xref: /openbmc/qemu/hw/ssi/aspeed_smc.c (revision 10f915e4)
1 /*
2  * ASPEED AST2400 SMC Controller (SPI Flash Only)
3  *
4  * Copyright (C) 2016 IBM Corp.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "qemu/units.h"
33 #include "trace.h"
34 
35 #include "hw/irq.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/ssi/aspeed_smc.h"
38 
39 /* CE Type Setting Register */
40 #define R_CONF            (0x00 / 4)
41 #define   CONF_LEGACY_DISABLE  (1 << 31)
42 #define   CONF_ENABLE_W4       20
43 #define   CONF_ENABLE_W3       19
44 #define   CONF_ENABLE_W2       18
45 #define   CONF_ENABLE_W1       17
46 #define   CONF_ENABLE_W0       16
47 #define   CONF_FLASH_TYPE4     8
48 #define   CONF_FLASH_TYPE3     6
49 #define   CONF_FLASH_TYPE2     4
50 #define   CONF_FLASH_TYPE1     2
51 #define   CONF_FLASH_TYPE0     0
52 #define      CONF_FLASH_TYPE_NOR   0x0
53 #define      CONF_FLASH_TYPE_NAND  0x1
54 #define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
55 
56 /* CE Control Register */
57 #define R_CE_CTRL            (0x04 / 4)
58 #define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
59 #define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
60 #define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
61 #define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
62 #define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
63 
64 /* Interrupt Control and Status Register */
65 #define R_INTR_CTRL       (0x08 / 4)
66 #define   INTR_CTRL_DMA_STATUS            (1 << 11)
67 #define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
68 #define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
69 #define   INTR_CTRL_DMA_EN                (1 << 3)
70 #define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
71 #define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
72 
73 /* Command Control Register */
74 #define R_CE_CMD_CTRL      (0x0C / 4)
75 #define   CTRL_ADDR_BYTE0_DISABLE_SHIFT       4
76 #define   CTRL_DATA_BYTE0_DISABLE_SHIFT       0
77 
78 #define aspeed_smc_addr_byte_enabled(s, i)                               \
79     (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
80 #define aspeed_smc_data_byte_enabled(s, i)                               \
81     (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
82 
83 /* CEx Control Register */
84 #define R_CTRL0           (0x10 / 4)
85 #define   CTRL_IO_QPI              (1 << 31)
86 #define   CTRL_IO_QUAD_DATA        (1 << 30)
87 #define   CTRL_IO_DUAL_DATA        (1 << 29)
88 #define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
89 #define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
90 #define   CTRL_CMD_SHIFT           16
91 #define   CTRL_CMD_MASK            0xff
92 #define   CTRL_DUMMY_HIGH_SHIFT    14
93 #define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
94 #define CE_CTRL_CLOCK_FREQ_SHIFT   8
95 #define CE_CTRL_CLOCK_FREQ_MASK    0xf
96 #define CE_CTRL_CLOCK_FREQ(div)                                         \
97     (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
98 #define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
99 #define   CTRL_CE_STOP_ACTIVE      (1 << 2)
100 #define   CTRL_CMD_MODE_MASK       0x3
101 #define     CTRL_READMODE          0x0
102 #define     CTRL_FREADMODE         0x1
103 #define     CTRL_WRITEMODE         0x2
104 #define     CTRL_USERMODE          0x3
105 #define R_CTRL1           (0x14 / 4)
106 #define R_CTRL2           (0x18 / 4)
107 #define R_CTRL3           (0x1C / 4)
108 #define R_CTRL4           (0x20 / 4)
109 
110 /* CEx Segment Address Register */
111 #define R_SEG_ADDR0       (0x30 / 4)
112 #define   SEG_END_SHIFT        24   /* 8MB units */
113 #define   SEG_END_MASK         0xff
114 #define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
115 #define   SEG_START_MASK       0xff
116 #define R_SEG_ADDR1       (0x34 / 4)
117 #define R_SEG_ADDR2       (0x38 / 4)
118 #define R_SEG_ADDR3       (0x3C / 4)
119 #define R_SEG_ADDR4       (0x40 / 4)
120 
121 /* Misc Control Register #1 */
122 #define R_MISC_CTRL1      (0x50 / 4)
123 
124 /* SPI dummy cycle data */
125 #define R_DUMMY_DATA      (0x54 / 4)
126 
127 /* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */
128 #define R_FMC_WDT2_CTRL   (0x64 / 4)
129 #define   FMC_WDT2_CTRL_ALT_BOOT_MODE    BIT(6) /* O: 2 chips 1: 1 chip */
130 #define   FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5)
131 #define   FMC_WDT2_CTRL_BOOT_SOURCE      BIT(4) /* O: primary 1: alternate */
132 #define   FMC_WDT2_CTRL_EN               BIT(0)
133 
134 /* DMA Control/Status Register */
135 #define R_DMA_CTRL        (0x80 / 4)
136 #define   DMA_CTRL_REQUEST      (1 << 31)
137 #define   DMA_CTRL_GRANT        (1 << 30)
138 #define   DMA_CTRL_DELAY_MASK   0xf
139 #define   DMA_CTRL_DELAY_SHIFT  8
140 #define   DMA_CTRL_FREQ_MASK    0xf
141 #define   DMA_CTRL_FREQ_SHIFT   4
142 #define   DMA_CTRL_CALIB        (1 << 3)
143 #define   DMA_CTRL_CKSUM        (1 << 2)
144 #define   DMA_CTRL_WRITE        (1 << 1)
145 #define   DMA_CTRL_ENABLE       (1 << 0)
146 
147 /* DMA Flash Side Address */
148 #define R_DMA_FLASH_ADDR  (0x84 / 4)
149 
150 /* DMA DRAM Side Address */
151 #define R_DMA_DRAM_ADDR   (0x88 / 4)
152 
153 /* DMA Length Register */
154 #define R_DMA_LEN         (0x8C / 4)
155 
156 /* Checksum Calculation Result */
157 #define R_DMA_CHECKSUM    (0x90 / 4)
158 
159 /* Read Timing Compensation Register */
160 #define R_TIMINGS         (0x94 / 4)
161 
162 /* SPI controller registers and bits (AST2400) */
163 #define R_SPI_CONF        (0x00 / 4)
164 #define   SPI_CONF_ENABLE_W0   0
165 #define R_SPI_CTRL0       (0x4 / 4)
166 #define R_SPI_MISC_CTRL   (0x10 / 4)
167 #define R_SPI_TIMINGS     (0x14 / 4)
168 
169 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
170 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
171 
172 /*
173  * DMA DRAM addresses should be 4 bytes aligned and the valid address
174  * range is 0x40000000 - 0x5FFFFFFF (AST2400)
175  *          0x80000000 - 0xBFFFFFFF (AST2500)
176  *
177  * DMA flash addresses should be 4 bytes aligned and the valid address
178  * range is 0x20000000 - 0x2FFFFFFF.
179  *
180  * DMA length is from 4 bytes to 32MB
181  *   0: 4 bytes
182  *   0x7FFFFF: 32M bytes
183  */
184 #define DMA_DRAM_ADDR(asc, val)   ((val) & (asc)->dma_dram_mask)
185 #define DMA_FLASH_ADDR(asc, val)  ((val) & (asc)->dma_flash_mask)
186 #define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
187 
188 /* Flash opcodes. */
189 #define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
190 
191 #define SNOOP_OFF         0xFF
192 #define SNOOP_START       0x0
193 
194 /*
195  * Default segments mapping addresses and size for each peripheral per
196  * controller. These can be changed when board is initialized with the
197  * Segment Address Registers.
198  */
199 static const AspeedSegments aspeed_2400_fmc_segments[];
200 static const AspeedSegments aspeed_2400_spi1_segments[];
201 static const AspeedSegments aspeed_2500_fmc_segments[];
202 static const AspeedSegments aspeed_2500_spi1_segments[];
203 static const AspeedSegments aspeed_2500_spi2_segments[];
204 static const AspeedSegments aspeed_2600_fmc_segments[];
205 
206 #define ASPEED_SMC_FEATURE_DMA       0x1
207 #define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
208 #define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4
209 
210 static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc)
211 {
212     return !!(asc->features & ASPEED_SMC_FEATURE_DMA);
213 }
214 
215 static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc)
216 {
217     return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL);
218 }
219 
220 #define aspeed_smc_error(fmt, ...)                                      \
221     qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__)
222 
223 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
224                                      const AspeedSegments *new,
225                                      int cs)
226 {
227     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
228     AspeedSegments seg;
229     int i;
230 
231     for (i = 0; i < asc->max_peripherals; i++) {
232         if (i == cs) {
233             continue;
234         }
235 
236         asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
237 
238         if (new->addr + new->size > seg.addr &&
239             new->addr < seg.addr + seg.size) {
240             aspeed_smc_error("new segment CS%d [ 0x%"
241                              HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
242                              "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
243                              cs, new->addr, new->addr + new->size,
244                              i, seg.addr, seg.addr + seg.size);
245             return true;
246         }
247     }
248     return false;
249 }
250 
251 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
252                                                 uint64_t regval)
253 {
254     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
255     AspeedSMCFlash *fl = &s->flashes[cs];
256     AspeedSegments seg;
257 
258     asc->reg_to_segment(s, regval, &seg);
259 
260     memory_region_transaction_begin();
261     memory_region_set_size(&fl->mmio, seg.size);
262     memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base);
263     memory_region_set_enabled(&fl->mmio, !!seg.size);
264     memory_region_transaction_commit();
265 
266     s->regs[R_SEG_ADDR0 + cs] = regval;
267 }
268 
269 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
270                                          uint64_t new)
271 {
272     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
273     AspeedSegments seg;
274 
275     asc->reg_to_segment(s, new, &seg);
276 
277     trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
278 
279     /* The start address of CS0 is read-only */
280     if (cs == 0 && seg.addr != asc->flash_window_base) {
281         aspeed_smc_error("Tried to change CS0 start address to 0x%"
282                          HWADDR_PRIx, seg.addr);
283         seg.addr = asc->flash_window_base;
284         new = asc->segment_to_reg(s, &seg);
285     }
286 
287     /*
288      * The end address of the AST2500 spi controllers is also
289      * read-only.
290      */
291     if ((asc->segments == aspeed_2500_spi1_segments ||
292          asc->segments == aspeed_2500_spi2_segments) &&
293         cs == asc->max_peripherals &&
294         seg.addr + seg.size != asc->segments[cs].addr +
295         asc->segments[cs].size) {
296         aspeed_smc_error("Tried to change CS%d end address to 0x%"
297                          HWADDR_PRIx, cs, seg.addr + seg.size);
298         seg.size = asc->segments[cs].addr + asc->segments[cs].size -
299             seg.addr;
300         new = asc->segment_to_reg(s, &seg);
301     }
302 
303     /* Keep the segment in the overall flash window */
304     if (seg.size &&
305         (seg.addr + seg.size <= asc->flash_window_base ||
306          seg.addr > asc->flash_window_base + asc->flash_window_size)) {
307         aspeed_smc_error("new segment for CS%d is invalid : "
308                          "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
309                          cs, seg.addr, seg.addr + seg.size);
310         return;
311     }
312 
313     /* Check start address vs. alignment */
314     if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
315         aspeed_smc_error("new segment for CS%d is not "
316                          "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
317                          cs, seg.addr, seg.addr + seg.size);
318     }
319 
320     /* And segments should not overlap (in the specs) */
321     aspeed_smc_flash_overlap(s, &seg, cs);
322 
323     /* All should be fine now to move the region */
324     aspeed_smc_flash_set_segment_region(s, cs, new);
325 }
326 
327 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
328                                               unsigned size)
329 {
330     aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u" PRIx64, addr, size);
331     return 0;
332 }
333 
334 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
335                                            uint64_t data, unsigned size)
336 {
337     aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64,
338                      addr, size, data);
339 }
340 
341 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
342     .read = aspeed_smc_flash_default_read,
343     .write = aspeed_smc_flash_default_write,
344     .endianness = DEVICE_LITTLE_ENDIAN,
345     .valid = {
346         .min_access_size = 1,
347         .max_access_size = 4,
348     },
349 };
350 
351 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
352 {
353     const AspeedSMCState *s = fl->controller;
354 
355     return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
356 }
357 
358 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
359 {
360     const AspeedSMCState *s = fl->controller;
361 
362     return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs));
363 }
364 
365 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
366 {
367     const AspeedSMCState *s = fl->controller;
368     int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
369 
370     /*
371      * In read mode, the default SPI command is READ (0x3). In other
372      * modes, the command should necessarily be defined
373      *
374      * TODO: add support for READ4 (0x13) on AST2600
375      */
376     if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
377         cmd = SPI_OP_READ;
378     }
379 
380     if (!cmd) {
381         aspeed_smc_error("no command defined for mode %d",
382                          aspeed_smc_flash_mode(fl));
383     }
384 
385     return cmd;
386 }
387 
388 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
389 {
390     const AspeedSMCState *s = fl->controller;
391     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
392 
393     if (asc->segments == aspeed_2400_spi1_segments) {
394         return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
395     } else {
396         return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs));
397     }
398 }
399 
400 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
401 {
402     AspeedSMCState *s = fl->controller;
403 
404     trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : "");
405 
406     qemu_set_irq(s->cs_lines[fl->cs], unselect);
407 }
408 
409 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
410 {
411     aspeed_smc_flash_do_select(fl, false);
412 }
413 
414 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
415 {
416     aspeed_smc_flash_do_select(fl, true);
417 }
418 
419 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
420                                               uint32_t addr)
421 {
422     const AspeedSMCState *s = fl->controller;
423     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
424     AspeedSegments seg;
425 
426     asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg);
427     if ((addr % seg.size) != addr) {
428         aspeed_smc_error("invalid address 0x%08x for CS%d segment : "
429                          "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
430                          addr, fl->cs, seg.addr, seg.addr + seg.size);
431         addr %= seg.size;
432     }
433 
434     return addr;
435 }
436 
437 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
438 {
439     const AspeedSMCState *s = fl->controller;
440     uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs];
441     uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
442     uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
443     uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
444 
445     if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
446         dummies /= 2;
447     }
448 
449     return dummies;
450 }
451 
452 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
453 {
454     const AspeedSMCState *s = fl->controller;
455     uint8_t cmd = aspeed_smc_flash_cmd(fl);
456     int i = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
457 
458     /* Flash access can not exceed CS segment */
459     addr = aspeed_smc_check_segment_addr(fl, addr);
460 
461     ssi_transfer(s->spi, cmd);
462     while (i--) {
463         if (aspeed_smc_addr_byte_enabled(s, i)) {
464             ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
465         }
466     }
467 
468     /*
469      * Use fake transfers to model dummy bytes. The value should
470      * be configured to some non-zero value in fast read mode and
471      * zero in read mode. But, as the HW allows inconsistent
472      * settings, let's check for fast read mode.
473      */
474     if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
475         for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
476             ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
477         }
478     }
479 }
480 
481 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
482 {
483     AspeedSMCFlash *fl = opaque;
484     AspeedSMCState *s = fl->controller;
485     uint64_t ret = 0;
486     int i;
487 
488     switch (aspeed_smc_flash_mode(fl)) {
489     case CTRL_USERMODE:
490         for (i = 0; i < size; i++) {
491             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
492         }
493         break;
494     case CTRL_READMODE:
495     case CTRL_FREADMODE:
496         aspeed_smc_flash_select(fl);
497         aspeed_smc_flash_setup(fl, addr);
498 
499         for (i = 0; i < size; i++) {
500             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
501         }
502 
503         aspeed_smc_flash_unselect(fl);
504         break;
505     default:
506         aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
507     }
508 
509     trace_aspeed_smc_flash_read(fl->cs, addr, size, ret,
510                                 aspeed_smc_flash_mode(fl));
511     return ret;
512 }
513 
514 /*
515  * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
516  * common include header.
517  */
518 typedef enum {
519     READ = 0x3,         READ_4 = 0x13,
520     FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
521     DOR = 0x3b,         DOR_4 = 0x3c,
522     QOR = 0x6b,         QOR_4 = 0x6c,
523     DIOR = 0xbb,        DIOR_4 = 0xbc,
524     QIOR = 0xeb,        QIOR_4 = 0xec,
525 
526     PP = 0x2,           PP_4 = 0x12,
527     DPP = 0xa2,
528     QPP = 0x32,         QPP_4 = 0x34,
529 } FlashCMD;
530 
531 static int aspeed_smc_num_dummies(uint8_t command)
532 {
533     switch (command) { /* check for dummies */
534     case READ: /* no dummy bytes/cycles */
535     case PP:
536     case DPP:
537     case QPP:
538     case READ_4:
539     case PP_4:
540     case QPP_4:
541         return 0;
542     case FAST_READ:
543     case DOR:
544     case QOR:
545     case FAST_READ_4:
546     case DOR_4:
547     case QOR_4:
548         return 1;
549     case DIOR:
550     case DIOR_4:
551         return 2;
552     case QIOR:
553     case QIOR_4:
554         return 4;
555     default:
556         return -1;
557     }
558 }
559 
560 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
561                                 unsigned size)
562 {
563     AspeedSMCState *s = fl->controller;
564     uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
565 
566     trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies,
567                               (uint8_t) data & 0xff);
568 
569     if (s->snoop_index == SNOOP_OFF) {
570         return false; /* Do nothing */
571 
572     } else if (s->snoop_index == SNOOP_START) {
573         uint8_t cmd = data & 0xff;
574         int ndummies = aspeed_smc_num_dummies(cmd);
575 
576         /*
577          * No dummy cycles are expected with the current command. Turn
578          * off snooping and let the transfer proceed normally.
579          */
580         if (ndummies <= 0) {
581             s->snoop_index = SNOOP_OFF;
582             return false;
583         }
584 
585         s->snoop_dummies = ndummies * 8;
586 
587     } else if (s->snoop_index >= addr_width + 1) {
588 
589         /* The SPI transfer has reached the dummy cycles sequence */
590         for (; s->snoop_dummies; s->snoop_dummies--) {
591             ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
592         }
593 
594         /* If no more dummy cycles are expected, turn off snooping */
595         if (!s->snoop_dummies) {
596             s->snoop_index = SNOOP_OFF;
597         } else {
598             s->snoop_index += size;
599         }
600 
601         /*
602          * Dummy cycles have been faked already. Ignore the current
603          * SPI transfer
604          */
605         return true;
606     }
607 
608     s->snoop_index += size;
609     return false;
610 }
611 
612 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
613                                    unsigned size)
614 {
615     AspeedSMCFlash *fl = opaque;
616     AspeedSMCState *s = fl->controller;
617     int i;
618 
619     trace_aspeed_smc_flash_write(fl->cs, addr, size, data,
620                                  aspeed_smc_flash_mode(fl));
621 
622     if (!aspeed_smc_is_writable(fl)) {
623         aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr);
624         return;
625     }
626 
627     switch (aspeed_smc_flash_mode(fl)) {
628     case CTRL_USERMODE:
629         if (aspeed_smc_do_snoop(fl, data, size)) {
630             break;
631         }
632 
633         for (i = 0; i < size; i++) {
634             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
635         }
636         break;
637     case CTRL_WRITEMODE:
638         aspeed_smc_flash_select(fl);
639         aspeed_smc_flash_setup(fl, addr);
640 
641         for (i = 0; i < size; i++) {
642             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
643         }
644 
645         aspeed_smc_flash_unselect(fl);
646         break;
647     default:
648         aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
649     }
650 }
651 
652 static const MemoryRegionOps aspeed_smc_flash_ops = {
653     .read = aspeed_smc_flash_read,
654     .write = aspeed_smc_flash_write,
655     .endianness = DEVICE_LITTLE_ENDIAN,
656     .valid = {
657         .min_access_size = 1,
658         .max_access_size = 4,
659     },
660 };
661 
662 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
663 {
664     AspeedSMCState *s = fl->controller;
665     bool unselect;
666 
667     /* User mode selects the CS, other modes unselect */
668     unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
669 
670     /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
671     if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) &&
672         value & CTRL_CE_STOP_ACTIVE) {
673         unselect = true;
674     }
675 
676     s->regs[s->r_ctrl0 + fl->cs] = value;
677 
678     s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
679 
680     aspeed_smc_flash_do_select(fl, unselect);
681 }
682 
683 static void aspeed_smc_reset(DeviceState *d)
684 {
685     AspeedSMCState *s = ASPEED_SMC(d);
686     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
687     int i;
688 
689     memset(s->regs, 0, sizeof s->regs);
690 
691     /* Unselect all peripherals */
692     for (i = 0; i < s->num_cs; ++i) {
693         s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
694         qemu_set_irq(s->cs_lines[i], true);
695     }
696 
697     /* setup the default segment register values and regions for all */
698     for (i = 0; i < asc->max_peripherals; ++i) {
699         aspeed_smc_flash_set_segment_region(s, i,
700                     asc->segment_to_reg(s, &asc->segments[i]));
701     }
702 
703     /* HW strapping flash type for the AST2600 controllers  */
704     if (asc->segments == aspeed_2600_fmc_segments) {
705         /* flash type is fixed to SPI for all */
706         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
707         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
708         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
709     }
710 
711     /* HW strapping flash type for FMC controllers  */
712     if (asc->segments == aspeed_2500_fmc_segments) {
713         /* flash type is fixed to SPI for CE0 and CE1 */
714         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
715         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
716     }
717 
718     /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
719      * configuration of the palmetto-bmc machine */
720     if (asc->segments == aspeed_2400_fmc_segments) {
721         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
722     }
723 
724     s->snoop_index = SNOOP_OFF;
725     s->snoop_dummies = 0;
726 }
727 
728 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
729 {
730     AspeedSMCState *s = ASPEED_SMC(opaque);
731     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque);
732 
733     addr >>= 2;
734 
735     if (addr == s->r_conf ||
736         (addr >= s->r_timings &&
737          addr < s->r_timings + asc->nregs_timings) ||
738         addr == s->r_ce_ctrl ||
739         addr == R_CE_CMD_CTRL ||
740         addr == R_INTR_CTRL ||
741         addr == R_DUMMY_DATA ||
742         (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) ||
743         (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) ||
744         (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) ||
745         (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) ||
746         (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) ||
747         (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) ||
748         (addr >= R_SEG_ADDR0 &&
749          addr < R_SEG_ADDR0 + asc->max_peripherals) ||
750         (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->max_peripherals)) {
751 
752         trace_aspeed_smc_read(addr, size, s->regs[addr]);
753 
754         return s->regs[addr];
755     } else {
756         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
757                       __func__, addr);
758         return -1;
759     }
760 }
761 
762 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
763 {
764     /* HCLK/1 .. HCLK/16 */
765     const uint8_t hclk_divisors[] = {
766         15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
767     };
768     int i;
769 
770     for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
771         if (hclk_mask == hclk_divisors[i]) {
772             return i + 1;
773         }
774     }
775 
776     aspeed_smc_error("invalid HCLK mask %x", hclk_mask);
777     return 0;
778 }
779 
780 /*
781  * When doing calibration, the SPI clock rate in the CE0 Control
782  * Register and the read delay cycles in the Read Timing Compensation
783  * Register are set using bit[11:4] of the DMA Control Register.
784  */
785 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
786 {
787     uint8_t delay =
788         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
789     uint8_t hclk_mask =
790         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
791     uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
792     uint32_t hclk_shift = (hclk_div - 1) << 2;
793     uint8_t cs;
794 
795     /*
796      * The Read Timing Compensation Register values apply to all CS on
797      * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
798      */
799     if (hclk_div && hclk_div < 6) {
800         s->regs[s->r_timings] &= ~(0xf << hclk_shift);
801         s->regs[s->r_timings] |= delay << hclk_shift;
802     }
803 
804     /*
805      * TODO: compute the CS from the DMA address and the segment
806      * registers. This is not really a problem for now because the
807      * Timing Register values apply to all CS and software uses CS0 to
808      * do calibration.
809      */
810     cs = 0;
811     s->regs[s->r_ctrl0 + cs] &=
812         ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
813     s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
814 }
815 
816 /*
817  * Emulate read errors in the DMA Checksum Register for high
818  * frequencies and optimistic settings of the Read Timing Compensation
819  * Register. This will help in tuning the SPI timing calibration
820  * algorithm.
821  */
822 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
823 {
824     uint8_t delay =
825         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
826     uint8_t hclk_mask =
827         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
828 
829     /*
830      * Typical values of a palmetto-bmc machine.
831      */
832     switch (aspeed_smc_hclk_divisor(hclk_mask)) {
833     case 4 ... 16:
834         return false;
835     case 3: /* at least one HCLK cycle delay */
836         return (delay & 0x7) < 1;
837     case 2: /* at least two HCLK cycle delay */
838         return (delay & 0x7) < 2;
839     case 1: /* (> 100MHz) is above the max freq of the controller */
840         return true;
841     default:
842         g_assert_not_reached();
843     }
844 }
845 
846 /*
847  * Accumulate the result of the reads to provide a checksum that will
848  * be used to validate the read timing settings.
849  */
850 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
851 {
852     MemTxResult result;
853     uint32_t data;
854 
855     if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
856         aspeed_smc_error("invalid direction for DMA checksum");
857         return;
858     }
859 
860     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
861         aspeed_smc_dma_calibration(s);
862     }
863 
864     while (s->regs[R_DMA_LEN]) {
865         data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
866                                     MEMTXATTRS_UNSPECIFIED, &result);
867         if (result != MEMTX_OK) {
868             aspeed_smc_error("Flash read failed @%08x",
869                              s->regs[R_DMA_FLASH_ADDR]);
870             return;
871         }
872         trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
873 
874         /*
875          * When the DMA is on-going, the DMA registers are updated
876          * with the current working addresses and length.
877          */
878         s->regs[R_DMA_CHECKSUM] += data;
879         s->regs[R_DMA_FLASH_ADDR] += 4;
880         s->regs[R_DMA_LEN] -= 4;
881     }
882 
883     if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
884         s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
885     }
886 
887 }
888 
889 static void aspeed_smc_dma_rw(AspeedSMCState *s)
890 {
891     MemTxResult result;
892     uint32_t data;
893 
894     trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
895                             "write" : "read",
896                             s->regs[R_DMA_FLASH_ADDR],
897                             s->regs[R_DMA_DRAM_ADDR],
898                             s->regs[R_DMA_LEN]);
899     while (s->regs[R_DMA_LEN]) {
900         if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
901             data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
902                                         MEMTXATTRS_UNSPECIFIED, &result);
903             if (result != MEMTX_OK) {
904                 aspeed_smc_error("DRAM read failed @%08x",
905                                  s->regs[R_DMA_DRAM_ADDR]);
906                 return;
907             }
908 
909             address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
910                                  data, MEMTXATTRS_UNSPECIFIED, &result);
911             if (result != MEMTX_OK) {
912                 aspeed_smc_error("Flash write failed @%08x",
913                                  s->regs[R_DMA_FLASH_ADDR]);
914                 return;
915             }
916         } else {
917             data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
918                                         MEMTXATTRS_UNSPECIFIED, &result);
919             if (result != MEMTX_OK) {
920                 aspeed_smc_error("Flash read failed @%08x",
921                                  s->regs[R_DMA_FLASH_ADDR]);
922                 return;
923             }
924 
925             address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
926                                  data, MEMTXATTRS_UNSPECIFIED, &result);
927             if (result != MEMTX_OK) {
928                 aspeed_smc_error("DRAM write failed @%08x",
929                                  s->regs[R_DMA_DRAM_ADDR]);
930                 return;
931             }
932         }
933 
934         /*
935          * When the DMA is on-going, the DMA registers are updated
936          * with the current working addresses and length.
937          */
938         s->regs[R_DMA_FLASH_ADDR] += 4;
939         s->regs[R_DMA_DRAM_ADDR] += 4;
940         s->regs[R_DMA_LEN] -= 4;
941         s->regs[R_DMA_CHECKSUM] += data;
942     }
943 }
944 
945 static void aspeed_smc_dma_stop(AspeedSMCState *s)
946 {
947     /*
948      * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
949      * engine is idle
950      */
951     s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
952     s->regs[R_DMA_CHECKSUM] = 0;
953 
954     /*
955      * Lower the DMA irq in any case. The IRQ control register could
956      * have been cleared before disabling the DMA.
957      */
958     qemu_irq_lower(s->irq);
959 }
960 
961 /*
962  * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
963  * can start even if the result of the previous was not collected.
964  */
965 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
966 {
967     return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
968         !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
969 }
970 
971 static void aspeed_smc_dma_done(AspeedSMCState *s)
972 {
973     s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
974     if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
975         qemu_irq_raise(s->irq);
976     }
977 }
978 
979 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
980 {
981     if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
982         s->regs[R_DMA_CTRL] = dma_ctrl;
983 
984         aspeed_smc_dma_stop(s);
985         return;
986     }
987 
988     if (aspeed_smc_dma_in_progress(s)) {
989         aspeed_smc_error("DMA in progress !");
990         return;
991     }
992 
993     s->regs[R_DMA_CTRL] = dma_ctrl;
994 
995     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
996         aspeed_smc_dma_checksum(s);
997     } else {
998         aspeed_smc_dma_rw(s);
999     }
1000 
1001     aspeed_smc_dma_done(s);
1002 }
1003 
1004 static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
1005 {
1006     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1007 
1008     if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
1009         return true;
1010     }
1011 
1012     if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
1013         aspeed_smc_error("DMA not granted");
1014         return false;
1015     }
1016 
1017     return true;
1018 }
1019 
1020 static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1021 {
1022     /* Preserve DMA bits  */
1023     dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1024 
1025     if (dma_ctrl == 0xAEED0000) {
1026         /* automatically grant request */
1027         s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1028         return;
1029     }
1030 
1031     /* clear request */
1032     if (dma_ctrl == 0xDEEA0000) {
1033         s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1034         return;
1035     }
1036 
1037     if (!aspeed_smc_dma_granted(s)) {
1038         aspeed_smc_error("DMA not granted");
1039         return;
1040     }
1041 
1042     aspeed_smc_dma_ctrl(s, dma_ctrl);
1043     s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1044 }
1045 
1046 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1047                              unsigned int size)
1048 {
1049     AspeedSMCState *s = ASPEED_SMC(opaque);
1050     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1051     uint32_t value = data;
1052 
1053     addr >>= 2;
1054 
1055     trace_aspeed_smc_write(addr, size, data);
1056 
1057     if (addr == s->r_conf ||
1058         (addr >= s->r_timings &&
1059          addr < s->r_timings + asc->nregs_timings) ||
1060         addr == s->r_ce_ctrl) {
1061         s->regs[addr] = value;
1062     } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1063         int cs = addr - s->r_ctrl0;
1064         aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1065     } else if (addr >= R_SEG_ADDR0 &&
1066                addr < R_SEG_ADDR0 + asc->max_peripherals) {
1067         int cs = addr - R_SEG_ADDR0;
1068 
1069         if (value != s->regs[R_SEG_ADDR0 + cs]) {
1070             aspeed_smc_flash_set_segment(s, cs, value);
1071         }
1072     } else if (addr == R_CE_CMD_CTRL) {
1073         s->regs[addr] = value & 0xff;
1074     } else if (addr == R_DUMMY_DATA) {
1075         s->regs[addr] = value & 0xff;
1076     } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) {
1077         s->regs[addr] = value & FMC_WDT2_CTRL_EN;
1078     } else if (addr == R_INTR_CTRL) {
1079         s->regs[addr] = value;
1080     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) {
1081         asc->dma_ctrl(s, value);
1082     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR &&
1083                aspeed_smc_dma_granted(s)) {
1084         s->regs[addr] = DMA_DRAM_ADDR(asc, value);
1085     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR &&
1086                aspeed_smc_dma_granted(s)) {
1087         s->regs[addr] = DMA_FLASH_ADDR(asc, value);
1088     } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN &&
1089                aspeed_smc_dma_granted(s)) {
1090         s->regs[addr] = DMA_LENGTH(value);
1091     } else {
1092         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1093                       __func__, addr);
1094         return;
1095     }
1096 }
1097 
1098 static const MemoryRegionOps aspeed_smc_ops = {
1099     .read = aspeed_smc_read,
1100     .write = aspeed_smc_write,
1101     .endianness = DEVICE_LITTLE_ENDIAN,
1102 };
1103 
1104 /*
1105  * Initialize the custom address spaces for DMAs
1106  */
1107 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1108 {
1109     if (!s->dram_mr) {
1110         error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1111         return;
1112     }
1113 
1114     address_space_init(&s->flash_as, &s->mmio_flash,
1115                        TYPE_ASPEED_SMC ".dma-flash");
1116     address_space_init(&s->dram_as, s->dram_mr,
1117                        TYPE_ASPEED_SMC ".dma-dram");
1118 }
1119 
1120 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1121 {
1122     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1123     AspeedSMCState *s = ASPEED_SMC(dev);
1124     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1125     int i;
1126     char name[32];
1127     hwaddr offset = 0;
1128 
1129     /* keep a copy under AspeedSMCState to speed up accesses */
1130     s->r_conf = asc->r_conf;
1131     s->r_ce_ctrl = asc->r_ce_ctrl;
1132     s->r_ctrl0 = asc->r_ctrl0;
1133     s->r_timings = asc->r_timings;
1134     s->conf_enable_w0 = asc->conf_enable_w0;
1135 
1136     /* Enforce some real HW limits */
1137     if (s->num_cs > asc->max_peripherals) {
1138         aspeed_smc_error("num_cs cannot exceed: %d", asc->max_peripherals);
1139         s->num_cs = asc->max_peripherals;
1140     }
1141 
1142     /* DMA irq. Keep it first for the initialization in the SoC */
1143     sysbus_init_irq(sbd, &s->irq);
1144 
1145     s->spi = ssi_create_bus(dev, "spi");
1146 
1147     /* Setup cs_lines for peripherals */
1148     s->cs_lines = g_new0(qemu_irq, s->num_cs);
1149 
1150     for (i = 0; i < s->num_cs; ++i) {
1151         sysbus_init_irq(sbd, &s->cs_lines[i]);
1152     }
1153 
1154     /* The memory region for the controller registers */
1155     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1156                           TYPE_ASPEED_SMC, asc->nregs * 4);
1157     sysbus_init_mmio(sbd, &s->mmio);
1158 
1159     /*
1160      * The container memory region representing the address space
1161      * window in which the flash modules are mapped. The size and
1162      * address depends on the SoC model and controller type.
1163      */
1164     memory_region_init_io(&s->mmio_flash, OBJECT(s),
1165                           &aspeed_smc_flash_default_ops, s,
1166                           TYPE_ASPEED_SMC ".flash",
1167                           asc->flash_window_size);
1168     memory_region_init_alias(&s->mmio_flash_alias, OBJECT(s),
1169                              TYPE_ASPEED_SMC ".flash",
1170                              &s->mmio_flash, 0, asc->flash_window_size);
1171     sysbus_init_mmio(sbd, &s->mmio_flash_alias);
1172 
1173     s->flashes = g_new0(AspeedSMCFlash, asc->max_peripherals);
1174 
1175     /*
1176      * Let's create a sub memory region for each possible peripheral. All
1177      * have a configurable memory segment in the overall flash mapping
1178      * window of the controller but, there is not necessarily a flash
1179      * module behind to handle the memory accesses. This depends on
1180      * the board configuration.
1181      */
1182     for (i = 0; i < asc->max_peripherals; ++i) {
1183         AspeedSMCFlash *fl = &s->flashes[i];
1184 
1185         snprintf(name, sizeof(name), TYPE_ASPEED_SMC ".flash.%d", i);
1186 
1187         fl->cs = i;
1188         fl->controller = s;
1189         memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1190                               fl, name, asc->segments[i].size);
1191         memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1192         offset += asc->segments[i].size;
1193     }
1194 
1195     /* DMA support */
1196     if (aspeed_smc_has_dma(asc)) {
1197         aspeed_smc_dma_setup(s, errp);
1198     }
1199 }
1200 
1201 static const VMStateDescription vmstate_aspeed_smc = {
1202     .name = "aspeed.smc",
1203     .version_id = 2,
1204     .minimum_version_id = 2,
1205     .fields = (VMStateField[]) {
1206         VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1207         VMSTATE_UINT8(snoop_index, AspeedSMCState),
1208         VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1209         VMSTATE_END_OF_LIST()
1210     }
1211 };
1212 
1213 static Property aspeed_smc_properties[] = {
1214     DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1215     DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1216     DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1217                      TYPE_MEMORY_REGION, MemoryRegion *),
1218     DEFINE_PROP_END_OF_LIST(),
1219 };
1220 
1221 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1222 {
1223     DeviceClass *dc = DEVICE_CLASS(klass);
1224 
1225     dc->realize = aspeed_smc_realize;
1226     dc->reset = aspeed_smc_reset;
1227     device_class_set_props(dc, aspeed_smc_properties);
1228     dc->vmsd = &vmstate_aspeed_smc;
1229 }
1230 
1231 static const TypeInfo aspeed_smc_info = {
1232     .name           = TYPE_ASPEED_SMC,
1233     .parent         = TYPE_SYS_BUS_DEVICE,
1234     .instance_size  = sizeof(AspeedSMCState),
1235     .class_size     = sizeof(AspeedSMCClass),
1236     .class_init     = aspeed_smc_class_init,
1237     .abstract       = true,
1238 };
1239 
1240 
1241 /*
1242  * The Segment Registers of the AST2400 and AST2500 have a 8MB
1243  * unit. The address range of a flash SPI peripheral is encoded with
1244  * absolute addresses which should be part of the overall controller
1245  * window.
1246  */
1247 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
1248                                           const AspeedSegments *seg)
1249 {
1250     uint32_t reg = 0;
1251     reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
1252     reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
1253     return reg;
1254 }
1255 
1256 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
1257                                       uint32_t reg, AspeedSegments *seg)
1258 {
1259     seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
1260     seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
1261 }
1262 
1263 static const AspeedSegments aspeed_2400_smc_segments[] = {
1264     { 0x10000000, 32 * MiB },
1265 };
1266 
1267 static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data)
1268 {
1269     DeviceClass *dc = DEVICE_CLASS(klass);
1270     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1271 
1272     dc->desc               = "Aspeed 2400 SMC Controller";
1273     asc->r_conf            = R_CONF;
1274     asc->r_ce_ctrl         = R_CE_CTRL;
1275     asc->r_ctrl0           = R_CTRL0;
1276     asc->r_timings         = R_TIMINGS;
1277     asc->nregs_timings     = 1;
1278     asc->conf_enable_w0    = CONF_ENABLE_W0;
1279     asc->max_peripherals   = 1;
1280     asc->segments          = aspeed_2400_smc_segments;
1281     asc->flash_window_base = 0x10000000;
1282     asc->flash_window_size = 0x6000000;
1283     asc->features          = 0x0;
1284     asc->nregs             = ASPEED_SMC_R_SMC_MAX;
1285     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1286     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1287     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1288 }
1289 
1290 static const TypeInfo aspeed_2400_smc_info = {
1291     .name =  "aspeed.smc-ast2400",
1292     .parent = TYPE_ASPEED_SMC,
1293     .class_init = aspeed_2400_smc_class_init,
1294 };
1295 
1296 static const AspeedSegments aspeed_2400_fmc_segments[] = {
1297     { 0x20000000, 64 * MiB }, /* start address is readonly */
1298     { 0x24000000, 32 * MiB },
1299     { 0x26000000, 32 * MiB },
1300     { 0x28000000, 32 * MiB },
1301     { 0x2A000000, 32 * MiB }
1302 };
1303 
1304 static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data)
1305 {
1306     DeviceClass *dc = DEVICE_CLASS(klass);
1307     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1308 
1309     dc->desc               = "Aspeed 2400 FMC Controller";
1310     asc->r_conf            = R_CONF;
1311     asc->r_ce_ctrl         = R_CE_CTRL;
1312     asc->r_ctrl0           = R_CTRL0;
1313     asc->r_timings         = R_TIMINGS;
1314     asc->nregs_timings     = 1;
1315     asc->conf_enable_w0    = CONF_ENABLE_W0;
1316     asc->max_peripherals   = 5;
1317     asc->segments          = aspeed_2400_fmc_segments;
1318     asc->flash_window_base = 0x20000000;
1319     asc->flash_window_size = 0x10000000;
1320     asc->features          = ASPEED_SMC_FEATURE_DMA;
1321     asc->dma_flash_mask    = 0x0FFFFFFC;
1322     asc->dma_dram_mask     = 0x1FFFFFFC;
1323     asc->nregs             = ASPEED_SMC_R_MAX;
1324     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1325     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1326     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1327 }
1328 
1329 static const TypeInfo aspeed_2400_fmc_info = {
1330     .name =  "aspeed.fmc-ast2400",
1331     .parent = TYPE_ASPEED_SMC,
1332     .class_init = aspeed_2400_fmc_class_init,
1333 };
1334 
1335 static const AspeedSegments aspeed_2400_spi1_segments[] = {
1336     { 0x30000000, 64 * MiB },
1337 };
1338 
1339 static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data)
1340 {
1341     DeviceClass *dc = DEVICE_CLASS(klass);
1342     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1343 
1344     dc->desc               = "Aspeed 2400 SPI1 Controller";
1345     asc->r_conf            = R_SPI_CONF;
1346     asc->r_ce_ctrl         = 0xff;
1347     asc->r_ctrl0           = R_SPI_CTRL0;
1348     asc->r_timings         = R_SPI_TIMINGS;
1349     asc->nregs_timings     = 1;
1350     asc->conf_enable_w0    = SPI_CONF_ENABLE_W0;
1351     asc->max_peripherals   = 1;
1352     asc->segments          = aspeed_2400_spi1_segments;
1353     asc->flash_window_base = 0x30000000;
1354     asc->flash_window_size = 0x10000000;
1355     asc->features          = 0x0;
1356     asc->nregs             = ASPEED_SMC_R_SPI_MAX;
1357     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1358     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1359     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1360 }
1361 
1362 static const TypeInfo aspeed_2400_spi1_info = {
1363     .name =  "aspeed.spi1-ast2400",
1364     .parent = TYPE_ASPEED_SMC,
1365     .class_init = aspeed_2400_spi1_class_init,
1366 };
1367 
1368 static const AspeedSegments aspeed_2500_fmc_segments[] = {
1369     { 0x20000000, 128 * MiB }, /* start address is readonly */
1370     { 0x28000000,  32 * MiB },
1371     { 0x2A000000,  32 * MiB },
1372 };
1373 
1374 static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data)
1375 {
1376     DeviceClass *dc = DEVICE_CLASS(klass);
1377     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1378 
1379     dc->desc               = "Aspeed 2600 FMC Controller";
1380     asc->r_conf            = R_CONF;
1381     asc->r_ce_ctrl         = R_CE_CTRL;
1382     asc->r_ctrl0           = R_CTRL0;
1383     asc->r_timings         = R_TIMINGS;
1384     asc->nregs_timings     = 1;
1385     asc->conf_enable_w0    = CONF_ENABLE_W0;
1386     asc->max_peripherals   = 3;
1387     asc->segments          = aspeed_2500_fmc_segments;
1388     asc->flash_window_base = 0x20000000;
1389     asc->flash_window_size = 0x10000000;
1390     asc->features          = ASPEED_SMC_FEATURE_DMA;
1391     asc->dma_flash_mask    = 0x0FFFFFFC;
1392     asc->dma_dram_mask     = 0x3FFFFFFC;
1393     asc->nregs             = ASPEED_SMC_R_MAX;
1394     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1395     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1396     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1397 }
1398 
1399 static const TypeInfo aspeed_2500_fmc_info = {
1400     .name =  "aspeed.fmc-ast2500",
1401     .parent = TYPE_ASPEED_SMC,
1402     .class_init = aspeed_2500_fmc_class_init,
1403 };
1404 
1405 static const AspeedSegments aspeed_2500_spi1_segments[] = {
1406     { 0x30000000, 32 * MiB }, /* start address is readonly */
1407     { 0x32000000, 96 * MiB }, /* end address is readonly */
1408 };
1409 
1410 static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data)
1411 {
1412     DeviceClass *dc = DEVICE_CLASS(klass);
1413     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1414 
1415     dc->desc               = "Aspeed 2600 SPI1 Controller";
1416     asc->r_conf            = R_CONF;
1417     asc->r_ce_ctrl         = R_CE_CTRL;
1418     asc->r_ctrl0           = R_CTRL0;
1419     asc->r_timings         = R_TIMINGS;
1420     asc->nregs_timings     = 1;
1421     asc->conf_enable_w0    = CONF_ENABLE_W0;
1422     asc->max_peripherals   = 2;
1423     asc->segments          = aspeed_2500_spi1_segments;
1424     asc->flash_window_base = 0x30000000;
1425     asc->flash_window_size = 0x8000000;
1426     asc->features          = 0x0;
1427     asc->nregs             = ASPEED_SMC_R_MAX;
1428     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1429     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1430     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1431 }
1432 
1433 static const TypeInfo aspeed_2500_spi1_info = {
1434     .name =  "aspeed.spi1-ast2500",
1435     .parent = TYPE_ASPEED_SMC,
1436     .class_init = aspeed_2500_spi1_class_init,
1437 };
1438 
1439 static const AspeedSegments aspeed_2500_spi2_segments[] = {
1440     { 0x38000000, 32 * MiB }, /* start address is readonly */
1441     { 0x3A000000, 96 * MiB }, /* end address is readonly */
1442 };
1443 
1444 static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data)
1445 {
1446     DeviceClass *dc = DEVICE_CLASS(klass);
1447     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1448 
1449     dc->desc               = "Aspeed 2600 SPI2 Controller";
1450     asc->r_conf            = R_CONF;
1451     asc->r_ce_ctrl         = R_CE_CTRL;
1452     asc->r_ctrl0           = R_CTRL0;
1453     asc->r_timings         = R_TIMINGS;
1454     asc->nregs_timings     = 1;
1455     asc->conf_enable_w0    = CONF_ENABLE_W0;
1456     asc->max_peripherals   = 2;
1457     asc->segments          = aspeed_2500_spi2_segments;
1458     asc->flash_window_base = 0x38000000;
1459     asc->flash_window_size = 0x8000000;
1460     asc->features          = 0x0;
1461     asc->nregs             = ASPEED_SMC_R_MAX;
1462     asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1463     asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1464     asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1465 }
1466 
1467 static const TypeInfo aspeed_2500_spi2_info = {
1468     .name =  "aspeed.spi2-ast2500",
1469     .parent = TYPE_ASPEED_SMC,
1470     .class_init = aspeed_2500_spi2_class_init,
1471 };
1472 
1473 /*
1474  * The Segment Registers of the AST2600 have a 1MB unit. The address
1475  * range of a flash SPI peripheral is encoded with offsets in the overall
1476  * controller window. The previous SoC AST2400 and AST2500 used
1477  * absolute addresses. Only bits [27:20] are relevant and the end
1478  * address is an upper bound limit.
1479  */
1480 #define AST2600_SEG_ADDR_MASK 0x0ff00000
1481 
1482 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
1483                                                const AspeedSegments *seg)
1484 {
1485     uint32_t reg = 0;
1486 
1487     /* Disabled segments have a nil register */
1488     if (!seg->size) {
1489         return 0;
1490     }
1491 
1492     reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
1493     reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
1494     return reg;
1495 }
1496 
1497 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
1498                                            uint32_t reg, AspeedSegments *seg)
1499 {
1500     uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
1501     uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
1502     AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1503 
1504     if (reg) {
1505         seg->addr = asc->flash_window_base + start_offset;
1506         seg->size = end_offset + MiB - start_offset;
1507     } else {
1508         seg->addr = asc->flash_window_base;
1509         seg->size = 0;
1510     }
1511 }
1512 
1513 static const AspeedSegments aspeed_2600_fmc_segments[] = {
1514     { 0x0, 128 * MiB }, /* start address is readonly */
1515     { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1516     { 0x0, 0 }, /* disabled */
1517 };
1518 
1519 static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data)
1520 {
1521     DeviceClass *dc = DEVICE_CLASS(klass);
1522     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1523 
1524     dc->desc               = "Aspeed 2600 FMC Controller";
1525     asc->r_conf            = R_CONF;
1526     asc->r_ce_ctrl         = R_CE_CTRL;
1527     asc->r_ctrl0           = R_CTRL0;
1528     asc->r_timings         = R_TIMINGS;
1529     asc->nregs_timings     = 1;
1530     asc->conf_enable_w0    = CONF_ENABLE_W0;
1531     asc->max_peripherals   = 3;
1532     asc->segments          = aspeed_2600_fmc_segments;
1533     asc->flash_window_base = 0x20000000;
1534     asc->flash_window_size = 0x10000000;
1535     asc->features          = ASPEED_SMC_FEATURE_DMA |
1536                              ASPEED_SMC_FEATURE_WDT_CONTROL;
1537     asc->dma_flash_mask    = 0x0FFFFFFC;
1538     asc->dma_dram_mask     = 0x3FFFFFFC;
1539     asc->nregs             = ASPEED_SMC_R_MAX;
1540     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1541     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1542     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1543 }
1544 
1545 static const TypeInfo aspeed_2600_fmc_info = {
1546     .name =  "aspeed.fmc-ast2600",
1547     .parent = TYPE_ASPEED_SMC,
1548     .class_init = aspeed_2600_fmc_class_init,
1549 };
1550 
1551 static const AspeedSegments aspeed_2600_spi1_segments[] = {
1552     { 0x0, 128 * MiB }, /* start address is readonly */
1553     { 0x0, 0 }, /* disabled */
1554 };
1555 
1556 static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data)
1557 {
1558     DeviceClass *dc = DEVICE_CLASS(klass);
1559     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1560 
1561     dc->desc               = "Aspeed 2600 SPI1 Controller";
1562     asc->r_conf            = R_CONF;
1563     asc->r_ce_ctrl         = R_CE_CTRL;
1564     asc->r_ctrl0           = R_CTRL0;
1565     asc->r_timings         = R_TIMINGS;
1566     asc->nregs_timings     = 2;
1567     asc->conf_enable_w0    = CONF_ENABLE_W0;
1568     asc->max_peripherals   = 2;
1569     asc->segments          = aspeed_2600_spi1_segments;
1570     asc->flash_window_base = 0x30000000;
1571     asc->flash_window_size = 0x10000000;
1572     asc->features          = ASPEED_SMC_FEATURE_DMA |
1573                              ASPEED_SMC_FEATURE_DMA_GRANT;
1574     asc->dma_flash_mask    = 0x0FFFFFFC;
1575     asc->dma_dram_mask     = 0x3FFFFFFC;
1576     asc->nregs             = ASPEED_SMC_R_MAX;
1577     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1578     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1579     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1580 }
1581 
1582 static const TypeInfo aspeed_2600_spi1_info = {
1583     .name =  "aspeed.spi1-ast2600",
1584     .parent = TYPE_ASPEED_SMC,
1585     .class_init = aspeed_2600_spi1_class_init,
1586 };
1587 
1588 static const AspeedSegments aspeed_2600_spi2_segments[] = {
1589     { 0x0, 128 * MiB }, /* start address is readonly */
1590     { 0x0, 0 }, /* disabled */
1591     { 0x0, 0 }, /* disabled */
1592 };
1593 
1594 static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data)
1595 {
1596     DeviceClass *dc = DEVICE_CLASS(klass);
1597     AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1598 
1599     dc->desc               = "Aspeed 2600 SPI2 Controller";
1600     asc->r_conf            = R_CONF;
1601     asc->r_ce_ctrl         = R_CE_CTRL;
1602     asc->r_ctrl0           = R_CTRL0;
1603     asc->r_timings         = R_TIMINGS;
1604     asc->nregs_timings     = 3;
1605     asc->conf_enable_w0    = CONF_ENABLE_W0;
1606     asc->max_peripherals   = 3;
1607     asc->segments          = aspeed_2600_spi2_segments;
1608     asc->flash_window_base = 0x50000000;
1609     asc->flash_window_size = 0x10000000;
1610     asc->features          = ASPEED_SMC_FEATURE_DMA |
1611                              ASPEED_SMC_FEATURE_DMA_GRANT;
1612     asc->dma_flash_mask    = 0x0FFFFFFC;
1613     asc->dma_dram_mask     = 0x3FFFFFFC;
1614     asc->nregs             = ASPEED_SMC_R_MAX;
1615     asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1616     asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1617     asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1618 }
1619 
1620 static const TypeInfo aspeed_2600_spi2_info = {
1621     .name =  "aspeed.spi2-ast2600",
1622     .parent = TYPE_ASPEED_SMC,
1623     .class_init = aspeed_2600_spi2_class_init,
1624 };
1625 
1626 static void aspeed_smc_register_types(void)
1627 {
1628     type_register_static(&aspeed_smc_info);
1629     type_register_static(&aspeed_2400_smc_info);
1630     type_register_static(&aspeed_2400_fmc_info);
1631     type_register_static(&aspeed_2400_spi1_info);
1632     type_register_static(&aspeed_2500_fmc_info);
1633     type_register_static(&aspeed_2500_spi1_info);
1634     type_register_static(&aspeed_2500_spi2_info);
1635     type_register_static(&aspeed_2600_fmc_info);
1636     type_register_static(&aspeed_2600_spi1_info);
1637     type_register_static(&aspeed_2600_spi2_info);
1638 }
1639 
1640 type_init(aspeed_smc_register_types)
1641