @cpu to exit execution.
939  */
940 void cpu_exit(CPUState *cpu);
941 
942 /**
943  * cpu_resume:
944  * @cpu: The CPU to resume.
945  *
946  * Resumes CPU, i.e. puts CPU into runnable state.
947  */
948 void cpu_resume(CPUState *cpu);
949 
950 /**
951  * cpu_remove:
952  * @cpu: The CPU to remove.
953  *
954  * Requests the CPU to be removed.
955  */
956 void cpu_remove(CPUState *cpu);
957 
958  /**
959  * cpu_remove_sync:
960  * @cpu: The CPU to remove.
961  *
962  * Requests the CPU to be removed and waits till it is removed.
963  */
964 void cpu_remove_sync(CPUState *cpu);
965 
966 /**
967  * process_queued_cpu_work() - process all items on CPU work queue
968  * @cpu: The CPU which work queue to process.
969  */
970 void process_queued_cpu_work(CPUState *cpu);
971 
972 /**
973  * cpu_exec_start:
974  * @cpu: The CPU for the current thread.
975  *
976  * Record that a CPU has started execution and can be interrupted with
977  * cpu_exit.
978  */
979 void cpu_exec_start(CPUState *cpu);
980 
981 /**
982  * cpu_exec_end:
983  * @cpu: The CPU for the current thread.
984  *
985  * Record that a CPU has stopped execution and exclusive sections
986  * can be executed without interrupting it.
987  */
988 void cpu_exec_end(CPUState *cpu);
989 
990 /**
991  * start_exclusive:
992  *
993  * Wait for a concurrent exclusive section to end, and then start
994  * a section of work that is run while other CPUs are not running
995  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
996  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
997  * during the exclusive section go to sleep until this CPU calls
998  * end_exclusive.
999  */
1000 void start_exclusive(void);
1001 
1002 /**
1003  * end_exclusive:
1004  *
1005  * Concludes an exclusive execution section started by start_exclusive.
1006  */
1007 void end_exclusive(void);
1008 
1009 /**
1010  * qemu_init_vcpu:
1011  * @cpu: The vCPU to initialize.
1012  *
1013  * Initializes a vCPU.
1014  */
1015 void qemu_init_vcpu(CPUState *cpu);
1016 
1017 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1018 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1019 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1020 
1021 /**
1022  * cpu_single_step:
1023  * @cpu: CPU to the flags for.
1024  * @enabled: Flags to enable.
1025  *
1026  * Enables or disables single-stepping for @cpu.
1027  */
1028 void cpu_single_step(CPUState *cpu, int enabled);
1029 
1030 /* Breakpoint/watchpoint flags */
1031 #define BP_MEM_READ           0x01
1032 #define BP_MEM_WRITE          0x02
1033 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1034 #define BP_STOP_BEFORE_ACCESS 0x04
1035 /* 0x08 currently unused */
1036 #define BP_GDB                0x10
1037 #define BP_CPU                0x20
1038 #define BP_ANY                (BP_GDB | BP_CPU)
1039 #define BP_WATCHPOINT_HIT_READ 0x40
1040 #define BP_WATCHPOINT_HIT_WRITE 0x80
1041 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1042 
1043 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1044                           CPUBreakpoint **breakpoint);
1045 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1046 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1047 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1048 
1049 /* Return true if PC matches an installed breakpoint.  */
1050 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1051 {
1052     CPUBreakpoint *bp;
1053 
1054     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1055         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1056             if (bp->pc == pc && (bp->flags & mask)) {
1057                 return true;
1058             }
1059         }
1060     }
1061     return false;
1062 }
1063 
1064 #ifdef CONFIG_USER_ONLY
1065 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1066                                         int flags, CPUWatchpoint **watchpoint)
1067 {
1068     return -ENOSYS;
1069 }
1070 
1071 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1072                                         vaddr len, int flags)
1073 {
1074     return -ENOSYS;
1075 }
1076 
1077 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1078                                                 CPUWatchpoint *wp)
1079 {
1080 }
1081 
1082 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1083 {
1084 }
1085 
1086 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1087                                         MemTxAttrs atr, int fl, uintptr_t ra)
1088 {
1089 }
1090 
1091 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1092                                                  vaddr addr, vaddr len)
1093 {
1094     return 0;
1095 }
1096 #else
1097 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1098                           int flags, CPUWatchpoint **watchpoint);
1099 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1100                           vaddr len, int flags);
1101 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1102 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1103 
1104 /**
1105  * cpu_check_watchpoint:
1106  * @cpu: cpu context
1107  * @addr: guest virtual address
1108  * @len: access length
1109  * @attrs: memory access attributes
1110  * @flags: watchpoint access type
1111  * @ra: unwind return address
1112  *
1113  * Check for a watchpoint hit in [addr, addr+len) of the type
1114  * specified by @flags.  Exit via exception with a hit.
1115  */
1116 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1117                           MemTxAttrs attrs, int flags, uintptr_t ra);
1118 
1119 /**
1120  * cpu_watchpoint_address_matches:
1121  * @cpu: cpu context
1122  * @addr: guest virtual address
1123  * @len: access length
1124  *
1125  * Return the watchpoint flags that apply to [addr, addr+len).
1126  * If no watchpoint is registered for the range, the result is 0.
1127  */
1128 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1129 #endif
1130 
1131 /**
1132  * cpu_get_address_space:
1133  * @cpu: CPU to get address space from
1134  * @asidx: index identifying which address space to get
1135  *
1136  * Return the requested address space of this CPU. @asidx
1137  * specifies which address space to read.
1138  */
1139 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1140 
1141 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1142     GCC_FMT_ATTR(2, 3);
1143 extern Property cpu_common_props[];
1144 void cpu_exec_initfn(CPUState *cpu);
1145 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1146 void cpu_exec_unrealizefn(CPUState *cpu);
1147 
1148 /**
1149  * target_words_bigendian:
1150  * Returns true if the (default) endianness of the target is big endian,
1151  * false otherwise. Note that in target-specific code, you can use
1152  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1153  * code should normally never need to know about the endianness of the
1154  * target, so please do *not* use this function unless you know very well
1155  * what you are doing!
1156  */
1157 bool target_words_bigendian(void);
1158 
1159 #ifdef NEED_CPU_H
1160 
1161 #ifdef CONFIG_SOFTMMU
1162 extern const VMStateDescription vmstate_cpu_common;
1163 #else
1164 #define vmstate_cpu_common vmstate_dummy
1165 #endif
1166 
1167 #define VMSTATE_CPU() {                                                     \
1168     .name = "parent_obj",                                                   \
1169     .size = sizeof(CPUState),                                               \
1170     .vmsd = &vmstate_cpu_common,                                            \
1171     .flags = VMS_STRUCT,                                                    \
1172     .offset = 0,                                                            \
1173 }
1174 
1175 #endif /* NEED_CPU_H */
1176 
1177 #define UNASSIGNED_CPU_INDEX -1
1178 #define UNASSIGNED_CLUSTER_INDEX -1
1179 
1180 #endif
1181