xref: /openbmc/qemu/hw/ssi/aspeed_smc.c (revision 27a4a30e)
1 /*
2  * ASPEED AST2400 SMC Controller (SPI Flash Only)
3  *
4  * Copyright (C) 2016 IBM Corp.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/units.h"
34 #include "trace.h"
35 
36 #include "hw/irq.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/ssi/aspeed_smc.h"
39 
40 /* CE Type Setting Register */
41 #define R_CONF            (0x00 / 4)
42 #define   CONF_LEGACY_DISABLE  (1 << 31)
43 #define   CONF_ENABLE_W4       20
44 #define   CONF_ENABLE_W3       19
45 #define   CONF_ENABLE_W2       18
46 #define   CONF_ENABLE_W1       17
47 #define   CONF_ENABLE_W0       16
48 #define   CONF_FLASH_TYPE4     8
49 #define   CONF_FLASH_TYPE3     6
50 #define   CONF_FLASH_TYPE2     4
51 #define   CONF_FLASH_TYPE1     2
52 #define   CONF_FLASH_TYPE0     0
53 #define      CONF_FLASH_TYPE_NOR   0x0
54 #define      CONF_FLASH_TYPE_NAND  0x1
55 #define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
56 
57 /* CE Control Register */
58 #define R_CE_CTRL            (0x04 / 4)
59 #define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
60 #define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
61 #define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
62 #define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
63 #define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
64 
65 /* Interrupt Control and Status Register */
66 #define R_INTR_CTRL       (0x08 / 4)
67 #define   INTR_CTRL_DMA_STATUS            (1 << 11)
68 #define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
69 #define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
70 #define   INTR_CTRL_DMA_EN                (1 << 3)
71 #define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
72 #define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
73 
74 /* CEx Control Register */
75 #define R_CTRL0           (0x10 / 4)
76 #define   CTRL_IO_QPI              (1 << 31)
77 #define   CTRL_IO_QUAD_DATA        (1 << 30)
78 #define   CTRL_IO_DUAL_DATA        (1 << 29)
79 #define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
80 #define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
81 #define   CTRL_CMD_SHIFT           16
82 #define   CTRL_CMD_MASK            0xff
83 #define   CTRL_DUMMY_HIGH_SHIFT    14
84 #define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
85 #define CE_CTRL_CLOCK_FREQ_SHIFT   8
86 #define CE_CTRL_CLOCK_FREQ_MASK    0xf
87 #define CE_CTRL_CLOCK_FREQ(div)                                         \
88     (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
89 #define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
90 #define   CTRL_CE_STOP_ACTIVE      (1 << 2)
91 #define   CTRL_CMD_MODE_MASK       0x3
92 #define     CTRL_READMODE          0x0
93 #define     CTRL_FREADMODE         0x1
94 #define     CTRL_WRITEMODE         0x2
95 #define     CTRL_USERMODE          0x3
96 #define R_CTRL1           (0x14 / 4)
97 #define R_CTRL2           (0x18 / 4)
98 #define R_CTRL3           (0x1C / 4)
99 #define R_CTRL4           (0x20 / 4)
100 
101 /* CEx Segment Address Register */
102 #define R_SEG_ADDR0       (0x30 / 4)
103 #define   SEG_END_SHIFT        24   /* 8MB units */
104 #define   SEG_END_MASK         0xff
105 #define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
106 #define   SEG_START_MASK       0xff
107 #define R_SEG_ADDR1       (0x34 / 4)
108 #define R_SEG_ADDR2       (0x38 / 4)
109 #define R_SEG_ADDR3       (0x3C / 4)
110 #define R_SEG_ADDR4       (0x40 / 4)
111 
112 /* Misc Control Register #1 */
113 #define R_MISC_CTRL1      (0x50 / 4)
114 
115 /* SPI dummy cycle data */
116 #define R_DUMMY_DATA      (0x54 / 4)
117 
118 /* DMA Control/Status Register */
119 #define R_DMA_CTRL        (0x80 / 4)
120 #define   DMA_CTRL_DELAY_MASK   0xf
121 #define   DMA_CTRL_DELAY_SHIFT  8
122 #define   DMA_CTRL_FREQ_MASK    0xf
123 #define   DMA_CTRL_FREQ_SHIFT   4
124 #define   DMA_CTRL_CALIB        (1 << 3)
125 #define   DMA_CTRL_CKSUM        (1 << 2)
126 #define   DMA_CTRL_WRITE        (1 << 1)
127 #define   DMA_CTRL_ENABLE       (1 << 0)
128 
129 /* DMA Flash Side Address */
130 #define R_DMA_FLASH_ADDR  (0x84 / 4)
131 
132 /* DMA DRAM Side Address */
133 #define R_DMA_DRAM_ADDR   (0x88 / 4)
134 
135 /* DMA Length Register */
136 #define R_DMA_LEN         (0x8C / 4)
137 
138 /* Checksum Calculation Result */
139 #define R_DMA_CHECKSUM    (0x90 / 4)
140 
141 /* Read Timing Compensation Register */
142 #define R_TIMINGS         (0x94 / 4)
143 
144 /* SPI controller registers and bits (AST2400) */
145 #define R_SPI_CONF        (0x00 / 4)
146 #define   SPI_CONF_ENABLE_W0   0
147 #define R_SPI_CTRL0       (0x4 / 4)
148 #define R_SPI_MISC_CTRL   (0x10 / 4)
149 #define R_SPI_TIMINGS     (0x14 / 4)
150 
151 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
152 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
153 
154 #define ASPEED_SOC_SMC_FLASH_BASE   0x10000000
155 #define ASPEED_SOC_FMC_FLASH_BASE   0x20000000
156 #define ASPEED_SOC_SPI_FLASH_BASE   0x30000000
157 #define ASPEED_SOC_SPI2_FLASH_BASE  0x38000000
158 
159 /*
160  * DMA DRAM addresses should be 4 bytes aligned and the valid address
161  * range is 0x40000000 - 0x5FFFFFFF (AST2400)
162  *          0x80000000 - 0xBFFFFFFF (AST2500)
163  *
164  * DMA flash addresses should be 4 bytes aligned and the valid address
165  * range is 0x20000000 - 0x2FFFFFFF.
166  *
167  * DMA length is from 4 bytes to 32MB
168  *   0: 4 bytes
169  *   0x7FFFFF: 32M bytes
170  */
171 #define DMA_DRAM_ADDR(s, val)   ((s)->sdram_base | \
172                                  ((val) & (s)->ctrl->dma_dram_mask))
173 #define DMA_FLASH_ADDR(s, val)  ((s)->ctrl->flash_window_base | \
174                                 ((val) & (s)->ctrl->dma_flash_mask))
175 #define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
176 
177 /* Flash opcodes. */
178 #define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
179 
180 #define SNOOP_OFF         0xFF
181 #define SNOOP_START       0x0
182 
183 /*
184  * Default segments mapping addresses and size for each slave per
185  * controller. These can be changed when board is initialized with the
186  * Segment Address Registers.
187  */
188 static const AspeedSegments aspeed_segments_legacy[] = {
189     { 0x10000000, 32 * 1024 * 1024 },
190 };
191 
192 static const AspeedSegments aspeed_segments_fmc[] = {
193     { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
194     { 0x24000000, 32 * 1024 * 1024 },
195     { 0x26000000, 32 * 1024 * 1024 },
196     { 0x28000000, 32 * 1024 * 1024 },
197     { 0x2A000000, 32 * 1024 * 1024 }
198 };
199 
200 static const AspeedSegments aspeed_segments_spi[] = {
201     { 0x30000000, 64 * 1024 * 1024 },
202 };
203 
204 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
205     { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
206     { 0x28000000,  32 * 1024 * 1024 },
207     { 0x2A000000,  32 * 1024 * 1024 },
208 };
209 
210 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
211     { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
212     { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
213 };
214 
215 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
216     { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
217     { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
218 };
219 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
220                                           const AspeedSegments *seg);
221 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
222                                       AspeedSegments *seg);
223 
224 /*
225  * AST2600 definitions
226  */
227 #define ASPEED26_SOC_FMC_FLASH_BASE   0x20000000
228 #define ASPEED26_SOC_SPI_FLASH_BASE   0x30000000
229 #define ASPEED26_SOC_SPI2_FLASH_BASE  0x50000000
230 
231 static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
232     { 0x0, 128 * MiB }, /* start address is readonly */
233     { 0x0, 0 }, /* disabled */
234     { 0x0, 0 }, /* disabled */
235 };
236 
237 static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
238     { 0x0, 128 * MiB }, /* start address is readonly */
239     { 0x0, 0 }, /* disabled */
240 };
241 
242 static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
243     { 0x0, 128 * MiB }, /* start address is readonly */
244     { 0x0, 0 }, /* disabled */
245     { 0x0, 0 }, /* disabled */
246 };
247 
248 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
249                                                const AspeedSegments *seg);
250 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
251                                            uint32_t reg, AspeedSegments *seg);
252 
253 static const AspeedSMCController controllers[] = {
254     {
255         .name              = "aspeed.smc-ast2400",
256         .r_conf            = R_CONF,
257         .r_ce_ctrl         = R_CE_CTRL,
258         .r_ctrl0           = R_CTRL0,
259         .r_timings         = R_TIMINGS,
260         .nregs_timings     = 1,
261         .conf_enable_w0    = CONF_ENABLE_W0,
262         .max_slaves        = 5,
263         .segments          = aspeed_segments_legacy,
264         .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
265         .flash_window_size = 0x6000000,
266         .has_dma           = false,
267         .nregs             = ASPEED_SMC_R_SMC_MAX,
268         .segment_to_reg    = aspeed_smc_segment_to_reg,
269         .reg_to_segment    = aspeed_smc_reg_to_segment,
270     }, {
271         .name              = "aspeed.fmc-ast2400",
272         .r_conf            = R_CONF,
273         .r_ce_ctrl         = R_CE_CTRL,
274         .r_ctrl0           = R_CTRL0,
275         .r_timings         = R_TIMINGS,
276         .nregs_timings     = 1,
277         .conf_enable_w0    = CONF_ENABLE_W0,
278         .max_slaves        = 5,
279         .segments          = aspeed_segments_fmc,
280         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
281         .flash_window_size = 0x10000000,
282         .has_dma           = true,
283         .dma_flash_mask    = 0x0FFFFFFC,
284         .dma_dram_mask     = 0x1FFFFFFC,
285         .nregs             = ASPEED_SMC_R_MAX,
286         .segment_to_reg    = aspeed_smc_segment_to_reg,
287         .reg_to_segment    = aspeed_smc_reg_to_segment,
288     }, {
289         .name              = "aspeed.spi1-ast2400",
290         .r_conf            = R_SPI_CONF,
291         .r_ce_ctrl         = 0xff,
292         .r_ctrl0           = R_SPI_CTRL0,
293         .r_timings         = R_SPI_TIMINGS,
294         .nregs_timings     = 1,
295         .conf_enable_w0    = SPI_CONF_ENABLE_W0,
296         .max_slaves        = 1,
297         .segments          = aspeed_segments_spi,
298         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
299         .flash_window_size = 0x10000000,
300         .has_dma           = false,
301         .nregs             = ASPEED_SMC_R_SPI_MAX,
302         .segment_to_reg    = aspeed_smc_segment_to_reg,
303         .reg_to_segment    = aspeed_smc_reg_to_segment,
304     }, {
305         .name              = "aspeed.fmc-ast2500",
306         .r_conf            = R_CONF,
307         .r_ce_ctrl         = R_CE_CTRL,
308         .r_ctrl0           = R_CTRL0,
309         .r_timings         = R_TIMINGS,
310         .nregs_timings     = 1,
311         .conf_enable_w0    = CONF_ENABLE_W0,
312         .max_slaves        = 3,
313         .segments          = aspeed_segments_ast2500_fmc,
314         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
315         .flash_window_size = 0x10000000,
316         .has_dma           = true,
317         .dma_flash_mask    = 0x0FFFFFFC,
318         .dma_dram_mask     = 0x3FFFFFFC,
319         .nregs             = ASPEED_SMC_R_MAX,
320         .segment_to_reg    = aspeed_smc_segment_to_reg,
321         .reg_to_segment    = aspeed_smc_reg_to_segment,
322     }, {
323         .name              = "aspeed.spi1-ast2500",
324         .r_conf            = R_CONF,
325         .r_ce_ctrl         = R_CE_CTRL,
326         .r_ctrl0           = R_CTRL0,
327         .r_timings         = R_TIMINGS,
328         .nregs_timings     = 1,
329         .conf_enable_w0    = CONF_ENABLE_W0,
330         .max_slaves        = 2,
331         .segments          = aspeed_segments_ast2500_spi1,
332         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
333         .flash_window_size = 0x8000000,
334         .has_dma           = false,
335         .nregs             = ASPEED_SMC_R_MAX,
336         .segment_to_reg    = aspeed_smc_segment_to_reg,
337         .reg_to_segment    = aspeed_smc_reg_to_segment,
338     }, {
339         .name              = "aspeed.spi2-ast2500",
340         .r_conf            = R_CONF,
341         .r_ce_ctrl         = R_CE_CTRL,
342         .r_ctrl0           = R_CTRL0,
343         .r_timings         = R_TIMINGS,
344         .nregs_timings     = 1,
345         .conf_enable_w0    = CONF_ENABLE_W0,
346         .max_slaves        = 2,
347         .segments          = aspeed_segments_ast2500_spi2,
348         .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
349         .flash_window_size = 0x8000000,
350         .has_dma           = false,
351         .nregs             = ASPEED_SMC_R_MAX,
352         .segment_to_reg    = aspeed_smc_segment_to_reg,
353         .reg_to_segment    = aspeed_smc_reg_to_segment,
354     }, {
355         .name              = "aspeed.fmc-ast2600",
356         .r_conf            = R_CONF,
357         .r_ce_ctrl         = R_CE_CTRL,
358         .r_ctrl0           = R_CTRL0,
359         .r_timings         = R_TIMINGS,
360         .nregs_timings     = 1,
361         .conf_enable_w0    = CONF_ENABLE_W0,
362         .max_slaves        = 3,
363         .segments          = aspeed_segments_ast2600_fmc,
364         .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
365         .flash_window_size = 0x10000000,
366         .has_dma           = true,
367         .nregs             = ASPEED_SMC_R_MAX,
368         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
369         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
370     }, {
371         .name              = "aspeed.spi1-ast2600",
372         .r_conf            = R_CONF,
373         .r_ce_ctrl         = R_CE_CTRL,
374         .r_ctrl0           = R_CTRL0,
375         .r_timings         = R_TIMINGS,
376         .nregs_timings     = 2,
377         .conf_enable_w0    = CONF_ENABLE_W0,
378         .max_slaves        = 2,
379         .segments          = aspeed_segments_ast2600_spi1,
380         .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
381         .flash_window_size = 0x10000000,
382         .has_dma           = false,
383         .nregs             = ASPEED_SMC_R_MAX,
384         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
385         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
386     }, {
387         .name              = "aspeed.spi2-ast2600",
388         .r_conf            = R_CONF,
389         .r_ce_ctrl         = R_CE_CTRL,
390         .r_ctrl0           = R_CTRL0,
391         .r_timings         = R_TIMINGS,
392         .nregs_timings     = 3,
393         .conf_enable_w0    = CONF_ENABLE_W0,
394         .max_slaves        = 3,
395         .segments          = aspeed_segments_ast2600_spi2,
396         .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
397         .flash_window_size = 0x10000000,
398         .has_dma           = false,
399         .nregs             = ASPEED_SMC_R_MAX,
400         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
401         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
402     },
403 };
404 
405 /*
406  * The Segment Registers of the AST2400 and AST2500 have a 8MB
407  * unit. The address range of a flash SPI slave is encoded with
408  * absolute addresses which should be part of the overall controller
409  * window.
410  */
411 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
412                                           const AspeedSegments *seg)
413 {
414     uint32_t reg = 0;
415     reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
416     reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
417     return reg;
418 }
419 
420 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
421                                       uint32_t reg, AspeedSegments *seg)
422 {
423     seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
424     seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
425 }
426 
427 /*
428  * The Segment Registers of the AST2600 have a 1MB unit. The address
429  * range of a flash SPI slave is encoded with offsets in the overall
430  * controller window. The previous SoC AST2400 and AST2500 used
431  * absolute addresses. Only bits [27:20] are relevant and the end
432  * address is an upper bound limit.
433  */
434 #define AST2600_SEG_ADDR_MASK 0x0ff00000
435 
436 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
437                                                const AspeedSegments *seg)
438 {
439     uint32_t reg = 0;
440 
441     /* Disabled segments have a nil register */
442     if (!seg->size) {
443         return 0;
444     }
445 
446     reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
447     reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
448     return reg;
449 }
450 
451 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
452                                            uint32_t reg, AspeedSegments *seg)
453 {
454     uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
455     uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
456 
457     if (reg) {
458         seg->addr = s->ctrl->flash_window_base + start_offset;
459         seg->size = end_offset + MiB - start_offset;
460     } else {
461         seg->addr = s->ctrl->flash_window_base;
462         seg->size = 0;
463     }
464 }
465 
466 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
467                                      const AspeedSegments *new,
468                                      int cs)
469 {
470     AspeedSegments seg;
471     int i;
472 
473     for (i = 0; i < s->ctrl->max_slaves; i++) {
474         if (i == cs) {
475             continue;
476         }
477 
478         s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
479 
480         if (new->addr + new->size > seg.addr &&
481             new->addr < seg.addr + seg.size) {
482             qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
483                           HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
484                           "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
485                           s->ctrl->name, cs, new->addr, new->addr + new->size,
486                           i, seg.addr, seg.addr + seg.size);
487             return true;
488         }
489     }
490     return false;
491 }
492 
493 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
494                                                 uint64_t regval)
495 {
496     AspeedSMCFlash *fl = &s->flashes[cs];
497     AspeedSegments seg;
498 
499     s->ctrl->reg_to_segment(s, regval, &seg);
500 
501     memory_region_transaction_begin();
502     memory_region_set_size(&fl->mmio, seg.size);
503     memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
504     memory_region_set_enabled(&fl->mmio, !!seg.size);
505     memory_region_transaction_commit();
506 
507     s->regs[R_SEG_ADDR0 + cs] = regval;
508 }
509 
510 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
511                                          uint64_t new)
512 {
513     AspeedSegments seg;
514 
515     s->ctrl->reg_to_segment(s, new, &seg);
516 
517     trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
518 
519     /* The start address of CS0 is read-only */
520     if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
521         qemu_log_mask(LOG_GUEST_ERROR,
522                       "%s: Tried to change CS0 start address to 0x%"
523                       HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
524         seg.addr = s->ctrl->flash_window_base;
525         new = s->ctrl->segment_to_reg(s, &seg);
526     }
527 
528     /*
529      * The end address of the AST2500 spi controllers is also
530      * read-only.
531      */
532     if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
533          s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
534         cs == s->ctrl->max_slaves &&
535         seg.addr + seg.size != s->ctrl->segments[cs].addr +
536         s->ctrl->segments[cs].size) {
537         qemu_log_mask(LOG_GUEST_ERROR,
538                       "%s: Tried to change CS%d end address to 0x%"
539                       HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
540         seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
541             seg.addr;
542         new = s->ctrl->segment_to_reg(s, &seg);
543     }
544 
545     /* Keep the segment in the overall flash window */
546     if (seg.size &&
547         (seg.addr + seg.size <= s->ctrl->flash_window_base ||
548          seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size)) {
549         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
550                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
551                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
552         return;
553     }
554 
555     /* Check start address vs. alignment */
556     if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
557         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
558                       "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
559                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
560     }
561 
562     /* And segments should not overlap (in the specs) */
563     aspeed_smc_flash_overlap(s, &seg, cs);
564 
565     /* All should be fine now to move the region */
566     aspeed_smc_flash_set_segment_region(s, cs, new);
567 }
568 
569 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
570                                               unsigned size)
571 {
572     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
573                   PRIx64 "\n", __func__, addr, size);
574     return 0;
575 }
576 
577 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
578                                            uint64_t data, unsigned size)
579 {
580     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
581                   PRIx64 "\n", __func__, addr, size, data);
582 }
583 
584 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
585     .read = aspeed_smc_flash_default_read,
586     .write = aspeed_smc_flash_default_write,
587     .endianness = DEVICE_LITTLE_ENDIAN,
588     .valid = {
589         .min_access_size = 1,
590         .max_access_size = 4,
591     },
592 };
593 
594 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
595 {
596     const AspeedSMCState *s = fl->controller;
597 
598     return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
599 }
600 
601 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
602 {
603     const AspeedSMCState *s = fl->controller;
604 
605     return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
606 }
607 
608 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
609 {
610     const AspeedSMCState *s = fl->controller;
611     int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
612 
613     /*
614      * In read mode, the default SPI command is READ (0x3). In other
615      * modes, the command should necessarily be defined
616      *
617      * TODO: add support for READ4 (0x13) on AST2600
618      */
619     if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
620         cmd = SPI_OP_READ;
621     }
622 
623     if (!cmd) {
624         qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
625                       __func__, aspeed_smc_flash_mode(fl));
626     }
627 
628     return cmd;
629 }
630 
631 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
632 {
633     const AspeedSMCState *s = fl->controller;
634 
635     if (s->ctrl->segments == aspeed_segments_spi) {
636         return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
637     } else {
638         return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
639     }
640 }
641 
642 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
643 {
644     AspeedSMCState *s = fl->controller;
645 
646     trace_aspeed_smc_flash_select(fl->id, unselect ? "un" : "");
647 
648     qemu_set_irq(s->cs_lines[fl->id], unselect);
649 }
650 
651 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
652 {
653     aspeed_smc_flash_do_select(fl, false);
654 }
655 
656 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
657 {
658     aspeed_smc_flash_do_select(fl, true);
659 }
660 
661 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
662                                               uint32_t addr)
663 {
664     const AspeedSMCState *s = fl->controller;
665     AspeedSegments seg;
666 
667     s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
668     if ((addr % seg.size) != addr) {
669         qemu_log_mask(LOG_GUEST_ERROR,
670                       "%s: invalid address 0x%08x for CS%d segment : "
671                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
672                       s->ctrl->name, addr, fl->id, seg.addr,
673                       seg.addr + seg.size);
674         addr %= seg.size;
675     }
676 
677     return addr;
678 }
679 
680 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
681 {
682     const AspeedSMCState *s = fl->controller;
683     uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
684     uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
685     uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
686     uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
687 
688     if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
689         dummies /= 2;
690     }
691 
692     return dummies;
693 }
694 
695 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
696 {
697     const AspeedSMCState *s = fl->controller;
698     uint8_t cmd = aspeed_smc_flash_cmd(fl);
699     int i;
700 
701     /* Flash access can not exceed CS segment */
702     addr = aspeed_smc_check_segment_addr(fl, addr);
703 
704     ssi_transfer(s->spi, cmd);
705 
706     if (aspeed_smc_flash_is_4byte(fl)) {
707         ssi_transfer(s->spi, (addr >> 24) & 0xff);
708     }
709     ssi_transfer(s->spi, (addr >> 16) & 0xff);
710     ssi_transfer(s->spi, (addr >> 8) & 0xff);
711     ssi_transfer(s->spi, (addr & 0xff));
712 
713     /*
714      * Use fake transfers to model dummy bytes. The value should
715      * be configured to some non-zero value in fast read mode and
716      * zero in read mode. But, as the HW allows inconsistent
717      * settings, let's check for fast read mode.
718      */
719     if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
720         for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
721             ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
722         }
723     }
724 }
725 
726 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
727 {
728     AspeedSMCFlash *fl = opaque;
729     AspeedSMCState *s = fl->controller;
730     uint64_t ret = 0;
731     int i;
732 
733     switch (aspeed_smc_flash_mode(fl)) {
734     case CTRL_USERMODE:
735         for (i = 0; i < size; i++) {
736             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
737         }
738         break;
739     case CTRL_READMODE:
740     case CTRL_FREADMODE:
741         aspeed_smc_flash_select(fl);
742         aspeed_smc_flash_setup(fl, addr);
743 
744         for (i = 0; i < size; i++) {
745             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
746         }
747 
748         aspeed_smc_flash_unselect(fl);
749         break;
750     default:
751         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
752                       __func__, aspeed_smc_flash_mode(fl));
753     }
754 
755     trace_aspeed_smc_flash_read(fl->id, addr, size, ret,
756                                 aspeed_smc_flash_mode(fl));
757     return ret;
758 }
759 
760 /*
761  * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
762  * common include header.
763  */
764 typedef enum {
765     READ = 0x3,         READ_4 = 0x13,
766     FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
767     DOR = 0x3b,         DOR_4 = 0x3c,
768     QOR = 0x6b,         QOR_4 = 0x6c,
769     DIOR = 0xbb,        DIOR_4 = 0xbc,
770     QIOR = 0xeb,        QIOR_4 = 0xec,
771 
772     PP = 0x2,           PP_4 = 0x12,
773     DPP = 0xa2,
774     QPP = 0x32,         QPP_4 = 0x34,
775 } FlashCMD;
776 
777 static int aspeed_smc_num_dummies(uint8_t command)
778 {
779     switch (command) { /* check for dummies */
780     case READ: /* no dummy bytes/cycles */
781     case PP:
782     case DPP:
783     case QPP:
784     case READ_4:
785     case PP_4:
786     case QPP_4:
787         return 0;
788     case FAST_READ:
789     case DOR:
790     case QOR:
791     case FAST_READ_4:
792     case DOR_4:
793     case QOR_4:
794         return 1;
795     case DIOR:
796     case DIOR_4:
797         return 2;
798     case QIOR:
799     case QIOR_4:
800         return 4;
801     default:
802         return -1;
803     }
804 }
805 
806 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
807                                 unsigned size)
808 {
809     AspeedSMCState *s = fl->controller;
810     uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
811 
812     trace_aspeed_smc_do_snoop(fl->id, s->snoop_index, s->snoop_dummies,
813                               (uint8_t) data & 0xff);
814 
815     if (s->snoop_index == SNOOP_OFF) {
816         return false; /* Do nothing */
817 
818     } else if (s->snoop_index == SNOOP_START) {
819         uint8_t cmd = data & 0xff;
820         int ndummies = aspeed_smc_num_dummies(cmd);
821 
822         /*
823          * No dummy cycles are expected with the current command. Turn
824          * off snooping and let the transfer proceed normally.
825          */
826         if (ndummies <= 0) {
827             s->snoop_index = SNOOP_OFF;
828             return false;
829         }
830 
831         s->snoop_dummies = ndummies * 8;
832 
833     } else if (s->snoop_index >= addr_width + 1) {
834 
835         /* The SPI transfer has reached the dummy cycles sequence */
836         for (; s->snoop_dummies; s->snoop_dummies--) {
837             ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
838         }
839 
840         /* If no more dummy cycles are expected, turn off snooping */
841         if (!s->snoop_dummies) {
842             s->snoop_index = SNOOP_OFF;
843         } else {
844             s->snoop_index += size;
845         }
846 
847         /*
848          * Dummy cycles have been faked already. Ignore the current
849          * SPI transfer
850          */
851         return true;
852     }
853 
854     s->snoop_index += size;
855     return false;
856 }
857 
858 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
859                                    unsigned size)
860 {
861     AspeedSMCFlash *fl = opaque;
862     AspeedSMCState *s = fl->controller;
863     int i;
864 
865     trace_aspeed_smc_flash_write(fl->id, addr, size, data,
866                                  aspeed_smc_flash_mode(fl));
867 
868     if (!aspeed_smc_is_writable(fl)) {
869         qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
870                       HWADDR_PRIx "\n", __func__, addr);
871         return;
872     }
873 
874     switch (aspeed_smc_flash_mode(fl)) {
875     case CTRL_USERMODE:
876         if (aspeed_smc_do_snoop(fl, data, size)) {
877             break;
878         }
879 
880         for (i = 0; i < size; i++) {
881             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
882         }
883         break;
884     case CTRL_WRITEMODE:
885         aspeed_smc_flash_select(fl);
886         aspeed_smc_flash_setup(fl, addr);
887 
888         for (i = 0; i < size; i++) {
889             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
890         }
891 
892         aspeed_smc_flash_unselect(fl);
893         break;
894     default:
895         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
896                       __func__, aspeed_smc_flash_mode(fl));
897     }
898 }
899 
900 static const MemoryRegionOps aspeed_smc_flash_ops = {
901     .read = aspeed_smc_flash_read,
902     .write = aspeed_smc_flash_write,
903     .endianness = DEVICE_LITTLE_ENDIAN,
904     .valid = {
905         .min_access_size = 1,
906         .max_access_size = 4,
907     },
908 };
909 
910 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
911 {
912     AspeedSMCState *s = fl->controller;
913     bool unselect;
914 
915     /* User mode selects the CS, other modes unselect */
916     unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
917 
918     /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
919     if (!(s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE) &&
920         value & CTRL_CE_STOP_ACTIVE) {
921         unselect = true;
922     }
923 
924     s->regs[s->r_ctrl0 + fl->id] = value;
925 
926     s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
927 
928     aspeed_smc_flash_do_select(fl, unselect);
929 }
930 
931 static void aspeed_smc_reset(DeviceState *d)
932 {
933     AspeedSMCState *s = ASPEED_SMC(d);
934     int i;
935 
936     memset(s->regs, 0, sizeof s->regs);
937 
938     /* Unselect all slaves */
939     for (i = 0; i < s->num_cs; ++i) {
940         s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
941         qemu_set_irq(s->cs_lines[i], true);
942     }
943 
944     /* setup the default segment register values and regions for all */
945     for (i = 0; i < s->ctrl->max_slaves; ++i) {
946         aspeed_smc_flash_set_segment_region(s, i,
947                     s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]));
948     }
949 
950     /* HW strapping flash type for the AST2600 controllers  */
951     if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
952         /* flash type is fixed to SPI for all */
953         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
954         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
955         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
956     }
957 
958     /* HW strapping flash type for FMC controllers  */
959     if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
960         /* flash type is fixed to SPI for CE0 and CE1 */
961         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
962         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
963     }
964 
965     /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
966      * configuration of the palmetto-bmc machine */
967     if (s->ctrl->segments == aspeed_segments_fmc) {
968         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
969     }
970 
971     s->snoop_index = SNOOP_OFF;
972     s->snoop_dummies = 0;
973 }
974 
975 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
976 {
977     AspeedSMCState *s = ASPEED_SMC(opaque);
978 
979     addr >>= 2;
980 
981     if (addr == s->r_conf ||
982         (addr >= s->r_timings &&
983          addr < s->r_timings + s->ctrl->nregs_timings) ||
984         addr == s->r_ce_ctrl ||
985         addr == R_INTR_CTRL ||
986         addr == R_DUMMY_DATA ||
987         (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
988         (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
989         (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
990         (s->ctrl->has_dma && addr == R_DMA_LEN) ||
991         (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
992         (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
993         (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
994 
995         trace_aspeed_smc_read(addr, size, s->regs[addr]);
996 
997         return s->regs[addr];
998     } else {
999         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1000                       __func__, addr);
1001         return -1;
1002     }
1003 }
1004 
1005 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
1006 {
1007     /* HCLK/1 .. HCLK/16 */
1008     const uint8_t hclk_divisors[] = {
1009         15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
1010     };
1011     int i;
1012 
1013     for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
1014         if (hclk_mask == hclk_divisors[i]) {
1015             return i + 1;
1016         }
1017     }
1018 
1019     qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
1020     return 0;
1021 }
1022 
1023 /*
1024  * When doing calibration, the SPI clock rate in the CE0 Control
1025  * Register and the read delay cycles in the Read Timing Compensation
1026  * Register are set using bit[11:4] of the DMA Control Register.
1027  */
1028 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
1029 {
1030     uint8_t delay =
1031         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1032     uint8_t hclk_mask =
1033         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1034     uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
1035     uint32_t hclk_shift = (hclk_div - 1) << 2;
1036     uint8_t cs;
1037 
1038     /*
1039      * The Read Timing Compensation Register values apply to all CS on
1040      * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
1041      */
1042     if (hclk_div && hclk_div < 6) {
1043         s->regs[s->r_timings] &= ~(0xf << hclk_shift);
1044         s->regs[s->r_timings] |= delay << hclk_shift;
1045     }
1046 
1047     /*
1048      * TODO: compute the CS from the DMA address and the segment
1049      * registers. This is not really a problem for now because the
1050      * Timing Register values apply to all CS and software uses CS0 to
1051      * do calibration.
1052      */
1053     cs = 0;
1054     s->regs[s->r_ctrl0 + cs] &=
1055         ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1056     s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1057 }
1058 
1059 /*
1060  * Emulate read errors in the DMA Checksum Register for high
1061  * frequencies and optimistic settings of the Read Timing Compensation
1062  * Register. This will help in tuning the SPI timing calibration
1063  * algorithm.
1064  */
1065 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1066 {
1067     uint8_t delay =
1068         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1069     uint8_t hclk_mask =
1070         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1071 
1072     /*
1073      * Typical values of a palmetto-bmc machine.
1074      */
1075     switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1076     case 4 ... 16:
1077         return false;
1078     case 3: /* at least one HCLK cycle delay */
1079         return (delay & 0x7) < 1;
1080     case 2: /* at least two HCLK cycle delay */
1081         return (delay & 0x7) < 2;
1082     case 1: /* (> 100MHz) is above the max freq of the controller */
1083         return true;
1084     default:
1085         g_assert_not_reached();
1086     }
1087 }
1088 
1089 /*
1090  * Accumulate the result of the reads to provide a checksum that will
1091  * be used to validate the read timing settings.
1092  */
1093 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1094 {
1095     MemTxResult result;
1096     uint32_t data;
1097 
1098     if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1099         qemu_log_mask(LOG_GUEST_ERROR,
1100                       "%s: invalid direction for DMA checksum\n",  __func__);
1101         return;
1102     }
1103 
1104     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1105         aspeed_smc_dma_calibration(s);
1106     }
1107 
1108     while (s->regs[R_DMA_LEN]) {
1109         data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1110                                     MEMTXATTRS_UNSPECIFIED, &result);
1111         if (result != MEMTX_OK) {
1112             qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1113                           __func__, s->regs[R_DMA_FLASH_ADDR]);
1114             return;
1115         }
1116         trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
1117 
1118         /*
1119          * When the DMA is on-going, the DMA registers are updated
1120          * with the current working addresses and length.
1121          */
1122         s->regs[R_DMA_CHECKSUM] += data;
1123         s->regs[R_DMA_FLASH_ADDR] += 4;
1124         s->regs[R_DMA_LEN] -= 4;
1125     }
1126 
1127     if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1128         s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1129     }
1130 
1131 }
1132 
1133 static void aspeed_smc_dma_rw(AspeedSMCState *s)
1134 {
1135     MemTxResult result;
1136     uint32_t data;
1137 
1138     while (s->regs[R_DMA_LEN]) {
1139         if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1140             data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1141                                         MEMTXATTRS_UNSPECIFIED, &result);
1142             if (result != MEMTX_OK) {
1143                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1144                               __func__, s->regs[R_DMA_DRAM_ADDR]);
1145                 return;
1146             }
1147 
1148             address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1149                                  data, MEMTXATTRS_UNSPECIFIED, &result);
1150             if (result != MEMTX_OK) {
1151                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1152                               __func__, s->regs[R_DMA_FLASH_ADDR]);
1153                 return;
1154             }
1155         } else {
1156             data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1157                                         MEMTXATTRS_UNSPECIFIED, &result);
1158             if (result != MEMTX_OK) {
1159                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1160                               __func__, s->regs[R_DMA_FLASH_ADDR]);
1161                 return;
1162             }
1163 
1164             address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1165                                  data, MEMTXATTRS_UNSPECIFIED, &result);
1166             if (result != MEMTX_OK) {
1167                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1168                               __func__, s->regs[R_DMA_DRAM_ADDR]);
1169                 return;
1170             }
1171         }
1172 
1173         /*
1174          * When the DMA is on-going, the DMA registers are updated
1175          * with the current working addresses and length.
1176          */
1177         s->regs[R_DMA_FLASH_ADDR] += 4;
1178         s->regs[R_DMA_DRAM_ADDR] += 4;
1179         s->regs[R_DMA_LEN] -= 4;
1180         s->regs[R_DMA_CHECKSUM] += data;
1181     }
1182 }
1183 
1184 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1185 {
1186     /*
1187      * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1188      * engine is idle
1189      */
1190     s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1191     s->regs[R_DMA_CHECKSUM] = 0;
1192 
1193     /*
1194      * Lower the DMA irq in any case. The IRQ control register could
1195      * have been cleared before disabling the DMA.
1196      */
1197     qemu_irq_lower(s->irq);
1198 }
1199 
1200 /*
1201  * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1202  * can start even if the result of the previous was not collected.
1203  */
1204 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1205 {
1206     return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1207         !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1208 }
1209 
1210 static void aspeed_smc_dma_done(AspeedSMCState *s)
1211 {
1212     s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1213     if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1214         qemu_irq_raise(s->irq);
1215     }
1216 }
1217 
1218 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1219 {
1220     if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1221         s->regs[R_DMA_CTRL] = dma_ctrl;
1222 
1223         aspeed_smc_dma_stop(s);
1224         return;
1225     }
1226 
1227     if (aspeed_smc_dma_in_progress(s)) {
1228         qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n",  __func__);
1229         return;
1230     }
1231 
1232     s->regs[R_DMA_CTRL] = dma_ctrl;
1233 
1234     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1235         aspeed_smc_dma_checksum(s);
1236     } else {
1237         aspeed_smc_dma_rw(s);
1238     }
1239 
1240     aspeed_smc_dma_done(s);
1241 }
1242 
1243 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1244                              unsigned int size)
1245 {
1246     AspeedSMCState *s = ASPEED_SMC(opaque);
1247     uint32_t value = data;
1248 
1249     addr >>= 2;
1250 
1251     trace_aspeed_smc_write(addr, size, data);
1252 
1253     if (addr == s->r_conf ||
1254         (addr >= s->r_timings &&
1255          addr < s->r_timings + s->ctrl->nregs_timings) ||
1256         addr == s->r_ce_ctrl) {
1257         s->regs[addr] = value;
1258     } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1259         int cs = addr - s->r_ctrl0;
1260         aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1261     } else if (addr >= R_SEG_ADDR0 &&
1262                addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
1263         int cs = addr - R_SEG_ADDR0;
1264 
1265         if (value != s->regs[R_SEG_ADDR0 + cs]) {
1266             aspeed_smc_flash_set_segment(s, cs, value);
1267         }
1268     } else if (addr == R_DUMMY_DATA) {
1269         s->regs[addr] = value & 0xff;
1270     } else if (addr == R_INTR_CTRL) {
1271         s->regs[addr] = value;
1272     } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1273         aspeed_smc_dma_ctrl(s, value);
1274     } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1275         s->regs[addr] = DMA_DRAM_ADDR(s, value);
1276     } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1277         s->regs[addr] = DMA_FLASH_ADDR(s, value);
1278     } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1279         s->regs[addr] = DMA_LENGTH(value);
1280     } else {
1281         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1282                       __func__, addr);
1283         return;
1284     }
1285 }
1286 
1287 static const MemoryRegionOps aspeed_smc_ops = {
1288     .read = aspeed_smc_read,
1289     .write = aspeed_smc_write,
1290     .endianness = DEVICE_LITTLE_ENDIAN,
1291     .valid.unaligned = true,
1292 };
1293 
1294 
1295 /*
1296  * Initialize the custom address spaces for DMAs
1297  */
1298 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1299 {
1300     char *name;
1301 
1302     if (!s->dram_mr) {
1303         error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1304         return;
1305     }
1306 
1307     name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1308     address_space_init(&s->flash_as, &s->mmio_flash, name);
1309     g_free(name);
1310 
1311     name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1312     address_space_init(&s->dram_as, s->dram_mr, name);
1313     g_free(name);
1314 }
1315 
1316 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1317 {
1318     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1319     AspeedSMCState *s = ASPEED_SMC(dev);
1320     AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1321     int i;
1322     char name[32];
1323     hwaddr offset = 0;
1324 
1325     s->ctrl = mc->ctrl;
1326 
1327     /* keep a copy under AspeedSMCState to speed up accesses */
1328     s->r_conf = s->ctrl->r_conf;
1329     s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1330     s->r_ctrl0 = s->ctrl->r_ctrl0;
1331     s->r_timings = s->ctrl->r_timings;
1332     s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1333 
1334     /* Enforce some real HW limits */
1335     if (s->num_cs > s->ctrl->max_slaves) {
1336         qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1337                       __func__, s->ctrl->max_slaves);
1338         s->num_cs = s->ctrl->max_slaves;
1339     }
1340 
1341     /* DMA irq. Keep it first for the initialization in the SoC */
1342     sysbus_init_irq(sbd, &s->irq);
1343 
1344     s->spi = ssi_create_bus(dev, "spi");
1345 
1346     /* Setup cs_lines for slaves */
1347     s->cs_lines = g_new0(qemu_irq, s->num_cs);
1348     ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
1349 
1350     for (i = 0; i < s->num_cs; ++i) {
1351         sysbus_init_irq(sbd, &s->cs_lines[i]);
1352     }
1353 
1354     /* The memory region for the controller registers */
1355     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1356                           s->ctrl->name, s->ctrl->nregs * 4);
1357     sysbus_init_mmio(sbd, &s->mmio);
1358 
1359     /*
1360      * The container memory region representing the address space
1361      * window in which the flash modules are mapped. The size and
1362      * address depends on the SoC model and controller type.
1363      */
1364     snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1365 
1366     memory_region_init_io(&s->mmio_flash, OBJECT(s),
1367                           &aspeed_smc_flash_default_ops, s, name,
1368                           s->ctrl->flash_window_size);
1369     sysbus_init_mmio(sbd, &s->mmio_flash);
1370 
1371     s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_slaves);
1372 
1373     /*
1374      * Let's create a sub memory region for each possible slave. All
1375      * have a configurable memory segment in the overall flash mapping
1376      * window of the controller but, there is not necessarily a flash
1377      * module behind to handle the memory accesses. This depends on
1378      * the board configuration.
1379      */
1380     for (i = 0; i < s->ctrl->max_slaves; ++i) {
1381         AspeedSMCFlash *fl = &s->flashes[i];
1382 
1383         snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1384 
1385         fl->id = i;
1386         fl->controller = s;
1387         fl->size = s->ctrl->segments[i].size;
1388         memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1389                               fl, name, fl->size);
1390         memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1391         offset += fl->size;
1392     }
1393 
1394     /* DMA support */
1395     if (s->ctrl->has_dma) {
1396         aspeed_smc_dma_setup(s, errp);
1397     }
1398 }
1399 
1400 static const VMStateDescription vmstate_aspeed_smc = {
1401     .name = "aspeed.smc",
1402     .version_id = 2,
1403     .minimum_version_id = 2,
1404     .fields = (VMStateField[]) {
1405         VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1406         VMSTATE_UINT8(snoop_index, AspeedSMCState),
1407         VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1408         VMSTATE_END_OF_LIST()
1409     }
1410 };
1411 
1412 static Property aspeed_smc_properties[] = {
1413     DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1414     DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1415     DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1416     DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1417                      TYPE_MEMORY_REGION, MemoryRegion *),
1418     DEFINE_PROP_END_OF_LIST(),
1419 };
1420 
1421 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1422 {
1423     DeviceClass *dc = DEVICE_CLASS(klass);
1424     AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1425 
1426     dc->realize = aspeed_smc_realize;
1427     dc->reset = aspeed_smc_reset;
1428     device_class_set_props(dc, aspeed_smc_properties);
1429     dc->vmsd = &vmstate_aspeed_smc;
1430     mc->ctrl = data;
1431 }
1432 
1433 static const TypeInfo aspeed_smc_info = {
1434     .name           = TYPE_ASPEED_SMC,
1435     .parent         = TYPE_SYS_BUS_DEVICE,
1436     .instance_size  = sizeof(AspeedSMCState),
1437     .class_size     = sizeof(AspeedSMCClass),
1438     .abstract       = true,
1439 };
1440 
1441 static void aspeed_smc_register_types(void)
1442 {
1443     int i;
1444 
1445     type_register_static(&aspeed_smc_info);
1446     for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1447         TypeInfo ti = {
1448             .name       = controllers[i].name,
1449             .parent     = TYPE_ASPEED_SMC,
1450             .class_init = aspeed_smc_class_init,
1451             .class_data = (void *)&controllers[i],
1452         };
1453         type_register(&ti);
1454     }
1455 }
1456 
1457 type_init(aspeed_smc_register_types)
1458