/* * QEMU CPU model * * Copyright (c) 2012 SUSE LINUX Products GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * <http://www.gnu.org/licenses/gpl-2.0.html> */ #ifndef QEMU_CPU_H #define QEMU_CPU_H #include "hw/qdev-core.h" #include "disas/dis-asm.h" #include "exec/hwaddr.h" #include "exec/memattrs.h" #include "qapi/qapi-types-run-state.h" #include "qemu/bitmap.h" #include "qemu/rcu_queue.h" #include "qemu/queue.h" #include "qemu/thread.h" #include "qemu/plugin.h" typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, void *opaque); /** * vaddr: * Type wide enough to contain any #target_ulong virtual address. */ typedef uint64_t vaddr; #define VADDR_PRId PRId64 #define VADDR_PRIu PRIu64 #define VADDR_PRIo PRIo64 #define VADDR_PRIx PRIx64 #define VADDR_PRIX PRIX64 #define VADDR_MAX UINT64_MAX /** * SECTION:cpu * @section_id: QEMU-cpu * @title: CPU Class * @short_description: Base class for all CPUs */ #define TYPE_CPU "cpu" /* Since this macro is used a lot in hot code paths and in conjunction with * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using * an unchecked cast. */ #define CPU(obj) ((CPUState *)(obj)) #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU) #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU) typedef enum MMUAccessType { MMU_DATA_LOAD = 0, MMU_DATA_STORE = 1, MMU_INST_FETCH = 2 } MMUAccessType; typedef struct CPUWatchpoint CPUWatchpoint; struct TranslationBlock; /** * CPUClass: * @class_by_name: Callback to map -cpu command line model name to an * instantiatable CPU type. * @parse_features: Callback to parse command line arguments. * @reset_dump_flags: #CPUDumpFlags to use for reset logging. * @has_work: Callback for checking if there is work to do. * @do_interrupt: Callback for interrupt handling. * @do_unaligned_access: Callback for unaligned access handling, if * the target defines #TARGET_ALIGNED_ONLY. * @do_transaction_failed: Callback for handling failed memory transactions * (ie bus faults or external aborts; not MMU faults) * @virtio_is_big_endian: Callback to return %true if a CPU which supports * runtime configurable endianness is currently big-endian. Non-configurable * CPUs can use the default implementation of this method. This method should * not be used by any callers other than the pre-1.0 virtio devices. * @memory_rw_debug: Callback for GDB memory access. * @dump_state: Callback for dumping state. * @dump_statistics: Callback for dumping statistics. * @get_arch_id: Callback for getting architecture-dependent CPU ID. * @get_paging_enabled: Callback for inquiring whether paging is enabled. * @get_memory_mapping: Callback for obtaining the memory mappings. * @set_pc: Callback for setting the Program Counter register. This * should have the semantics used by the target architecture when * setting the PC from a source such as an ELF file entry point; * for example on Arm it will also set the Thumb mode bit based * on the least significant bit of the new PC value. * If the target behaviour here is anything other than "set * the PC register to the value passed in" then the target must * also implement the synchronize_from_tb hook. * @synchronize_from_tb: Callback for synchronizing state from a TCG * #TranslationBlock. This is called when we abandon execution * of a TB before starting it, and must set all parts of the CPU * state which the previous TB in the chain may not have updated. * This always includes at least the program counter; some targets * will need to do more. If this hook is not implemented then the * default is to call @set_pc(tb->pc). * @tlb_fill: Callback for handling a softmmu tlb miss or user-only * address fault. For system mode, if the access is valid, call * tlb_set_page and return true; if the access is invalid, and * probe is true, return false; otherwise raise an exception and * do not return. For user-only mode, always raise an exception * and do not return. * @get_phys_page_debug: Callback for obtaining a physical address. * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the * associated memory transaction attributes to use for the access. * CPUs which use memory transaction attributes should implement this * instead of get_phys_page_debug. * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for * a memory access with the specified memory transaction attributes. * @gdb_read_register: Callback for letting GDB read a register. * @gdb_write_register: Callback for letting GDB write a register. * @debug_check_watchpoint: Callback: return true if the architectural * watchpoint whose address has matched should really fire. * @debug_excp_handler: Callback for handling debug exceptions. * @write_elf64_note: Callback for writing a CPU-specific ELF note to a * 64-bit VM coredump. * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF * note to a 32-bit VM coredump. * @write_elf32_note: Callback for writing a CPU-specific ELF note to a * 32-bit VM coredump. * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF * note to a 32-bit VM coredump. * @vmsd: State description for migration. * @gdb_num_core_regs: Number of core registers accessible to GDB. * @gdb_core_xml_file: File name for core registers GDB XML description. * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop * before the insn which triggers a watchpoint rather than after it. * @gdb_arch_name: Optional callback that returns the architecture name known * to GDB. The caller must free the returned string with g_free. * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the * gdb stub. Returns a pointer to the XML contents for the specified XML file * or NULL if the CPU doesn't have a dynamically generated content for it. * @cpu_exec_enter: Callback for cpu_exec preparation. * @cpu_exec_exit: Callback for cpu_exec cleanup. * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec. * @disas_set_info: Setup architecture specific components of disassembly info * @adjust_watchpoint_address: Perform a target-specific adjustment to an * address before attempting to match it against watchpoints. * * Represents a CPU family or model. */ typedef struct CPUClass { /*< private >*/ DeviceClass parent_class; /*< public >*/ ObjectClass *(*class_by_name)(const char *cpu_model); void (*parse_features)(const char *typename, char *str, Error **errp); int reset_dump_flags; bool (*has_work)(CPUState *cpu); void (*do_interrupt)(CPUState *cpu); void (*do_unaligned_access)(CPUState *cpu, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr); bool (*virtio_is_big_endian)(CPUState *cpu); int (*memory_rw_debug)(CPUState *cpu, vaddr addr, uint8_t *buf, int len, bool is_write); void (*dump_state)(CPUState *cpu, FILE *, int flags); GuestPanicInformation* (*get_crash_info)(CPUState *cpu); void (*dump_statistics)(CPUState *cpu, int flags); int64_t (*get_arch_id)(CPUState *cpu); bool (*get_paging_enabled)(const CPUState *cpu); void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, Error **errp); void (*set_pc)(CPUState *cpu, vaddr value); void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb); bool (*tlb_fill)(CPUState *cpu, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr); hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, MemTxAttrs *attrs); int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp); void (*debug_excp_handler)(CPUState *cpu); int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, int cpuid, void *opaque); int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, void *opaque); int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, int cpuid, void *opaque); int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, void *opaque); const VMStateDescription *vmsd; const char *gdb_core_xml_file; gchar * (*gdb_arch_name)(CPUState *cpu); const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); void (*cpu_exec_enter)(CPUState *cpu); void (*cpu_exec_exit)(CPUState *cpu); bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request); void (*disas_set_info)(CPUState *cpu, disassemble_info *info); vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len); void (*tcg_initialize)(void); /* Keep non-pointer data at the end to minimize holes. */ int gdb_num_core_regs; bool gdb_stop_before_watchpoint; } CPUClass; /* * Low 16 bits: number of cycles left, used only in icount mode. * High 16 bits: Set to -1 to force TCG to stop executing linked TBs * for this CPU and return to its top level loop (even in non-icount mode). * This allows a single read-compare-cbranch-write sequence to test * for both decrementer underflow and exceptions. */ typedef union IcountDecr { uint32_t u32; struct { #ifdef HOST_WORDS_BIGENDIAN uint16_t high; uint16_t low; #else uint16_t low; uint16_t high; #endif } u16; } IcountDecr; typedef struct CPUBreakpoint { vaddr pc; int flags; /* BP_* */ QTAILQ_ENTRY(CPUBreakpoint) entry; } CPUBreakpoint; struct CPUWatchpoint { vaddr vaddr; vaddr len; vaddr hitaddr; MemTxAttrs hitattrs; int flags; /* BP_* */ QTAILQ_ENTRY(CPUWatchpoint) entry; }; struct KVMState; struct kvm_run; struct hax_vcpu_state; #define TB_JMP_CACHE_BITS 12 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) /* work queue */ /* The union type allows passing of 64 bit target pointers on 32 bit * hosts in a single parameter */ typedef union { int host_int; unsigned long host_ulong; void *host_ptr; vaddr target_ptr; } run_on_cpu_data; #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); struct qemu_work_item; #define CPU_UNSET_NUMA_NODE_ID -1 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 /** * CPUState: * @cpu_index: CPU index (informative). * @cluster_index: Identifies which cluster this CPU is in. * For boards which don't define clusters or for "loose" CPUs not assigned * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER * QOM parent. * @nr_cores: Number of cores within this CPU package. * @nr_threads: Number of threads within this CPU. * @running: #true if CPU is currently running (lockless). * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; * valid under cpu_list_lock. * @created: Indicates whether the CPU thread has been successfully created. * @interrupt_request: Indicates a pending interrupt request. * @halted: Nonzero if the CPU is in suspended state. * @stop: Indicates a pending stop request. * @stopped: Indicates the CPU has been artificially stopped. * @unplug: Indicates a pending CPU unplug request. * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU * @singlestep_enabled: Flags for single-stepping. * @icount_extra: Instructions until next timer event. * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution * requires that IO only be performed on the last instruction of a TB * so that interrupts take effect immediately. * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the * AddressSpaces this CPU has) * @num_ases: number of CPUAddressSpaces in @cpu_ases * @as: Pointer to the first AddressSpace, for the convenience of targets which * only have a single AddressSpace * @env_ptr: Pointer to subclass-specific CPUArchState field. * @icount_decr_ptr: Pointer to IcountDecr field within subclass. * @gdb_regs: Additional GDB registers. * @gdb_num_regs: Number of total registers accessible to GDB. * @gdb_num_g_regs: Number of registers in GDB 'g' packets. * @next_cpu: Next CPU sharing TB cache. * @opaque: User data. * @mem_io_pc: Host Program Counter at which the memory was accessed. * @kvm_fd: vCPU file descriptor for KVM. * @work_mutex: Lock to prevent multiple access to queued_work_*. * @queued_work_first: First asynchronous work pending. * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes * to @trace_dstate). * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). * @plugin_mask: Plugin event bitmap. Modified only via async work. * @ignore_memory_transaction_failures: Cached copy of the MachineState * flag of the same name: allows the board to suppress calling of the * CPU do_transaction_failed hook function. * * State of one CPU core or thread. */ struct CPUState { /*< private >*/ DeviceState parent_obj; /*< public >*/ int nr_cores; int nr_threads; struct QemuThread *thread; #ifdef _WIN32 HANDLE hThread; #endif int thread_id; bool running, has_waiter; struct QemuCond *halt_cond; bool thread_kicked; bool created; bool stop; bool stopped; bool unplug; bool crash_occurred; bool exit_request; bool in_exclusive_context; uint32_t cflags_next_tb; /* updates protected by BQL */ uint32_t interrupt_request; int singlestep_enabled; int64_t icount_budget; int64_t icount_extra; uint64_t random_seed; sigjmp_buf jmp_env; QemuMutex work_mutex; struct qemu_work_item *queued_work_first, *queued_work_last; CPUAddressSpace *cpu_ases; int num_ases; AddressSpace *as; MemoryRegion *memory; void *env_ptr; /* CPUArchState */ IcountDecr *icount_decr_ptr; /* Accessed in parallel; all accesses must be atomic */ struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; struct GDBRegisterState *gdb_regs; int gdb_num_regs; int gdb_num_g_regs; QTAILQ_ENTRY(CPUState) node; /* ice debug support */ QTAILQ_HEAD(, CPUBreakpoint) breakpoints; QTAILQ_HEAD(, CPUWatchpoint) watchpoints; CPUWatchpoint *watchpoint_hit; void *opaque; /* In order to avoid passing too many arguments to the MMIO helpers, * we store some rarely used information in the CPU context. */ uintptr_t mem_io_pc; int kvm_fd; struct KVMState *kvm_state; struct kvm_run *kvm_run; /* Used for events with 'vcpu' and *without* the 'disabled' properties */ DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); GArray *plugin_mem_cbs; /* TODO Move common fields from CPUArchState here. */ int cpu_index; int cluster_index; uint32_t halted; uint32_t can_do_io; int32_t exception_index; /* shared by kvm, hax and hvf */ bool vcpu_dirty; /* Used to keep track of an outstanding cpu throttle thread for migration * autoconverge */ bool throttle_thread_scheduled; bool ignore_memory_transaction_failures; struct hax_vcpu_state *hax_vcpu; int hvf_fd; /* track IOMMUs whose translations we've cached in the TCG TLB */ GArray *iommu_notifiers; }; typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; extern CPUTailQ cpus; #define first_cpu QTAILQ_FIRST_RCU(&cpus) #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) #define CPU_FOREACH_SAFE(cpu, next_cpu) \ QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) extern __thread CPUState *current_cpu; static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) { unsigned int i; for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { atomic_set(&cpu->tb_jmp_cache[i], NULL); } } /** * qemu_tcg_mttcg_enabled: * Check whether we are running MultiThread TCG or not. * * Returns: %true if we are in MTTCG mode %false otherwise. */ extern bool mttcg_enabled; #define qemu_tcg_mttcg_enabled() (mttcg_enabled) /** * cpu_paging_enabled: * @cpu: The CPU whose state is to be inspected. * * Returns: %true if paging is enabled, %false otherwise. */ bool cpu_paging_enabled(const CPUState *cpu); /** * cpu_get_memory_mapping: * @cpu: The CPU whose memory mappings are to be obtained. * @list: Where to write the memory mappings to. * @errp: Pointer for reporting an #Error. */ void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, Error **errp); /** * cpu_write_elf64_note: * @f: pointer to a function that writes memory to a file * @cpu: The CPU whose memory is to be dumped * @cpuid: ID number of the CPU * @opaque: pointer to the CPUState struct */ int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, int cpuid, void *opaque); /** * cpu_write_elf64_qemunote: * @f: pointer to a function that writes memory to a file * @cpu: The CPU whose memory is to be dumped * @cpuid: ID number of the CPU * @opaque: pointer to the CPUState struct */ int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, void *opaque); /** * cpu_write_elf32_note: * @f: pointer to a function that writes memory to a file * @cpu: The CPU whose memory is to be dumped * @cpuid: ID number of the CPU * @opaque: pointer to the CPUState struct */ int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, int cpuid, void *opaque); /** * cpu_write_elf32_qemunote: * @f: pointer to a function that writes memory to a file * @cpu: The CPU whose memory is to be dumped * @cpuid: ID number of the CPU * @opaque: pointer to the CPUState struct */ int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, void *opaque); /** * cpu_get_crash_info: * @cpu: The CPU to get crash information for * * Gets the previously saved crash information. * Caller is responsible for freeing the data. */ GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); /** * CPUDumpFlags: * @CPU_DUMP_CODE: * @CPU_DUMP_FPU: dump FPU register state, not just integer * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state */ enum CPUDumpFlags { CPU_DUMP_CODE = 0x00010000, CPU_DUMP_FPU = 0x00020000, CPU_DUMP_CCOP = 0x00040000, }; /** * cpu_dump_state: * @cpu: The CPU whose state is to be dumped. * @f: If non-null, dump to this stream, else to current print sink. * * Dumps CPU state. */ void cpu_dump_state(CPUState *cpu, FILE *f, int flags); /** * cpu_dump_statistics: * @cpu: The CPU whose state is to be dumped. * @flags: Flags what to dump. * * Dump CPU statistics to the current monitor if we have one, else to * stdout. */ void cpu_dump_statistics(CPUState *cpu, int flags); #ifndef CONFIG_USER_ONLY /** * cpu_get_phys_page_attrs_debug: * @cpu: The CPU to obtain the physical page address for. * @addr: The virtual address. * @attrs: Updated on return with the memory transaction attributes to use * for this access. * * Obtains the physical page corresponding to a virtual one, together * with the corresponding memory transaction attributes to use for the access. * Use it only for debugging because no protection checks are done. * * Returns: Corresponding physical page address or -1 if no page found. */ static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, MemTxAttrs *attrs) { CPUClass *cc = CPU_GET_CLASS(cpu); if (cc->get_phys_page_attrs_debug) { return cc->get_phys_page_attrs_debug(cpu, addr, attrs); } /* Fallback for CPUs which don't implement the _attrs_ hook */ *attrs = MEMTXATTRS_UNSPECIFIED; return cc->get_phys_page_debug(cpu, addr); } /** * cpu_get_phys_page_debug: * @cpu: The CPU to obtain the physical page address for. * @addr: The virtual address. * * Obtains the physical page corresponding to a virtual one. * Use it only for debugging because no protection checks are done. * * Returns: Corresponding physical page address or -1 if no page found. */ static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) { MemTxAttrs attrs = {}; return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); } /** cpu_asidx_from_attrs: * @cpu: CPU * @attrs: memory transaction attributes * * Returns the address space index specifying the CPU AddressSpace * to use for a memory access with the given transaction attributes. */ static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) { CPUClass *cc = CPU_GET_CLASS(cpu); int ret = 0; if (cc->asidx_from_attrs) { ret = cc->asidx_from_attrs(cpu, attrs); assert(ret < cpu->num_ases && ret >= 0); } return ret; } #endif /** * cpu_list_add: * @cpu: The CPU to be added to the list of CPUs. */ void cpu_list_add(CPUState *cpu); /** * cpu_list_remove: * @cpu: The CPU to be removed from the list of CPUs. */ void cpu_list_remove(CPUState *cpu); /** * cpu_reset: * @cpu: The CPU whose state is to be reset. */ void cpu_reset(CPUState *cpu); /** * cpu_class_by_name: * @typename: The CPU base type. * @cpu_model: The model string without any parameters. * * Looks up a CPU #ObjectClass matching name @cpu_model. * * Returns: A #CPUClass or %NULL if not matching class is found. */ ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); /** * cpu_create: * @typename: The CPU type. * * Instantiates a CPU and realizes the CPU. * * Returns: A #CPUState or %NULL if an error occurred. */ CPUState *cpu_create(const char *typename); /** * parse_cpu_option: * @cpu_option: The -cpu option including optional parameters. * * processes optional parameters and registers them as global properties * * Returns: type of CPU to create or prints error and terminates process * if an error occurred. */ const char *parse_cpu_option(const char *cpu_option); /** * cpu_has_work: * @cpu: The vCPU to check. * * Checks whether the CPU has work to do. * * Returns: %true if the CPU has work, %false otherwise. */ static inline bool cpu_has_work(CPUState *cpu) { CPUClass *cc = CPU_GET_CLASS(cpu); g_assert(cc->has_work); return cc->has_work(cpu); } /** * qemu_cpu_is_self: * @cpu: The vCPU to check against. * * Checks whether the caller is executing on the vCPU thread. * * Returns: %true if called from @cpu's thread, %false otherwise. */ bool qemu_cpu_is_self(CPUState *cpu); /** * qemu_cpu_kick: * @cpu: The vCPU to kick. * * Kicks @cpu's thread. */ void qemu_cpu_kick(CPUState *cpu); /** * cpu_is_stopped: * @cpu: The CPU to check. * * Checks whether the CPU is stopped. * * Returns: %true if run state is not running or if artificially stopped; * %false otherwise. */ bool cpu_is_stopped(CPUState *cpu); /** * do_run_on_cpu: * @cpu: The vCPU to run on. * @func: The function to be executed. * @data: Data to pass to the function. * @mutex: Mutex to release while waiting for @func to run. * * Used internally in the implementation of run_on_cpu. */ void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, QemuMutex *mutex); /** * run_on_cpu: * @cpu: The vCPU to run on. * @func: The function to be executed. * @data: Data to pass to the function. * * Schedules the function @func for execution on the vCPU @cpu. */ void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); /** * async_run_on_cpu: * @cpu: The vCPU to run on. * @func: The function to be executed. * @data: Data to pass to the function. * * Schedules the function @func for execution on the vCPU @cpu asynchronously. */ void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); /** * async_safe_run_on_cpu: * @cpu: The vCPU to run on. * @func: The function to be executed. * @data: Data to pass to the function. * * Schedules the function @func for execution on the vCPU @cpu asynchronously, * while all other vCPUs are sleeping. * * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the * BQL. */ void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); /** * cpu_in_exclusive_context() * @cpu: The vCPU to check * * Returns true if @cpu is an exclusive context, for example running * something which has previously been queued via async_safe_run_on_cpu(). */ static inline bool cpu_in_exclusive_context(const CPUState *cpu) { return cpu->in_exclusive_context; } /** * qemu_get_cpu: * @index: The CPUState@cpu_index value of the CPU to obtain. * * Gets a CPU matching @index. * * Returns: The CPU or %NULL if there is no matching CPU. */ CPUState *qemu_get_cpu(int index); /** * cpu_exists: * @id: Guest-exposed CPU ID to lookup. * * Search for CPU with specified ID. * * Returns: %true - CPU is found, %false - CPU isn't found. */ bool cpu_exists(int64_t id); /** * cpu_by_arch_id: * @id: Guest-exposed CPU ID of the CPU to obtain. * * Get a CPU with matching @id. * * Returns: The CPU or %NULL if there is no matching CPU. */ CPUState *cpu_by_arch_id(int64_t id); /** * cpu_throttle_set: * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99. * * Throttles all vcpus by forcing them to sleep for the given percentage of * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly. * (example: 10ms sleep for every 30ms awake). * * cpu_throttle_set can be called as needed to adjust new_throttle_pct. * Once the throttling starts, it will remain in effect until cpu_throttle_stop * is called. */ void cpu_throttle_set(int new_throttle_pct); /** * cpu_throttle_stop: * * Stops the vcpu throttling started by cpu_throttle_set. */ void cpu_throttle_stop(void); /** * cpu_throttle_active: * * Returns: %true if the vcpus are currently being throttled, %false otherwise. */ bool cpu_throttle_active(void); /** * cpu_throttle_get_percentage: * * Returns the vcpu throttle percentage. See cpu_throttle_set for details. * * Returns: The throttle percentage in range 1 to 99. */ int cpu_throttle_get_percentage(void); #ifndef CONFIG_USER_ONLY typedef void (*CPUInterruptHandler)(CPUState *, int); extern CPUInterruptHandler cpu_interrupt_handler; /** * cpu_interrupt: * @cpu: The CPU to set an interrupt on. * @mask: The interrupts to set. * * Invokes the interrupt handler. */ static inline void cpu_interrupt(CPUState *cpu, int mask) { cpu_interrupt_handler(cpu, mask); } #else /* USER_ONLY */ void cpu_interrupt(CPUState *cpu, int mask); #endif /* USER_ONLY */ #ifdef NEED_CPU_H #ifdef CONFIG_SOFTMMU static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { CPUClass *cc = CPU_GET_CLASS(cpu); cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); } static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr) { CPUClass *cc = CPU_GET_CLASS(cpu); if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) { cc->do_transaction_failed(cpu, physaddr, addr, size, access_type, mmu_idx, attrs, response, retaddr); } } #endif #endif /* NEED_CPU_H */ /** * cpu_set_pc: * @cpu: The CPU to set the program counter for. * @addr: Program counter value. * * Sets the program counter for a CPU. */ static inline void cpu_set_pc(CPUState *cpu, vaddr addr) { CPUClass *cc = CPU_GET_CLASS(cpu); cc->set_pc(cpu, addr); } /** * cpu_reset_interrupt: * @cpu: The CPU to clear the interrupt on. * @mask: The interrupt mask to clear. * * Resets interrupts on the vCPU @cpu. */ void cpu_reset_interrupt(CPUState *cpu, int mask); /** * cpu_exit: * @cpu: The CPU to exit. * * Requests the CPU @cpu to exit execution. */ void cpu_exit(CPUState *cpu); /** * cpu_resume: * @cpu: The CPU to resume. * * Resumes CPU, i.e. puts CPU into runnable state. */ void cpu_resume(CPUState *cpu); /** * cpu_remove: * @cpu: The CPU to remove. * * Requests the CPU to be removed. */ void cpu_remove(CPUState *cpu); /** * cpu_remove_sync: * @cpu: The CPU to remove. * * Requests the CPU to be removed and waits till it is removed. */ void cpu_remove_sync(CPUState *cpu); /** * process_queued_cpu_work() - process all items on CPU work queue * @cpu: The CPU which work queue to process. */ void process_queued_cpu_work(CPUState *cpu); /** * cpu_exec_start: * @cpu: The CPU for the current thread. * * Record that a CPU has started execution and can be interrupted with * cpu_exit. */ void cpu_exec_start(CPUState *cpu); /** * cpu_exec_end: * @cpu: The CPU for the current thread. * * Record that a CPU has stopped execution and exclusive sections * can be executed without interrupting it. */ void cpu_exec_end(CPUState *cpu); /** * start_exclusive: * * Wait for a concurrent exclusive section to end, and then start * a section of work that is run while other CPUs are not running * between cpu_exec_start and cpu_exec_end. CPUs that are running * cpu_exec are exited immediately. CPUs that call cpu_exec_start * during the exclusive section go to sleep until this CPU calls * end_exclusive. */ void start_exclusive(void); /** * end_exclusive: * * Concludes an exclusive execution section started by start_exclusive. */ void end_exclusive(void); /** * qemu_init_vcpu: * @cpu: The vCPU to initialize. * * Initializes a vCPU. */ void qemu_init_vcpu(CPUState *cpu); #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ /** * cpu_single_step: * @cpu: CPU to the flags for. * @enabled: Flags to enable. * * Enables or disables single-stepping for @cpu. */ void cpu_single_step(CPUState *cpu, int enabled); /* Breakpoint/watchpoint flags */ #define BP_MEM_READ 0x01 #define BP_MEM_WRITE 0x02 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) #define BP_STOP_BEFORE_ACCESS 0x04 /* 0x08 currently unused */ #define BP_GDB 0x10 #define BP_CPU 0x20 #define BP_ANY (BP_GDB | BP_CPU) #define BP_WATCHPOINT_HIT_READ 0x40 #define BP_WATCHPOINT_HIT_WRITE 0x80 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, CPUBreakpoint **breakpoint); int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); void cpu_breakpoint_remove_all(CPUState *cpu, int mask); /* Return true if PC matches an installed breakpoint. */ static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) { CPUBreakpoint *bp; if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { if (bp->pc == pc && (bp->flags & mask)) { return true; } } } return false; } #ifdef CONFIG_USER_ONLY static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, int flags, CPUWatchpoint **watchpoint) { return -ENOSYS; } static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, int flags) { return -ENOSYS; } static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *wp) { } static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) { } static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, MemTxAttrs atr, int fl, uintptr_t ra) { } static inline int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) { return 0; } #else int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, int flags, CPUWatchpoint **watchpoint); int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, int flags); void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); void cpu_watchpoint_remove_all(CPUState *cpu, int mask); /** * cpu_check_watchpoint: * @cpu: cpu context * @addr: guest virtual address * @len: access length * @attrs: memory access attributes * @flags: watchpoint access type * @ra: unwind return address * * Check for a watchpoint hit in [addr, addr+len) of the type * specified by @flags. Exit via exception with a hit. */ void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, MemTxAttrs attrs, int flags, uintptr_t ra); /** * cpu_watchpoint_address_matches: * @cpu: cpu context * @addr: guest virtual address * @len: access length * * Return the watchpoint flags that apply to [addr, addr+len). * If no watchpoint is registered for the range, the result is 0. */ int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); #endif /** * cpu_get_address_space: * @cpu: CPU to get address space from * @asidx: index identifying which address space to get * * Return the requested address space of this CPU. @asidx * specifies which address space to read. */ AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) GCC_FMT_ATTR(2, 3); extern Property cpu_common_props[]; void cpu_exec_initfn(CPUState *cpu); void cpu_exec_realizefn(CPUState *cpu, Error **errp); void cpu_exec_unrealizefn(CPUState *cpu); /** * target_words_bigendian: * Returns true if the (default) endianness of the target is big endian, * false otherwise. Note that in target-specific code, you can use * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common * code should normally never need to know about the endianness of the * target, so please do *not* use this function unless you know very well * what you are doing! */ bool target_words_bigendian(void); #ifdef NEED_CPU_H #ifdef CONFIG_SOFTMMU extern const VMStateDescription vmstate_cpu_common; #else #define vmstate_cpu_common vmstate_dummy #endif #define VMSTATE_CPU() { \ .name = "parent_obj", \ .size = sizeof(CPUState), \ .vmsd = &vmstate_cpu_common, \ .flags = VMS_STRUCT, \ .offset = 0, \ } #endif /* NEED_CPU_H */ #define UNASSIGNED_CPU_INDEX -1 #define UNASSIGNED_CLUSTER_INDEX -1 #endif