xref: /openbmc/qemu/hw/ssi/aspeed_smc.c (revision e9c568db)
1 /*
2  * ASPEED AST2400 SMC Controller (SPI Flash Only)
3  *
4  * Copyright (C) 2016 IBM Corp.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/units.h"
34 #include "trace.h"
35 
36 #include "hw/irq.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/ssi/aspeed_smc.h"
39 
40 /* CE Type Setting Register */
41 #define R_CONF            (0x00 / 4)
42 #define   CONF_LEGACY_DISABLE  (1 << 31)
43 #define   CONF_ENABLE_W4       20
44 #define   CONF_ENABLE_W3       19
45 #define   CONF_ENABLE_W2       18
46 #define   CONF_ENABLE_W1       17
47 #define   CONF_ENABLE_W0       16
48 #define   CONF_FLASH_TYPE4     8
49 #define   CONF_FLASH_TYPE3     6
50 #define   CONF_FLASH_TYPE2     4
51 #define   CONF_FLASH_TYPE1     2
52 #define   CONF_FLASH_TYPE0     0
53 #define      CONF_FLASH_TYPE_NOR   0x0
54 #define      CONF_FLASH_TYPE_NAND  0x1
55 #define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
56 
57 /* CE Control Register */
58 #define R_CE_CTRL            (0x04 / 4)
59 #define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
60 #define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
61 #define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
62 #define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
63 #define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
64 
65 /* Interrupt Control and Status Register */
66 #define R_INTR_CTRL       (0x08 / 4)
67 #define   INTR_CTRL_DMA_STATUS            (1 << 11)
68 #define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
69 #define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
70 #define   INTR_CTRL_DMA_EN                (1 << 3)
71 #define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
72 #define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
73 
74 /* Command Control Register */
75 #define R_CE_CMD_CTRL      (0x0C / 4)
76 #define   CTRL_ADDR_BYTE0_DISABLE_SHIFT       4
77 #define   CTRL_DATA_BYTE0_DISABLE_SHIFT       0
78 
79 #define aspeed_smc_addr_byte_enabled(s, i)                               \
80     (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
81 #define aspeed_smc_data_byte_enabled(s, i)                               \
82     (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
83 
84 /* CEx Control Register */
85 #define R_CTRL0           (0x10 / 4)
86 #define   CTRL_IO_QPI              (1 << 31)
87 #define   CTRL_IO_QUAD_DATA        (1 << 30)
88 #define   CTRL_IO_DUAL_DATA        (1 << 29)
89 #define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
90 #define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
91 #define   CTRL_CMD_SHIFT           16
92 #define   CTRL_CMD_MASK            0xff
93 #define   CTRL_DUMMY_HIGH_SHIFT    14
94 #define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
95 #define CE_CTRL_CLOCK_FREQ_SHIFT   8
96 #define CE_CTRL_CLOCK_FREQ_MASK    0xf
97 #define CE_CTRL_CLOCK_FREQ(div)                                         \
98     (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
99 #define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
100 #define   CTRL_CE_STOP_ACTIVE      (1 << 2)
101 #define   CTRL_CMD_MODE_MASK       0x3
102 #define     CTRL_READMODE          0x0
103 #define     CTRL_FREADMODE         0x1
104 #define     CTRL_WRITEMODE         0x2
105 #define     CTRL_USERMODE          0x3
106 #define R_CTRL1           (0x14 / 4)
107 #define R_CTRL2           (0x18 / 4)
108 #define R_CTRL3           (0x1C / 4)
109 #define R_CTRL4           (0x20 / 4)
110 
111 /* CEx Segment Address Register */
112 #define R_SEG_ADDR0       (0x30 / 4)
113 #define   SEG_END_SHIFT        24   /* 8MB units */
114 #define   SEG_END_MASK         0xff
115 #define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
116 #define   SEG_START_MASK       0xff
117 #define R_SEG_ADDR1       (0x34 / 4)
118 #define R_SEG_ADDR2       (0x38 / 4)
119 #define R_SEG_ADDR3       (0x3C / 4)
120 #define R_SEG_ADDR4       (0x40 / 4)
121 
122 /* Misc Control Register #1 */
123 #define R_MISC_CTRL1      (0x50 / 4)
124 
125 /* SPI dummy cycle data */
126 #define R_DUMMY_DATA      (0x54 / 4)
127 
128 /* DMA Control/Status Register */
129 #define R_DMA_CTRL        (0x80 / 4)
130 #define   DMA_CTRL_DELAY_MASK   0xf
131 #define   DMA_CTRL_DELAY_SHIFT  8
132 #define   DMA_CTRL_FREQ_MASK    0xf
133 #define   DMA_CTRL_FREQ_SHIFT   4
134 #define   DMA_CTRL_CALIB        (1 << 3)
135 #define   DMA_CTRL_CKSUM        (1 << 2)
136 #define   DMA_CTRL_WRITE        (1 << 1)
137 #define   DMA_CTRL_ENABLE       (1 << 0)
138 
139 /* DMA Flash Side Address */
140 #define R_DMA_FLASH_ADDR  (0x84 / 4)
141 
142 /* DMA DRAM Side Address */
143 #define R_DMA_DRAM_ADDR   (0x88 / 4)
144 
145 /* DMA Length Register */
146 #define R_DMA_LEN         (0x8C / 4)
147 
148 /* Checksum Calculation Result */
149 #define R_DMA_CHECKSUM    (0x90 / 4)
150 
151 /* Read Timing Compensation Register */
152 #define R_TIMINGS         (0x94 / 4)
153 
154 /* SPI controller registers and bits (AST2400) */
155 #define R_SPI_CONF        (0x00 / 4)
156 #define   SPI_CONF_ENABLE_W0   0
157 #define R_SPI_CTRL0       (0x4 / 4)
158 #define R_SPI_MISC_CTRL   (0x10 / 4)
159 #define R_SPI_TIMINGS     (0x14 / 4)
160 
161 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
162 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
163 
164 #define ASPEED_SOC_SMC_FLASH_BASE   0x10000000
165 #define ASPEED_SOC_FMC_FLASH_BASE   0x20000000
166 #define ASPEED_SOC_SPI_FLASH_BASE   0x30000000
167 #define ASPEED_SOC_SPI2_FLASH_BASE  0x38000000
168 
169 /*
170  * DMA DRAM addresses should be 4 bytes aligned and the valid address
171  * range is 0x40000000 - 0x5FFFFFFF (AST2400)
172  *          0x80000000 - 0xBFFFFFFF (AST2500)
173  *
174  * DMA flash addresses should be 4 bytes aligned and the valid address
175  * range is 0x20000000 - 0x2FFFFFFF.
176  *
177  * DMA length is from 4 bytes to 32MB
178  *   0: 4 bytes
179  *   0x7FFFFF: 32M bytes
180  */
181 #define DMA_DRAM_ADDR(s, val)   ((val) & (s)->ctrl->dma_dram_mask)
182 #define DMA_FLASH_ADDR(s, val)  ((val) & (s)->ctrl->dma_flash_mask)
183 #define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
184 
185 /* Flash opcodes. */
186 #define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
187 
188 #define SNOOP_OFF         0xFF
189 #define SNOOP_START       0x0
190 
191 /*
192  * Default segments mapping addresses and size for each peripheral per
193  * controller. These can be changed when board is initialized with the
194  * Segment Address Registers.
195  */
196 static const AspeedSegments aspeed_segments_legacy[] = {
197     { 0x10000000, 32 * 1024 * 1024 },
198 };
199 
200 static const AspeedSegments aspeed_segments_fmc[] = {
201     { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
202     { 0x24000000, 32 * 1024 * 1024 },
203     { 0x26000000, 32 * 1024 * 1024 },
204     { 0x28000000, 32 * 1024 * 1024 },
205     { 0x2A000000, 32 * 1024 * 1024 }
206 };
207 
208 static const AspeedSegments aspeed_segments_spi[] = {
209     { 0x30000000, 64 * 1024 * 1024 },
210 };
211 
212 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
213     { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
214     { 0x28000000,  32 * 1024 * 1024 },
215     { 0x2A000000,  32 * 1024 * 1024 },
216 };
217 
218 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
219     { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
220     { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
221 };
222 
223 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
224     { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
225     { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
226 };
227 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
228                                           const AspeedSegments *seg);
229 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
230                                       AspeedSegments *seg);
231 
232 /*
233  * AST2600 definitions
234  */
235 #define ASPEED26_SOC_FMC_FLASH_BASE   0x20000000
236 #define ASPEED26_SOC_SPI_FLASH_BASE   0x30000000
237 #define ASPEED26_SOC_SPI2_FLASH_BASE  0x50000000
238 
239 static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
240     { 0x0, 128 * MiB }, /* start address is readonly */
241     { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
242     { 0x0, 0 }, /* disabled */
243 };
244 
245 static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
246     { 0x0, 128 * MiB }, /* start address is readonly */
247     { 0x0, 0 }, /* disabled */
248 };
249 
250 static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
251     { 0x0, 128 * MiB }, /* start address is readonly */
252     { 0x0, 0 }, /* disabled */
253     { 0x0, 0 }, /* disabled */
254 };
255 
256 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
257                                                const AspeedSegments *seg);
258 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
259                                            uint32_t reg, AspeedSegments *seg);
260 
261 static const AspeedSMCController controllers[] = {
262     {
263         .name              = "aspeed.smc-ast2400",
264         .r_conf            = R_CONF,
265         .r_ce_ctrl         = R_CE_CTRL,
266         .r_ctrl0           = R_CTRL0,
267         .r_timings         = R_TIMINGS,
268         .nregs_timings     = 1,
269         .conf_enable_w0    = CONF_ENABLE_W0,
270         .max_peripherals   = 1,
271         .segments          = aspeed_segments_legacy,
272         .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
273         .flash_window_size = 0x6000000,
274         .has_dma           = false,
275         .nregs             = ASPEED_SMC_R_SMC_MAX,
276         .segment_to_reg    = aspeed_smc_segment_to_reg,
277         .reg_to_segment    = aspeed_smc_reg_to_segment,
278     }, {
279         .name              = "aspeed.fmc-ast2400",
280         .r_conf            = R_CONF,
281         .r_ce_ctrl         = R_CE_CTRL,
282         .r_ctrl0           = R_CTRL0,
283         .r_timings         = R_TIMINGS,
284         .nregs_timings     = 1,
285         .conf_enable_w0    = CONF_ENABLE_W0,
286         .max_peripherals   = 5,
287         .segments          = aspeed_segments_fmc,
288         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
289         .flash_window_size = 0x10000000,
290         .has_dma           = true,
291         .dma_flash_mask    = 0x0FFFFFFC,
292         .dma_dram_mask     = 0x1FFFFFFC,
293         .nregs             = ASPEED_SMC_R_MAX,
294         .segment_to_reg    = aspeed_smc_segment_to_reg,
295         .reg_to_segment    = aspeed_smc_reg_to_segment,
296     }, {
297         .name              = "aspeed.spi1-ast2400",
298         .r_conf            = R_SPI_CONF,
299         .r_ce_ctrl         = 0xff,
300         .r_ctrl0           = R_SPI_CTRL0,
301         .r_timings         = R_SPI_TIMINGS,
302         .nregs_timings     = 1,
303         .conf_enable_w0    = SPI_CONF_ENABLE_W0,
304         .max_peripherals   = 1,
305         .segments          = aspeed_segments_spi,
306         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
307         .flash_window_size = 0x10000000,
308         .has_dma           = false,
309         .nregs             = ASPEED_SMC_R_SPI_MAX,
310         .segment_to_reg    = aspeed_smc_segment_to_reg,
311         .reg_to_segment    = aspeed_smc_reg_to_segment,
312     }, {
313         .name              = "aspeed.fmc-ast2500",
314         .r_conf            = R_CONF,
315         .r_ce_ctrl         = R_CE_CTRL,
316         .r_ctrl0           = R_CTRL0,
317         .r_timings         = R_TIMINGS,
318         .nregs_timings     = 1,
319         .conf_enable_w0    = CONF_ENABLE_W0,
320         .max_peripherals   = 3,
321         .segments          = aspeed_segments_ast2500_fmc,
322         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
323         .flash_window_size = 0x10000000,
324         .has_dma           = true,
325         .dma_flash_mask    = 0x0FFFFFFC,
326         .dma_dram_mask     = 0x3FFFFFFC,
327         .nregs             = ASPEED_SMC_R_MAX,
328         .segment_to_reg    = aspeed_smc_segment_to_reg,
329         .reg_to_segment    = aspeed_smc_reg_to_segment,
330     }, {
331         .name              = "aspeed.spi1-ast2500",
332         .r_conf            = R_CONF,
333         .r_ce_ctrl         = R_CE_CTRL,
334         .r_ctrl0           = R_CTRL0,
335         .r_timings         = R_TIMINGS,
336         .nregs_timings     = 1,
337         .conf_enable_w0    = CONF_ENABLE_W0,
338         .max_peripherals   = 2,
339         .segments          = aspeed_segments_ast2500_spi1,
340         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
341         .flash_window_size = 0x8000000,
342         .has_dma           = false,
343         .nregs             = ASPEED_SMC_R_MAX,
344         .segment_to_reg    = aspeed_smc_segment_to_reg,
345         .reg_to_segment    = aspeed_smc_reg_to_segment,
346     }, {
347         .name              = "aspeed.spi2-ast2500",
348         .r_conf            = R_CONF,
349         .r_ce_ctrl         = R_CE_CTRL,
350         .r_ctrl0           = R_CTRL0,
351         .r_timings         = R_TIMINGS,
352         .nregs_timings     = 1,
353         .conf_enable_w0    = CONF_ENABLE_W0,
354         .max_peripherals   = 2,
355         .segments          = aspeed_segments_ast2500_spi2,
356         .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
357         .flash_window_size = 0x8000000,
358         .has_dma           = false,
359         .nregs             = ASPEED_SMC_R_MAX,
360         .segment_to_reg    = aspeed_smc_segment_to_reg,
361         .reg_to_segment    = aspeed_smc_reg_to_segment,
362     }, {
363         .name              = "aspeed.fmc-ast2600",
364         .r_conf            = R_CONF,
365         .r_ce_ctrl         = R_CE_CTRL,
366         .r_ctrl0           = R_CTRL0,
367         .r_timings         = R_TIMINGS,
368         .nregs_timings     = 1,
369         .conf_enable_w0    = CONF_ENABLE_W0,
370         .max_peripherals   = 3,
371         .segments          = aspeed_segments_ast2600_fmc,
372         .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
373         .flash_window_size = 0x10000000,
374         .has_dma           = true,
375         .dma_flash_mask    = 0x0FFFFFFC,
376         .dma_dram_mask     = 0x3FFFFFFC,
377         .nregs             = ASPEED_SMC_R_MAX,
378         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
379         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
380     }, {
381         .name              = "aspeed.spi1-ast2600",
382         .r_conf            = R_CONF,
383         .r_ce_ctrl         = R_CE_CTRL,
384         .r_ctrl0           = R_CTRL0,
385         .r_timings         = R_TIMINGS,
386         .nregs_timings     = 2,
387         .conf_enable_w0    = CONF_ENABLE_W0,
388         .max_peripherals   = 2,
389         .segments          = aspeed_segments_ast2600_spi1,
390         .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
391         .flash_window_size = 0x10000000,
392         .has_dma           = true,
393         .dma_flash_mask    = 0x0FFFFFFC,
394         .dma_dram_mask     = 0x3FFFFFFC,
395         .nregs             = ASPEED_SMC_R_MAX,
396         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
397         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
398     }, {
399         .name              = "aspeed.spi2-ast2600",
400         .r_conf            = R_CONF,
401         .r_ce_ctrl         = R_CE_CTRL,
402         .r_ctrl0           = R_CTRL0,
403         .r_timings         = R_TIMINGS,
404         .nregs_timings     = 3,
405         .conf_enable_w0    = CONF_ENABLE_W0,
406         .max_peripherals   = 3,
407         .segments          = aspeed_segments_ast2600_spi2,
408         .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
409         .flash_window_size = 0x10000000,
410         .has_dma           = true,
411         .dma_flash_mask    = 0x0FFFFFFC,
412         .dma_dram_mask     = 0x3FFFFFFC,
413         .nregs             = ASPEED_SMC_R_MAX,
414         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
415         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
416     },
417 };
418 
419 /*
420  * The Segment Registers of the AST2400 and AST2500 have a 8MB
421  * unit. The address range of a flash SPI peripheral is encoded with
422  * absolute addresses which should be part of the overall controller
423  * window.
424  */
425 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
426                                           const AspeedSegments *seg)
427 {
428     uint32_t reg = 0;
429     reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
430     reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
431     return reg;
432 }
433 
434 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
435                                       uint32_t reg, AspeedSegments *seg)
436 {
437     seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
438     seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
439 }
440 
441 /*
442  * The Segment Registers of the AST2600 have a 1MB unit. The address
443  * range of a flash SPI peripheral is encoded with offsets in the overall
444  * controller window. The previous SoC AST2400 and AST2500 used
445  * absolute addresses. Only bits [27:20] are relevant and the end
446  * address is an upper bound limit.
447  */
448 #define AST2600_SEG_ADDR_MASK 0x0ff00000
449 
450 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
451                                                const AspeedSegments *seg)
452 {
453     uint32_t reg = 0;
454 
455     /* Disabled segments have a nil register */
456     if (!seg->size) {
457         return 0;
458     }
459 
460     reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
461     reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
462     return reg;
463 }
464 
465 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
466                                            uint32_t reg, AspeedSegments *seg)
467 {
468     uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
469     uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
470 
471     if (reg) {
472         seg->addr = s->ctrl->flash_window_base + start_offset;
473         seg->size = end_offset + MiB - start_offset;
474     } else {
475         seg->addr = s->ctrl->flash_window_base;
476         seg->size = 0;
477     }
478 }
479 
480 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
481                                      const AspeedSegments *new,
482                                      int cs)
483 {
484     AspeedSegments seg;
485     int i;
486 
487     for (i = 0; i < s->ctrl->max_peripherals; i++) {
488         if (i == cs) {
489             continue;
490         }
491 
492         s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
493 
494         if (new->addr + new->size > seg.addr &&
495             new->addr < seg.addr + seg.size) {
496             qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
497                           HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
498                           "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
499                           s->ctrl->name, cs, new->addr, new->addr + new->size,
500                           i, seg.addr, seg.addr + seg.size);
501             return true;
502         }
503     }
504     return false;
505 }
506 
507 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
508                                                 uint64_t regval)
509 {
510     AspeedSMCFlash *fl = &s->flashes[cs];
511     AspeedSegments seg;
512 
513     s->ctrl->reg_to_segment(s, regval, &seg);
514 
515     memory_region_transaction_begin();
516     memory_region_set_size(&fl->mmio, seg.size);
517     memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
518     memory_region_set_enabled(&fl->mmio, !!seg.size);
519     memory_region_transaction_commit();
520 
521     s->regs[R_SEG_ADDR0 + cs] = regval;
522 }
523 
524 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
525                                          uint64_t new)
526 {
527     AspeedSegments seg;
528 
529     s->ctrl->reg_to_segment(s, new, &seg);
530 
531     trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
532 
533     /* The start address of CS0 is read-only */
534     if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
535         qemu_log_mask(LOG_GUEST_ERROR,
536                       "%s: Tried to change CS0 start address to 0x%"
537                       HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
538         seg.addr = s->ctrl->flash_window_base;
539         new = s->ctrl->segment_to_reg(s, &seg);
540     }
541 
542     /*
543      * The end address of the AST2500 spi controllers is also
544      * read-only.
545      */
546     if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
547          s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
548         cs == s->ctrl->max_peripherals &&
549         seg.addr + seg.size != s->ctrl->segments[cs].addr +
550         s->ctrl->segments[cs].size) {
551         qemu_log_mask(LOG_GUEST_ERROR,
552                       "%s: Tried to change CS%d end address to 0x%"
553                       HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
554         seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
555             seg.addr;
556         new = s->ctrl->segment_to_reg(s, &seg);
557     }
558 
559     /* Keep the segment in the overall flash window */
560     if (seg.size &&
561         (seg.addr + seg.size <= s->ctrl->flash_window_base ||
562          seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size)) {
563         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
564                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
565                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
566         return;
567     }
568 
569     /* Check start address vs. alignment */
570     if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
571         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
572                       "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
573                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
574     }
575 
576     /* And segments should not overlap (in the specs) */
577     aspeed_smc_flash_overlap(s, &seg, cs);
578 
579     /* All should be fine now to move the region */
580     aspeed_smc_flash_set_segment_region(s, cs, new);
581 }
582 
583 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
584                                               unsigned size)
585 {
586     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
587                   PRIx64 "\n", __func__, addr, size);
588     return 0;
589 }
590 
591 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
592                                            uint64_t data, unsigned size)
593 {
594     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
595                   PRIx64 "\n", __func__, addr, size, data);
596 }
597 
598 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
599     .read = aspeed_smc_flash_default_read,
600     .write = aspeed_smc_flash_default_write,
601     .endianness = DEVICE_LITTLE_ENDIAN,
602     .valid = {
603         .min_access_size = 1,
604         .max_access_size = 4,
605     },
606 };
607 
608 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
609 {
610     const AspeedSMCState *s = fl->controller;
611 
612     return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
613 }
614 
615 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
616 {
617     const AspeedSMCState *s = fl->controller;
618 
619     return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
620 }
621 
622 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
623 {
624     const AspeedSMCState *s = fl->controller;
625     int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
626 
627     /*
628      * In read mode, the default SPI command is READ (0x3). In other
629      * modes, the command should necessarily be defined
630      *
631      * TODO: add support for READ4 (0x13) on AST2600
632      */
633     if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
634         cmd = SPI_OP_READ;
635     }
636 
637     if (!cmd) {
638         qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
639                       __func__, aspeed_smc_flash_mode(fl));
640     }
641 
642     return cmd;
643 }
644 
645 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
646 {
647     const AspeedSMCState *s = fl->controller;
648 
649     if (s->ctrl->segments == aspeed_segments_spi) {
650         return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
651     } else {
652         return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
653     }
654 }
655 
656 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
657 {
658     AspeedSMCState *s = fl->controller;
659 
660     trace_aspeed_smc_flash_select(fl->id, unselect ? "un" : "");
661 
662     qemu_set_irq(s->cs_lines[fl->id], unselect);
663 }
664 
665 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
666 {
667     aspeed_smc_flash_do_select(fl, false);
668 }
669 
670 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
671 {
672     aspeed_smc_flash_do_select(fl, true);
673 }
674 
675 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
676                                               uint32_t addr)
677 {
678     const AspeedSMCState *s = fl->controller;
679     AspeedSegments seg;
680 
681     s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
682     if ((addr % seg.size) != addr) {
683         qemu_log_mask(LOG_GUEST_ERROR,
684                       "%s: invalid address 0x%08x for CS%d segment : "
685                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
686                       s->ctrl->name, addr, fl->id, seg.addr,
687                       seg.addr + seg.size);
688         addr %= seg.size;
689     }
690 
691     return addr;
692 }
693 
694 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
695 {
696     const AspeedSMCState *s = fl->controller;
697     uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
698     uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
699     uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
700     uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
701 
702     if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
703         dummies /= 2;
704     }
705 
706     return dummies;
707 }
708 
709 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
710 {
711     const AspeedSMCState *s = fl->controller;
712     uint8_t cmd = aspeed_smc_flash_cmd(fl);
713     int i = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
714 
715     /* Flash access can not exceed CS segment */
716     addr = aspeed_smc_check_segment_addr(fl, addr);
717 
718     ssi_transfer(s->spi, cmd);
719     while (i--) {
720         if (aspeed_smc_addr_byte_enabled(s, i)) {
721             ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
722         }
723     }
724 
725     /*
726      * Use fake transfers to model dummy bytes. The value should
727      * be configured to some non-zero value in fast read mode and
728      * zero in read mode. But, as the HW allows inconsistent
729      * settings, let's check for fast read mode.
730      */
731     if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
732         for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
733             ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
734         }
735     }
736 }
737 
738 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
739 {
740     AspeedSMCFlash *fl = opaque;
741     AspeedSMCState *s = fl->controller;
742     uint64_t ret = 0;
743     int i;
744 
745     switch (aspeed_smc_flash_mode(fl)) {
746     case CTRL_USERMODE:
747         for (i = 0; i < size; i++) {
748             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
749         }
750         break;
751     case CTRL_READMODE:
752     case CTRL_FREADMODE:
753         aspeed_smc_flash_select(fl);
754         aspeed_smc_flash_setup(fl, addr);
755 
756         for (i = 0; i < size; i++) {
757             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
758         }
759 
760         aspeed_smc_flash_unselect(fl);
761         break;
762     default:
763         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
764                       __func__, aspeed_smc_flash_mode(fl));
765     }
766 
767     trace_aspeed_smc_flash_read(fl->id, addr, size, ret,
768                                 aspeed_smc_flash_mode(fl));
769     return ret;
770 }
771 
772 /*
773  * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
774  * common include header.
775  */
776 typedef enum {
777     READ = 0x3,         READ_4 = 0x13,
778     FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
779     DOR = 0x3b,         DOR_4 = 0x3c,
780     QOR = 0x6b,         QOR_4 = 0x6c,
781     DIOR = 0xbb,        DIOR_4 = 0xbc,
782     QIOR = 0xeb,        QIOR_4 = 0xec,
783 
784     PP = 0x2,           PP_4 = 0x12,
785     DPP = 0xa2,
786     QPP = 0x32,         QPP_4 = 0x34,
787 } FlashCMD;
788 
789 static int aspeed_smc_num_dummies(uint8_t command)
790 {
791     switch (command) { /* check for dummies */
792     case READ: /* no dummy bytes/cycles */
793     case PP:
794     case DPP:
795     case QPP:
796     case READ_4:
797     case PP_4:
798     case QPP_4:
799         return 0;
800     case FAST_READ:
801     case DOR:
802     case QOR:
803     case FAST_READ_4:
804     case DOR_4:
805     case QOR_4:
806         return 1;
807     case DIOR:
808     case DIOR_4:
809         return 2;
810     case QIOR:
811     case QIOR_4:
812         return 4;
813     default:
814         return -1;
815     }
816 }
817 
818 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
819                                 unsigned size)
820 {
821     AspeedSMCState *s = fl->controller;
822     uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
823 
824     trace_aspeed_smc_do_snoop(fl->id, s->snoop_index, s->snoop_dummies,
825                               (uint8_t) data & 0xff);
826 
827     if (s->snoop_index == SNOOP_OFF) {
828         return false; /* Do nothing */
829 
830     } else if (s->snoop_index == SNOOP_START) {
831         uint8_t cmd = data & 0xff;
832         int ndummies = aspeed_smc_num_dummies(cmd);
833 
834         /*
835          * No dummy cycles are expected with the current command. Turn
836          * off snooping and let the transfer proceed normally.
837          */
838         if (ndummies <= 0) {
839             s->snoop_index = SNOOP_OFF;
840             return false;
841         }
842 
843         s->snoop_dummies = ndummies * 8;
844 
845     } else if (s->snoop_index >= addr_width + 1) {
846 
847         /* The SPI transfer has reached the dummy cycles sequence */
848         for (; s->snoop_dummies; s->snoop_dummies--) {
849             ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
850         }
851 
852         /* If no more dummy cycles are expected, turn off snooping */
853         if (!s->snoop_dummies) {
854             s->snoop_index = SNOOP_OFF;
855         } else {
856             s->snoop_index += size;
857         }
858 
859         /*
860          * Dummy cycles have been faked already. Ignore the current
861          * SPI transfer
862          */
863         return true;
864     }
865 
866     s->snoop_index += size;
867     return false;
868 }
869 
870 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
871                                    unsigned size)
872 {
873     AspeedSMCFlash *fl = opaque;
874     AspeedSMCState *s = fl->controller;
875     int i;
876 
877     trace_aspeed_smc_flash_write(fl->id, addr, size, data,
878                                  aspeed_smc_flash_mode(fl));
879 
880     if (!aspeed_smc_is_writable(fl)) {
881         qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
882                       HWADDR_PRIx "\n", __func__, addr);
883         return;
884     }
885 
886     switch (aspeed_smc_flash_mode(fl)) {
887     case CTRL_USERMODE:
888         if (aspeed_smc_do_snoop(fl, data, size)) {
889             break;
890         }
891 
892         for (i = 0; i < size; i++) {
893             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
894         }
895         break;
896     case CTRL_WRITEMODE:
897         aspeed_smc_flash_select(fl);
898         aspeed_smc_flash_setup(fl, addr);
899 
900         for (i = 0; i < size; i++) {
901             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
902         }
903 
904         aspeed_smc_flash_unselect(fl);
905         break;
906     default:
907         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
908                       __func__, aspeed_smc_flash_mode(fl));
909     }
910 }
911 
912 static const MemoryRegionOps aspeed_smc_flash_ops = {
913     .read = aspeed_smc_flash_read,
914     .write = aspeed_smc_flash_write,
915     .endianness = DEVICE_LITTLE_ENDIAN,
916     .valid = {
917         .min_access_size = 1,
918         .max_access_size = 4,
919     },
920 };
921 
922 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
923 {
924     AspeedSMCState *s = fl->controller;
925     bool unselect;
926 
927     /* User mode selects the CS, other modes unselect */
928     unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
929 
930     /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
931     if (!(s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE) &&
932         value & CTRL_CE_STOP_ACTIVE) {
933         unselect = true;
934     }
935 
936     s->regs[s->r_ctrl0 + fl->id] = value;
937 
938     s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
939 
940     aspeed_smc_flash_do_select(fl, unselect);
941 }
942 
943 static void aspeed_smc_reset(DeviceState *d)
944 {
945     AspeedSMCState *s = ASPEED_SMC(d);
946     int i;
947 
948     memset(s->regs, 0, sizeof s->regs);
949 
950     /* Unselect all peripherals */
951     for (i = 0; i < s->num_cs; ++i) {
952         s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
953         qemu_set_irq(s->cs_lines[i], true);
954     }
955 
956     /* setup the default segment register values and regions for all */
957     for (i = 0; i < s->ctrl->max_peripherals; ++i) {
958         aspeed_smc_flash_set_segment_region(s, i,
959                     s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]));
960     }
961 
962     /* HW strapping flash type for the AST2600 controllers  */
963     if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
964         /* flash type is fixed to SPI for all */
965         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
966         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
967         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
968     }
969 
970     /* HW strapping flash type for FMC controllers  */
971     if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
972         /* flash type is fixed to SPI for CE0 and CE1 */
973         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
974         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
975     }
976 
977     /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
978      * configuration of the palmetto-bmc machine */
979     if (s->ctrl->segments == aspeed_segments_fmc) {
980         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
981     }
982 
983     s->snoop_index = SNOOP_OFF;
984     s->snoop_dummies = 0;
985 }
986 
987 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
988 {
989     AspeedSMCState *s = ASPEED_SMC(opaque);
990 
991     addr >>= 2;
992 
993     if (addr == s->r_conf ||
994         (addr >= s->r_timings &&
995          addr < s->r_timings + s->ctrl->nregs_timings) ||
996         addr == s->r_ce_ctrl ||
997         addr == R_CE_CMD_CTRL ||
998         addr == R_INTR_CTRL ||
999         addr == R_DUMMY_DATA ||
1000         (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
1001         (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
1002         (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
1003         (s->ctrl->has_dma && addr == R_DMA_LEN) ||
1004         (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
1005         (addr >= R_SEG_ADDR0 &&
1006          addr < R_SEG_ADDR0 + s->ctrl->max_peripherals) ||
1007         (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_peripherals)) {
1008 
1009         trace_aspeed_smc_read(addr, size, s->regs[addr]);
1010 
1011         return s->regs[addr];
1012     } else {
1013         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1014                       __func__, addr);
1015         return -1;
1016     }
1017 }
1018 
1019 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
1020 {
1021     /* HCLK/1 .. HCLK/16 */
1022     const uint8_t hclk_divisors[] = {
1023         15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
1024     };
1025     int i;
1026 
1027     for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
1028         if (hclk_mask == hclk_divisors[i]) {
1029             return i + 1;
1030         }
1031     }
1032 
1033     qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
1034     return 0;
1035 }
1036 
1037 /*
1038  * When doing calibration, the SPI clock rate in the CE0 Control
1039  * Register and the read delay cycles in the Read Timing Compensation
1040  * Register are set using bit[11:4] of the DMA Control Register.
1041  */
1042 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
1043 {
1044     uint8_t delay =
1045         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1046     uint8_t hclk_mask =
1047         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1048     uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
1049     uint32_t hclk_shift = (hclk_div - 1) << 2;
1050     uint8_t cs;
1051 
1052     /*
1053      * The Read Timing Compensation Register values apply to all CS on
1054      * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
1055      */
1056     if (hclk_div && hclk_div < 6) {
1057         s->regs[s->r_timings] &= ~(0xf << hclk_shift);
1058         s->regs[s->r_timings] |= delay << hclk_shift;
1059     }
1060 
1061     /*
1062      * TODO: compute the CS from the DMA address and the segment
1063      * registers. This is not really a problem for now because the
1064      * Timing Register values apply to all CS and software uses CS0 to
1065      * do calibration.
1066      */
1067     cs = 0;
1068     s->regs[s->r_ctrl0 + cs] &=
1069         ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1070     s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1071 }
1072 
1073 /*
1074  * Emulate read errors in the DMA Checksum Register for high
1075  * frequencies and optimistic settings of the Read Timing Compensation
1076  * Register. This will help in tuning the SPI timing calibration
1077  * algorithm.
1078  */
1079 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1080 {
1081     uint8_t delay =
1082         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1083     uint8_t hclk_mask =
1084         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1085 
1086     /*
1087      * Typical values of a palmetto-bmc machine.
1088      */
1089     switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1090     case 4 ... 16:
1091         return false;
1092     case 3: /* at least one HCLK cycle delay */
1093         return (delay & 0x7) < 1;
1094     case 2: /* at least two HCLK cycle delay */
1095         return (delay & 0x7) < 2;
1096     case 1: /* (> 100MHz) is above the max freq of the controller */
1097         return true;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 /*
1104  * Accumulate the result of the reads to provide a checksum that will
1105  * be used to validate the read timing settings.
1106  */
1107 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1108 {
1109     MemTxResult result;
1110     uint32_t data;
1111 
1112     if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1113         qemu_log_mask(LOG_GUEST_ERROR,
1114                       "%s: invalid direction for DMA checksum\n",  __func__);
1115         return;
1116     }
1117 
1118     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1119         aspeed_smc_dma_calibration(s);
1120     }
1121 
1122     while (s->regs[R_DMA_LEN]) {
1123         data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1124                                     MEMTXATTRS_UNSPECIFIED, &result);
1125         if (result != MEMTX_OK) {
1126             qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1127                           __func__, s->regs[R_DMA_FLASH_ADDR]);
1128             return;
1129         }
1130         trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
1131 
1132         /*
1133          * When the DMA is on-going, the DMA registers are updated
1134          * with the current working addresses and length.
1135          */
1136         s->regs[R_DMA_CHECKSUM] += data;
1137         s->regs[R_DMA_FLASH_ADDR] += 4;
1138         s->regs[R_DMA_LEN] -= 4;
1139     }
1140 
1141     if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1142         s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1143     }
1144 
1145 }
1146 
1147 static void aspeed_smc_dma_rw(AspeedSMCState *s)
1148 {
1149     MemTxResult result;
1150     uint32_t data;
1151 
1152     trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
1153                             "write" : "read",
1154                             s->regs[R_DMA_FLASH_ADDR],
1155                             s->regs[R_DMA_DRAM_ADDR],
1156                             s->regs[R_DMA_LEN]);
1157     while (s->regs[R_DMA_LEN]) {
1158         if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1159             data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1160                                         MEMTXATTRS_UNSPECIFIED, &result);
1161             if (result != MEMTX_OK) {
1162                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1163                               __func__, s->regs[R_DMA_DRAM_ADDR]);
1164                 return;
1165             }
1166 
1167             address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1168                                  data, MEMTXATTRS_UNSPECIFIED, &result);
1169             if (result != MEMTX_OK) {
1170                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1171                               __func__, s->regs[R_DMA_FLASH_ADDR]);
1172                 return;
1173             }
1174         } else {
1175             data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1176                                         MEMTXATTRS_UNSPECIFIED, &result);
1177             if (result != MEMTX_OK) {
1178                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1179                               __func__, s->regs[R_DMA_FLASH_ADDR]);
1180                 return;
1181             }
1182 
1183             address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1184                                  data, MEMTXATTRS_UNSPECIFIED, &result);
1185             if (result != MEMTX_OK) {
1186                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1187                               __func__, s->regs[R_DMA_DRAM_ADDR]);
1188                 return;
1189             }
1190         }
1191 
1192         /*
1193          * When the DMA is on-going, the DMA registers are updated
1194          * with the current working addresses and length.
1195          */
1196         s->regs[R_DMA_FLASH_ADDR] += 4;
1197         s->regs[R_DMA_DRAM_ADDR] += 4;
1198         s->regs[R_DMA_LEN] -= 4;
1199         s->regs[R_DMA_CHECKSUM] += data;
1200     }
1201 }
1202 
1203 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1204 {
1205     /*
1206      * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1207      * engine is idle
1208      */
1209     s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1210     s->regs[R_DMA_CHECKSUM] = 0;
1211 
1212     /*
1213      * Lower the DMA irq in any case. The IRQ control register could
1214      * have been cleared before disabling the DMA.
1215      */
1216     qemu_irq_lower(s->irq);
1217 }
1218 
1219 /*
1220  * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1221  * can start even if the result of the previous was not collected.
1222  */
1223 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1224 {
1225     return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1226         !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1227 }
1228 
1229 static void aspeed_smc_dma_done(AspeedSMCState *s)
1230 {
1231     s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1232     if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1233         qemu_irq_raise(s->irq);
1234     }
1235 }
1236 
1237 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1238 {
1239     if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1240         s->regs[R_DMA_CTRL] = dma_ctrl;
1241 
1242         aspeed_smc_dma_stop(s);
1243         return;
1244     }
1245 
1246     if (aspeed_smc_dma_in_progress(s)) {
1247         qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n",  __func__);
1248         return;
1249     }
1250 
1251     s->regs[R_DMA_CTRL] = dma_ctrl;
1252 
1253     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1254         aspeed_smc_dma_checksum(s);
1255     } else {
1256         aspeed_smc_dma_rw(s);
1257     }
1258 
1259     aspeed_smc_dma_done(s);
1260 }
1261 
1262 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1263                              unsigned int size)
1264 {
1265     AspeedSMCState *s = ASPEED_SMC(opaque);
1266     uint32_t value = data;
1267 
1268     addr >>= 2;
1269 
1270     trace_aspeed_smc_write(addr, size, data);
1271 
1272     if (addr == s->r_conf ||
1273         (addr >= s->r_timings &&
1274          addr < s->r_timings + s->ctrl->nregs_timings) ||
1275         addr == s->r_ce_ctrl) {
1276         s->regs[addr] = value;
1277     } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1278         int cs = addr - s->r_ctrl0;
1279         aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1280     } else if (addr >= R_SEG_ADDR0 &&
1281                addr < R_SEG_ADDR0 + s->ctrl->max_peripherals) {
1282         int cs = addr - R_SEG_ADDR0;
1283 
1284         if (value != s->regs[R_SEG_ADDR0 + cs]) {
1285             aspeed_smc_flash_set_segment(s, cs, value);
1286         }
1287     } else if (addr == R_CE_CMD_CTRL) {
1288         s->regs[addr] = value & 0xff;
1289     } else if (addr == R_DUMMY_DATA) {
1290         s->regs[addr] = value & 0xff;
1291     } else if (addr == R_INTR_CTRL) {
1292         s->regs[addr] = value;
1293     } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1294         aspeed_smc_dma_ctrl(s, value);
1295     } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1296         s->regs[addr] = DMA_DRAM_ADDR(s, value);
1297     } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1298         s->regs[addr] = DMA_FLASH_ADDR(s, value);
1299     } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1300         s->regs[addr] = DMA_LENGTH(value);
1301     } else {
1302         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1303                       __func__, addr);
1304         return;
1305     }
1306 }
1307 
1308 static const MemoryRegionOps aspeed_smc_ops = {
1309     .read = aspeed_smc_read,
1310     .write = aspeed_smc_write,
1311     .endianness = DEVICE_LITTLE_ENDIAN,
1312 };
1313 
1314 /*
1315  * Initialize the custom address spaces for DMAs
1316  */
1317 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1318 {
1319     char *name;
1320 
1321     if (!s->dram_mr) {
1322         error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1323         return;
1324     }
1325 
1326     name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1327     address_space_init(&s->flash_as, &s->mmio_flash, name);
1328     g_free(name);
1329 
1330     name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1331     address_space_init(&s->dram_as, s->dram_mr, name);
1332     g_free(name);
1333 }
1334 
1335 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1336 {
1337     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1338     AspeedSMCState *s = ASPEED_SMC(dev);
1339     AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1340     int i;
1341     char name[32];
1342     hwaddr offset = 0;
1343 
1344     s->ctrl = mc->ctrl;
1345 
1346     /* keep a copy under AspeedSMCState to speed up accesses */
1347     s->r_conf = s->ctrl->r_conf;
1348     s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1349     s->r_ctrl0 = s->ctrl->r_ctrl0;
1350     s->r_timings = s->ctrl->r_timings;
1351     s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1352 
1353     /* Enforce some real HW limits */
1354     if (s->num_cs > s->ctrl->max_peripherals) {
1355         qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1356                       __func__, s->ctrl->max_peripherals);
1357         s->num_cs = s->ctrl->max_peripherals;
1358     }
1359 
1360     /* DMA irq. Keep it first for the initialization in the SoC */
1361     sysbus_init_irq(sbd, &s->irq);
1362 
1363     s->spi = ssi_create_bus(dev, "spi");
1364 
1365     /* Setup cs_lines for peripherals */
1366     s->cs_lines = g_new0(qemu_irq, s->num_cs);
1367 
1368     for (i = 0; i < s->num_cs; ++i) {
1369         sysbus_init_irq(sbd, &s->cs_lines[i]);
1370     }
1371 
1372     /* The memory region for the controller registers */
1373     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1374                           s->ctrl->name, s->ctrl->nregs * 4);
1375     sysbus_init_mmio(sbd, &s->mmio);
1376 
1377     /*
1378      * The container memory region representing the address space
1379      * window in which the flash modules are mapped. The size and
1380      * address depends on the SoC model and controller type.
1381      */
1382     snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1383 
1384     memory_region_init_io(&s->mmio_flash, OBJECT(s),
1385                           &aspeed_smc_flash_default_ops, s, name,
1386                           s->ctrl->flash_window_size);
1387     memory_region_init_alias(&s->mmio_flash_alias, OBJECT(s), name,
1388                              &s->mmio_flash, 0, s->ctrl->flash_window_size);
1389     sysbus_init_mmio(sbd, &s->mmio_flash_alias);
1390 
1391     s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_peripherals);
1392 
1393     /*
1394      * Let's create a sub memory region for each possible peripheral. All
1395      * have a configurable memory segment in the overall flash mapping
1396      * window of the controller but, there is not necessarily a flash
1397      * module behind to handle the memory accesses. This depends on
1398      * the board configuration.
1399      */
1400     for (i = 0; i < s->ctrl->max_peripherals; ++i) {
1401         AspeedSMCFlash *fl = &s->flashes[i];
1402 
1403         snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1404 
1405         fl->id = i;
1406         fl->controller = s;
1407         fl->size = s->ctrl->segments[i].size;
1408         memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1409                               fl, name, fl->size);
1410         memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1411         offset += fl->size;
1412     }
1413 
1414     /* DMA support */
1415     if (s->ctrl->has_dma) {
1416         aspeed_smc_dma_setup(s, errp);
1417     }
1418 }
1419 
1420 static const VMStateDescription vmstate_aspeed_smc = {
1421     .name = "aspeed.smc",
1422     .version_id = 2,
1423     .minimum_version_id = 2,
1424     .fields = (VMStateField[]) {
1425         VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1426         VMSTATE_UINT8(snoop_index, AspeedSMCState),
1427         VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1428         VMSTATE_END_OF_LIST()
1429     }
1430 };
1431 
1432 static Property aspeed_smc_properties[] = {
1433     DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1434     DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1435     DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1436                      TYPE_MEMORY_REGION, MemoryRegion *),
1437     DEFINE_PROP_END_OF_LIST(),
1438 };
1439 
1440 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1441 {
1442     DeviceClass *dc = DEVICE_CLASS(klass);
1443     AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1444 
1445     dc->realize = aspeed_smc_realize;
1446     dc->reset = aspeed_smc_reset;
1447     device_class_set_props(dc, aspeed_smc_properties);
1448     dc->vmsd = &vmstate_aspeed_smc;
1449     mc->ctrl = data;
1450 }
1451 
1452 static const TypeInfo aspeed_smc_info = {
1453     .name           = TYPE_ASPEED_SMC,
1454     .parent         = TYPE_SYS_BUS_DEVICE,
1455     .instance_size  = sizeof(AspeedSMCState),
1456     .class_size     = sizeof(AspeedSMCClass),
1457     .abstract       = true,
1458 };
1459 
1460 static void aspeed_smc_register_types(void)
1461 {
1462     int i;
1463 
1464     type_register_static(&aspeed_smc_info);
1465     for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1466         TypeInfo ti = {
1467             .name       = controllers[i].name,
1468             .parent     = TYPE_ASPEED_SMC,
1469             .class_init = aspeed_smc_class_init,
1470             .class_data = (void *)&controllers[i],
1471         };
1472         type_register(&ti);
1473     }
1474 }
1475 
1476 type_init(aspeed_smc_register_types)
1477