xref: /openbmc/qemu/hw/ssi/aspeed_smc.c (revision f3635813)
1 /*
2  * ASPEED AST2400 SMC Controller (SPI Flash Only)
3  *
4  * Copyright (C) 2016 IBM Corp.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/units.h"
34 
35 #include "hw/irq.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/ssi/aspeed_smc.h"
38 
39 /* CE Type Setting Register */
40 #define R_CONF            (0x00 / 4)
41 #define   CONF_LEGACY_DISABLE  (1 << 31)
42 #define   CONF_ENABLE_W4       20
43 #define   CONF_ENABLE_W3       19
44 #define   CONF_ENABLE_W2       18
45 #define   CONF_ENABLE_W1       17
46 #define   CONF_ENABLE_W0       16
47 #define   CONF_FLASH_TYPE4     8
48 #define   CONF_FLASH_TYPE3     6
49 #define   CONF_FLASH_TYPE2     4
50 #define   CONF_FLASH_TYPE1     2
51 #define   CONF_FLASH_TYPE0     0
52 #define      CONF_FLASH_TYPE_NOR   0x0
53 #define      CONF_FLASH_TYPE_NAND  0x1
54 #define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
55 
56 /* CE Control Register */
57 #define R_CE_CTRL            (0x04 / 4)
58 #define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
59 #define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
60 #define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
61 #define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
62 #define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
63 
64 /* Interrupt Control and Status Register */
65 #define R_INTR_CTRL       (0x08 / 4)
66 #define   INTR_CTRL_DMA_STATUS            (1 << 11)
67 #define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
68 #define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
69 #define   INTR_CTRL_DMA_EN                (1 << 3)
70 #define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
71 #define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
72 
73 /* CEx Control Register */
74 #define R_CTRL0           (0x10 / 4)
75 #define   CTRL_IO_QPI              (1 << 31)
76 #define   CTRL_IO_QUAD_DATA        (1 << 30)
77 #define   CTRL_IO_DUAL_DATA        (1 << 29)
78 #define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
79 #define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
80 #define   CTRL_CMD_SHIFT           16
81 #define   CTRL_CMD_MASK            0xff
82 #define   CTRL_DUMMY_HIGH_SHIFT    14
83 #define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
84 #define CE_CTRL_CLOCK_FREQ_SHIFT   8
85 #define CE_CTRL_CLOCK_FREQ_MASK    0xf
86 #define CE_CTRL_CLOCK_FREQ(div)                                         \
87     (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
88 #define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
89 #define   CTRL_CE_STOP_ACTIVE      (1 << 2)
90 #define   CTRL_CMD_MODE_MASK       0x3
91 #define     CTRL_READMODE          0x0
92 #define     CTRL_FREADMODE         0x1
93 #define     CTRL_WRITEMODE         0x2
94 #define     CTRL_USERMODE          0x3
95 #define R_CTRL1           (0x14 / 4)
96 #define R_CTRL2           (0x18 / 4)
97 #define R_CTRL3           (0x1C / 4)
98 #define R_CTRL4           (0x20 / 4)
99 
100 /* CEx Segment Address Register */
101 #define R_SEG_ADDR0       (0x30 / 4)
102 #define   SEG_END_SHIFT        24   /* 8MB units */
103 #define   SEG_END_MASK         0xff
104 #define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
105 #define   SEG_START_MASK       0xff
106 #define R_SEG_ADDR1       (0x34 / 4)
107 #define R_SEG_ADDR2       (0x38 / 4)
108 #define R_SEG_ADDR3       (0x3C / 4)
109 #define R_SEG_ADDR4       (0x40 / 4)
110 
111 /* Misc Control Register #1 */
112 #define R_MISC_CTRL1      (0x50 / 4)
113 
114 /* SPI dummy cycle data */
115 #define R_DUMMY_DATA      (0x54 / 4)
116 
117 /* DMA Control/Status Register */
118 #define R_DMA_CTRL        (0x80 / 4)
119 #define   DMA_CTRL_DELAY_MASK   0xf
120 #define   DMA_CTRL_DELAY_SHIFT  8
121 #define   DMA_CTRL_FREQ_MASK    0xf
122 #define   DMA_CTRL_FREQ_SHIFT   4
123 #define   DMA_CTRL_CALIB        (1 << 3)
124 #define   DMA_CTRL_CKSUM        (1 << 2)
125 #define   DMA_CTRL_WRITE        (1 << 1)
126 #define   DMA_CTRL_ENABLE       (1 << 0)
127 
128 /* DMA Flash Side Address */
129 #define R_DMA_FLASH_ADDR  (0x84 / 4)
130 
131 /* DMA DRAM Side Address */
132 #define R_DMA_DRAM_ADDR   (0x88 / 4)
133 
134 /* DMA Length Register */
135 #define R_DMA_LEN         (0x8C / 4)
136 
137 /* Checksum Calculation Result */
138 #define R_DMA_CHECKSUM    (0x90 / 4)
139 
140 /* Read Timing Compensation Register */
141 #define R_TIMINGS         (0x94 / 4)
142 
143 /* SPI controller registers and bits (AST2400) */
144 #define R_SPI_CONF        (0x00 / 4)
145 #define   SPI_CONF_ENABLE_W0   0
146 #define R_SPI_CTRL0       (0x4 / 4)
147 #define R_SPI_MISC_CTRL   (0x10 / 4)
148 #define R_SPI_TIMINGS     (0x14 / 4)
149 
150 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
151 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
152 
153 #define ASPEED_SOC_SMC_FLASH_BASE   0x10000000
154 #define ASPEED_SOC_FMC_FLASH_BASE   0x20000000
155 #define ASPEED_SOC_SPI_FLASH_BASE   0x30000000
156 #define ASPEED_SOC_SPI2_FLASH_BASE  0x38000000
157 
158 /*
159  * DMA DRAM addresses should be 4 bytes aligned and the valid address
160  * range is 0x40000000 - 0x5FFFFFFF (AST2400)
161  *          0x80000000 - 0xBFFFFFFF (AST2500)
162  *
163  * DMA flash addresses should be 4 bytes aligned and the valid address
164  * range is 0x20000000 - 0x2FFFFFFF.
165  *
166  * DMA length is from 4 bytes to 32MB
167  *   0: 4 bytes
168  *   0x7FFFFF: 32M bytes
169  */
170 #define DMA_DRAM_ADDR(s, val)   ((s)->sdram_base | \
171                                  ((val) & (s)->ctrl->dma_dram_mask))
172 #define DMA_FLASH_ADDR(s, val)  ((s)->ctrl->flash_window_base | \
173                                 ((val) & (s)->ctrl->dma_flash_mask))
174 #define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
175 
176 /* Flash opcodes. */
177 #define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
178 
179 #define SNOOP_OFF         0xFF
180 #define SNOOP_START       0x0
181 
182 /*
183  * Default segments mapping addresses and size for each slave per
184  * controller. These can be changed when board is initialized with the
185  * Segment Address Registers.
186  */
187 static const AspeedSegments aspeed_segments_legacy[] = {
188     { 0x10000000, 32 * 1024 * 1024 },
189 };
190 
191 static const AspeedSegments aspeed_segments_fmc[] = {
192     { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
193     { 0x24000000, 32 * 1024 * 1024 },
194     { 0x26000000, 32 * 1024 * 1024 },
195     { 0x28000000, 32 * 1024 * 1024 },
196     { 0x2A000000, 32 * 1024 * 1024 }
197 };
198 
199 static const AspeedSegments aspeed_segments_spi[] = {
200     { 0x30000000, 64 * 1024 * 1024 },
201 };
202 
203 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
204     { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
205     { 0x28000000,  32 * 1024 * 1024 },
206     { 0x2A000000,  32 * 1024 * 1024 },
207 };
208 
209 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
210     { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
211     { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
212 };
213 
214 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
215     { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
216     { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
217 };
218 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
219                                           const AspeedSegments *seg);
220 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
221                                       AspeedSegments *seg);
222 
223 /*
224  * AST2600 definitions
225  */
226 #define ASPEED26_SOC_FMC_FLASH_BASE   0x20000000
227 #define ASPEED26_SOC_SPI_FLASH_BASE   0x30000000
228 #define ASPEED26_SOC_SPI2_FLASH_BASE  0x50000000
229 
230 static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
231     { 0x0, 128 * MiB }, /* start address is readonly */
232     { 0x0, 0 }, /* disabled */
233     { 0x0, 0 }, /* disabled */
234 };
235 
236 static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
237     { 0x0, 128 * MiB }, /* start address is readonly */
238     { 0x0, 0 }, /* disabled */
239 };
240 
241 static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
242     { 0x0, 128 * MiB }, /* start address is readonly */
243     { 0x0, 0 }, /* disabled */
244     { 0x0, 0 }, /* disabled */
245 };
246 
247 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
248                                                const AspeedSegments *seg);
249 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
250                                            uint32_t reg, AspeedSegments *seg);
251 
252 static const AspeedSMCController controllers[] = {
253     {
254         .name              = "aspeed.smc-ast2400",
255         .r_conf            = R_CONF,
256         .r_ce_ctrl         = R_CE_CTRL,
257         .r_ctrl0           = R_CTRL0,
258         .r_timings         = R_TIMINGS,
259         .nregs_timings     = 1,
260         .conf_enable_w0    = CONF_ENABLE_W0,
261         .max_slaves        = 5,
262         .segments          = aspeed_segments_legacy,
263         .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
264         .flash_window_size = 0x6000000,
265         .has_dma           = false,
266         .nregs             = ASPEED_SMC_R_SMC_MAX,
267         .segment_to_reg    = aspeed_smc_segment_to_reg,
268         .reg_to_segment    = aspeed_smc_reg_to_segment,
269     }, {
270         .name              = "aspeed.fmc-ast2400",
271         .r_conf            = R_CONF,
272         .r_ce_ctrl         = R_CE_CTRL,
273         .r_ctrl0           = R_CTRL0,
274         .r_timings         = R_TIMINGS,
275         .nregs_timings     = 1,
276         .conf_enable_w0    = CONF_ENABLE_W0,
277         .max_slaves        = 5,
278         .segments          = aspeed_segments_fmc,
279         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
280         .flash_window_size = 0x10000000,
281         .has_dma           = true,
282         .dma_flash_mask    = 0x0FFFFFFC,
283         .dma_dram_mask     = 0x1FFFFFFC,
284         .nregs             = ASPEED_SMC_R_MAX,
285         .segment_to_reg    = aspeed_smc_segment_to_reg,
286         .reg_to_segment    = aspeed_smc_reg_to_segment,
287     }, {
288         .name              = "aspeed.spi1-ast2400",
289         .r_conf            = R_SPI_CONF,
290         .r_ce_ctrl         = 0xff,
291         .r_ctrl0           = R_SPI_CTRL0,
292         .r_timings         = R_SPI_TIMINGS,
293         .nregs_timings     = 1,
294         .conf_enable_w0    = SPI_CONF_ENABLE_W0,
295         .max_slaves        = 1,
296         .segments          = aspeed_segments_spi,
297         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
298         .flash_window_size = 0x10000000,
299         .has_dma           = false,
300         .nregs             = ASPEED_SMC_R_SPI_MAX,
301         .segment_to_reg    = aspeed_smc_segment_to_reg,
302         .reg_to_segment    = aspeed_smc_reg_to_segment,
303     }, {
304         .name              = "aspeed.fmc-ast2500",
305         .r_conf            = R_CONF,
306         .r_ce_ctrl         = R_CE_CTRL,
307         .r_ctrl0           = R_CTRL0,
308         .r_timings         = R_TIMINGS,
309         .nregs_timings     = 1,
310         .conf_enable_w0    = CONF_ENABLE_W0,
311         .max_slaves        = 3,
312         .segments          = aspeed_segments_ast2500_fmc,
313         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
314         .flash_window_size = 0x10000000,
315         .has_dma           = true,
316         .dma_flash_mask    = 0x0FFFFFFC,
317         .dma_dram_mask     = 0x3FFFFFFC,
318         .nregs             = ASPEED_SMC_R_MAX,
319         .segment_to_reg    = aspeed_smc_segment_to_reg,
320         .reg_to_segment    = aspeed_smc_reg_to_segment,
321     }, {
322         .name              = "aspeed.spi1-ast2500",
323         .r_conf            = R_CONF,
324         .r_ce_ctrl         = R_CE_CTRL,
325         .r_ctrl0           = R_CTRL0,
326         .r_timings         = R_TIMINGS,
327         .nregs_timings     = 1,
328         .conf_enable_w0    = CONF_ENABLE_W0,
329         .max_slaves        = 2,
330         .segments          = aspeed_segments_ast2500_spi1,
331         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
332         .flash_window_size = 0x8000000,
333         .has_dma           = false,
334         .nregs             = ASPEED_SMC_R_MAX,
335         .segment_to_reg    = aspeed_smc_segment_to_reg,
336         .reg_to_segment    = aspeed_smc_reg_to_segment,
337     }, {
338         .name              = "aspeed.spi2-ast2500",
339         .r_conf            = R_CONF,
340         .r_ce_ctrl         = R_CE_CTRL,
341         .r_ctrl0           = R_CTRL0,
342         .r_timings         = R_TIMINGS,
343         .nregs_timings     = 1,
344         .conf_enable_w0    = CONF_ENABLE_W0,
345         .max_slaves        = 2,
346         .segments          = aspeed_segments_ast2500_spi2,
347         .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
348         .flash_window_size = 0x8000000,
349         .has_dma           = false,
350         .nregs             = ASPEED_SMC_R_MAX,
351         .segment_to_reg    = aspeed_smc_segment_to_reg,
352         .reg_to_segment    = aspeed_smc_reg_to_segment,
353     }, {
354         .name              = "aspeed.fmc-ast2600",
355         .r_conf            = R_CONF,
356         .r_ce_ctrl         = R_CE_CTRL,
357         .r_ctrl0           = R_CTRL0,
358         .r_timings         = R_TIMINGS,
359         .nregs_timings     = 1,
360         .conf_enable_w0    = CONF_ENABLE_W0,
361         .max_slaves        = 3,
362         .segments          = aspeed_segments_ast2600_fmc,
363         .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
364         .flash_window_size = 0x10000000,
365         .has_dma           = true,
366         .nregs             = ASPEED_SMC_R_MAX,
367         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
368         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
369     }, {
370         .name              = "aspeed.spi1-ast2600",
371         .r_conf            = R_CONF,
372         .r_ce_ctrl         = R_CE_CTRL,
373         .r_ctrl0           = R_CTRL0,
374         .r_timings         = R_TIMINGS,
375         .nregs_timings     = 2,
376         .conf_enable_w0    = CONF_ENABLE_W0,
377         .max_slaves        = 2,
378         .segments          = aspeed_segments_ast2600_spi1,
379         .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
380         .flash_window_size = 0x10000000,
381         .has_dma           = false,
382         .nregs             = ASPEED_SMC_R_MAX,
383         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
384         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
385     }, {
386         .name              = "aspeed.spi2-ast2600",
387         .r_conf            = R_CONF,
388         .r_ce_ctrl         = R_CE_CTRL,
389         .r_ctrl0           = R_CTRL0,
390         .r_timings         = R_TIMINGS,
391         .nregs_timings     = 3,
392         .conf_enable_w0    = CONF_ENABLE_W0,
393         .max_slaves        = 3,
394         .segments          = aspeed_segments_ast2600_spi2,
395         .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
396         .flash_window_size = 0x10000000,
397         .has_dma           = false,
398         .nregs             = ASPEED_SMC_R_MAX,
399         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
400         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
401     },
402 };
403 
404 /*
405  * The Segment Registers of the AST2400 and AST2500 have a 8MB
406  * unit. The address range of a flash SPI slave is encoded with
407  * absolute addresses which should be part of the overall controller
408  * window.
409  */
410 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
411                                           const AspeedSegments *seg)
412 {
413     uint32_t reg = 0;
414     reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
415     reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
416     return reg;
417 }
418 
419 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
420                                       uint32_t reg, AspeedSegments *seg)
421 {
422     seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
423     seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
424 }
425 
426 /*
427  * The Segment Registers of the AST2600 have a 1MB unit. The address
428  * range of a flash SPI slave is encoded with offsets in the overall
429  * controller window. The previous SoC AST2400 and AST2500 used
430  * absolute addresses. Only bits [27:20] are relevant and the end
431  * address is an upper bound limit.
432  */
433 #define AST2600_SEG_ADDR_MASK 0x0ff00000
434 
435 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
436                                                const AspeedSegments *seg)
437 {
438     uint32_t reg = 0;
439 
440     /* Disabled segments have a nil register */
441     if (!seg->size) {
442         return 0;
443     }
444 
445     reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
446     reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
447     return reg;
448 }
449 
450 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
451                                            uint32_t reg, AspeedSegments *seg)
452 {
453     uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
454     uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
455 
456     if (reg) {
457         seg->addr = s->ctrl->flash_window_base + start_offset;
458         seg->size = end_offset + MiB - start_offset;
459     } else {
460         seg->addr = s->ctrl->flash_window_base;
461         seg->size = 0;
462     }
463 }
464 
465 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
466                                      const AspeedSegments *new,
467                                      int cs)
468 {
469     AspeedSegments seg;
470     int i;
471 
472     for (i = 0; i < s->ctrl->max_slaves; i++) {
473         if (i == cs) {
474             continue;
475         }
476 
477         s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
478 
479         if (new->addr + new->size > seg.addr &&
480             new->addr < seg.addr + seg.size) {
481             qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
482                           HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
483                           "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
484                           s->ctrl->name, cs, new->addr, new->addr + new->size,
485                           i, seg.addr, seg.addr + seg.size);
486             return true;
487         }
488     }
489     return false;
490 }
491 
492 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
493                                                 uint64_t regval)
494 {
495     AspeedSMCFlash *fl = &s->flashes[cs];
496     AspeedSegments seg;
497 
498     s->ctrl->reg_to_segment(s, regval, &seg);
499 
500     memory_region_transaction_begin();
501     memory_region_set_size(&fl->mmio, seg.size);
502     memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
503     memory_region_set_enabled(&fl->mmio, !!seg.size);
504     memory_region_transaction_commit();
505 
506     s->regs[R_SEG_ADDR0 + cs] = regval;
507 }
508 
509 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
510                                          uint64_t new)
511 {
512     AspeedSegments seg;
513 
514     s->ctrl->reg_to_segment(s, new, &seg);
515 
516     /* The start address of CS0 is read-only */
517     if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
518         qemu_log_mask(LOG_GUEST_ERROR,
519                       "%s: Tried to change CS0 start address to 0x%"
520                       HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
521         seg.addr = s->ctrl->flash_window_base;
522         new = s->ctrl->segment_to_reg(s, &seg);
523     }
524 
525     /*
526      * The end address of the AST2500 spi controllers is also
527      * read-only.
528      */
529     if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
530          s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
531         cs == s->ctrl->max_slaves &&
532         seg.addr + seg.size != s->ctrl->segments[cs].addr +
533         s->ctrl->segments[cs].size) {
534         qemu_log_mask(LOG_GUEST_ERROR,
535                       "%s: Tried to change CS%d end address to 0x%"
536                       HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
537         seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
538             seg.addr;
539         new = s->ctrl->segment_to_reg(s, &seg);
540     }
541 
542     /* Keep the segment in the overall flash window */
543     if (seg.size &&
544         (seg.addr + seg.size <= s->ctrl->flash_window_base ||
545          seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size)) {
546         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
547                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
548                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
549         return;
550     }
551 
552     /* Check start address vs. alignment */
553     if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
554         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
555                       "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
556                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
557     }
558 
559     /* And segments should not overlap (in the specs) */
560     aspeed_smc_flash_overlap(s, &seg, cs);
561 
562     /* All should be fine now to move the region */
563     aspeed_smc_flash_set_segment_region(s, cs, new);
564 }
565 
566 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
567                                               unsigned size)
568 {
569     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
570                   PRIx64 "\n", __func__, addr, size);
571     return 0;
572 }
573 
574 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
575                                            uint64_t data, unsigned size)
576 {
577     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
578                   PRIx64 "\n", __func__, addr, size, data);
579 }
580 
581 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
582     .read = aspeed_smc_flash_default_read,
583     .write = aspeed_smc_flash_default_write,
584     .endianness = DEVICE_LITTLE_ENDIAN,
585     .valid = {
586         .min_access_size = 1,
587         .max_access_size = 4,
588     },
589 };
590 
591 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
592 {
593     const AspeedSMCState *s = fl->controller;
594 
595     return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
596 }
597 
598 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
599 {
600     const AspeedSMCState *s = fl->controller;
601 
602     return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
603 }
604 
605 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
606 {
607     const AspeedSMCState *s = fl->controller;
608     int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
609 
610     /*
611      * In read mode, the default SPI command is READ (0x3). In other
612      * modes, the command should necessarily be defined
613      *
614      * TODO: add support for READ4 (0x13) on AST2600
615      */
616     if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
617         cmd = SPI_OP_READ;
618     }
619 
620     if (!cmd) {
621         qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
622                       __func__, aspeed_smc_flash_mode(fl));
623     }
624 
625     return cmd;
626 }
627 
628 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
629 {
630     const AspeedSMCState *s = fl->controller;
631 
632     if (s->ctrl->segments == aspeed_segments_spi) {
633         return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
634     } else {
635         return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
636     }
637 }
638 
639 static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl)
640 {
641     const AspeedSMCState *s = fl->controller;
642 
643     return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE;
644 }
645 
646 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
647 {
648     AspeedSMCState *s = fl->controller;
649 
650     s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE;
651     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
652 }
653 
654 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
655 {
656     AspeedSMCState *s = fl->controller;
657 
658     s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE;
659     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
660 }
661 
662 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
663                                               uint32_t addr)
664 {
665     const AspeedSMCState *s = fl->controller;
666     AspeedSegments seg;
667 
668     s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
669     if ((addr % seg.size) != addr) {
670         qemu_log_mask(LOG_GUEST_ERROR,
671                       "%s: invalid address 0x%08x for CS%d segment : "
672                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
673                       s->ctrl->name, addr, fl->id, seg.addr,
674                       seg.addr + seg.size);
675         addr %= seg.size;
676     }
677 
678     return addr;
679 }
680 
681 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
682 {
683     const AspeedSMCState *s = fl->controller;
684     uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
685     uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
686     uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
687     uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
688 
689     if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
690         dummies /= 2;
691     }
692 
693     return dummies;
694 }
695 
696 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
697 {
698     const AspeedSMCState *s = fl->controller;
699     uint8_t cmd = aspeed_smc_flash_cmd(fl);
700     int i;
701 
702     /* Flash access can not exceed CS segment */
703     addr = aspeed_smc_check_segment_addr(fl, addr);
704 
705     ssi_transfer(s->spi, cmd);
706 
707     if (aspeed_smc_flash_is_4byte(fl)) {
708         ssi_transfer(s->spi, (addr >> 24) & 0xff);
709     }
710     ssi_transfer(s->spi, (addr >> 16) & 0xff);
711     ssi_transfer(s->spi, (addr >> 8) & 0xff);
712     ssi_transfer(s->spi, (addr & 0xff));
713 
714     /*
715      * Use fake transfers to model dummy bytes. The value should
716      * be configured to some non-zero value in fast read mode and
717      * zero in read mode. But, as the HW allows inconsistent
718      * settings, let's check for fast read mode.
719      */
720     if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
721         for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
722             ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
723         }
724     }
725 }
726 
727 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
728 {
729     AspeedSMCFlash *fl = opaque;
730     AspeedSMCState *s = fl->controller;
731     uint64_t ret = 0;
732     int i;
733 
734     switch (aspeed_smc_flash_mode(fl)) {
735     case CTRL_USERMODE:
736         for (i = 0; i < size; i++) {
737             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
738         }
739         break;
740     case CTRL_READMODE:
741     case CTRL_FREADMODE:
742         aspeed_smc_flash_select(fl);
743         aspeed_smc_flash_setup(fl, addr);
744 
745         for (i = 0; i < size; i++) {
746             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
747         }
748 
749         aspeed_smc_flash_unselect(fl);
750         break;
751     default:
752         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
753                       __func__, aspeed_smc_flash_mode(fl));
754     }
755 
756     return ret;
757 }
758 
759 /*
760  * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
761  * common include header.
762  */
763 typedef enum {
764     READ = 0x3,         READ_4 = 0x13,
765     FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
766     DOR = 0x3b,         DOR_4 = 0x3c,
767     QOR = 0x6b,         QOR_4 = 0x6c,
768     DIOR = 0xbb,        DIOR_4 = 0xbc,
769     QIOR = 0xeb,        QIOR_4 = 0xec,
770 
771     PP = 0x2,           PP_4 = 0x12,
772     DPP = 0xa2,
773     QPP = 0x32,         QPP_4 = 0x34,
774 } FlashCMD;
775 
776 static int aspeed_smc_num_dummies(uint8_t command)
777 {
778     switch (command) { /* check for dummies */
779     case READ: /* no dummy bytes/cycles */
780     case PP:
781     case DPP:
782     case QPP:
783     case READ_4:
784     case PP_4:
785     case QPP_4:
786         return 0;
787     case FAST_READ:
788     case DOR:
789     case QOR:
790     case DOR_4:
791     case QOR_4:
792         return 1;
793     case DIOR:
794     case FAST_READ_4:
795     case DIOR_4:
796         return 2;
797     case QIOR:
798     case QIOR_4:
799         return 4;
800     default:
801         return -1;
802     }
803 }
804 
805 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
806                                 unsigned size)
807 {
808     AspeedSMCState *s = fl->controller;
809     uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
810 
811     if (s->snoop_index == SNOOP_OFF) {
812         return false; /* Do nothing */
813 
814     } else if (s->snoop_index == SNOOP_START) {
815         uint8_t cmd = data & 0xff;
816         int ndummies = aspeed_smc_num_dummies(cmd);
817 
818         /*
819          * No dummy cycles are expected with the current command. Turn
820          * off snooping and let the transfer proceed normally.
821          */
822         if (ndummies <= 0) {
823             s->snoop_index = SNOOP_OFF;
824             return false;
825         }
826 
827         s->snoop_dummies = ndummies * 8;
828 
829     } else if (s->snoop_index >= addr_width + 1) {
830 
831         /* The SPI transfer has reached the dummy cycles sequence */
832         for (; s->snoop_dummies; s->snoop_dummies--) {
833             ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
834         }
835 
836         /* If no more dummy cycles are expected, turn off snooping */
837         if (!s->snoop_dummies) {
838             s->snoop_index = SNOOP_OFF;
839         } else {
840             s->snoop_index += size;
841         }
842 
843         /*
844          * Dummy cycles have been faked already. Ignore the current
845          * SPI transfer
846          */
847         return true;
848     }
849 
850     s->snoop_index += size;
851     return false;
852 }
853 
854 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
855                                    unsigned size)
856 {
857     AspeedSMCFlash *fl = opaque;
858     AspeedSMCState *s = fl->controller;
859     int i;
860 
861     if (!aspeed_smc_is_writable(fl)) {
862         qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
863                       HWADDR_PRIx "\n", __func__, addr);
864         return;
865     }
866 
867     switch (aspeed_smc_flash_mode(fl)) {
868     case CTRL_USERMODE:
869         if (aspeed_smc_do_snoop(fl, data, size)) {
870             break;
871         }
872 
873         for (i = 0; i < size; i++) {
874             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
875         }
876         break;
877     case CTRL_WRITEMODE:
878         aspeed_smc_flash_select(fl);
879         aspeed_smc_flash_setup(fl, addr);
880 
881         for (i = 0; i < size; i++) {
882             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
883         }
884 
885         aspeed_smc_flash_unselect(fl);
886         break;
887     default:
888         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
889                       __func__, aspeed_smc_flash_mode(fl));
890     }
891 }
892 
893 static const MemoryRegionOps aspeed_smc_flash_ops = {
894     .read = aspeed_smc_flash_read,
895     .write = aspeed_smc_flash_write,
896     .endianness = DEVICE_LITTLE_ENDIAN,
897     .valid = {
898         .min_access_size = 1,
899         .max_access_size = 4,
900     },
901 };
902 
903 static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl)
904 {
905     AspeedSMCState *s = fl->controller;
906 
907     s->snoop_index = aspeed_smc_is_ce_stop_active(fl) ? SNOOP_OFF : SNOOP_START;
908 
909     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
910 }
911 
912 static void aspeed_smc_reset(DeviceState *d)
913 {
914     AspeedSMCState *s = ASPEED_SMC(d);
915     int i;
916 
917     memset(s->regs, 0, sizeof s->regs);
918 
919     /* Unselect all slaves */
920     for (i = 0; i < s->num_cs; ++i) {
921         s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
922         qemu_set_irq(s->cs_lines[i], true);
923     }
924 
925     /* setup the default segment register values and regions for all */
926     for (i = 0; i < s->ctrl->max_slaves; ++i) {
927         aspeed_smc_flash_set_segment_region(s, i,
928                     s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]));
929     }
930 
931     /* HW strapping flash type for the AST2600 controllers  */
932     if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
933         /* flash type is fixed to SPI for all */
934         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
935         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
936         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
937     }
938 
939     /* HW strapping flash type for FMC controllers  */
940     if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
941         /* flash type is fixed to SPI for CE0 and CE1 */
942         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
943         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
944     }
945 
946     /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
947      * configuration of the palmetto-bmc machine */
948     if (s->ctrl->segments == aspeed_segments_fmc) {
949         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
950     }
951 
952     s->snoop_index = SNOOP_OFF;
953     s->snoop_dummies = 0;
954 }
955 
956 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
957 {
958     AspeedSMCState *s = ASPEED_SMC(opaque);
959 
960     addr >>= 2;
961 
962     if (addr == s->r_conf ||
963         (addr >= s->r_timings &&
964          addr < s->r_timings + s->ctrl->nregs_timings) ||
965         addr == s->r_ce_ctrl ||
966         addr == R_INTR_CTRL ||
967         addr == R_DUMMY_DATA ||
968         (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
969         (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
970         (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
971         (s->ctrl->has_dma && addr == R_DMA_LEN) ||
972         (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
973         (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
974         (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
975         return s->regs[addr];
976     } else {
977         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
978                       __func__, addr);
979         return -1;
980     }
981 }
982 
983 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
984 {
985     /* HCLK/1 .. HCLK/16 */
986     const uint8_t hclk_divisors[] = {
987         15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
988     };
989     int i;
990 
991     for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
992         if (hclk_mask == hclk_divisors[i]) {
993             return i + 1;
994         }
995     }
996 
997     qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
998     return 0;
999 }
1000 
1001 /*
1002  * When doing calibration, the SPI clock rate in the CE0 Control
1003  * Register and the read delay cycles in the Read Timing Compensation
1004  * Register are set using bit[11:4] of the DMA Control Register.
1005  */
1006 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
1007 {
1008     uint8_t delay =
1009         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1010     uint8_t hclk_mask =
1011         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1012     uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
1013     uint32_t hclk_shift = (hclk_div - 1) << 2;
1014     uint8_t cs;
1015 
1016     /*
1017      * The Read Timing Compensation Register values apply to all CS on
1018      * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
1019      */
1020     if (hclk_div && hclk_div < 6) {
1021         s->regs[s->r_timings] &= ~(0xf << hclk_shift);
1022         s->regs[s->r_timings] |= delay << hclk_shift;
1023     }
1024 
1025     /*
1026      * TODO: compute the CS from the DMA address and the segment
1027      * registers. This is not really a problem for now because the
1028      * Timing Register values apply to all CS and software uses CS0 to
1029      * do calibration.
1030      */
1031     cs = 0;
1032     s->regs[s->r_ctrl0 + cs] &=
1033         ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1034     s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1035 }
1036 
1037 /*
1038  * Emulate read errors in the DMA Checksum Register for high
1039  * frequencies and optimistic settings of the Read Timing Compensation
1040  * Register. This will help in tuning the SPI timing calibration
1041  * algorithm.
1042  */
1043 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1044 {
1045     uint8_t delay =
1046         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1047     uint8_t hclk_mask =
1048         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1049 
1050     /*
1051      * Typical values of a palmetto-bmc machine.
1052      */
1053     switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1054     case 4 ... 16:
1055         return false;
1056     case 3: /* at least one HCLK cycle delay */
1057         return (delay & 0x7) < 1;
1058     case 2: /* at least two HCLK cycle delay */
1059         return (delay & 0x7) < 2;
1060     case 1: /* (> 100MHz) is above the max freq of the controller */
1061         return true;
1062     default:
1063         g_assert_not_reached();
1064     }
1065 }
1066 
1067 /*
1068  * Accumulate the result of the reads to provide a checksum that will
1069  * be used to validate the read timing settings.
1070  */
1071 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1072 {
1073     MemTxResult result;
1074     uint32_t data;
1075 
1076     if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1077         qemu_log_mask(LOG_GUEST_ERROR,
1078                       "%s: invalid direction for DMA checksum\n",  __func__);
1079         return;
1080     }
1081 
1082     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1083         aspeed_smc_dma_calibration(s);
1084     }
1085 
1086     while (s->regs[R_DMA_LEN]) {
1087         data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1088                                     MEMTXATTRS_UNSPECIFIED, &result);
1089         if (result != MEMTX_OK) {
1090             qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1091                           __func__, s->regs[R_DMA_FLASH_ADDR]);
1092             return;
1093         }
1094 
1095         /*
1096          * When the DMA is on-going, the DMA registers are updated
1097          * with the current working addresses and length.
1098          */
1099         s->regs[R_DMA_CHECKSUM] += data;
1100         s->regs[R_DMA_FLASH_ADDR] += 4;
1101         s->regs[R_DMA_LEN] -= 4;
1102     }
1103 
1104     if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1105         s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1106     }
1107 
1108 }
1109 
1110 static void aspeed_smc_dma_rw(AspeedSMCState *s)
1111 {
1112     MemTxResult result;
1113     uint32_t data;
1114 
1115     while (s->regs[R_DMA_LEN]) {
1116         if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1117             data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1118                                         MEMTXATTRS_UNSPECIFIED, &result);
1119             if (result != MEMTX_OK) {
1120                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1121                               __func__, s->regs[R_DMA_DRAM_ADDR]);
1122                 return;
1123             }
1124 
1125             address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1126                                  data, MEMTXATTRS_UNSPECIFIED, &result);
1127             if (result != MEMTX_OK) {
1128                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1129                               __func__, s->regs[R_DMA_FLASH_ADDR]);
1130                 return;
1131             }
1132         } else {
1133             data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1134                                         MEMTXATTRS_UNSPECIFIED, &result);
1135             if (result != MEMTX_OK) {
1136                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1137                               __func__, s->regs[R_DMA_FLASH_ADDR]);
1138                 return;
1139             }
1140 
1141             address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1142                                  data, MEMTXATTRS_UNSPECIFIED, &result);
1143             if (result != MEMTX_OK) {
1144                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1145                               __func__, s->regs[R_DMA_DRAM_ADDR]);
1146                 return;
1147             }
1148         }
1149 
1150         /*
1151          * When the DMA is on-going, the DMA registers are updated
1152          * with the current working addresses and length.
1153          */
1154         s->regs[R_DMA_FLASH_ADDR] += 4;
1155         s->regs[R_DMA_DRAM_ADDR] += 4;
1156         s->regs[R_DMA_LEN] -= 4;
1157         s->regs[R_DMA_CHECKSUM] += data;
1158     }
1159 }
1160 
1161 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1162 {
1163     /*
1164      * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1165      * engine is idle
1166      */
1167     s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1168     s->regs[R_DMA_CHECKSUM] = 0;
1169 
1170     /*
1171      * Lower the DMA irq in any case. The IRQ control register could
1172      * have been cleared before disabling the DMA.
1173      */
1174     qemu_irq_lower(s->irq);
1175 }
1176 
1177 /*
1178  * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1179  * can start even if the result of the previous was not collected.
1180  */
1181 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1182 {
1183     return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1184         !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1185 }
1186 
1187 static void aspeed_smc_dma_done(AspeedSMCState *s)
1188 {
1189     s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1190     if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1191         qemu_irq_raise(s->irq);
1192     }
1193 }
1194 
1195 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1196 {
1197     if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1198         s->regs[R_DMA_CTRL] = dma_ctrl;
1199 
1200         aspeed_smc_dma_stop(s);
1201         return;
1202     }
1203 
1204     if (aspeed_smc_dma_in_progress(s)) {
1205         qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n",  __func__);
1206         return;
1207     }
1208 
1209     s->regs[R_DMA_CTRL] = dma_ctrl;
1210 
1211     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1212         aspeed_smc_dma_checksum(s);
1213     } else {
1214         aspeed_smc_dma_rw(s);
1215     }
1216 
1217     aspeed_smc_dma_done(s);
1218 }
1219 
1220 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1221                              unsigned int size)
1222 {
1223     AspeedSMCState *s = ASPEED_SMC(opaque);
1224     uint32_t value = data;
1225 
1226     addr >>= 2;
1227 
1228     if (addr == s->r_conf ||
1229         (addr >= s->r_timings &&
1230          addr < s->r_timings + s->ctrl->nregs_timings) ||
1231         addr == s->r_ce_ctrl) {
1232         s->regs[addr] = value;
1233     } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1234         int cs = addr - s->r_ctrl0;
1235         s->regs[addr] = value;
1236         aspeed_smc_flash_update_cs(&s->flashes[cs]);
1237     } else if (addr >= R_SEG_ADDR0 &&
1238                addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
1239         int cs = addr - R_SEG_ADDR0;
1240 
1241         if (value != s->regs[R_SEG_ADDR0 + cs]) {
1242             aspeed_smc_flash_set_segment(s, cs, value);
1243         }
1244     } else if (addr == R_DUMMY_DATA) {
1245         s->regs[addr] = value & 0xff;
1246     } else if (addr == R_INTR_CTRL) {
1247         s->regs[addr] = value;
1248     } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1249         aspeed_smc_dma_ctrl(s, value);
1250     } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1251         s->regs[addr] = DMA_DRAM_ADDR(s, value);
1252     } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1253         s->regs[addr] = DMA_FLASH_ADDR(s, value);
1254     } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1255         s->regs[addr] = DMA_LENGTH(value);
1256     } else {
1257         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1258                       __func__, addr);
1259         return;
1260     }
1261 }
1262 
1263 static const MemoryRegionOps aspeed_smc_ops = {
1264     .read = aspeed_smc_read,
1265     .write = aspeed_smc_write,
1266     .endianness = DEVICE_LITTLE_ENDIAN,
1267     .valid.unaligned = true,
1268 };
1269 
1270 
1271 /*
1272  * Initialize the custom address spaces for DMAs
1273  */
1274 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1275 {
1276     char *name;
1277 
1278     if (!s->dram_mr) {
1279         error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1280         return;
1281     }
1282 
1283     name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1284     address_space_init(&s->flash_as, &s->mmio_flash, name);
1285     g_free(name);
1286 
1287     name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1288     address_space_init(&s->dram_as, s->dram_mr, name);
1289     g_free(name);
1290 }
1291 
1292 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1293 {
1294     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1295     AspeedSMCState *s = ASPEED_SMC(dev);
1296     AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1297     int i;
1298     char name[32];
1299     hwaddr offset = 0;
1300 
1301     s->ctrl = mc->ctrl;
1302 
1303     /* keep a copy under AspeedSMCState to speed up accesses */
1304     s->r_conf = s->ctrl->r_conf;
1305     s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1306     s->r_ctrl0 = s->ctrl->r_ctrl0;
1307     s->r_timings = s->ctrl->r_timings;
1308     s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1309 
1310     /* Enforce some real HW limits */
1311     if (s->num_cs > s->ctrl->max_slaves) {
1312         qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1313                       __func__, s->ctrl->max_slaves);
1314         s->num_cs = s->ctrl->max_slaves;
1315     }
1316 
1317     /* DMA irq. Keep it first for the initialization in the SoC */
1318     sysbus_init_irq(sbd, &s->irq);
1319 
1320     s->spi = ssi_create_bus(dev, "spi");
1321 
1322     /* Setup cs_lines for slaves */
1323     s->cs_lines = g_new0(qemu_irq, s->num_cs);
1324     ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
1325 
1326     for (i = 0; i < s->num_cs; ++i) {
1327         sysbus_init_irq(sbd, &s->cs_lines[i]);
1328     }
1329 
1330     /* The memory region for the controller registers */
1331     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1332                           s->ctrl->name, s->ctrl->nregs * 4);
1333     sysbus_init_mmio(sbd, &s->mmio);
1334 
1335     /*
1336      * The container memory region representing the address space
1337      * window in which the flash modules are mapped. The size and
1338      * address depends on the SoC model and controller type.
1339      */
1340     snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1341 
1342     memory_region_init_io(&s->mmio_flash, OBJECT(s),
1343                           &aspeed_smc_flash_default_ops, s, name,
1344                           s->ctrl->flash_window_size);
1345     sysbus_init_mmio(sbd, &s->mmio_flash);
1346 
1347     s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_slaves);
1348 
1349     /*
1350      * Let's create a sub memory region for each possible slave. All
1351      * have a configurable memory segment in the overall flash mapping
1352      * window of the controller but, there is not necessarily a flash
1353      * module behind to handle the memory accesses. This depends on
1354      * the board configuration.
1355      */
1356     for (i = 0; i < s->ctrl->max_slaves; ++i) {
1357         AspeedSMCFlash *fl = &s->flashes[i];
1358 
1359         snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1360 
1361         fl->id = i;
1362         fl->controller = s;
1363         fl->size = s->ctrl->segments[i].size;
1364         memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1365                               fl, name, fl->size);
1366         memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1367         offset += fl->size;
1368     }
1369 
1370     /* DMA support */
1371     if (s->ctrl->has_dma) {
1372         aspeed_smc_dma_setup(s, errp);
1373     }
1374 }
1375 
1376 static const VMStateDescription vmstate_aspeed_smc = {
1377     .name = "aspeed.smc",
1378     .version_id = 2,
1379     .minimum_version_id = 2,
1380     .fields = (VMStateField[]) {
1381         VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1382         VMSTATE_UINT8(snoop_index, AspeedSMCState),
1383         VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1384         VMSTATE_END_OF_LIST()
1385     }
1386 };
1387 
1388 static Property aspeed_smc_properties[] = {
1389     DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1390     DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1391     DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1392     DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1393                      TYPE_MEMORY_REGION, MemoryRegion *),
1394     DEFINE_PROP_END_OF_LIST(),
1395 };
1396 
1397 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1398 {
1399     DeviceClass *dc = DEVICE_CLASS(klass);
1400     AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1401 
1402     dc->realize = aspeed_smc_realize;
1403     dc->reset = aspeed_smc_reset;
1404     dc->props = aspeed_smc_properties;
1405     dc->vmsd = &vmstate_aspeed_smc;
1406     mc->ctrl = data;
1407 }
1408 
1409 static const TypeInfo aspeed_smc_info = {
1410     .name           = TYPE_ASPEED_SMC,
1411     .parent         = TYPE_SYS_BUS_DEVICE,
1412     .instance_size  = sizeof(AspeedSMCState),
1413     .class_size     = sizeof(AspeedSMCClass),
1414     .abstract       = true,
1415 };
1416 
1417 static void aspeed_smc_register_types(void)
1418 {
1419     int i;
1420 
1421     type_register_static(&aspeed_smc_info);
1422     for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1423         TypeInfo ti = {
1424             .name       = controllers[i].name,
1425             .parent     = TYPE_ASPEED_SMC,
1426             .class_init = aspeed_smc_class_init,
1427             .class_data = (void *)&controllers[i],
1428         };
1429         type_register(&ti);
1430     }
1431 }
1432 
1433 type_init(aspeed_smc_register_types)
1434