xref: /openbmc/qemu/hw/ssi/aspeed_smc.c (revision 71255c48)
1 /*
2  * ASPEED AST2400 SMC Controller (SPI Flash Only)
3  *
4  * Copyright (C) 2016 IBM Corp.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "qemu/units.h"
33 #include "trace.h"
34 
35 #include "hw/irq.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/ssi/aspeed_smc.h"
38 
39 /* CE Type Setting Register */
40 #define R_CONF            (0x00 / 4)
41 #define   CONF_LEGACY_DISABLE  (1 << 31)
42 #define   CONF_ENABLE_W4       20
43 #define   CONF_ENABLE_W3       19
44 #define   CONF_ENABLE_W2       18
45 #define   CONF_ENABLE_W1       17
46 #define   CONF_ENABLE_W0       16
47 #define   CONF_FLASH_TYPE4     8
48 #define   CONF_FLASH_TYPE3     6
49 #define   CONF_FLASH_TYPE2     4
50 #define   CONF_FLASH_TYPE1     2
51 #define   CONF_FLASH_TYPE0     0
52 #define      CONF_FLASH_TYPE_NOR   0x0
53 #define      CONF_FLASH_TYPE_NAND  0x1
54 #define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
55 
56 /* CE Control Register */
57 #define R_CE_CTRL            (0x04 / 4)
58 #define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
59 #define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
60 #define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
61 #define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
62 #define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
63 
64 /* Interrupt Control and Status Register */
65 #define R_INTR_CTRL       (0x08 / 4)
66 #define   INTR_CTRL_DMA_STATUS            (1 << 11)
67 #define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
68 #define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
69 #define   INTR_CTRL_DMA_EN                (1 << 3)
70 #define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
71 #define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
72 
73 /* Command Control Register */
74 #define R_CE_CMD_CTRL      (0x0C / 4)
75 #define   CTRL_ADDR_BYTE0_DISABLE_SHIFT       4
76 #define   CTRL_DATA_BYTE0_DISABLE_SHIFT       0
77 
78 #define aspeed_smc_addr_byte_enabled(s, i)                               \
79     (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
80 #define aspeed_smc_data_byte_enabled(s, i)                               \
81     (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
82 
83 /* CEx Control Register */
84 #define R_CTRL0           (0x10 / 4)
85 #define   CTRL_IO_QPI              (1 << 31)
86 #define   CTRL_IO_QUAD_DATA        (1 << 30)
87 #define   CTRL_IO_DUAL_DATA        (1 << 29)
88 #define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
89 #define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
90 #define   CTRL_CMD_SHIFT           16
91 #define   CTRL_CMD_MASK            0xff
92 #define   CTRL_DUMMY_HIGH_SHIFT    14
93 #define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
94 #define CE_CTRL_CLOCK_FREQ_SHIFT   8
95 #define CE_CTRL_CLOCK_FREQ_MASK    0xf
96 #define CE_CTRL_CLOCK_FREQ(div)                                         \
97     (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
98 #define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
99 #define   CTRL_CE_STOP_ACTIVE      (1 << 2)
100 #define   CTRL_CMD_MODE_MASK       0x3
101 #define     CTRL_READMODE          0x0
102 #define     CTRL_FREADMODE         0x1
103 #define     CTRL_WRITEMODE         0x2
104 #define     CTRL_USERMODE          0x3
105 #define R_CTRL1           (0x14 / 4)
106 #define R_CTRL2           (0x18 / 4)
107 #define R_CTRL3           (0x1C / 4)
108 #define R_CTRL4           (0x20 / 4)
109 
110 /* CEx Segment Address Register */
111 #define R_SEG_ADDR0       (0x30 / 4)
112 #define   SEG_END_SHIFT        24   /* 8MB units */
113 #define   SEG_END_MASK         0xff
114 #define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
115 #define   SEG_START_MASK       0xff
116 #define R_SEG_ADDR1       (0x34 / 4)
117 #define R_SEG_ADDR2       (0x38 / 4)
118 #define R_SEG_ADDR3       (0x3C / 4)
119 #define R_SEG_ADDR4       (0x40 / 4)
120 
121 /* Misc Control Register #1 */
122 #define R_MISC_CTRL1      (0x50 / 4)
123 
124 /* SPI dummy cycle data */
125 #define R_DUMMY_DATA      (0x54 / 4)
126 
127 /* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */
128 #define R_FMC_WDT2_CTRL   (0x64 / 4)
129 #define   FMC_WDT2_CTRL_ALT_BOOT_MODE    BIT(6) /* O: 2 chips 1: 1 chip */
130 #define   FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5)
131 #define   FMC_WDT2_CTRL_BOOT_SOURCE      BIT(4) /* O: primary 1: alternate */
132 #define   FMC_WDT2_CTRL_EN               BIT(0)
133 
134 /* DMA Control/Status Register */
135 #define R_DMA_CTRL        (0x80 / 4)
136 #define   DMA_CTRL_REQUEST      (1 << 31)
137 #define   DMA_CTRL_GRANT        (1 << 30)
138 #define   DMA_CTRL_DELAY_MASK   0xf
139 #define   DMA_CTRL_DELAY_SHIFT  8
140 #define   DMA_CTRL_FREQ_MASK    0xf
141 #define   DMA_CTRL_FREQ_SHIFT   4
142 #define   DMA_CTRL_CALIB        (1 << 3)
143 #define   DMA_CTRL_CKSUM        (1 << 2)
144 #define   DMA_CTRL_WRITE        (1 << 1)
145 #define   DMA_CTRL_ENABLE       (1 << 0)
146 
147 /* DMA Flash Side Address */
148 #define R_DMA_FLASH_ADDR  (0x84 / 4)
149 
150 /* DMA DRAM Side Address */
151 #define R_DMA_DRAM_ADDR   (0x88 / 4)
152 
153 /* DMA Length Register */
154 #define R_DMA_LEN         (0x8C / 4)
155 
156 /* Checksum Calculation Result */
157 #define R_DMA_CHECKSUM    (0x90 / 4)
158 
159 /* Read Timing Compensation Register */
160 #define R_TIMINGS         (0x94 / 4)
161 
162 /* SPI controller registers and bits (AST2400) */
163 #define R_SPI_CONF        (0x00 / 4)
164 #define   SPI_CONF_ENABLE_W0   0
165 #define R_SPI_CTRL0       (0x4 / 4)
166 #define R_SPI_MISC_CTRL   (0x10 / 4)
167 #define R_SPI_TIMINGS     (0x14 / 4)
168 
169 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
170 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
171 
172 /*
173  * DMA DRAM addresses should be 4 bytes aligned and the valid address
174  * range is 0x40000000 - 0x5FFFFFFF (AST2400)
175  *          0x80000000 - 0xBFFFFFFF (AST2500)
176  *
177  * DMA flash addresses should be 4 bytes aligned and the valid address
178  * range is 0x20000000 - 0x2FFFFFFF.
179  *
180  * DMA length is from 4 bytes to 32MB
181  *   0: 4 bytes
182  *   0x7FFFFF: 32M bytes
183  */
184 #define DMA_DRAM_ADDR(asc, val)   ((val) & (asc)->dma_dram_mask)
185 #define DMA_FLASH_ADDR(asc, val)  ((val) & (asc)->dma_flash_mask)
186 #define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
187 
188 /* Flash opcodes. */
189 #define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
190 
191 #define SNOOP_OFF         0xFF
192 #define SNOOP_START       0x0
193 
194 /*
195  * Default segments mapping addresses and size for each peripheral per
196  * controller. These can be changed when board is initialized with the
197  * Segment Address Registers.
198  */
199 static const AspeedSegments aspeed_2400_spi1_segments[];
200 static const AspeedSegments aspeed_2500_spi1_segments[];
201 static const AspeedSegments aspeed_2500_spi2_segments[];
202 
203 #define ASPEED_SMC_FEATURE_DMA       0x1
204 #define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
205 #define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4
206 
207 static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc)
208 {
209     return !!(asc->features & ASPEED_SMC_FEATURE_DMA);
210 }
211 
212 static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc)
213 {
214     return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL);
215 }
216 
217 #define aspeed_smc_error(fmt, ...)                                      \
218     qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__)
219 
220 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
221                                      const AspeedSegments *new,
222                                      int cs)
223 {
224     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
225     AspeedSegments seg;
226     int i;
227 
228     for (i = 0; i < asc->max_peripherals; i++) {
229         if (i == cs) {
230             continue;
231         }
232 
233         asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
234 
235         if (new->addr + new->size > seg.addr &&
236             new->addr < seg.addr + seg.size) {
237             aspeed_smc_error("new segment CS%d [ 0x%"
238                              HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
239                              "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
240                              cs, new->addr, new->addr + new->size,
241                              i, seg.addr, seg.addr + seg.size);
242             return true;
243         }
244     }
245     return false;
246 }
247 
248 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
249                                                 uint64_t regval)
250 {
251     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
252     AspeedSMCFlash *fl = &s->flashes[cs];
253     AspeedSegments seg;
254 
255     asc->reg_to_segment(s, regval, &seg);
256 
257     memory_region_transaction_begin();
258     memory_region_set_size(&fl->mmio, seg.size);
259     memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base);
260     memory_region_set_enabled(&fl->mmio, !!seg.size);
261     memory_region_transaction_commit();
262 
263     s->regs[R_SEG_ADDR0 + cs] = regval;
264 }
265 
266 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
267                                          uint64_t new)
268 {
269     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
270     AspeedSegments seg;
271 
272     asc->reg_to_segment(s, new, &seg);
273 
274     trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
275 
276     /* The start address of CS0 is read-only */
277     if (cs == 0 && seg.addr != asc->flash_window_base) {
278         aspeed_smc_error("Tried to change CS0 start address to 0x%"
279                          HWADDR_PRIx, seg.addr);
280         seg.addr = asc->flash_window_base;
281         new = asc->segment_to_reg(s, &seg);
282     }
283 
284     /*
285      * The end address of the AST2500 spi controllers is also
286      * read-only.
287      */
288     if ((asc->segments == aspeed_2500_spi1_segments ||
289          asc->segments == aspeed_2500_spi2_segments) &&
290         cs == asc->max_peripherals &&
291         seg.addr + seg.size != asc->segments[cs].addr +
292         asc->segments[cs].size) {
293         aspeed_smc_error("Tried to change CS%d end address to 0x%"
294                          HWADDR_PRIx, cs, seg.addr + seg.size);
295         seg.size = asc->segments[cs].addr + asc->segments[cs].size -
296             seg.addr;
297         new = asc->segment_to_reg(s, &seg);
298     }
299 
300     /* Keep the segment in the overall flash window */
301     if (seg.size &&
302         (seg.addr + seg.size <= asc->flash_window_base ||
303          seg.addr > asc->flash_window_base + asc->flash_window_size)) {
304         aspeed_smc_error("new segment for CS%d is invalid : "
305                          "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
306                          cs, seg.addr, seg.addr + seg.size);
307         return;
308     }
309 
310     /* Check start address vs. alignment */
311     if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
312         aspeed_smc_error("new segment for CS%d is not "
313                          "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
314                          cs, seg.addr, seg.addr + seg.size);
315     }
316 
317     /* And segments should not overlap (in the specs) */
318     aspeed_smc_flash_overlap(s, &seg, cs);
319 
320     /* All should be fine now to move the region */
321     aspeed_smc_flash_set_segment_region(s, cs, new);
322 }
323 
324 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
325                                               unsigned size)
326 {
327     aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u" PRIx64, addr, size);
328     return 0;
329 }
330 
331 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
332                                            uint64_t data, unsigned size)
333 {
334     aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64,
335                      addr, size, data);
336 }
337 
338 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
339     .read = aspeed_smc_flash_default_read,
340     .write = aspeed_smc_flash_default_write,
341     .endianness = DEVICE_LITTLE_ENDIAN,
342     .valid = {
343         .min_access_size = 1,
344         .max_access_size = 4,
345     },
346 };
347 
348 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
349 {
350     const AspeedSMCState *s = fl->controller;
351 
352     return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
353 }
354 
355 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
356 {
357     const AspeedSMCState *s = fl->controller;
358 
359     return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs));
360 }
361 
362 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
363 {
364     const AspeedSMCState *s = fl->controller;
365     int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
366 
367     /*
368      * In read mode, the default SPI command is READ (0x3). In other
369      * modes, the command should necessarily be defined
370      *
371      * TODO: add support for READ4 (0x13) on AST2600
372      */
373     if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
374         cmd = SPI_OP_READ;
375     }
376 
377     if (!cmd) {
378         aspeed_smc_error("no command defined for mode %d",
379                          aspeed_smc_flash_mode(fl));
380     }
381 
382     return cmd;
383 }
384 
385 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
386 {
387     const AspeedSMCState *s = fl->controller;
388     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
389 
390     if (asc->segments == aspeed_2400_spi1_segments) {
391         return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
392     } else {
393         return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs));
394     }
395 }
396 
397 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
398 {
399     AspeedSMCState *s = fl->controller;
400 
401     trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : "");
402 
403     qemu_set_irq(s->cs_lines[fl->cs], unselect);
404 }
405 
406 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
407 {
408     aspeed_smc_flash_do_select(fl, false);
409 }
410 
411 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
412 {
413     aspeed_smc_flash_do_select(fl, true);
414 }
415 
416 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
417                                               uint32_t addr)
418 {
419     const AspeedSMCState *s = fl->controller;
420     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
421     AspeedSegments seg;
422 
423     asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg);
424     if ((addr % seg.size) != addr) {
425         aspeed_smc_error("invalid address 0x%08x for CS%d segment : "
426                          "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
427                          addr, fl->cs, seg.addr, seg.addr + seg.size);
428         addr %= seg.size;
429     }
430 
431     return addr;
432 }
433 
434 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
435 {
436     const AspeedSMCState *s = fl->controller;
437     uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs];
438     uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
439     uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
440     uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
441 
442     if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
443         dummies /= 2;
444     }
445 
446     return dummies;
447 }
448 
449 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
450 {
451     const AspeedSMCState *s = fl->controller;
452     uint8_t cmd = aspeed_smc_flash_cmd(fl);
453     int i = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
454 
455     /* Flash access can not exceed CS segment */
456     addr = aspeed_smc_check_segment_addr(fl, addr);
457 
458     ssi_transfer(s->spi, cmd);
459     while (i--) {
460         if (aspeed_smc_addr_byte_enabled(s, i)) {
461             ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
462         }
463     }
464 
465     /*
466      * Use fake transfers to model dummy bytes. The value should
467      * be configured to some non-zero value in fast read mode and
468      * zero in read mode. But, as the HW allows inconsistent
469      * settings, let's check for fast read mode.
470      */
471     if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
472         for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
473             ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
474         }
475     }
476 }
477 
478 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
479 {
480     AspeedSMCFlash *fl = opaque;
481     AspeedSMCState *s = fl->controller;
482     uint64_t ret = 0;
483     int i;
484 
485     switch (aspeed_smc_flash_mode(fl)) {
486     case CTRL_USERMODE:
487         for (i = 0; i < size; i++) {
488             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
489         }
490         break;
491     case CTRL_READMODE:
492     case CTRL_FREADMODE:
493         aspeed_smc_flash_select(fl);
494         aspeed_smc_flash_setup(fl, addr);
495 
496         for (i = 0; i < size; i++) {
497             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
498         }
499 
500         aspeed_smc_flash_unselect(fl);
501         break;
502     default:
503         aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
504     }
505 
506     trace_aspeed_smc_flash_read(fl->cs, addr, size, ret,
507                                 aspeed_smc_flash_mode(fl));
508     return ret;
509 }
510 
511 /*
512  * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
513  * common include header.
514  */
515 typedef enum {
516     READ = 0x3,         READ_4 = 0x13,
517     FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
518     DOR = 0x3b,         DOR_4 = 0x3c,
519     QOR = 0x6b,         QOR_4 = 0x6c,
520     DIOR = 0xbb,        DIOR_4 = 0xbc,
521     QIOR = 0xeb,        QIOR_4 = 0xec,
522 
523     PP = 0x2,           PP_4 = 0x12,
524     DPP = 0xa2,
525     QPP = 0x32,         QPP_4 = 0x34,
526 } FlashCMD;
527 
528 static int aspeed_smc_num_dummies(uint8_t command)
529 {
530     switch (command) { /* check for dummies */
531     case READ: /* no dummy bytes/cycles */
532     case PP:
533     case DPP:
534     case QPP:
535     case READ_4:
536     case PP_4:
537     case QPP_4:
538         return 0;
539     case FAST_READ:
540     case DOR:
541     case QOR:
542     case FAST_READ_4:
543     case DOR_4:
544     case QOR_4:
545         return 1;
546     case DIOR:
547     case DIOR_4:
548         return 2;
549     case QIOR:
550     case QIOR_4:
551         return 4;
552     default:
553         return -1;
554     }
555 }
556 
557 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
558                                 unsigned size)
559 {
560     AspeedSMCState *s = fl->controller;
561     uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
562 
563     trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies,
564                               (uint8_t) data & 0xff);
565 
566     if (s->snoop_index == SNOOP_OFF) {
567         return false; /* Do nothing */
568 
569     } else if (s->snoop_index == SNOOP_START) {
570         uint8_t cmd = data & 0xff;
571         int ndummies = aspeed_smc_num_dummies(cmd);
572 
573         /*
574          * No dummy cycles are expected with the current command. Turn
575          * off snooping and let the transfer proceed normally.
576          */
577         if (ndummies <= 0) {
578             s->snoop_index = SNOOP_OFF;
579             return false;
580         }
581 
582         s->snoop_dummies = ndummies * 8;
583 
584     } else if (s->snoop_index >= addr_width + 1) {
585 
586         /* The SPI transfer has reached the dummy cycles sequence */
587         for (; s->snoop_dummies; s->snoop_dummies--) {
588             ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
589         }
590 
591         /* If no more dummy cycles are expected, turn off snooping */
592         if (!s->snoop_dummies) {
593             s->snoop_index = SNOOP_OFF;
594         } else {
595             s->snoop_index += size;
596         }
597 
598         /*
599          * Dummy cycles have been faked already. Ignore the current
600          * SPI transfer
601          */
602         return true;
603     }
604 
605     s->snoop_index += size;
606     return false;
607 }
608 
609 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
610                                    unsigned size)
611 {
612     AspeedSMCFlash *fl = opaque;
613     AspeedSMCState *s = fl->controller;
614     int i;
615 
616     trace_aspeed_smc_flash_write(fl->cs, addr, size, data,
617                                  aspeed_smc_flash_mode(fl));
618 
619     if (!aspeed_smc_is_writable(fl)) {
620         aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr);
621         return;
622     }
623 
624     switch (aspeed_smc_flash_mode(fl)) {
625     case CTRL_USERMODE:
626         if (aspeed_smc_do_snoop(fl, data, size)) {
627             break;
628         }
629 
630         for (i = 0; i < size; i++) {
631             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
632         }
633         break;
634     case CTRL_WRITEMODE:
635         aspeed_smc_flash_select(fl);
636         aspeed_smc_flash_setup(fl, addr);
637 
638         for (i = 0; i < size; i++) {
639             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
640         }
641 
642         aspeed_smc_flash_unselect(fl);
643         break;
644     default:
645         aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
646     }
647 }
648 
649 static const MemoryRegionOps aspeed_smc_flash_ops = {
650     .read = aspeed_smc_flash_read,
651     .write = aspeed_smc_flash_write,
652     .endianness = DEVICE_LITTLE_ENDIAN,
653     .valid = {
654         .min_access_size = 1,
655         .max_access_size = 4,
656     },
657 };
658 
659 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
660 {
661     AspeedSMCState *s = fl->controller;
662     bool unselect;
663 
664     /* User mode selects the CS, other modes unselect */
665     unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
666 
667     /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
668     if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) &&
669         value & CTRL_CE_STOP_ACTIVE) {
670         unselect = true;
671     }
672 
673     s->regs[s->r_ctrl0 + fl->cs] = value;
674 
675     s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
676 
677     aspeed_smc_flash_do_select(fl, unselect);
678 }
679 
680 static void aspeed_smc_reset(DeviceState *d)
681 {
682     AspeedSMCState *s = ASPEED_SMC(d);
683     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
684     int i;
685 
686     if (asc->resets) {
687         memcpy(s->regs, asc->resets, sizeof s->regs);
688     } else {
689         memset(s->regs, 0, sizeof s->regs);
690     }
691 
692     /* Unselect all peripherals */
693     for (i = 0; i < s->num_cs; ++i) {
694         s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
695         qemu_set_irq(s->cs_lines[i], true);
696     }
697 
698     /* setup the default segment register values and regions for all */
699     for (i = 0; i < asc->max_peripherals; ++i) {
700         aspeed_smc_flash_set_segment_region(s, i,
701                     asc->segment_to_reg(s, &asc->segments[i]));
702     }
703 
704     s->snoop_index = SNOOP_OFF;
705     s->snoop_dummies = 0;
706 }
707 
708 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
709 {
710     AspeedSMCState *s = ASPEED_SMC(opaque);
711     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque);
712 
713     addr >>= 2;
714 
715     if (addr == s->r_conf ||
716         (addr >= s->r_timings &&
717          addr < s->r_timings + asc->nregs_timings) ||
718         addr == s->r_ce_ctrl ||
719         addr == R_CE_CMD_CTRL ||
720         addr == R_INTR_CTRL ||
721         addr == R_DUMMY_DATA ||
722         (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) ||
723         (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) ||
724         (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) ||
725         (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) ||
726         (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) ||
727         (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) ||
728         (addr >= R_SEG_ADDR0 &&
729          addr < R_SEG_ADDR0 + asc->max_peripherals) ||
730         (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->max_peripherals)) {
731 
732         trace_aspeed_smc_read(addr, size, s->regs[addr]);
733 
734         return s->regs[addr];
735     } else {
736         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
737                       __func__, addr);
738         return -1;
739     }
740 }
741 
742 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
743 {
744     /* HCLK/1 .. HCLK/16 */
745     const uint8_t hclk_divisors[] = {
746         15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
747     };
748     int i;
749 
750     for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
751         if (hclk_mask == hclk_divisors[i]) {
752             return i + 1;
753         }
754     }
755 
756     aspeed_smc_error("invalid HCLK mask %x", hclk_mask);
757     return 0;
758 }
759 
760 /*
761  * When doing calibration, the SPI clock rate in the CE0 Control
762  * Register and the read delay cycles in the Read Timing Compensation
763  * Register are set using bit[11:4] of the DMA Control Register.
764  */
765 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
766 {
767     uint8_t delay =
768         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
769     uint8_t hclk_mask =
770         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
771     uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
772     uint32_t hclk_shift = (hclk_div - 1) << 2;
773     uint8_t cs;
774 
775     /*
776      * The Read Timing Compensation Register values apply to all CS on
777      * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
778      */
779     if (hclk_div && hclk_div < 6) {
780         s->regs[s->r_timings] &= ~(0xf << hclk_shift);
781         s->regs[s->r_timings] |= delay << hclk_shift;
782     }
783 
784     /*
785      * TODO: compute the CS from the DMA address and the segment
786      * registers. This is not really a problem for now because the
787      * Timing Register values apply to all CS and software uses CS0 to
788      * do calibration.
789      */
790     cs = 0;
791     s->regs[s->r_ctrl0 + cs] &=
792         ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
793     s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
794 }
795 
796 /*
797  * Emulate read errors in the DMA Checksum Register for high
798  * frequencies and optimistic settings of the Read Timing Compensation
799  * Register. This will help in tuning the SPI timing calibration
800  * algorithm.
801  */
802 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
803 {
804     uint8_t delay =
805         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
806     uint8_t hclk_mask =
807         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
808 
809     /*
810      * Typical values of a palmetto-bmc machine.
811      */
812     switch (aspeed_smc_hclk_divisor(hclk_mask)) {
813     case 4 ... 16:
814         return false;
815     case 3: /* at least one HCLK cycle delay */
816         return (delay & 0x7) < 1;
817     case 2: /* at least two HCLK cycle delay */
818         return (delay & 0x7) < 2;
819     case 1: /* (> 100MHz) is above the max freq of the controller */
820         return true;
821     default:
822         g_assert_not_reached();
823     }
824 }
825 
826 /*
827  * Accumulate the result of the reads to provide a checksum that will
828  * be used to validate the read timing settings.
829  */
830 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
831 {
832     MemTxResult result;
833     uint32_t data;
834 
835     if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
836         aspeed_smc_error("invalid direction for DMA checksum");
837         return;
838     }
839 
840     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
841         aspeed_smc_dma_calibration(s);
842     }
843 
844     while (s->regs[R_DMA_LEN]) {
845         data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
846                                     MEMTXATTRS_UNSPECIFIED, &result);
847         if (result != MEMTX_OK) {
848             aspeed_smc_error("Flash read failed @%08x",
849                              s->regs[R_DMA_FLASH_ADDR]);
850             return;
851         }
852         trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
853 
854         /*
855          * When the DMA is on-going, the DMA registers are updated
856          * with the current working addresses and length.
857          */
858         s->regs[R_DMA_CHECKSUM] += data;
859         s->regs[R_DMA_FLASH_ADDR] += 4;
860         s->regs[R_DMA_LEN] -= 4;
861     }
862 
863     if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
864         s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
865     }
866 
867 }
868 
869 static void aspeed_smc_dma_rw(AspeedSMCState *s)
870 {
871     MemTxResult result;
872     uint32_t data;
873 
874     trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
875                             "write" : "read",
876                             s->regs[R_DMA_FLASH_ADDR],
877                             s->regs[R_DMA_DRAM_ADDR],
878                             s->regs[R_DMA_LEN]);
879     while (s->regs[R_DMA_LEN]) {
880         if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
881             data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
882                                         MEMTXATTRS_UNSPECIFIED, &result);
883             if (result != MEMTX_OK) {
884                 aspeed_smc_error("DRAM read failed @%08x",
885                                  s->regs[R_DMA_DRAM_ADDR]);
886                 return;
887             }
888 
889             address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
890                                  data, MEMTXATTRS_UNSPECIFIED, &result);
891             if (result != MEMTX_OK) {
892                 aspeed_smc_error("Flash write failed @%08x",
893                                  s->regs[R_DMA_FLASH_ADDR]);
894                 return;
895             }
896         } else {
897             data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
898                                         MEMTXATTRS_UNSPECIFIED, &result);
899             if (result != MEMTX_OK) {
900                 aspeed_smc_error("Flash read failed @%08x",
901                                  s->regs[R_DMA_FLASH_ADDR]);
902                 return;
903             }
904 
905             address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
906                                  data, MEMTXATTRS_UNSPECIFIED, &result);
907             if (result != MEMTX_OK) {
908                 aspeed_smc_error("DRAM write failed @%08x",
909                                  s->regs[R_DMA_DRAM_ADDR]);
910                 return;
911             }
912         }
913 
914         /*
915          * When the DMA is on-going, the DMA registers are updated
916          * with the current working addresses and length.
917          */
918         s->regs[R_DMA_FLASH_ADDR] += 4;
919         s->regs[R_DMA_DRAM_ADDR] += 4;
920         s->regs[R_DMA_LEN] -= 4;
921         s->regs[R_DMA_CHECKSUM] += data;
922     }
923 }
924 
925 static void aspeed_smc_dma_stop(AspeedSMCState *s)
926 {
927     /*
928      * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
929      * engine is idle
930      */
931     s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
932     s->regs[R_DMA_CHECKSUM] = 0;
933 
934     /*
935      * Lower the DMA irq in any case. The IRQ control register could
936      * have been cleared before disabling the DMA.
937      */
938     qemu_irq_lower(s->irq);
939 }
940 
941 /*
942  * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
943  * can start even if the result of the previous was not collected.
944  */
945 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
946 {
947     return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
948         !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
949 }
950 
951 static void aspeed_smc_dma_done(AspeedSMCState *s)
952 {
953     s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
954     if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
955         qemu_irq_raise(s->irq);
956     }
957 }
958 
959 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
960 {
961     if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
962         s->regs[R_DMA_CTRL] = dma_ctrl;
963 
964         aspeed_smc_dma_stop(s);
965         return;
966     }
967 
968     if (aspeed_smc_dma_in_progress(s)) {
969         aspeed_smc_error("DMA in progress !");
970         return;
971     }
972 
973     s->regs[R_DMA_CTRL] = dma_ctrl;
974 
975     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
976         aspeed_smc_dma_checksum(s);
977     } else {
978         aspeed_smc_dma_rw(s);
979     }
980 
981     aspeed_smc_dma_done(s);
982 }
983 
984 static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
985 {
986     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
987 
988     if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
989         return true;
990     }
991 
992     if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
993         aspeed_smc_error("DMA not granted");
994         return false;
995     }
996 
997     return true;
998 }
999 
1000 static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1001 {
1002     /* Preserve DMA bits  */
1003     dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1004 
1005     if (dma_ctrl == 0xAEED0000) {
1006         /* automatically grant request */
1007         s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1008         return;
1009     }
1010 
1011     /* clear request */
1012     if (dma_ctrl == 0xDEEA0000) {
1013         s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1014         return;
1015     }
1016 
1017     if (!aspeed_smc_dma_granted(s)) {
1018         aspeed_smc_error("DMA not granted");
1019         return;
1020     }
1021 
1022     aspeed_smc_dma_ctrl(s, dma_ctrl);
1023     s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1024 }
1025 
1026 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1027                              unsigned int size)
1028 {
1029     AspeedSMCState *s = ASPEED_SMC(opaque);
1030     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1031     uint32_t value = data;
1032 
1033     addr >>= 2;
1034 
1035     trace_aspeed_smc_write(addr, size, data);
1036 
1037     if (addr == s->r_conf ||
1038         (addr >= s->r_timings &&
1039          addr < s->r_timings + asc->nregs_timings) ||
1040         addr == s->r_ce_ctrl) {
1041         s->regs[addr] = value;
1042     } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1043         int cs = addr - s->r_ctrl0;
1044         aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1045     } else if (addr >= R_SEG_ADDR0 &&
1046                addr < R_SEG_ADDR0 + asc->max_peripherals) {
1047         int cs = addr - R_SEG_ADDR0;
1048 
1049         if (value != s->regs[R_SEG_ADDR0 + cs]) {
1050             aspeed_smc_flash_set_segment(s, cs, value);
1051         }
1052     } else if (addr == R_CE_CMD_CTRL) {
1053         s->regs[addr] = value & 0xff;
1054     } else if (addr == R_DUMMY_DATA) {
1055         s->regs[addr] = value & 0xff;
1056     } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) {
1057         s->regs[addr] = value & FMC_WDT2_CTRL_EN;
1058     } else if (addr == R_INTR_CTRL) {
1059         s->regs[addr] = value;
1060     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) {
1061         asc->dma_ctrl(s, value);
1062     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR &&
1063                aspeed_smc_dma_granted(s)) {
1064         s->regs[addr] = DMA_DRAM_ADDR(asc, value);
1065     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR &&
1066                aspeed_smc_dma_granted(s)) {
1067         s->regs[addr] = DMA_FLASH_ADDR(asc, value);
1068     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN &&
1069                aspeed_smc_dma_granted(s)) {
1070         s->regs[addr] = DMA_LENGTH(value);
1071     } else {
1072         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1073                       __func__, addr);
1074         return;
1075     }
1076 }
1077 
1078 static const MemoryRegionOps aspeed_smc_ops = {
1079     .read = aspeed_smc_read,
1080     .write = aspeed_smc_write,
1081     .endianness = DEVICE_LITTLE_ENDIAN,
1082 };
1083 
1084 static void aspeed_smc_instance_init(Object *obj)
1085 {
1086     AspeedSMCState *s = ASPEED_SMC(obj);
1087     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1088     int i;
1089 
1090     for (i = 0; i < asc->max_peripherals; i++) {
1091         object_initialize_child(obj, "flash[*]", &s->flashes[i],
1092                                 TYPE_ASPEED_SMC_FLASH);
1093     }
1094 }
1095 
1096 /*
1097  * Initialize the custom address spaces for DMAs
1098  */
1099 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1100 {
1101     if (!s->dram_mr) {
1102         error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1103         return;
1104     }
1105 
1106     address_space_init(&s->flash_as, &s->mmio_flash,
1107                        TYPE_ASPEED_SMC ".dma-flash");
1108     address_space_init(&s->dram_as, s->dram_mr,
1109                        TYPE_ASPEED_SMC ".dma-dram");
1110 }
1111 
1112 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1113 {
1114     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1115     AspeedSMCState *s = ASPEED_SMC(dev);
1116     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1117     int i;
1118     hwaddr offset = 0;
1119 
1120     /* keep a copy under AspeedSMCState to speed up accesses */
1121     s->r_conf = asc->r_conf;
1122     s->r_ce_ctrl = asc->r_ce_ctrl;
1123     s->r_ctrl0 = asc->r_ctrl0;
1124     s->r_timings = asc->r_timings;
1125     s->conf_enable_w0 = asc->conf_enable_w0;
1126 
1127     /* Enforce some real HW limits */
1128     if (s->num_cs > asc->max_peripherals) {
1129         aspeed_smc_error("num_cs cannot exceed: %d", asc->max_peripherals);
1130         s->num_cs = asc->max_peripherals;
1131     }
1132 
1133     /* DMA irq. Keep it first for the initialization in the SoC */
1134     sysbus_init_irq(sbd, &s->irq);
1135 
1136     s->spi = ssi_create_bus(dev, "spi");
1137 
1138     /* Setup cs_lines for peripherals */
1139     s->cs_lines = g_new0(qemu_irq, s->num_cs);
1140 
1141     for (i = 0; i < s->num_cs; ++i) {
1142         sysbus_init_irq(sbd, &s->cs_lines[i]);
1143     }
1144 
1145     /* The memory region for the controller registers */
1146     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1147                           TYPE_ASPEED_SMC, asc->nregs * 4);
1148     sysbus_init_mmio(sbd, &s->mmio);
1149 
1150     /*
1151      * The container memory region representing the address space
1152      * window in which the flash modules are mapped. The size and
1153      * address depends on the SoC model and controller type.
1154      */
1155     memory_region_init_io(&s->mmio_flash, OBJECT(s),
1156                           &aspeed_smc_flash_default_ops, s,
1157                           TYPE_ASPEED_SMC ".flash",
1158                           asc->flash_window_size);
1159     memory_region_init_alias(&s->mmio_flash_alias, OBJECT(s),
1160                              TYPE_ASPEED_SMC ".flash",
1161                              &s->mmio_flash, 0, asc->flash_window_size);
1162     sysbus_init_mmio(sbd, &s->mmio_flash_alias);
1163 
1164     /*
1165      * Let's create a sub memory region for each possible peripheral. All
1166      * have a configurable memory segment in the overall flash mapping
1167      * window of the controller but, there is not necessarily a flash
1168      * module behind to handle the memory accesses. This depends on
1169      * the board configuration.
1170      */
1171     for (i = 0; i < asc->max_peripherals; ++i) {
1172         AspeedSMCFlash *fl = &s->flashes[i];
1173 
1174         if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s),
1175                                       errp)) {
1176             return;
1177         }
1178         if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) {
1179             return;
1180         }
1181         if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) {
1182             return;
1183         }
1184 
1185         memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1186         offset += asc->segments[i].size;
1187     }
1188 
1189     /* DMA support */
1190     if (aspeed_smc_has_dma(asc)) {
1191         aspeed_smc_dma_setup(s, errp);
1192     }
1193 }
1194 
1195 static const VMStateDescription vmstate_aspeed_smc = {
1196     .name = "aspeed.smc",
1197     .version_id = 2,
1198     .minimum_version_id = 2,
1199     .fields = (VMStateField[]) {
1200         VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1201         VMSTATE_UINT8(snoop_index, AspeedSMCState),
1202         VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1203         VMSTATE_END_OF_LIST()
1204     }
1205 };
1206 
1207 static Property aspeed_smc_properties[] = {
1208     DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1209     DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1210     DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1211                      TYPE_MEMORY_REGION, MemoryRegion *),
1212     DEFINE_PROP_END_OF_LIST(),
1213 };
1214 
1215 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1216 {
1217     DeviceClass *dc = DEVICE_CLASS(klass);
1218 
1219     dc->realize = aspeed_smc_realize;
1220     dc->reset = aspeed_smc_reset;
1221     device_class_set_props(dc, aspeed_smc_properties);
1222     dc->vmsd = &vmstate_aspeed_smc;
1223 }
1224 
1225 static const TypeInfo aspeed_smc_info = {
1226     .name           = TYPE_ASPEED_SMC,
1227     .parent         = TYPE_SYS_BUS_DEVICE,
1228     .instance_init  = aspeed_smc_instance_init,
1229     .instance_size  = sizeof(AspeedSMCState),
1230     .class_size     = sizeof(AspeedSMCClass),
1231     .class_init     = aspeed_smc_class_init,
1232     .abstract       = true,
1233 };
1234 
1235 static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp)
1236 {
1237     AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev);
1238     AspeedSMCClass *asc;
1239     g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs);
1240 
1241     if (!s->controller) {
1242         error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set");
1243         return;
1244     }
1245 
1246     asc = ASPEED_SMC_GET_CLASS(s->controller);
1247 
1248     /*
1249      * Use the default segment value to size the memory region. This
1250      * can be changed by FW at runtime.
1251      */
1252     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1253                           s, name, asc->segments[s->cs].size);
1254     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
1255 }
1256 
1257 static Property aspeed_smc_flash_properties[] = {
1258     DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0),
1259     DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC,
1260                      AspeedSMCState *),
1261     DEFINE_PROP_END_OF_LIST(),
1262 };
1263 
1264 static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data)
1265 {
1266     DeviceClass *dc = DEVICE_CLASS(klass);
1267 
1268     dc->desc = "Aspeed SMC Flash device region";
1269     dc->realize = aspeed_smc_flash_realize;
1270     device_class_set_props(dc, aspeed_smc_flash_properties);
1271 }
1272 
1273 static const TypeInfo aspeed_smc_flash_info = {
1274     .name           = TYPE_ASPEED_SMC_FLASH,
1275     .parent         = TYPE_SYS_BUS_DEVICE,
1276     .instance_size  = sizeof(AspeedSMCFlash),
1277     .class_init     = aspeed_smc_flash_class_init,
1278 };
1279 
1280 /*
1281  * The Segment Registers of the AST2400 and AST2500 have a 8MB
1282  * unit. The address range of a flash SPI peripheral is encoded with
1283  * absolute addresses which should be part of the overall controller
1284  * window.
1285  */
1286 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
1287                                           const AspeedSegments *seg)
1288 {
1289     uint32_t reg = 0;
1290     reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
1291     reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
1292     return reg;
1293 }
1294 
1295 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
1296                                       uint32_t reg, AspeedSegments *seg)
1297 {
1298     seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
1299     seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
1300 }
1301 
1302 static const AspeedSegments aspeed_2400_smc_segments[] = {
1303     { 0x10000000, 32 * MiB },
1304 };
1305 
1306 static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data)
1307 {
1308     DeviceClass *dc = DEVICE_CLASS(klass);
1309     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1310 
1311     dc->desc               = "Aspeed 2400 SMC Controller";
1312     asc->r_conf            = R_CONF;
1313     asc->r_ce_ctrl         = R_CE_CTRL;
1314     asc->r_ctrl0           = R_CTRL0;
1315     asc->r_timings         = R_TIMINGS;
1316     asc->nregs_timings     = 1;
1317     asc->conf_enable_w0    = CONF_ENABLE_W0;
1318     asc->max_peripherals   = 1;
1319     asc->segments          = aspeed_2400_smc_segments;
1320     asc->flash_window_base = 0x10000000;
1321     asc->flash_window_size = 0x6000000;
1322     asc->features          = 0x0;
1323     asc->nregs             = ASPEED_SMC_R_SMC_MAX;
1324     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1325     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1326     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1327 }
1328 
1329 static const TypeInfo aspeed_2400_smc_info = {
1330     .name =  "aspeed.smc-ast2400",
1331     .parent = TYPE_ASPEED_SMC,
1332     .class_init = aspeed_2400_smc_class_init,
1333 };
1334 
1335 static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = {
1336     /*
1337      * CE0 and CE1 types are HW strapped in SCU70. Do it here to
1338      * simplify the model.
1339      */
1340     [R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0,
1341 };
1342 
1343 static const AspeedSegments aspeed_2400_fmc_segments[] = {
1344     { 0x20000000, 64 * MiB }, /* start address is readonly */
1345     { 0x24000000, 32 * MiB },
1346     { 0x26000000, 32 * MiB },
1347     { 0x28000000, 32 * MiB },
1348     { 0x2A000000, 32 * MiB }
1349 };
1350 
1351 static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data)
1352 {
1353     DeviceClass *dc = DEVICE_CLASS(klass);
1354     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1355 
1356     dc->desc               = "Aspeed 2400 FMC Controller";
1357     asc->r_conf            = R_CONF;
1358     asc->r_ce_ctrl         = R_CE_CTRL;
1359     asc->r_ctrl0           = R_CTRL0;
1360     asc->r_timings         = R_TIMINGS;
1361     asc->nregs_timings     = 1;
1362     asc->conf_enable_w0    = CONF_ENABLE_W0;
1363     asc->max_peripherals   = 5;
1364     asc->segments          = aspeed_2400_fmc_segments;
1365     asc->resets            = aspeed_2400_fmc_resets;
1366     asc->flash_window_base = 0x20000000;
1367     asc->flash_window_size = 0x10000000;
1368     asc->features          = ASPEED_SMC_FEATURE_DMA;
1369     asc->dma_flash_mask    = 0x0FFFFFFC;
1370     asc->dma_dram_mask     = 0x1FFFFFFC;
1371     asc->nregs             = ASPEED_SMC_R_MAX;
1372     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1373     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1374     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1375 }
1376 
1377 static const TypeInfo aspeed_2400_fmc_info = {
1378     .name =  "aspeed.fmc-ast2400",
1379     .parent = TYPE_ASPEED_SMC,
1380     .class_init = aspeed_2400_fmc_class_init,
1381 };
1382 
1383 static const AspeedSegments aspeed_2400_spi1_segments[] = {
1384     { 0x30000000, 64 * MiB },
1385 };
1386 
1387 static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data)
1388 {
1389     DeviceClass *dc = DEVICE_CLASS(klass);
1390     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1391 
1392     dc->desc               = "Aspeed 2400 SPI1 Controller";
1393     asc->r_conf            = R_SPI_CONF;
1394     asc->r_ce_ctrl         = 0xff;
1395     asc->r_ctrl0           = R_SPI_CTRL0;
1396     asc->r_timings         = R_SPI_TIMINGS;
1397     asc->nregs_timings     = 1;
1398     asc->conf_enable_w0    = SPI_CONF_ENABLE_W0;
1399     asc->max_peripherals   = 1;
1400     asc->segments          = aspeed_2400_spi1_segments;
1401     asc->flash_window_base = 0x30000000;
1402     asc->flash_window_size = 0x10000000;
1403     asc->features          = 0x0;
1404     asc->nregs             = ASPEED_SMC_R_SPI_MAX;
1405     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1406     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1407     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1408 }
1409 
1410 static const TypeInfo aspeed_2400_spi1_info = {
1411     .name =  "aspeed.spi1-ast2400",
1412     .parent = TYPE_ASPEED_SMC,
1413     .class_init = aspeed_2400_spi1_class_init,
1414 };
1415 
1416 static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = {
1417     [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1418                 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1419 };
1420 
1421 static const AspeedSegments aspeed_2500_fmc_segments[] = {
1422     { 0x20000000, 128 * MiB }, /* start address is readonly */
1423     { 0x28000000,  32 * MiB },
1424     { 0x2A000000,  32 * MiB },
1425 };
1426 
1427 static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data)
1428 {
1429     DeviceClass *dc = DEVICE_CLASS(klass);
1430     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1431 
1432     dc->desc               = "Aspeed 2600 FMC Controller";
1433     asc->r_conf            = R_CONF;
1434     asc->r_ce_ctrl         = R_CE_CTRL;
1435     asc->r_ctrl0           = R_CTRL0;
1436     asc->r_timings         = R_TIMINGS;
1437     asc->nregs_timings     = 1;
1438     asc->conf_enable_w0    = CONF_ENABLE_W0;
1439     asc->max_peripherals   = 3;
1440     asc->segments          = aspeed_2500_fmc_segments;
1441     asc->resets            = aspeed_2500_fmc_resets;
1442     asc->flash_window_base = 0x20000000;
1443     asc->flash_window_size = 0x10000000;
1444     asc->features          = ASPEED_SMC_FEATURE_DMA;
1445     asc->dma_flash_mask    = 0x0FFFFFFC;
1446     asc->dma_dram_mask     = 0x3FFFFFFC;
1447     asc->nregs             = ASPEED_SMC_R_MAX;
1448     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1449     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1450     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1451 }
1452 
1453 static const TypeInfo aspeed_2500_fmc_info = {
1454     .name =  "aspeed.fmc-ast2500",
1455     .parent = TYPE_ASPEED_SMC,
1456     .class_init = aspeed_2500_fmc_class_init,
1457 };
1458 
1459 static const AspeedSegments aspeed_2500_spi1_segments[] = {
1460     { 0x30000000, 32 * MiB }, /* start address is readonly */
1461     { 0x32000000, 96 * MiB }, /* end address is readonly */
1462 };
1463 
1464 static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data)
1465 {
1466     DeviceClass *dc = DEVICE_CLASS(klass);
1467     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1468 
1469     dc->desc               = "Aspeed 2600 SPI1 Controller";
1470     asc->r_conf            = R_CONF;
1471     asc->r_ce_ctrl         = R_CE_CTRL;
1472     asc->r_ctrl0           = R_CTRL0;
1473     asc->r_timings         = R_TIMINGS;
1474     asc->nregs_timings     = 1;
1475     asc->conf_enable_w0    = CONF_ENABLE_W0;
1476     asc->max_peripherals   = 2;
1477     asc->segments          = aspeed_2500_spi1_segments;
1478     asc->flash_window_base = 0x30000000;
1479     asc->flash_window_size = 0x8000000;
1480     asc->features          = 0x0;
1481     asc->nregs             = ASPEED_SMC_R_MAX;
1482     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1483     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1484     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1485 }
1486 
1487 static const TypeInfo aspeed_2500_spi1_info = {
1488     .name =  "aspeed.spi1-ast2500",
1489     .parent = TYPE_ASPEED_SMC,
1490     .class_init = aspeed_2500_spi1_class_init,
1491 };
1492 
1493 static const AspeedSegments aspeed_2500_spi2_segments[] = {
1494     { 0x38000000, 32 * MiB }, /* start address is readonly */
1495     { 0x3A000000, 96 * MiB }, /* end address is readonly */
1496 };
1497 
1498 static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data)
1499 {
1500     DeviceClass *dc = DEVICE_CLASS(klass);
1501     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1502 
1503     dc->desc               = "Aspeed 2600 SPI2 Controller";
1504     asc->r_conf            = R_CONF;
1505     asc->r_ce_ctrl         = R_CE_CTRL;
1506     asc->r_ctrl0           = R_CTRL0;
1507     asc->r_timings         = R_TIMINGS;
1508     asc->nregs_timings     = 1;
1509     asc->conf_enable_w0    = CONF_ENABLE_W0;
1510     asc->max_peripherals   = 2;
1511     asc->segments          = aspeed_2500_spi2_segments;
1512     asc->flash_window_base = 0x38000000;
1513     asc->flash_window_size = 0x8000000;
1514     asc->features          = 0x0;
1515     asc->nregs             = ASPEED_SMC_R_MAX;
1516     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1517     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1518     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1519 }
1520 
1521 static const TypeInfo aspeed_2500_spi2_info = {
1522     .name =  "aspeed.spi2-ast2500",
1523     .parent = TYPE_ASPEED_SMC,
1524     .class_init = aspeed_2500_spi2_class_init,
1525 };
1526 
1527 /*
1528  * The Segment Registers of the AST2600 have a 1MB unit. The address
1529  * range of a flash SPI peripheral is encoded with offsets in the overall
1530  * controller window. The previous SoC AST2400 and AST2500 used
1531  * absolute addresses. Only bits [27:20] are relevant and the end
1532  * address is an upper bound limit.
1533  */
1534 #define AST2600_SEG_ADDR_MASK 0x0ff00000
1535 
1536 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
1537                                                const AspeedSegments *seg)
1538 {
1539     uint32_t reg = 0;
1540 
1541     /* Disabled segments have a nil register */
1542     if (!seg->size) {
1543         return 0;
1544     }
1545 
1546     reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
1547     reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
1548     return reg;
1549 }
1550 
1551 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
1552                                            uint32_t reg, AspeedSegments *seg)
1553 {
1554     uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
1555     uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
1556     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1557 
1558     if (reg) {
1559         seg->addr = asc->flash_window_base + start_offset;
1560         seg->size = end_offset + MiB - start_offset;
1561     } else {
1562         seg->addr = asc->flash_window_base;
1563         seg->size = 0;
1564     }
1565 }
1566 
1567 static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = {
1568     [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1569                 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 |
1570                 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2),
1571 };
1572 
1573 static const AspeedSegments aspeed_2600_fmc_segments[] = {
1574     { 0x0, 128 * MiB }, /* start address is readonly */
1575     { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1576     { 0x0, 0 }, /* disabled */
1577 };
1578 
1579 static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data)
1580 {
1581     DeviceClass *dc = DEVICE_CLASS(klass);
1582     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1583 
1584     dc->desc               = "Aspeed 2600 FMC Controller";
1585     asc->r_conf            = R_CONF;
1586     asc->r_ce_ctrl         = R_CE_CTRL;
1587     asc->r_ctrl0           = R_CTRL0;
1588     asc->r_timings         = R_TIMINGS;
1589     asc->nregs_timings     = 1;
1590     asc->conf_enable_w0    = CONF_ENABLE_W0;
1591     asc->max_peripherals   = 3;
1592     asc->segments          = aspeed_2600_fmc_segments;
1593     asc->resets            = aspeed_2600_fmc_resets;
1594     asc->flash_window_base = 0x20000000;
1595     asc->flash_window_size = 0x10000000;
1596     asc->features          = ASPEED_SMC_FEATURE_DMA |
1597                              ASPEED_SMC_FEATURE_WDT_CONTROL;
1598     asc->dma_flash_mask    = 0x0FFFFFFC;
1599     asc->dma_dram_mask     = 0x3FFFFFFC;
1600     asc->nregs             = ASPEED_SMC_R_MAX;
1601     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1602     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1603     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1604 }
1605 
1606 static const TypeInfo aspeed_2600_fmc_info = {
1607     .name =  "aspeed.fmc-ast2600",
1608     .parent = TYPE_ASPEED_SMC,
1609     .class_init = aspeed_2600_fmc_class_init,
1610 };
1611 
1612 static const AspeedSegments aspeed_2600_spi1_segments[] = {
1613     { 0x0, 128 * MiB }, /* start address is readonly */
1614     { 0x0, 0 }, /* disabled */
1615 };
1616 
1617 static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data)
1618 {
1619     DeviceClass *dc = DEVICE_CLASS(klass);
1620     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1621 
1622     dc->desc               = "Aspeed 2600 SPI1 Controller";
1623     asc->r_conf            = R_CONF;
1624     asc->r_ce_ctrl         = R_CE_CTRL;
1625     asc->r_ctrl0           = R_CTRL0;
1626     asc->r_timings         = R_TIMINGS;
1627     asc->nregs_timings     = 2;
1628     asc->conf_enable_w0    = CONF_ENABLE_W0;
1629     asc->max_peripherals   = 2;
1630     asc->segments          = aspeed_2600_spi1_segments;
1631     asc->flash_window_base = 0x30000000;
1632     asc->flash_window_size = 0x10000000;
1633     asc->features          = ASPEED_SMC_FEATURE_DMA |
1634                              ASPEED_SMC_FEATURE_DMA_GRANT;
1635     asc->dma_flash_mask    = 0x0FFFFFFC;
1636     asc->dma_dram_mask     = 0x3FFFFFFC;
1637     asc->nregs             = ASPEED_SMC_R_MAX;
1638     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1639     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1640     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1641 }
1642 
1643 static const TypeInfo aspeed_2600_spi1_info = {
1644     .name =  "aspeed.spi1-ast2600",
1645     .parent = TYPE_ASPEED_SMC,
1646     .class_init = aspeed_2600_spi1_class_init,
1647 };
1648 
1649 static const AspeedSegments aspeed_2600_spi2_segments[] = {
1650     { 0x0, 128 * MiB }, /* start address is readonly */
1651     { 0x0, 0 }, /* disabled */
1652     { 0x0, 0 }, /* disabled */
1653 };
1654 
1655 static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data)
1656 {
1657     DeviceClass *dc = DEVICE_CLASS(klass);
1658     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1659 
1660     dc->desc               = "Aspeed 2600 SPI2 Controller";
1661     asc->r_conf            = R_CONF;
1662     asc->r_ce_ctrl         = R_CE_CTRL;
1663     asc->r_ctrl0           = R_CTRL0;
1664     asc->r_timings         = R_TIMINGS;
1665     asc->nregs_timings     = 3;
1666     asc->conf_enable_w0    = CONF_ENABLE_W0;
1667     asc->max_peripherals   = 3;
1668     asc->segments          = aspeed_2600_spi2_segments;
1669     asc->flash_window_base = 0x50000000;
1670     asc->flash_window_size = 0x10000000;
1671     asc->features          = ASPEED_SMC_FEATURE_DMA |
1672                              ASPEED_SMC_FEATURE_DMA_GRANT;
1673     asc->dma_flash_mask    = 0x0FFFFFFC;
1674     asc->dma_dram_mask     = 0x3FFFFFFC;
1675     asc->nregs             = ASPEED_SMC_R_MAX;
1676     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1677     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1678     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1679 }
1680 
1681 static const TypeInfo aspeed_2600_spi2_info = {
1682     .name =  "aspeed.spi2-ast2600",
1683     .parent = TYPE_ASPEED_SMC,
1684     .class_init = aspeed_2600_spi2_class_init,
1685 };
1686 
1687 static void aspeed_smc_register_types(void)
1688 {
1689     type_register_static(&aspeed_smc_flash_info);
1690     type_register_static(&aspeed_smc_info);
1691     type_register_static(&aspeed_2400_smc_info);
1692     type_register_static(&aspeed_2400_fmc_info);
1693     type_register_static(&aspeed_2400_spi1_info);
1694     type_register_static(&aspeed_2500_fmc_info);
1695     type_register_static(&aspeed_2500_spi1_info);
1696     type_register_static(&aspeed_2500_spi2_info);
1697     type_register_static(&aspeed_2600_fmc_info);
1698     type_register_static(&aspeed_2600_spi1_info);
1699     type_register_static(&aspeed_2600_spi2_info);
1700 }
1701 
1702 type_init(aspeed_smc_register_types)
1703