1 /* 2 * ASPEED AST2400 SMC Controller (SPI Flash Only) 3 * 4 * Copyright (C) 2016 IBM Corp. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/sysbus.h" 27 #include "migration/vmstate.h" 28 #include "qemu/log.h" 29 #include "qemu/module.h" 30 #include "qemu/error-report.h" 31 #include "qapi/error.h" 32 #include "qemu/units.h" 33 #include "trace.h" 34 35 #include "hw/irq.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/ssi/aspeed_smc.h" 38 39 /* CE Type Setting Register */ 40 #define R_CONF (0x00 / 4) 41 #define CONF_LEGACY_DISABLE (1 << 31) 42 #define CONF_ENABLE_W4 20 43 #define CONF_ENABLE_W3 19 44 #define CONF_ENABLE_W2 18 45 #define CONF_ENABLE_W1 17 46 #define CONF_ENABLE_W0 16 47 #define CONF_FLASH_TYPE4 8 48 #define CONF_FLASH_TYPE3 6 49 #define CONF_FLASH_TYPE2 4 50 #define CONF_FLASH_TYPE1 2 51 #define CONF_FLASH_TYPE0 0 52 #define CONF_FLASH_TYPE_NOR 0x0 53 #define CONF_FLASH_TYPE_NAND 0x1 54 #define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */ 55 56 /* CE Control Register */ 57 #define R_CE_CTRL (0x04 / 4) 58 #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */ 59 #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */ 60 #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */ 61 #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */ 62 #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */ 63 64 /* Interrupt Control and Status Register */ 65 #define R_INTR_CTRL (0x08 / 4) 66 #define INTR_CTRL_DMA_STATUS (1 << 11) 67 #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10) 68 #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9) 69 #define INTR_CTRL_DMA_EN (1 << 3) 70 #define INTR_CTRL_CMD_ABORT_EN (1 << 2) 71 #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1) 72 73 /* Command Control Register */ 74 #define R_CE_CMD_CTRL (0x0C / 4) 75 #define CTRL_ADDR_BYTE0_DISABLE_SHIFT 4 76 #define CTRL_DATA_BYTE0_DISABLE_SHIFT 0 77 78 #define aspeed_smc_addr_byte_enabled(s, i) \ 79 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i))))) 80 #define aspeed_smc_data_byte_enabled(s, i) \ 81 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i))))) 82 83 /* CEx Control Register */ 84 #define R_CTRL0 (0x10 / 4) 85 #define CTRL_IO_QPI (1 << 31) 86 #define CTRL_IO_QUAD_DATA (1 << 30) 87 #define CTRL_IO_DUAL_DATA (1 << 29) 88 #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */ 89 #define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */ 90 #define CTRL_CMD_SHIFT 16 91 #define CTRL_CMD_MASK 0xff 92 #define CTRL_DUMMY_HIGH_SHIFT 14 93 #define CTRL_AST2400_SPI_4BYTE (1 << 13) 94 #define CE_CTRL_CLOCK_FREQ_SHIFT 8 95 #define CE_CTRL_CLOCK_FREQ_MASK 0xf 96 #define CE_CTRL_CLOCK_FREQ(div) \ 97 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT) 98 #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */ 99 #define CTRL_CE_STOP_ACTIVE (1 << 2) 100 #define CTRL_CMD_MODE_MASK 0x3 101 #define CTRL_READMODE 0x0 102 #define CTRL_FREADMODE 0x1 103 #define CTRL_WRITEMODE 0x2 104 #define CTRL_USERMODE 0x3 105 #define R_CTRL1 (0x14 / 4) 106 #define R_CTRL2 (0x18 / 4) 107 #define R_CTRL3 (0x1C / 4) 108 #define R_CTRL4 (0x20 / 4) 109 110 /* CEx Segment Address Register */ 111 #define R_SEG_ADDR0 (0x30 / 4) 112 #define SEG_END_SHIFT 24 /* 8MB units */ 113 #define SEG_END_MASK 0xff 114 #define SEG_START_SHIFT 16 /* address bit [A29-A23] */ 115 #define SEG_START_MASK 0xff 116 #define R_SEG_ADDR1 (0x34 / 4) 117 #define R_SEG_ADDR2 (0x38 / 4) 118 #define R_SEG_ADDR3 (0x3C / 4) 119 #define R_SEG_ADDR4 (0x40 / 4) 120 121 /* Misc Control Register #1 */ 122 #define R_MISC_CTRL1 (0x50 / 4) 123 124 /* SPI dummy cycle data */ 125 #define R_DUMMY_DATA (0x54 / 4) 126 127 /* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */ 128 #define R_FMC_WDT2_CTRL (0x64 / 4) 129 #define FMC_WDT2_CTRL_ALT_BOOT_MODE BIT(6) /* O: 2 chips 1: 1 chip */ 130 #define FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5) 131 #define FMC_WDT2_CTRL_BOOT_SOURCE BIT(4) /* O: primary 1: alternate */ 132 #define FMC_WDT2_CTRL_EN BIT(0) 133 134 /* DMA Control/Status Register */ 135 #define R_DMA_CTRL (0x80 / 4) 136 #define DMA_CTRL_REQUEST (1 << 31) 137 #define DMA_CTRL_GRANT (1 << 30) 138 #define DMA_CTRL_DELAY_MASK 0xf 139 #define DMA_CTRL_DELAY_SHIFT 8 140 #define DMA_CTRL_FREQ_MASK 0xf 141 #define DMA_CTRL_FREQ_SHIFT 4 142 #define DMA_CTRL_CALIB (1 << 3) 143 #define DMA_CTRL_CKSUM (1 << 2) 144 #define DMA_CTRL_WRITE (1 << 1) 145 #define DMA_CTRL_ENABLE (1 << 0) 146 147 /* DMA Flash Side Address */ 148 #define R_DMA_FLASH_ADDR (0x84 / 4) 149 150 /* DMA DRAM Side Address */ 151 #define R_DMA_DRAM_ADDR (0x88 / 4) 152 153 /* DMA Length Register */ 154 #define R_DMA_LEN (0x8C / 4) 155 156 /* Checksum Calculation Result */ 157 #define R_DMA_CHECKSUM (0x90 / 4) 158 159 /* Read Timing Compensation Register */ 160 #define R_TIMINGS (0x94 / 4) 161 162 /* SPI controller registers and bits (AST2400) */ 163 #define R_SPI_CONF (0x00 / 4) 164 #define SPI_CONF_ENABLE_W0 0 165 #define R_SPI_CTRL0 (0x4 / 4) 166 #define R_SPI_MISC_CTRL (0x10 / 4) 167 #define R_SPI_TIMINGS (0x14 / 4) 168 169 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4) 170 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4) 171 172 /* 173 * DMA DRAM addresses should be 4 bytes aligned and the valid address 174 * range is 0x40000000 - 0x5FFFFFFF (AST2400) 175 * 0x80000000 - 0xBFFFFFFF (AST2500) 176 * 177 * DMA flash addresses should be 4 bytes aligned and the valid address 178 * range is 0x20000000 - 0x2FFFFFFF. 179 * 180 * DMA length is from 4 bytes to 32MB 181 * 0: 4 bytes 182 * 0x7FFFFF: 32M bytes 183 */ 184 #define DMA_DRAM_ADDR(asc, val) ((val) & (asc)->dma_dram_mask) 185 #define DMA_FLASH_ADDR(asc, val) ((val) & (asc)->dma_flash_mask) 186 #define DMA_LENGTH(val) ((val) & 0x01FFFFFC) 187 188 /* Flash opcodes. */ 189 #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */ 190 191 #define SNOOP_OFF 0xFF 192 #define SNOOP_START 0x0 193 194 /* 195 * Default segments mapping addresses and size for each peripheral per 196 * controller. These can be changed when board is initialized with the 197 * Segment Address Registers. 198 */ 199 static const AspeedSegments aspeed_2400_spi1_segments[]; 200 static const AspeedSegments aspeed_2500_spi1_segments[]; 201 static const AspeedSegments aspeed_2500_spi2_segments[]; 202 203 #define ASPEED_SMC_FEATURE_DMA 0x1 204 #define ASPEED_SMC_FEATURE_DMA_GRANT 0x2 205 #define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4 206 207 static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc) 208 { 209 return !!(asc->features & ASPEED_SMC_FEATURE_DMA); 210 } 211 212 static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc) 213 { 214 return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL); 215 } 216 217 #define aspeed_smc_error(fmt, ...) \ 218 qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__) 219 220 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s, 221 const AspeedSegments *new, 222 int cs) 223 { 224 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 225 AspeedSegments seg; 226 int i; 227 228 for (i = 0; i < asc->max_peripherals; i++) { 229 if (i == cs) { 230 continue; 231 } 232 233 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg); 234 235 if (new->addr + new->size > seg.addr && 236 new->addr < seg.addr + seg.size) { 237 aspeed_smc_error("new segment CS%d [ 0x%" 238 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with " 239 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]", 240 cs, new->addr, new->addr + new->size, 241 i, seg.addr, seg.addr + seg.size); 242 return true; 243 } 244 } 245 return false; 246 } 247 248 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs, 249 uint64_t regval) 250 { 251 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 252 AspeedSMCFlash *fl = &s->flashes[cs]; 253 AspeedSegments seg; 254 255 asc->reg_to_segment(s, regval, &seg); 256 257 memory_region_transaction_begin(); 258 memory_region_set_size(&fl->mmio, seg.size); 259 memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base); 260 memory_region_set_enabled(&fl->mmio, !!seg.size); 261 memory_region_transaction_commit(); 262 263 s->regs[R_SEG_ADDR0 + cs] = regval; 264 } 265 266 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs, 267 uint64_t new) 268 { 269 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 270 AspeedSegments seg; 271 272 asc->reg_to_segment(s, new, &seg); 273 274 trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size); 275 276 /* The start address of CS0 is read-only */ 277 if (cs == 0 && seg.addr != asc->flash_window_base) { 278 aspeed_smc_error("Tried to change CS0 start address to 0x%" 279 HWADDR_PRIx, seg.addr); 280 seg.addr = asc->flash_window_base; 281 new = asc->segment_to_reg(s, &seg); 282 } 283 284 /* 285 * The end address of the AST2500 spi controllers is also 286 * read-only. 287 */ 288 if ((asc->segments == aspeed_2500_spi1_segments || 289 asc->segments == aspeed_2500_spi2_segments) && 290 cs == asc->max_peripherals && 291 seg.addr + seg.size != asc->segments[cs].addr + 292 asc->segments[cs].size) { 293 aspeed_smc_error("Tried to change CS%d end address to 0x%" 294 HWADDR_PRIx, cs, seg.addr + seg.size); 295 seg.size = asc->segments[cs].addr + asc->segments[cs].size - 296 seg.addr; 297 new = asc->segment_to_reg(s, &seg); 298 } 299 300 /* Keep the segment in the overall flash window */ 301 if (seg.size && 302 (seg.addr + seg.size <= asc->flash_window_base || 303 seg.addr > asc->flash_window_base + asc->flash_window_size)) { 304 aspeed_smc_error("new segment for CS%d is invalid : " 305 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]", 306 cs, seg.addr, seg.addr + seg.size); 307 return; 308 } 309 310 /* Check start address vs. alignment */ 311 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) { 312 aspeed_smc_error("new segment for CS%d is not " 313 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]", 314 cs, seg.addr, seg.addr + seg.size); 315 } 316 317 /* And segments should not overlap (in the specs) */ 318 aspeed_smc_flash_overlap(s, &seg, cs); 319 320 /* All should be fine now to move the region */ 321 aspeed_smc_flash_set_segment_region(s, cs, new); 322 } 323 324 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr, 325 unsigned size) 326 { 327 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u" PRIx64, addr, size); 328 return 0; 329 } 330 331 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr, 332 uint64_t data, unsigned size) 333 { 334 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64, 335 addr, size, data); 336 } 337 338 static const MemoryRegionOps aspeed_smc_flash_default_ops = { 339 .read = aspeed_smc_flash_default_read, 340 .write = aspeed_smc_flash_default_write, 341 .endianness = DEVICE_LITTLE_ENDIAN, 342 .valid = { 343 .min_access_size = 1, 344 .max_access_size = 4, 345 }, 346 }; 347 348 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl) 349 { 350 const AspeedSMCState *s = fl->controller; 351 352 return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK; 353 } 354 355 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl) 356 { 357 const AspeedSMCState *s = fl->controller; 358 359 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs)); 360 } 361 362 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl) 363 { 364 const AspeedSMCState *s = fl->controller; 365 int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK; 366 367 /* 368 * In read mode, the default SPI command is READ (0x3). In other 369 * modes, the command should necessarily be defined 370 * 371 * TODO: add support for READ4 (0x13) on AST2600 372 */ 373 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) { 374 cmd = SPI_OP_READ; 375 } 376 377 if (!cmd) { 378 aspeed_smc_error("no command defined for mode %d", 379 aspeed_smc_flash_mode(fl)); 380 } 381 382 return cmd; 383 } 384 385 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl) 386 { 387 const AspeedSMCState *s = fl->controller; 388 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 389 390 if (asc->segments == aspeed_2400_spi1_segments) { 391 return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE; 392 } else { 393 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs)); 394 } 395 } 396 397 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect) 398 { 399 AspeedSMCState *s = fl->controller; 400 401 trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : ""); 402 403 qemu_set_irq(s->cs_lines[fl->cs], unselect); 404 } 405 406 static void aspeed_smc_flash_select(AspeedSMCFlash *fl) 407 { 408 aspeed_smc_flash_do_select(fl, false); 409 } 410 411 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl) 412 { 413 aspeed_smc_flash_do_select(fl, true); 414 } 415 416 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl, 417 uint32_t addr) 418 { 419 const AspeedSMCState *s = fl->controller; 420 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 421 AspeedSegments seg; 422 423 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg); 424 if ((addr % seg.size) != addr) { 425 aspeed_smc_error("invalid address 0x%08x for CS%d segment : " 426 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]", 427 addr, fl->cs, seg.addr, seg.addr + seg.size); 428 addr %= seg.size; 429 } 430 431 return addr; 432 } 433 434 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl) 435 { 436 const AspeedSMCState *s = fl->controller; 437 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs]; 438 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1; 439 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3; 440 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8; 441 442 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) { 443 dummies /= 2; 444 } 445 446 return dummies; 447 } 448 449 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr) 450 { 451 const AspeedSMCState *s = fl->controller; 452 uint8_t cmd = aspeed_smc_flash_cmd(fl); 453 int i = aspeed_smc_flash_is_4byte(fl) ? 4 : 3; 454 455 /* Flash access can not exceed CS segment */ 456 addr = aspeed_smc_check_segment_addr(fl, addr); 457 458 ssi_transfer(s->spi, cmd); 459 while (i--) { 460 if (aspeed_smc_addr_byte_enabled(s, i)) { 461 ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff); 462 } 463 } 464 465 /* 466 * Use fake transfers to model dummy bytes. The value should 467 * be configured to some non-zero value in fast read mode and 468 * zero in read mode. But, as the HW allows inconsistent 469 * settings, let's check for fast read mode. 470 */ 471 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) { 472 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) { 473 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff); 474 } 475 } 476 } 477 478 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size) 479 { 480 AspeedSMCFlash *fl = opaque; 481 AspeedSMCState *s = fl->controller; 482 uint64_t ret = 0; 483 int i; 484 485 switch (aspeed_smc_flash_mode(fl)) { 486 case CTRL_USERMODE: 487 for (i = 0; i < size; i++) { 488 ret |= ssi_transfer(s->spi, 0x0) << (8 * i); 489 } 490 break; 491 case CTRL_READMODE: 492 case CTRL_FREADMODE: 493 aspeed_smc_flash_select(fl); 494 aspeed_smc_flash_setup(fl, addr); 495 496 for (i = 0; i < size; i++) { 497 ret |= ssi_transfer(s->spi, 0x0) << (8 * i); 498 } 499 500 aspeed_smc_flash_unselect(fl); 501 break; 502 default: 503 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl)); 504 } 505 506 trace_aspeed_smc_flash_read(fl->cs, addr, size, ret, 507 aspeed_smc_flash_mode(fl)); 508 return ret; 509 } 510 511 /* 512 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a 513 * common include header. 514 */ 515 typedef enum { 516 READ = 0x3, READ_4 = 0x13, 517 FAST_READ = 0xb, FAST_READ_4 = 0x0c, 518 DOR = 0x3b, DOR_4 = 0x3c, 519 QOR = 0x6b, QOR_4 = 0x6c, 520 DIOR = 0xbb, DIOR_4 = 0xbc, 521 QIOR = 0xeb, QIOR_4 = 0xec, 522 523 PP = 0x2, PP_4 = 0x12, 524 DPP = 0xa2, 525 QPP = 0x32, QPP_4 = 0x34, 526 } FlashCMD; 527 528 static int aspeed_smc_num_dummies(uint8_t command) 529 { 530 switch (command) { /* check for dummies */ 531 case READ: /* no dummy bytes/cycles */ 532 case PP: 533 case DPP: 534 case QPP: 535 case READ_4: 536 case PP_4: 537 case QPP_4: 538 return 0; 539 case FAST_READ: 540 case DOR: 541 case QOR: 542 case FAST_READ_4: 543 case DOR_4: 544 case QOR_4: 545 return 1; 546 case DIOR: 547 case DIOR_4: 548 return 2; 549 case QIOR: 550 case QIOR_4: 551 return 4; 552 default: 553 return -1; 554 } 555 } 556 557 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data, 558 unsigned size) 559 { 560 AspeedSMCState *s = fl->controller; 561 uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3; 562 563 trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies, 564 (uint8_t) data & 0xff); 565 566 if (s->snoop_index == SNOOP_OFF) { 567 return false; /* Do nothing */ 568 569 } else if (s->snoop_index == SNOOP_START) { 570 uint8_t cmd = data & 0xff; 571 int ndummies = aspeed_smc_num_dummies(cmd); 572 573 /* 574 * No dummy cycles are expected with the current command. Turn 575 * off snooping and let the transfer proceed normally. 576 */ 577 if (ndummies <= 0) { 578 s->snoop_index = SNOOP_OFF; 579 return false; 580 } 581 582 s->snoop_dummies = ndummies * 8; 583 584 } else if (s->snoop_index >= addr_width + 1) { 585 586 /* The SPI transfer has reached the dummy cycles sequence */ 587 for (; s->snoop_dummies; s->snoop_dummies--) { 588 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff); 589 } 590 591 /* If no more dummy cycles are expected, turn off snooping */ 592 if (!s->snoop_dummies) { 593 s->snoop_index = SNOOP_OFF; 594 } else { 595 s->snoop_index += size; 596 } 597 598 /* 599 * Dummy cycles have been faked already. Ignore the current 600 * SPI transfer 601 */ 602 return true; 603 } 604 605 s->snoop_index += size; 606 return false; 607 } 608 609 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data, 610 unsigned size) 611 { 612 AspeedSMCFlash *fl = opaque; 613 AspeedSMCState *s = fl->controller; 614 int i; 615 616 trace_aspeed_smc_flash_write(fl->cs, addr, size, data, 617 aspeed_smc_flash_mode(fl)); 618 619 if (!aspeed_smc_is_writable(fl)) { 620 aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr); 621 return; 622 } 623 624 switch (aspeed_smc_flash_mode(fl)) { 625 case CTRL_USERMODE: 626 if (aspeed_smc_do_snoop(fl, data, size)) { 627 break; 628 } 629 630 for (i = 0; i < size; i++) { 631 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff); 632 } 633 break; 634 case CTRL_WRITEMODE: 635 aspeed_smc_flash_select(fl); 636 aspeed_smc_flash_setup(fl, addr); 637 638 for (i = 0; i < size; i++) { 639 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff); 640 } 641 642 aspeed_smc_flash_unselect(fl); 643 break; 644 default: 645 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl)); 646 } 647 } 648 649 static const MemoryRegionOps aspeed_smc_flash_ops = { 650 .read = aspeed_smc_flash_read, 651 .write = aspeed_smc_flash_write, 652 .endianness = DEVICE_LITTLE_ENDIAN, 653 .valid = { 654 .min_access_size = 1, 655 .max_access_size = 4, 656 }, 657 }; 658 659 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value) 660 { 661 AspeedSMCState *s = fl->controller; 662 bool unselect; 663 664 /* User mode selects the CS, other modes unselect */ 665 unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE; 666 667 /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */ 668 if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) && 669 value & CTRL_CE_STOP_ACTIVE) { 670 unselect = true; 671 } 672 673 s->regs[s->r_ctrl0 + fl->cs] = value; 674 675 s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START; 676 677 aspeed_smc_flash_do_select(fl, unselect); 678 } 679 680 static void aspeed_smc_reset(DeviceState *d) 681 { 682 AspeedSMCState *s = ASPEED_SMC(d); 683 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 684 int i; 685 686 if (asc->resets) { 687 memcpy(s->regs, asc->resets, sizeof s->regs); 688 } else { 689 memset(s->regs, 0, sizeof s->regs); 690 } 691 692 /* Unselect all peripherals */ 693 for (i = 0; i < s->num_cs; ++i) { 694 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE; 695 qemu_set_irq(s->cs_lines[i], true); 696 } 697 698 /* setup the default segment register values and regions for all */ 699 for (i = 0; i < asc->max_peripherals; ++i) { 700 aspeed_smc_flash_set_segment_region(s, i, 701 asc->segment_to_reg(s, &asc->segments[i])); 702 } 703 704 s->snoop_index = SNOOP_OFF; 705 s->snoop_dummies = 0; 706 } 707 708 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size) 709 { 710 AspeedSMCState *s = ASPEED_SMC(opaque); 711 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque); 712 713 addr >>= 2; 714 715 if (addr == s->r_conf || 716 (addr >= s->r_timings && 717 addr < s->r_timings + asc->nregs_timings) || 718 addr == s->r_ce_ctrl || 719 addr == R_CE_CMD_CTRL || 720 addr == R_INTR_CTRL || 721 addr == R_DUMMY_DATA || 722 (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) || 723 (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) || 724 (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) || 725 (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) || 726 (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) || 727 (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) || 728 (addr >= R_SEG_ADDR0 && 729 addr < R_SEG_ADDR0 + asc->max_peripherals) || 730 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->max_peripherals)) { 731 732 trace_aspeed_smc_read(addr, size, s->regs[addr]); 733 734 return s->regs[addr]; 735 } else { 736 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n", 737 __func__, addr); 738 return -1; 739 } 740 } 741 742 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask) 743 { 744 /* HCLK/1 .. HCLK/16 */ 745 const uint8_t hclk_divisors[] = { 746 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0 747 }; 748 int i; 749 750 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) { 751 if (hclk_mask == hclk_divisors[i]) { 752 return i + 1; 753 } 754 } 755 756 aspeed_smc_error("invalid HCLK mask %x", hclk_mask); 757 return 0; 758 } 759 760 /* 761 * When doing calibration, the SPI clock rate in the CE0 Control 762 * Register and the read delay cycles in the Read Timing Compensation 763 * Register are set using bit[11:4] of the DMA Control Register. 764 */ 765 static void aspeed_smc_dma_calibration(AspeedSMCState *s) 766 { 767 uint8_t delay = 768 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK; 769 uint8_t hclk_mask = 770 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK; 771 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask); 772 uint32_t hclk_shift = (hclk_div - 1) << 2; 773 uint8_t cs; 774 775 /* 776 * The Read Timing Compensation Register values apply to all CS on 777 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays 778 */ 779 if (hclk_div && hclk_div < 6) { 780 s->regs[s->r_timings] &= ~(0xf << hclk_shift); 781 s->regs[s->r_timings] |= delay << hclk_shift; 782 } 783 784 /* 785 * TODO: compute the CS from the DMA address and the segment 786 * registers. This is not really a problem for now because the 787 * Timing Register values apply to all CS and software uses CS0 to 788 * do calibration. 789 */ 790 cs = 0; 791 s->regs[s->r_ctrl0 + cs] &= 792 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT); 793 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div); 794 } 795 796 /* 797 * Emulate read errors in the DMA Checksum Register for high 798 * frequencies and optimistic settings of the Read Timing Compensation 799 * Register. This will help in tuning the SPI timing calibration 800 * algorithm. 801 */ 802 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s) 803 { 804 uint8_t delay = 805 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK; 806 uint8_t hclk_mask = 807 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK; 808 809 /* 810 * Typical values of a palmetto-bmc machine. 811 */ 812 switch (aspeed_smc_hclk_divisor(hclk_mask)) { 813 case 4 ... 16: 814 return false; 815 case 3: /* at least one HCLK cycle delay */ 816 return (delay & 0x7) < 1; 817 case 2: /* at least two HCLK cycle delay */ 818 return (delay & 0x7) < 2; 819 case 1: /* (> 100MHz) is above the max freq of the controller */ 820 return true; 821 default: 822 g_assert_not_reached(); 823 } 824 } 825 826 /* 827 * Accumulate the result of the reads to provide a checksum that will 828 * be used to validate the read timing settings. 829 */ 830 static void aspeed_smc_dma_checksum(AspeedSMCState *s) 831 { 832 MemTxResult result; 833 uint32_t data; 834 835 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) { 836 aspeed_smc_error("invalid direction for DMA checksum"); 837 return; 838 } 839 840 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) { 841 aspeed_smc_dma_calibration(s); 842 } 843 844 while (s->regs[R_DMA_LEN]) { 845 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR], 846 MEMTXATTRS_UNSPECIFIED, &result); 847 if (result != MEMTX_OK) { 848 aspeed_smc_error("Flash read failed @%08x", 849 s->regs[R_DMA_FLASH_ADDR]); 850 return; 851 } 852 trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data); 853 854 /* 855 * When the DMA is on-going, the DMA registers are updated 856 * with the current working addresses and length. 857 */ 858 s->regs[R_DMA_CHECKSUM] += data; 859 s->regs[R_DMA_FLASH_ADDR] += 4; 860 s->regs[R_DMA_LEN] -= 4; 861 } 862 863 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) { 864 s->regs[R_DMA_CHECKSUM] = 0xbadc0de; 865 } 866 867 } 868 869 static void aspeed_smc_dma_rw(AspeedSMCState *s) 870 { 871 MemTxResult result; 872 uint32_t data; 873 874 trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ? 875 "write" : "read", 876 s->regs[R_DMA_FLASH_ADDR], 877 s->regs[R_DMA_DRAM_ADDR], 878 s->regs[R_DMA_LEN]); 879 while (s->regs[R_DMA_LEN]) { 880 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) { 881 data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR], 882 MEMTXATTRS_UNSPECIFIED, &result); 883 if (result != MEMTX_OK) { 884 aspeed_smc_error("DRAM read failed @%08x", 885 s->regs[R_DMA_DRAM_ADDR]); 886 return; 887 } 888 889 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR], 890 data, MEMTXATTRS_UNSPECIFIED, &result); 891 if (result != MEMTX_OK) { 892 aspeed_smc_error("Flash write failed @%08x", 893 s->regs[R_DMA_FLASH_ADDR]); 894 return; 895 } 896 } else { 897 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR], 898 MEMTXATTRS_UNSPECIFIED, &result); 899 if (result != MEMTX_OK) { 900 aspeed_smc_error("Flash read failed @%08x", 901 s->regs[R_DMA_FLASH_ADDR]); 902 return; 903 } 904 905 address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR], 906 data, MEMTXATTRS_UNSPECIFIED, &result); 907 if (result != MEMTX_OK) { 908 aspeed_smc_error("DRAM write failed @%08x", 909 s->regs[R_DMA_DRAM_ADDR]); 910 return; 911 } 912 } 913 914 /* 915 * When the DMA is on-going, the DMA registers are updated 916 * with the current working addresses and length. 917 */ 918 s->regs[R_DMA_FLASH_ADDR] += 4; 919 s->regs[R_DMA_DRAM_ADDR] += 4; 920 s->regs[R_DMA_LEN] -= 4; 921 s->regs[R_DMA_CHECKSUM] += data; 922 } 923 } 924 925 static void aspeed_smc_dma_stop(AspeedSMCState *s) 926 { 927 /* 928 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the 929 * engine is idle 930 */ 931 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS; 932 s->regs[R_DMA_CHECKSUM] = 0; 933 934 /* 935 * Lower the DMA irq in any case. The IRQ control register could 936 * have been cleared before disabling the DMA. 937 */ 938 qemu_irq_lower(s->irq); 939 } 940 941 /* 942 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA 943 * can start even if the result of the previous was not collected. 944 */ 945 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s) 946 { 947 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE && 948 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS); 949 } 950 951 static void aspeed_smc_dma_done(AspeedSMCState *s) 952 { 953 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS; 954 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) { 955 qemu_irq_raise(s->irq); 956 } 957 } 958 959 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl) 960 { 961 if (!(dma_ctrl & DMA_CTRL_ENABLE)) { 962 s->regs[R_DMA_CTRL] = dma_ctrl; 963 964 aspeed_smc_dma_stop(s); 965 return; 966 } 967 968 if (aspeed_smc_dma_in_progress(s)) { 969 aspeed_smc_error("DMA in progress !"); 970 return; 971 } 972 973 s->regs[R_DMA_CTRL] = dma_ctrl; 974 975 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) { 976 aspeed_smc_dma_checksum(s); 977 } else { 978 aspeed_smc_dma_rw(s); 979 } 980 981 aspeed_smc_dma_done(s); 982 } 983 984 static inline bool aspeed_smc_dma_granted(AspeedSMCState *s) 985 { 986 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 987 988 if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) { 989 return true; 990 } 991 992 if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) { 993 aspeed_smc_error("DMA not granted"); 994 return false; 995 } 996 997 return true; 998 } 999 1000 static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl) 1001 { 1002 /* Preserve DMA bits */ 1003 dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT); 1004 1005 if (dma_ctrl == 0xAEED0000) { 1006 /* automatically grant request */ 1007 s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT); 1008 return; 1009 } 1010 1011 /* clear request */ 1012 if (dma_ctrl == 0xDEEA0000) { 1013 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT); 1014 return; 1015 } 1016 1017 if (!aspeed_smc_dma_granted(s)) { 1018 aspeed_smc_error("DMA not granted"); 1019 return; 1020 } 1021 1022 aspeed_smc_dma_ctrl(s, dma_ctrl); 1023 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT); 1024 } 1025 1026 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data, 1027 unsigned int size) 1028 { 1029 AspeedSMCState *s = ASPEED_SMC(opaque); 1030 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 1031 uint32_t value = data; 1032 1033 addr >>= 2; 1034 1035 trace_aspeed_smc_write(addr, size, data); 1036 1037 if (addr == s->r_conf || 1038 (addr >= s->r_timings && 1039 addr < s->r_timings + asc->nregs_timings) || 1040 addr == s->r_ce_ctrl) { 1041 s->regs[addr] = value; 1042 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) { 1043 int cs = addr - s->r_ctrl0; 1044 aspeed_smc_flash_update_ctrl(&s->flashes[cs], value); 1045 } else if (addr >= R_SEG_ADDR0 && 1046 addr < R_SEG_ADDR0 + asc->max_peripherals) { 1047 int cs = addr - R_SEG_ADDR0; 1048 1049 if (value != s->regs[R_SEG_ADDR0 + cs]) { 1050 aspeed_smc_flash_set_segment(s, cs, value); 1051 } 1052 } else if (addr == R_CE_CMD_CTRL) { 1053 s->regs[addr] = value & 0xff; 1054 } else if (addr == R_DUMMY_DATA) { 1055 s->regs[addr] = value & 0xff; 1056 } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) { 1057 s->regs[addr] = value & FMC_WDT2_CTRL_EN; 1058 } else if (addr == R_INTR_CTRL) { 1059 s->regs[addr] = value; 1060 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) { 1061 asc->dma_ctrl(s, value); 1062 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR && 1063 aspeed_smc_dma_granted(s)) { 1064 s->regs[addr] = DMA_DRAM_ADDR(asc, value); 1065 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR && 1066 aspeed_smc_dma_granted(s)) { 1067 s->regs[addr] = DMA_FLASH_ADDR(asc, value); 1068 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN && 1069 aspeed_smc_dma_granted(s)) { 1070 s->regs[addr] = DMA_LENGTH(value); 1071 } else { 1072 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n", 1073 __func__, addr); 1074 return; 1075 } 1076 } 1077 1078 static const MemoryRegionOps aspeed_smc_ops = { 1079 .read = aspeed_smc_read, 1080 .write = aspeed_smc_write, 1081 .endianness = DEVICE_LITTLE_ENDIAN, 1082 }; 1083 1084 static void aspeed_smc_instance_init(Object *obj) 1085 { 1086 AspeedSMCState *s = ASPEED_SMC(obj); 1087 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 1088 int i; 1089 1090 for (i = 0; i < asc->max_peripherals; i++) { 1091 object_initialize_child(obj, "flash[*]", &s->flashes[i], 1092 TYPE_ASPEED_SMC_FLASH); 1093 } 1094 } 1095 1096 /* 1097 * Initialize the custom address spaces for DMAs 1098 */ 1099 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp) 1100 { 1101 if (!s->dram_mr) { 1102 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set"); 1103 return; 1104 } 1105 1106 address_space_init(&s->flash_as, &s->mmio_flash, 1107 TYPE_ASPEED_SMC ".dma-flash"); 1108 address_space_init(&s->dram_as, s->dram_mr, 1109 TYPE_ASPEED_SMC ".dma-dram"); 1110 } 1111 1112 static void aspeed_smc_realize(DeviceState *dev, Error **errp) 1113 { 1114 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1115 AspeedSMCState *s = ASPEED_SMC(dev); 1116 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 1117 int i; 1118 hwaddr offset = 0; 1119 1120 /* keep a copy under AspeedSMCState to speed up accesses */ 1121 s->r_conf = asc->r_conf; 1122 s->r_ce_ctrl = asc->r_ce_ctrl; 1123 s->r_ctrl0 = asc->r_ctrl0; 1124 s->r_timings = asc->r_timings; 1125 s->conf_enable_w0 = asc->conf_enable_w0; 1126 1127 /* Enforce some real HW limits */ 1128 if (s->num_cs > asc->max_peripherals) { 1129 aspeed_smc_error("num_cs cannot exceed: %d", asc->max_peripherals); 1130 s->num_cs = asc->max_peripherals; 1131 } 1132 1133 /* DMA irq. Keep it first for the initialization in the SoC */ 1134 sysbus_init_irq(sbd, &s->irq); 1135 1136 s->spi = ssi_create_bus(dev, "spi"); 1137 1138 /* Setup cs_lines for peripherals */ 1139 s->cs_lines = g_new0(qemu_irq, s->num_cs); 1140 1141 for (i = 0; i < s->num_cs; ++i) { 1142 sysbus_init_irq(sbd, &s->cs_lines[i]); 1143 } 1144 1145 /* The memory region for the controller registers */ 1146 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s, 1147 TYPE_ASPEED_SMC, asc->nregs * 4); 1148 sysbus_init_mmio(sbd, &s->mmio); 1149 1150 /* 1151 * The container memory region representing the address space 1152 * window in which the flash modules are mapped. The size and 1153 * address depends on the SoC model and controller type. 1154 */ 1155 memory_region_init_io(&s->mmio_flash, OBJECT(s), 1156 &aspeed_smc_flash_default_ops, s, 1157 TYPE_ASPEED_SMC ".flash", 1158 asc->flash_window_size); 1159 memory_region_init_alias(&s->mmio_flash_alias, OBJECT(s), 1160 TYPE_ASPEED_SMC ".flash", 1161 &s->mmio_flash, 0, asc->flash_window_size); 1162 sysbus_init_mmio(sbd, &s->mmio_flash_alias); 1163 1164 /* 1165 * Let's create a sub memory region for each possible peripheral. All 1166 * have a configurable memory segment in the overall flash mapping 1167 * window of the controller but, there is not necessarily a flash 1168 * module behind to handle the memory accesses. This depends on 1169 * the board configuration. 1170 */ 1171 for (i = 0; i < asc->max_peripherals; ++i) { 1172 AspeedSMCFlash *fl = &s->flashes[i]; 1173 1174 if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s), 1175 errp)) { 1176 return; 1177 } 1178 if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) { 1179 return; 1180 } 1181 if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) { 1182 return; 1183 } 1184 1185 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio); 1186 offset += asc->segments[i].size; 1187 } 1188 1189 /* DMA support */ 1190 if (aspeed_smc_has_dma(asc)) { 1191 aspeed_smc_dma_setup(s, errp); 1192 } 1193 } 1194 1195 static const VMStateDescription vmstate_aspeed_smc = { 1196 .name = "aspeed.smc", 1197 .version_id = 2, 1198 .minimum_version_id = 2, 1199 .fields = (VMStateField[]) { 1200 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX), 1201 VMSTATE_UINT8(snoop_index, AspeedSMCState), 1202 VMSTATE_UINT8(snoop_dummies, AspeedSMCState), 1203 VMSTATE_END_OF_LIST() 1204 } 1205 }; 1206 1207 static Property aspeed_smc_properties[] = { 1208 DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1), 1209 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false), 1210 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr, 1211 TYPE_MEMORY_REGION, MemoryRegion *), 1212 DEFINE_PROP_END_OF_LIST(), 1213 }; 1214 1215 static void aspeed_smc_class_init(ObjectClass *klass, void *data) 1216 { 1217 DeviceClass *dc = DEVICE_CLASS(klass); 1218 1219 dc->realize = aspeed_smc_realize; 1220 dc->reset = aspeed_smc_reset; 1221 device_class_set_props(dc, aspeed_smc_properties); 1222 dc->vmsd = &vmstate_aspeed_smc; 1223 } 1224 1225 static const TypeInfo aspeed_smc_info = { 1226 .name = TYPE_ASPEED_SMC, 1227 .parent = TYPE_SYS_BUS_DEVICE, 1228 .instance_init = aspeed_smc_instance_init, 1229 .instance_size = sizeof(AspeedSMCState), 1230 .class_size = sizeof(AspeedSMCClass), 1231 .class_init = aspeed_smc_class_init, 1232 .abstract = true, 1233 }; 1234 1235 static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp) 1236 { 1237 AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev); 1238 AspeedSMCClass *asc; 1239 g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs); 1240 1241 if (!s->controller) { 1242 error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set"); 1243 return; 1244 } 1245 1246 asc = ASPEED_SMC_GET_CLASS(s->controller); 1247 1248 /* 1249 * Use the default segment value to size the memory region. This 1250 * can be changed by FW at runtime. 1251 */ 1252 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_flash_ops, 1253 s, name, asc->segments[s->cs].size); 1254 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio); 1255 } 1256 1257 static Property aspeed_smc_flash_properties[] = { 1258 DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0), 1259 DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC, 1260 AspeedSMCState *), 1261 DEFINE_PROP_END_OF_LIST(), 1262 }; 1263 1264 static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data) 1265 { 1266 DeviceClass *dc = DEVICE_CLASS(klass); 1267 1268 dc->desc = "Aspeed SMC Flash device region"; 1269 dc->realize = aspeed_smc_flash_realize; 1270 device_class_set_props(dc, aspeed_smc_flash_properties); 1271 } 1272 1273 static const TypeInfo aspeed_smc_flash_info = { 1274 .name = TYPE_ASPEED_SMC_FLASH, 1275 .parent = TYPE_SYS_BUS_DEVICE, 1276 .instance_size = sizeof(AspeedSMCFlash), 1277 .class_init = aspeed_smc_flash_class_init, 1278 }; 1279 1280 /* 1281 * The Segment Registers of the AST2400 and AST2500 have a 8MB 1282 * unit. The address range of a flash SPI peripheral is encoded with 1283 * absolute addresses which should be part of the overall controller 1284 * window. 1285 */ 1286 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s, 1287 const AspeedSegments *seg) 1288 { 1289 uint32_t reg = 0; 1290 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT; 1291 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT; 1292 return reg; 1293 } 1294 1295 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, 1296 uint32_t reg, AspeedSegments *seg) 1297 { 1298 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23; 1299 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr; 1300 } 1301 1302 static const AspeedSegments aspeed_2400_smc_segments[] = { 1303 { 0x10000000, 32 * MiB }, 1304 }; 1305 1306 static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data) 1307 { 1308 DeviceClass *dc = DEVICE_CLASS(klass); 1309 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); 1310 1311 dc->desc = "Aspeed 2400 SMC Controller"; 1312 asc->r_conf = R_CONF; 1313 asc->r_ce_ctrl = R_CE_CTRL; 1314 asc->r_ctrl0 = R_CTRL0; 1315 asc->r_timings = R_TIMINGS; 1316 asc->nregs_timings = 1; 1317 asc->conf_enable_w0 = CONF_ENABLE_W0; 1318 asc->max_peripherals = 1; 1319 asc->segments = aspeed_2400_smc_segments; 1320 asc->flash_window_base = 0x10000000; 1321 asc->flash_window_size = 0x6000000; 1322 asc->features = 0x0; 1323 asc->nregs = ASPEED_SMC_R_SMC_MAX; 1324 asc->segment_to_reg = aspeed_smc_segment_to_reg; 1325 asc->reg_to_segment = aspeed_smc_reg_to_segment; 1326 asc->dma_ctrl = aspeed_smc_dma_ctrl; 1327 } 1328 1329 static const TypeInfo aspeed_2400_smc_info = { 1330 .name = "aspeed.smc-ast2400", 1331 .parent = TYPE_ASPEED_SMC, 1332 .class_init = aspeed_2400_smc_class_init, 1333 }; 1334 1335 static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = { 1336 /* 1337 * CE0 and CE1 types are HW strapped in SCU70. Do it here to 1338 * simplify the model. 1339 */ 1340 [R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0, 1341 }; 1342 1343 static const AspeedSegments aspeed_2400_fmc_segments[] = { 1344 { 0x20000000, 64 * MiB }, /* start address is readonly */ 1345 { 0x24000000, 32 * MiB }, 1346 { 0x26000000, 32 * MiB }, 1347 { 0x28000000, 32 * MiB }, 1348 { 0x2A000000, 32 * MiB } 1349 }; 1350 1351 static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data) 1352 { 1353 DeviceClass *dc = DEVICE_CLASS(klass); 1354 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); 1355 1356 dc->desc = "Aspeed 2400 FMC Controller"; 1357 asc->r_conf = R_CONF; 1358 asc->r_ce_ctrl = R_CE_CTRL; 1359 asc->r_ctrl0 = R_CTRL0; 1360 asc->r_timings = R_TIMINGS; 1361 asc->nregs_timings = 1; 1362 asc->conf_enable_w0 = CONF_ENABLE_W0; 1363 asc->max_peripherals = 5; 1364 asc->segments = aspeed_2400_fmc_segments; 1365 asc->resets = aspeed_2400_fmc_resets; 1366 asc->flash_window_base = 0x20000000; 1367 asc->flash_window_size = 0x10000000; 1368 asc->features = ASPEED_SMC_FEATURE_DMA; 1369 asc->dma_flash_mask = 0x0FFFFFFC; 1370 asc->dma_dram_mask = 0x1FFFFFFC; 1371 asc->nregs = ASPEED_SMC_R_MAX; 1372 asc->segment_to_reg = aspeed_smc_segment_to_reg; 1373 asc->reg_to_segment = aspeed_smc_reg_to_segment; 1374 asc->dma_ctrl = aspeed_smc_dma_ctrl; 1375 } 1376 1377 static const TypeInfo aspeed_2400_fmc_info = { 1378 .name = "aspeed.fmc-ast2400", 1379 .parent = TYPE_ASPEED_SMC, 1380 .class_init = aspeed_2400_fmc_class_init, 1381 }; 1382 1383 static const AspeedSegments aspeed_2400_spi1_segments[] = { 1384 { 0x30000000, 64 * MiB }, 1385 }; 1386 1387 static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data) 1388 { 1389 DeviceClass *dc = DEVICE_CLASS(klass); 1390 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); 1391 1392 dc->desc = "Aspeed 2400 SPI1 Controller"; 1393 asc->r_conf = R_SPI_CONF; 1394 asc->r_ce_ctrl = 0xff; 1395 asc->r_ctrl0 = R_SPI_CTRL0; 1396 asc->r_timings = R_SPI_TIMINGS; 1397 asc->nregs_timings = 1; 1398 asc->conf_enable_w0 = SPI_CONF_ENABLE_W0; 1399 asc->max_peripherals = 1; 1400 asc->segments = aspeed_2400_spi1_segments; 1401 asc->flash_window_base = 0x30000000; 1402 asc->flash_window_size = 0x10000000; 1403 asc->features = 0x0; 1404 asc->nregs = ASPEED_SMC_R_SPI_MAX; 1405 asc->segment_to_reg = aspeed_smc_segment_to_reg; 1406 asc->reg_to_segment = aspeed_smc_reg_to_segment; 1407 asc->dma_ctrl = aspeed_smc_dma_ctrl; 1408 } 1409 1410 static const TypeInfo aspeed_2400_spi1_info = { 1411 .name = "aspeed.spi1-ast2400", 1412 .parent = TYPE_ASPEED_SMC, 1413 .class_init = aspeed_2400_spi1_class_init, 1414 }; 1415 1416 static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = { 1417 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 | 1418 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1), 1419 }; 1420 1421 static const AspeedSegments aspeed_2500_fmc_segments[] = { 1422 { 0x20000000, 128 * MiB }, /* start address is readonly */ 1423 { 0x28000000, 32 * MiB }, 1424 { 0x2A000000, 32 * MiB }, 1425 }; 1426 1427 static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data) 1428 { 1429 DeviceClass *dc = DEVICE_CLASS(klass); 1430 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); 1431 1432 dc->desc = "Aspeed 2600 FMC Controller"; 1433 asc->r_conf = R_CONF; 1434 asc->r_ce_ctrl = R_CE_CTRL; 1435 asc->r_ctrl0 = R_CTRL0; 1436 asc->r_timings = R_TIMINGS; 1437 asc->nregs_timings = 1; 1438 asc->conf_enable_w0 = CONF_ENABLE_W0; 1439 asc->max_peripherals = 3; 1440 asc->segments = aspeed_2500_fmc_segments; 1441 asc->resets = aspeed_2500_fmc_resets; 1442 asc->flash_window_base = 0x20000000; 1443 asc->flash_window_size = 0x10000000; 1444 asc->features = ASPEED_SMC_FEATURE_DMA; 1445 asc->dma_flash_mask = 0x0FFFFFFC; 1446 asc->dma_dram_mask = 0x3FFFFFFC; 1447 asc->nregs = ASPEED_SMC_R_MAX; 1448 asc->segment_to_reg = aspeed_smc_segment_to_reg; 1449 asc->reg_to_segment = aspeed_smc_reg_to_segment; 1450 asc->dma_ctrl = aspeed_smc_dma_ctrl; 1451 } 1452 1453 static const TypeInfo aspeed_2500_fmc_info = { 1454 .name = "aspeed.fmc-ast2500", 1455 .parent = TYPE_ASPEED_SMC, 1456 .class_init = aspeed_2500_fmc_class_init, 1457 }; 1458 1459 static const AspeedSegments aspeed_2500_spi1_segments[] = { 1460 { 0x30000000, 32 * MiB }, /* start address is readonly */ 1461 { 0x32000000, 96 * MiB }, /* end address is readonly */ 1462 }; 1463 1464 static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data) 1465 { 1466 DeviceClass *dc = DEVICE_CLASS(klass); 1467 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); 1468 1469 dc->desc = "Aspeed 2600 SPI1 Controller"; 1470 asc->r_conf = R_CONF; 1471 asc->r_ce_ctrl = R_CE_CTRL; 1472 asc->r_ctrl0 = R_CTRL0; 1473 asc->r_timings = R_TIMINGS; 1474 asc->nregs_timings = 1; 1475 asc->conf_enable_w0 = CONF_ENABLE_W0; 1476 asc->max_peripherals = 2; 1477 asc->segments = aspeed_2500_spi1_segments; 1478 asc->flash_window_base = 0x30000000; 1479 asc->flash_window_size = 0x8000000; 1480 asc->features = 0x0; 1481 asc->nregs = ASPEED_SMC_R_MAX; 1482 asc->segment_to_reg = aspeed_smc_segment_to_reg; 1483 asc->reg_to_segment = aspeed_smc_reg_to_segment; 1484 asc->dma_ctrl = aspeed_smc_dma_ctrl; 1485 } 1486 1487 static const TypeInfo aspeed_2500_spi1_info = { 1488 .name = "aspeed.spi1-ast2500", 1489 .parent = TYPE_ASPEED_SMC, 1490 .class_init = aspeed_2500_spi1_class_init, 1491 }; 1492 1493 static const AspeedSegments aspeed_2500_spi2_segments[] = { 1494 { 0x38000000, 32 * MiB }, /* start address is readonly */ 1495 { 0x3A000000, 96 * MiB }, /* end address is readonly */ 1496 }; 1497 1498 static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data) 1499 { 1500 DeviceClass *dc = DEVICE_CLASS(klass); 1501 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); 1502 1503 dc->desc = "Aspeed 2600 SPI2 Controller"; 1504 asc->r_conf = R_CONF; 1505 asc->r_ce_ctrl = R_CE_CTRL; 1506 asc->r_ctrl0 = R_CTRL0; 1507 asc->r_timings = R_TIMINGS; 1508 asc->nregs_timings = 1; 1509 asc->conf_enable_w0 = CONF_ENABLE_W0; 1510 asc->max_peripherals = 2; 1511 asc->segments = aspeed_2500_spi2_segments; 1512 asc->flash_window_base = 0x38000000; 1513 asc->flash_window_size = 0x8000000; 1514 asc->features = 0x0; 1515 asc->nregs = ASPEED_SMC_R_MAX; 1516 asc->segment_to_reg = aspeed_smc_segment_to_reg; 1517 asc->reg_to_segment = aspeed_smc_reg_to_segment; 1518 asc->dma_ctrl = aspeed_smc_dma_ctrl; 1519 } 1520 1521 static const TypeInfo aspeed_2500_spi2_info = { 1522 .name = "aspeed.spi2-ast2500", 1523 .parent = TYPE_ASPEED_SMC, 1524 .class_init = aspeed_2500_spi2_class_init, 1525 }; 1526 1527 /* 1528 * The Segment Registers of the AST2600 have a 1MB unit. The address 1529 * range of a flash SPI peripheral is encoded with offsets in the overall 1530 * controller window. The previous SoC AST2400 and AST2500 used 1531 * absolute addresses. Only bits [27:20] are relevant and the end 1532 * address is an upper bound limit. 1533 */ 1534 #define AST2600_SEG_ADDR_MASK 0x0ff00000 1535 1536 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s, 1537 const AspeedSegments *seg) 1538 { 1539 uint32_t reg = 0; 1540 1541 /* Disabled segments have a nil register */ 1542 if (!seg->size) { 1543 return 0; 1544 } 1545 1546 reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */ 1547 reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */ 1548 return reg; 1549 } 1550 1551 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s, 1552 uint32_t reg, AspeedSegments *seg) 1553 { 1554 uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK; 1555 uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK; 1556 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); 1557 1558 if (reg) { 1559 seg->addr = asc->flash_window_base + start_offset; 1560 seg->size = end_offset + MiB - start_offset; 1561 } else { 1562 seg->addr = asc->flash_window_base; 1563 seg->size = 0; 1564 } 1565 } 1566 1567 static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = { 1568 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 | 1569 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 | 1570 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2), 1571 }; 1572 1573 static const AspeedSegments aspeed_2600_fmc_segments[] = { 1574 { 0x0, 128 * MiB }, /* start address is readonly */ 1575 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */ 1576 { 0x0, 0 }, /* disabled */ 1577 }; 1578 1579 static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data) 1580 { 1581 DeviceClass *dc = DEVICE_CLASS(klass); 1582 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); 1583 1584 dc->desc = "Aspeed 2600 FMC Controller"; 1585 asc->r_conf = R_CONF; 1586 asc->r_ce_ctrl = R_CE_CTRL; 1587 asc->r_ctrl0 = R_CTRL0; 1588 asc->r_timings = R_TIMINGS; 1589 asc->nregs_timings = 1; 1590 asc->conf_enable_w0 = CONF_ENABLE_W0; 1591 asc->max_peripherals = 3; 1592 asc->segments = aspeed_2600_fmc_segments; 1593 asc->resets = aspeed_2600_fmc_resets; 1594 asc->flash_window_base = 0x20000000; 1595 asc->flash_window_size = 0x10000000; 1596 asc->features = ASPEED_SMC_FEATURE_DMA | 1597 ASPEED_SMC_FEATURE_WDT_CONTROL; 1598 asc->dma_flash_mask = 0x0FFFFFFC; 1599 asc->dma_dram_mask = 0x3FFFFFFC; 1600 asc->nregs = ASPEED_SMC_R_MAX; 1601 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg; 1602 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment; 1603 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl; 1604 } 1605 1606 static const TypeInfo aspeed_2600_fmc_info = { 1607 .name = "aspeed.fmc-ast2600", 1608 .parent = TYPE_ASPEED_SMC, 1609 .class_init = aspeed_2600_fmc_class_init, 1610 }; 1611 1612 static const AspeedSegments aspeed_2600_spi1_segments[] = { 1613 { 0x0, 128 * MiB }, /* start address is readonly */ 1614 { 0x0, 0 }, /* disabled */ 1615 }; 1616 1617 static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data) 1618 { 1619 DeviceClass *dc = DEVICE_CLASS(klass); 1620 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); 1621 1622 dc->desc = "Aspeed 2600 SPI1 Controller"; 1623 asc->r_conf = R_CONF; 1624 asc->r_ce_ctrl = R_CE_CTRL; 1625 asc->r_ctrl0 = R_CTRL0; 1626 asc->r_timings = R_TIMINGS; 1627 asc->nregs_timings = 2; 1628 asc->conf_enable_w0 = CONF_ENABLE_W0; 1629 asc->max_peripherals = 2; 1630 asc->segments = aspeed_2600_spi1_segments; 1631 asc->flash_window_base = 0x30000000; 1632 asc->flash_window_size = 0x10000000; 1633 asc->features = ASPEED_SMC_FEATURE_DMA | 1634 ASPEED_SMC_FEATURE_DMA_GRANT; 1635 asc->dma_flash_mask = 0x0FFFFFFC; 1636 asc->dma_dram_mask = 0x3FFFFFFC; 1637 asc->nregs = ASPEED_SMC_R_MAX; 1638 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg; 1639 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment; 1640 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl; 1641 } 1642 1643 static const TypeInfo aspeed_2600_spi1_info = { 1644 .name = "aspeed.spi1-ast2600", 1645 .parent = TYPE_ASPEED_SMC, 1646 .class_init = aspeed_2600_spi1_class_init, 1647 }; 1648 1649 static const AspeedSegments aspeed_2600_spi2_segments[] = { 1650 { 0x0, 128 * MiB }, /* start address is readonly */ 1651 { 0x0, 0 }, /* disabled */ 1652 { 0x0, 0 }, /* disabled */ 1653 }; 1654 1655 static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data) 1656 { 1657 DeviceClass *dc = DEVICE_CLASS(klass); 1658 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); 1659 1660 dc->desc = "Aspeed 2600 SPI2 Controller"; 1661 asc->r_conf = R_CONF; 1662 asc->r_ce_ctrl = R_CE_CTRL; 1663 asc->r_ctrl0 = R_CTRL0; 1664 asc->r_timings = R_TIMINGS; 1665 asc->nregs_timings = 3; 1666 asc->conf_enable_w0 = CONF_ENABLE_W0; 1667 asc->max_peripherals = 3; 1668 asc->segments = aspeed_2600_spi2_segments; 1669 asc->flash_window_base = 0x50000000; 1670 asc->flash_window_size = 0x10000000; 1671 asc->features = ASPEED_SMC_FEATURE_DMA | 1672 ASPEED_SMC_FEATURE_DMA_GRANT; 1673 asc->dma_flash_mask = 0x0FFFFFFC; 1674 asc->dma_dram_mask = 0x3FFFFFFC; 1675 asc->nregs = ASPEED_SMC_R_MAX; 1676 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg; 1677 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment; 1678 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl; 1679 } 1680 1681 static const TypeInfo aspeed_2600_spi2_info = { 1682 .name = "aspeed.spi2-ast2600", 1683 .parent = TYPE_ASPEED_SMC, 1684 .class_init = aspeed_2600_spi2_class_init, 1685 }; 1686 1687 static void aspeed_smc_register_types(void) 1688 { 1689 type_register_static(&aspeed_smc_flash_info); 1690 type_register_static(&aspeed_smc_info); 1691 type_register_static(&aspeed_2400_smc_info); 1692 type_register_static(&aspeed_2400_fmc_info); 1693 type_register_static(&aspeed_2400_spi1_info); 1694 type_register_static(&aspeed_2500_fmc_info); 1695 type_register_static(&aspeed_2500_spi1_info); 1696 type_register_static(&aspeed_2500_spi2_info); 1697 type_register_static(&aspeed_2600_fmc_info); 1698 type_register_static(&aspeed_2600_spi1_info); 1699 type_register_static(&aspeed_2600_spi2_info); 1700 } 1701 1702 type_init(aspeed_smc_register_types) 1703