1 /*
2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
3 *
4 * Copyright (C) 2016 IBM Corp.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "hw/block/flash.h"
27 #include "hw/sysbus.h"
28 #include "migration/vmstate.h"
29 #include "qemu/log.h"
30 #include "qemu/module.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
33 #include "qemu/units.h"
34 #include "trace.h"
35
36 #include "hw/irq.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/ssi/aspeed_smc.h"
39
40 /* CE Type Setting Register */
41 #define R_CONF (0x00 / 4)
42 #define CONF_LEGACY_DISABLE (1 << 31)
43 #define CONF_ENABLE_W4 20
44 #define CONF_ENABLE_W3 19
45 #define CONF_ENABLE_W2 18
46 #define CONF_ENABLE_W1 17
47 #define CONF_ENABLE_W0 16
48 #define CONF_FLASH_TYPE4 8
49 #define CONF_FLASH_TYPE3 6
50 #define CONF_FLASH_TYPE2 4
51 #define CONF_FLASH_TYPE1 2
52 #define CONF_FLASH_TYPE0 0
53 #define CONF_FLASH_TYPE_NOR 0x0
54 #define CONF_FLASH_TYPE_NAND 0x1
55 #define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */
56
57 /* CE Control Register */
58 #define R_CE_CTRL (0x04 / 4)
59 #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
60 #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
61 #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
62 #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
63 #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
64
65 /* Interrupt Control and Status Register */
66 #define R_INTR_CTRL (0x08 / 4)
67 #define INTR_CTRL_DMA_STATUS (1 << 11)
68 #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
69 #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
70 #define INTR_CTRL_DMA_EN (1 << 3)
71 #define INTR_CTRL_CMD_ABORT_EN (1 << 2)
72 #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
73
74 /* Command Control Register */
75 #define R_CE_CMD_CTRL (0x0C / 4)
76 #define CTRL_ADDR_BYTE0_DISABLE_SHIFT 4
77 #define CTRL_DATA_BYTE0_DISABLE_SHIFT 0
78
79 #define aspeed_smc_addr_byte_enabled(s, i) \
80 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
81 #define aspeed_smc_data_byte_enabled(s, i) \
82 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
83
84 /* CEx Control Register */
85 #define R_CTRL0 (0x10 / 4)
86 #define CTRL_IO_QPI (1 << 31)
87 #define CTRL_IO_QUAD_DATA (1 << 30)
88 #define CTRL_IO_DUAL_DATA (1 << 29)
89 #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
90 #define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */
91 #define CTRL_CMD_SHIFT 16
92 #define CTRL_CMD_MASK 0xff
93 #define CTRL_DUMMY_HIGH_SHIFT 14
94 #define CTRL_AST2400_SPI_4BYTE (1 << 13)
95 #define CE_CTRL_CLOCK_FREQ_SHIFT 8
96 #define CE_CTRL_CLOCK_FREQ_MASK 0xf
97 #define CE_CTRL_CLOCK_FREQ(div) \
98 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
99 #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
100 #define CTRL_CE_STOP_ACTIVE (1 << 2)
101 #define CTRL_CMD_MODE_MASK 0x3
102 #define CTRL_READMODE 0x0
103 #define CTRL_FREADMODE 0x1
104 #define CTRL_WRITEMODE 0x2
105 #define CTRL_USERMODE 0x3
106 #define R_CTRL1 (0x14 / 4)
107 #define R_CTRL2 (0x18 / 4)
108 #define R_CTRL3 (0x1C / 4)
109 #define R_CTRL4 (0x20 / 4)
110
111 /* CEx Segment Address Register */
112 #define R_SEG_ADDR0 (0x30 / 4)
113 #define SEG_END_SHIFT 24 /* 8MB units */
114 #define SEG_END_MASK 0xff
115 #define SEG_START_SHIFT 16 /* address bit [A29-A23] */
116 #define SEG_START_MASK 0xff
117 #define R_SEG_ADDR1 (0x34 / 4)
118 #define R_SEG_ADDR2 (0x38 / 4)
119 #define R_SEG_ADDR3 (0x3C / 4)
120 #define R_SEG_ADDR4 (0x40 / 4)
121
122 /* Misc Control Register #1 */
123 #define R_MISC_CTRL1 (0x50 / 4)
124
125 /* SPI dummy cycle data */
126 #define R_DUMMY_DATA (0x54 / 4)
127
128 /* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */
129 #define R_FMC_WDT2_CTRL (0x64 / 4)
130 #define FMC_WDT2_CTRL_ALT_BOOT_MODE BIT(6) /* O: 2 chips 1: 1 chip */
131 #define FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5)
132 #define FMC_WDT2_CTRL_BOOT_SOURCE BIT(4) /* O: primary 1: alternate */
133 #define FMC_WDT2_CTRL_EN BIT(0)
134
135 /* DMA DRAM Side Address High Part (AST2700) */
136 #define R_DMA_DRAM_ADDR_HIGH (0x7c / 4)
137
138 /* DMA Control/Status Register */
139 #define R_DMA_CTRL (0x80 / 4)
140 #define DMA_CTRL_REQUEST (1 << 31)
141 #define DMA_CTRL_GRANT (1 << 30)
142 #define DMA_CTRL_DELAY_MASK 0xf
143 #define DMA_CTRL_DELAY_SHIFT 8
144 #define DMA_CTRL_FREQ_MASK 0xf
145 #define DMA_CTRL_FREQ_SHIFT 4
146 #define DMA_CTRL_CALIB (1 << 3)
147 #define DMA_CTRL_CKSUM (1 << 2)
148 #define DMA_CTRL_WRITE (1 << 1)
149 #define DMA_CTRL_ENABLE (1 << 0)
150
151 /* DMA Flash Side Address */
152 #define R_DMA_FLASH_ADDR (0x84 / 4)
153
154 /* DMA DRAM Side Address */
155 #define R_DMA_DRAM_ADDR (0x88 / 4)
156
157 /* DMA Length Register */
158 #define R_DMA_LEN (0x8C / 4)
159
160 /* Checksum Calculation Result */
161 #define R_DMA_CHECKSUM (0x90 / 4)
162
163 /* Read Timing Compensation Register */
164 #define R_TIMINGS (0x94 / 4)
165
166 /* SPI controller registers and bits (AST2400) */
167 #define R_SPI_CONF (0x00 / 4)
168 #define SPI_CONF_ENABLE_W0 0
169 #define R_SPI_CTRL0 (0x4 / 4)
170 #define R_SPI_MISC_CTRL (0x10 / 4)
171 #define R_SPI_TIMINGS (0x14 / 4)
172
173 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
174 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
175
176 /*
177 * DMA DRAM addresses should be 4 bytes aligned and the valid address
178 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
179 * 0x80000000 - 0xBFFFFFFF (AST2500)
180 *
181 * DMA flash addresses should be 4 bytes aligned and the valid address
182 * range is 0x20000000 - 0x2FFFFFFF.
183 *
184 * DMA length is from 4 bytes to 32MB (AST2500)
185 * 0: 4 bytes
186 * 0x1FFFFFC: 32M bytes
187 *
188 * DMA length is from 1 byte to 32MB (AST2600, AST10x0 and AST2700)
189 * 0: 1 byte
190 * 0x1FFFFFF: 32M bytes
191 */
192 #define DMA_DRAM_ADDR(asc, val) ((val) & (asc)->dma_dram_mask)
193 #define DMA_DRAM_ADDR_HIGH(val) ((val) & 0xf)
194 #define DMA_FLASH_ADDR(asc, val) ((val) & (asc)->dma_flash_mask)
195 #define DMA_LENGTH(val) ((val) & 0x01FFFFFF)
196
197 /* Flash opcodes. */
198 #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
199
200 #define SNOOP_OFF 0xFF
201 #define SNOOP_START 0x0
202
203 /*
204 * Default segments mapping addresses and size for each peripheral per
205 * controller. These can be changed when board is initialized with the
206 * Segment Address Registers.
207 */
208 static const AspeedSegments aspeed_2500_spi1_segments[];
209 static const AspeedSegments aspeed_2500_spi2_segments[];
210
211 #define ASPEED_SMC_FEATURE_DMA 0x1
212 #define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
213 #define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4
214 #define ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH 0x08
215
aspeed_smc_has_dma(const AspeedSMCClass * asc)216 static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc)
217 {
218 return !!(asc->features & ASPEED_SMC_FEATURE_DMA);
219 }
220
aspeed_smc_has_wdt_control(const AspeedSMCClass * asc)221 static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc)
222 {
223 return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL);
224 }
225
aspeed_smc_has_dma64(const AspeedSMCClass * asc)226 static inline bool aspeed_smc_has_dma64(const AspeedSMCClass *asc)
227 {
228 return !!(asc->features & ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH);
229 }
230
231 #define aspeed_smc_error(fmt, ...) \
232 qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__)
233
aspeed_smc_flash_overlap(const AspeedSMCState * s,const AspeedSegments * new,int cs)234 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
235 const AspeedSegments *new,
236 int cs)
237 {
238 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
239 AspeedSegments seg;
240 int i;
241
242 for (i = 0; i < asc->cs_num_max; i++) {
243 if (i == cs) {
244 continue;
245 }
246
247 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
248
249 if (new->addr + new->size > seg.addr &&
250 new->addr < seg.addr + seg.size) {
251 aspeed_smc_error("new segment CS%d [ 0x%"
252 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
253 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
254 cs, new->addr, new->addr + new->size,
255 i, seg.addr, seg.addr + seg.size);
256 return true;
257 }
258 }
259 return false;
260 }
261
aspeed_smc_flash_set_segment_region(AspeedSMCState * s,int cs,uint64_t regval)262 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
263 uint64_t regval)
264 {
265 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
266 AspeedSMCFlash *fl = &s->flashes[cs];
267 AspeedSegments seg;
268
269 asc->reg_to_segment(s, regval, &seg);
270
271 memory_region_transaction_begin();
272 memory_region_set_size(&fl->mmio, seg.size);
273 memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base);
274 memory_region_set_enabled(&fl->mmio, !!seg.size);
275 memory_region_transaction_commit();
276
277 if (asc->segment_addr_mask) {
278 regval &= asc->segment_addr_mask;
279 }
280
281 s->regs[R_SEG_ADDR0 + cs] = regval;
282 }
283
aspeed_smc_flash_set_segment(AspeedSMCState * s,int cs,uint64_t new)284 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
285 uint64_t new)
286 {
287 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
288 AspeedSegments seg;
289
290 asc->reg_to_segment(s, new, &seg);
291
292 trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
293
294 /* The start address of CS0 is read-only */
295 if (cs == 0 && seg.addr != asc->flash_window_base) {
296 aspeed_smc_error("Tried to change CS0 start address to 0x%"
297 HWADDR_PRIx, seg.addr);
298 seg.addr = asc->flash_window_base;
299 new = asc->segment_to_reg(s, &seg);
300 }
301
302 /*
303 * The end address of the AST2500 spi controllers is also
304 * read-only.
305 */
306 if ((asc->segments == aspeed_2500_spi1_segments ||
307 asc->segments == aspeed_2500_spi2_segments) &&
308 cs == asc->cs_num_max &&
309 seg.addr + seg.size != asc->segments[cs].addr +
310 asc->segments[cs].size) {
311 aspeed_smc_error("Tried to change CS%d end address to 0x%"
312 HWADDR_PRIx, cs, seg.addr + seg.size);
313 seg.size = asc->segments[cs].addr + asc->segments[cs].size -
314 seg.addr;
315 new = asc->segment_to_reg(s, &seg);
316 }
317
318 /* Keep the segment in the overall flash window */
319 if (seg.size &&
320 (seg.addr + seg.size <= asc->flash_window_base ||
321 seg.addr > asc->flash_window_base + asc->flash_window_size)) {
322 aspeed_smc_error("new segment for CS%d is invalid : "
323 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
324 cs, seg.addr, seg.addr + seg.size);
325 return;
326 }
327
328 /* Check start address vs. alignment */
329 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
330 aspeed_smc_error("new segment for CS%d is not "
331 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
332 cs, seg.addr, seg.addr + seg.size);
333 }
334
335 /* And segments should not overlap (in the specs) */
336 aspeed_smc_flash_overlap(s, &seg, cs);
337
338 /* All should be fine now to move the region */
339 aspeed_smc_flash_set_segment_region(s, cs, new);
340 }
341
aspeed_smc_flash_default_read(void * opaque,hwaddr addr,unsigned size)342 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
343 unsigned size)
344 {
345 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u", addr, size);
346 return 0;
347 }
348
aspeed_smc_flash_default_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)349 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
350 uint64_t data, unsigned size)
351 {
352 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64,
353 addr, size, data);
354 }
355
356 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
357 .read = aspeed_smc_flash_default_read,
358 .write = aspeed_smc_flash_default_write,
359 .endianness = DEVICE_LITTLE_ENDIAN,
360 .valid = {
361 .min_access_size = 1,
362 .max_access_size = 4,
363 },
364 };
365
aspeed_smc_flash_mode(const AspeedSMCFlash * fl)366 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
367 {
368 const AspeedSMCState *s = fl->controller;
369
370 return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
371 }
372
aspeed_smc_is_writable(const AspeedSMCFlash * fl)373 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
374 {
375 const AspeedSMCState *s = fl->controller;
376
377 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs));
378 }
379
aspeed_smc_flash_cmd(const AspeedSMCFlash * fl)380 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
381 {
382 const AspeedSMCState *s = fl->controller;
383 int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
384
385 /*
386 * In read mode, the default SPI command is READ (0x3). In other
387 * modes, the command should necessarily be defined
388 *
389 * TODO: add support for READ4 (0x13) on AST2600
390 */
391 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
392 cmd = SPI_OP_READ;
393 }
394
395 if (!cmd) {
396 aspeed_smc_error("no command defined for mode %d",
397 aspeed_smc_flash_mode(fl));
398 }
399
400 return cmd;
401 }
402
aspeed_smc_flash_addr_width(const AspeedSMCFlash * fl)403 static inline int aspeed_smc_flash_addr_width(const AspeedSMCFlash *fl)
404 {
405 const AspeedSMCState *s = fl->controller;
406 AspeedSMCClass *asc = fl->asc;
407
408 if (asc->addr_width) {
409 return asc->addr_width(s);
410 } else {
411 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs)) ? 4 : 3;
412 }
413 }
414
aspeed_smc_flash_do_select(AspeedSMCFlash * fl,bool unselect)415 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
416 {
417 AspeedSMCState *s = fl->controller;
418
419 trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : "");
420
421 qemu_set_irq(s->cs_lines[fl->cs], unselect);
422 }
423
aspeed_smc_flash_select(AspeedSMCFlash * fl)424 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
425 {
426 aspeed_smc_flash_do_select(fl, false);
427 }
428
aspeed_smc_flash_unselect(AspeedSMCFlash * fl)429 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
430 {
431 aspeed_smc_flash_do_select(fl, true);
432 }
433
aspeed_smc_check_segment_addr(const AspeedSMCFlash * fl,uint32_t addr)434 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
435 uint32_t addr)
436 {
437 const AspeedSMCState *s = fl->controller;
438 AspeedSMCClass *asc = fl->asc;
439 AspeedSegments seg;
440
441 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg);
442 if ((addr % seg.size) != addr) {
443 aspeed_smc_error("invalid address 0x%08x for CS%d segment : "
444 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
445 addr, fl->cs, seg.addr, seg.addr + seg.size);
446 addr %= seg.size;
447 }
448
449 return addr;
450 }
451
aspeed_smc_flash_dummies(const AspeedSMCFlash * fl)452 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
453 {
454 const AspeedSMCState *s = fl->controller;
455 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs];
456 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
457 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
458 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
459
460 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
461 dummies /= 2;
462 }
463
464 return dummies;
465 }
466
aspeed_smc_flash_setup(AspeedSMCFlash * fl,uint32_t addr)467 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
468 {
469 const AspeedSMCState *s = fl->controller;
470 uint8_t cmd = aspeed_smc_flash_cmd(fl);
471 int i = aspeed_smc_flash_addr_width(fl);
472
473 /* Flash access can not exceed CS segment */
474 addr = aspeed_smc_check_segment_addr(fl, addr);
475
476 ssi_transfer(s->spi, cmd);
477 while (i--) {
478 if (aspeed_smc_addr_byte_enabled(s, i)) {
479 ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
480 }
481 }
482
483 /*
484 * Use fake transfers to model dummy bytes. The value should
485 * be configured to some non-zero value in fast read mode and
486 * zero in read mode. But, as the HW allows inconsistent
487 * settings, let's check for fast read mode.
488 */
489 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
490 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
491 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
492 }
493 }
494 }
495
aspeed_smc_flash_read(void * opaque,hwaddr addr,unsigned size)496 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
497 {
498 AspeedSMCFlash *fl = opaque;
499 AspeedSMCState *s = fl->controller;
500 uint64_t ret = 0;
501 int i;
502
503 switch (aspeed_smc_flash_mode(fl)) {
504 case CTRL_USERMODE:
505 for (i = 0; i < size; i++) {
506 ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
507 }
508 break;
509 case CTRL_READMODE:
510 case CTRL_FREADMODE:
511 aspeed_smc_flash_select(fl);
512 aspeed_smc_flash_setup(fl, addr);
513
514 for (i = 0; i < size; i++) {
515 ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
516 }
517
518 aspeed_smc_flash_unselect(fl);
519 break;
520 default:
521 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
522 }
523
524 trace_aspeed_smc_flash_read(fl->cs, addr, size, ret,
525 aspeed_smc_flash_mode(fl));
526 return ret;
527 }
528
529 /*
530 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
531 * common include header.
532 */
533 typedef enum {
534 READ = 0x3, READ_4 = 0x13,
535 FAST_READ = 0xb, FAST_READ_4 = 0x0c,
536 DOR = 0x3b, DOR_4 = 0x3c,
537 QOR = 0x6b, QOR_4 = 0x6c,
538 DIOR = 0xbb, DIOR_4 = 0xbc,
539 QIOR = 0xeb, QIOR_4 = 0xec,
540
541 PP = 0x2, PP_4 = 0x12,
542 DPP = 0xa2,
543 QPP = 0x32, QPP_4 = 0x34,
544 } FlashCMD;
545
aspeed_smc_num_dummies(uint8_t command)546 static int aspeed_smc_num_dummies(uint8_t command)
547 {
548 switch (command) { /* check for dummies */
549 case READ: /* no dummy bytes/cycles */
550 case PP:
551 case DPP:
552 case QPP:
553 case READ_4:
554 case PP_4:
555 case QPP_4:
556 return 0;
557 case FAST_READ:
558 case DOR:
559 case QOR:
560 case FAST_READ_4:
561 case DOR_4:
562 case QOR_4:
563 return 1;
564 case DIOR:
565 case DIOR_4:
566 return 2;
567 case QIOR:
568 case QIOR_4:
569 return 4;
570 default:
571 return -1;
572 }
573 }
574
aspeed_smc_do_snoop(AspeedSMCFlash * fl,uint64_t data,unsigned size)575 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
576 unsigned size)
577 {
578 AspeedSMCState *s = fl->controller;
579 uint8_t addr_width = aspeed_smc_flash_addr_width(fl);
580
581 trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies,
582 (uint8_t) data & 0xff);
583
584 if (s->snoop_index == SNOOP_OFF) {
585 return false; /* Do nothing */
586
587 } else if (s->snoop_index == SNOOP_START) {
588 uint8_t cmd = data & 0xff;
589 int ndummies = aspeed_smc_num_dummies(cmd);
590
591 /*
592 * No dummy cycles are expected with the current command. Turn
593 * off snooping and let the transfer proceed normally.
594 */
595 if (ndummies <= 0) {
596 s->snoop_index = SNOOP_OFF;
597 return false;
598 }
599
600 s->snoop_dummies = ndummies * 8;
601
602 } else if (s->snoop_index >= addr_width + 1) {
603
604 /* The SPI transfer has reached the dummy cycles sequence */
605 for (; s->snoop_dummies; s->snoop_dummies--) {
606 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
607 }
608
609 /* If no more dummy cycles are expected, turn off snooping */
610 if (!s->snoop_dummies) {
611 s->snoop_index = SNOOP_OFF;
612 } else {
613 s->snoop_index += size;
614 }
615
616 /*
617 * Dummy cycles have been faked already. Ignore the current
618 * SPI transfer
619 */
620 return true;
621 }
622
623 s->snoop_index += size;
624 return false;
625 }
626
aspeed_smc_flash_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)627 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
628 unsigned size)
629 {
630 AspeedSMCFlash *fl = opaque;
631 AspeedSMCState *s = fl->controller;
632 int i;
633
634 trace_aspeed_smc_flash_write(fl->cs, addr, size, data,
635 aspeed_smc_flash_mode(fl));
636
637 if (!aspeed_smc_is_writable(fl)) {
638 aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr);
639 return;
640 }
641
642 switch (aspeed_smc_flash_mode(fl)) {
643 case CTRL_USERMODE:
644 if (aspeed_smc_do_snoop(fl, data, size)) {
645 break;
646 }
647
648 for (i = 0; i < size; i++) {
649 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
650 }
651 break;
652 case CTRL_WRITEMODE:
653 aspeed_smc_flash_select(fl);
654 aspeed_smc_flash_setup(fl, addr);
655
656 for (i = 0; i < size; i++) {
657 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
658 }
659
660 aspeed_smc_flash_unselect(fl);
661 break;
662 default:
663 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
664 }
665 }
666
667 static const MemoryRegionOps aspeed_smc_flash_ops = {
668 .read = aspeed_smc_flash_read,
669 .write = aspeed_smc_flash_write,
670 .endianness = DEVICE_LITTLE_ENDIAN,
671 .valid = {
672 .min_access_size = 1,
673 .max_access_size = 4,
674 },
675 };
676
aspeed_smc_flash_update_ctrl(AspeedSMCFlash * fl,uint32_t value)677 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
678 {
679 AspeedSMCState *s = fl->controller;
680 bool unselect;
681
682 /* User mode selects the CS, other modes unselect */
683 unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
684
685 /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
686 if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) &&
687 value & CTRL_CE_STOP_ACTIVE) {
688 unselect = true;
689 }
690
691 s->regs[s->r_ctrl0 + fl->cs] = value;
692
693 s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
694
695 aspeed_smc_flash_do_select(fl, unselect);
696 }
697
aspeed_smc_reset(DeviceState * d)698 static void aspeed_smc_reset(DeviceState *d)
699 {
700 AspeedSMCState *s = ASPEED_SMC(d);
701 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
702 int i;
703
704 if (asc->resets) {
705 memcpy(s->regs, asc->resets, sizeof s->regs);
706 } else {
707 memset(s->regs, 0, sizeof s->regs);
708 }
709
710 for (i = 0; i < asc->cs_num_max; i++) {
711 DeviceState *dev = ssi_get_cs(s->spi, i);
712 if (dev) {
713 Object *o = OBJECT(dev);
714
715 if (!object_dynamic_cast(o, TYPE_M25P80)) {
716 warn_report("Aspeed SMC %s.%d : Invalid %s device type",
717 BUS(s->spi)->name, i, object_get_typename(o));
718 continue;
719 }
720
721 qemu_irq cs_line = qdev_get_gpio_in_named(dev, SSI_GPIO_CS, 0);
722 qdev_connect_gpio_out_named(DEVICE(s), "cs", i, cs_line);
723 }
724 }
725
726 /* Unselect all peripherals */
727 for (i = 0; i < asc->cs_num_max; ++i) {
728 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
729 qemu_set_irq(s->cs_lines[i], true);
730 }
731
732 /* setup the default segment register values and regions for all */
733 for (i = 0; i < asc->cs_num_max; ++i) {
734 aspeed_smc_flash_set_segment_region(s, i,
735 asc->segment_to_reg(s, &asc->segments[i]));
736 }
737
738 s->snoop_index = SNOOP_OFF;
739 s->snoop_dummies = 0;
740 }
741
aspeed_smc_read(void * opaque,hwaddr addr,unsigned int size)742 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
743 {
744 AspeedSMCState *s = ASPEED_SMC(opaque);
745 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque);
746
747 addr >>= 2;
748
749 if (addr == s->r_conf ||
750 (addr >= s->r_timings &&
751 addr < s->r_timings + asc->nregs_timings) ||
752 addr == s->r_ce_ctrl ||
753 addr == R_CE_CMD_CTRL ||
754 addr == R_INTR_CTRL ||
755 addr == R_DUMMY_DATA ||
756 (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) ||
757 (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) ||
758 (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) ||
759 (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) ||
760 (aspeed_smc_has_dma(asc) && aspeed_smc_has_dma64(asc) &&
761 addr == R_DMA_DRAM_ADDR_HIGH) ||
762 (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) ||
763 (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) ||
764 (addr >= R_SEG_ADDR0 &&
765 addr < R_SEG_ADDR0 + asc->cs_num_max) ||
766 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max)) {
767
768 trace_aspeed_smc_read(addr << 2, size, s->regs[addr]);
769
770 return s->regs[addr];
771 } else {
772 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
773 __func__, addr);
774 return -1;
775 }
776 }
777
aspeed_smc_hclk_divisor(uint8_t hclk_mask)778 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
779 {
780 /* HCLK/1 .. HCLK/16 */
781 const uint8_t hclk_divisors[] = {
782 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
783 };
784 int i;
785
786 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
787 if (hclk_mask == hclk_divisors[i]) {
788 return i + 1;
789 }
790 }
791
792 g_assert_not_reached();
793 }
794
795 /*
796 * When doing calibration, the SPI clock rate in the CE0 Control
797 * Register and the read delay cycles in the Read Timing Compensation
798 * Register are set using bit[11:4] of the DMA Control Register.
799 */
aspeed_smc_dma_calibration(AspeedSMCState * s)800 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
801 {
802 uint8_t delay =
803 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
804 uint8_t hclk_mask =
805 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
806 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
807 uint32_t hclk_shift = (hclk_div - 1) << 2;
808 uint8_t cs;
809
810 /*
811 * The Read Timing Compensation Register values apply to all CS on
812 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
813 */
814 if (hclk_div && hclk_div < 6) {
815 s->regs[s->r_timings] &= ~(0xf << hclk_shift);
816 s->regs[s->r_timings] |= delay << hclk_shift;
817 }
818
819 /*
820 * TODO: compute the CS from the DMA address and the segment
821 * registers. This is not really a problem for now because the
822 * Timing Register values apply to all CS and software uses CS0 to
823 * do calibration.
824 */
825 cs = 0;
826 s->regs[s->r_ctrl0 + cs] &=
827 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
828 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
829 }
830
831 /*
832 * Emulate read errors in the DMA Checksum Register for high
833 * frequencies and optimistic settings of the Read Timing Compensation
834 * Register. This will help in tuning the SPI timing calibration
835 * algorithm.
836 */
aspeed_smc_inject_read_failure(AspeedSMCState * s)837 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
838 {
839 uint8_t delay =
840 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
841 uint8_t hclk_mask =
842 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
843
844 /*
845 * Typical values of a palmetto-bmc machine.
846 */
847 switch (aspeed_smc_hclk_divisor(hclk_mask)) {
848 case 4 ... 16:
849 return false;
850 case 3: /* at least one HCLK cycle delay */
851 return (delay & 0x7) < 1;
852 case 2: /* at least two HCLK cycle delay */
853 return (delay & 0x7) < 2;
854 case 1: /* (> 100MHz) is above the max freq of the controller */
855 return true;
856 default:
857 g_assert_not_reached();
858 }
859 }
860
aspeed_smc_dma_dram_addr(AspeedSMCState * s)861 static uint64_t aspeed_smc_dma_dram_addr(AspeedSMCState *s)
862 {
863 return s->regs[R_DMA_DRAM_ADDR] |
864 ((uint64_t) s->regs[R_DMA_DRAM_ADDR_HIGH] << 32);
865 }
866
aspeed_smc_dma_len(AspeedSMCState * s)867 static uint32_t aspeed_smc_dma_len(AspeedSMCState *s)
868 {
869 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
870
871 return QEMU_ALIGN_UP(s->regs[R_DMA_LEN] + asc->dma_start_length, 4);
872 }
873
874 /*
875 * Accumulate the result of the reads to provide a checksum that will
876 * be used to validate the read timing settings.
877 */
aspeed_smc_dma_checksum(AspeedSMCState * s)878 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
879 {
880 MemTxResult result;
881 uint32_t dma_len;
882 uint32_t data;
883
884 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
885 aspeed_smc_error("invalid direction for DMA checksum");
886 return;
887 }
888
889 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
890 aspeed_smc_dma_calibration(s);
891 }
892
893 dma_len = aspeed_smc_dma_len(s);
894
895 while (dma_len) {
896 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
897 MEMTXATTRS_UNSPECIFIED, &result);
898 if (result != MEMTX_OK) {
899 aspeed_smc_error("Flash read failed @%08x",
900 s->regs[R_DMA_FLASH_ADDR]);
901 return;
902 }
903 trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
904
905 /*
906 * When the DMA is on-going, the DMA registers are updated
907 * with the current working addresses and length.
908 */
909 s->regs[R_DMA_CHECKSUM] += data;
910 s->regs[R_DMA_FLASH_ADDR] += 4;
911 dma_len -= 4;
912 s->regs[R_DMA_LEN] = dma_len;
913 }
914
915 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
916 s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
917 }
918
919 }
920
aspeed_smc_dma_rw(AspeedSMCState * s)921 static void aspeed_smc_dma_rw(AspeedSMCState *s)
922 {
923 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
924 uint64_t dma_dram_offset;
925 uint64_t dma_dram_addr;
926 MemTxResult result;
927 uint32_t dma_len;
928 uint32_t data;
929
930 dma_len = aspeed_smc_dma_len(s);
931 dma_dram_addr = aspeed_smc_dma_dram_addr(s);
932
933 if (aspeed_smc_has_dma64(asc)) {
934 dma_dram_offset = dma_dram_addr - s->dram_base;
935 } else {
936 dma_dram_offset = dma_dram_addr;
937 }
938
939 trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
940 "write" : "read",
941 s->regs[R_DMA_FLASH_ADDR],
942 dma_dram_offset,
943 dma_len);
944 while (dma_len) {
945 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
946 data = address_space_ldl_le(&s->dram_as, dma_dram_offset,
947 MEMTXATTRS_UNSPECIFIED, &result);
948 if (result != MEMTX_OK) {
949 aspeed_smc_error("DRAM read failed @%" PRIx64,
950 dma_dram_offset);
951 return;
952 }
953
954 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
955 data, MEMTXATTRS_UNSPECIFIED, &result);
956 if (result != MEMTX_OK) {
957 aspeed_smc_error("Flash write failed @%08x",
958 s->regs[R_DMA_FLASH_ADDR]);
959 return;
960 }
961 } else {
962 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
963 MEMTXATTRS_UNSPECIFIED, &result);
964 if (result != MEMTX_OK) {
965 aspeed_smc_error("Flash read failed @%08x",
966 s->regs[R_DMA_FLASH_ADDR]);
967 return;
968 }
969
970 address_space_stl_le(&s->dram_as, dma_dram_offset,
971 data, MEMTXATTRS_UNSPECIFIED, &result);
972 if (result != MEMTX_OK) {
973 aspeed_smc_error("DRAM write failed @%" PRIx64,
974 dma_dram_offset);
975 return;
976 }
977 }
978
979 /*
980 * When the DMA is on-going, the DMA registers are updated
981 * with the current working addresses and length.
982 */
983 dma_dram_offset += 4;
984 dma_dram_addr += 4;
985
986 s->regs[R_DMA_DRAM_ADDR_HIGH] = dma_dram_addr >> 32;
987 s->regs[R_DMA_DRAM_ADDR] = dma_dram_addr & 0xffffffff;
988 s->regs[R_DMA_FLASH_ADDR] += 4;
989 dma_len -= 4;
990 s->regs[R_DMA_LEN] = dma_len;
991 s->regs[R_DMA_CHECKSUM] += data;
992 }
993 }
994
aspeed_smc_dma_stop(AspeedSMCState * s)995 static void aspeed_smc_dma_stop(AspeedSMCState *s)
996 {
997 /*
998 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
999 * engine is idle
1000 */
1001 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1002 s->regs[R_DMA_CHECKSUM] = 0;
1003
1004 /*
1005 * Lower the DMA irq in any case. The IRQ control register could
1006 * have been cleared before disabling the DMA.
1007 */
1008 qemu_irq_lower(s->irq);
1009 }
1010
1011 /*
1012 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1013 * can start even if the result of the previous was not collected.
1014 */
aspeed_smc_dma_in_progress(AspeedSMCState * s)1015 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1016 {
1017 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1018 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1019 }
1020
aspeed_smc_dma_done(AspeedSMCState * s)1021 static void aspeed_smc_dma_done(AspeedSMCState *s)
1022 {
1023 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1024 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1025 qemu_irq_raise(s->irq);
1026 }
1027 }
1028
aspeed_smc_dma_ctrl(AspeedSMCState * s,uint32_t dma_ctrl)1029 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1030 {
1031 if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1032 s->regs[R_DMA_CTRL] = dma_ctrl;
1033
1034 aspeed_smc_dma_stop(s);
1035 return;
1036 }
1037
1038 if (aspeed_smc_dma_in_progress(s)) {
1039 aspeed_smc_error("DMA in progress !");
1040 return;
1041 }
1042
1043 s->regs[R_DMA_CTRL] = dma_ctrl;
1044
1045 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1046 aspeed_smc_dma_checksum(s);
1047 } else {
1048 aspeed_smc_dma_rw(s);
1049 }
1050
1051 aspeed_smc_dma_done(s);
1052 }
1053
aspeed_smc_dma_granted(AspeedSMCState * s)1054 static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
1055 {
1056 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1057
1058 if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
1059 return true;
1060 }
1061
1062 if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
1063 aspeed_smc_error("DMA not granted");
1064 return false;
1065 }
1066
1067 return true;
1068 }
1069
aspeed_2600_smc_dma_ctrl(AspeedSMCState * s,uint32_t dma_ctrl)1070 static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1071 {
1072 /* Preserve DMA bits */
1073 dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1074
1075 if (dma_ctrl == 0xAEED0000) {
1076 /* automatically grant request */
1077 s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1078 return;
1079 }
1080
1081 /* clear request */
1082 if (dma_ctrl == 0xDEEA0000) {
1083 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1084 return;
1085 }
1086
1087 if (!aspeed_smc_dma_granted(s)) {
1088 aspeed_smc_error("DMA not granted");
1089 return;
1090 }
1091
1092 aspeed_smc_dma_ctrl(s, dma_ctrl);
1093 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1094 }
1095
aspeed_smc_write(void * opaque,hwaddr addr,uint64_t data,unsigned int size)1096 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1097 unsigned int size)
1098 {
1099 AspeedSMCState *s = ASPEED_SMC(opaque);
1100 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1101 uint32_t value = data;
1102
1103 trace_aspeed_smc_write(addr, size, data);
1104
1105 addr >>= 2;
1106
1107 if (addr == s->r_conf ||
1108 (addr >= s->r_timings &&
1109 addr < s->r_timings + asc->nregs_timings) ||
1110 addr == s->r_ce_ctrl) {
1111 s->regs[addr] = value;
1112 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max) {
1113 int cs = addr - s->r_ctrl0;
1114 aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1115 } else if (addr >= R_SEG_ADDR0 &&
1116 addr < R_SEG_ADDR0 + asc->cs_num_max) {
1117 int cs = addr - R_SEG_ADDR0;
1118
1119 if (value != s->regs[R_SEG_ADDR0 + cs]) {
1120 aspeed_smc_flash_set_segment(s, cs, value);
1121 }
1122 } else if (addr == R_CE_CMD_CTRL) {
1123 s->regs[addr] = value & 0xff;
1124 } else if (addr == R_DUMMY_DATA) {
1125 s->regs[addr] = value & 0xff;
1126 } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) {
1127 s->regs[addr] = value & FMC_WDT2_CTRL_EN;
1128 } else if (addr == R_INTR_CTRL) {
1129 s->regs[addr] = value;
1130 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) {
1131 asc->dma_ctrl(s, value);
1132 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR &&
1133 aspeed_smc_dma_granted(s)) {
1134 s->regs[addr] = DMA_DRAM_ADDR(asc, value);
1135 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR &&
1136 aspeed_smc_dma_granted(s)) {
1137 s->regs[addr] = DMA_FLASH_ADDR(asc, value);
1138 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN &&
1139 aspeed_smc_dma_granted(s)) {
1140 s->regs[addr] = DMA_LENGTH(value);
1141 } else if (aspeed_smc_has_dma(asc) && aspeed_smc_has_dma64(asc) &&
1142 addr == R_DMA_DRAM_ADDR_HIGH) {
1143 s->regs[addr] = DMA_DRAM_ADDR_HIGH(value);
1144 } else {
1145 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1146 __func__, addr);
1147 return;
1148 }
1149 }
1150
1151 static const MemoryRegionOps aspeed_smc_ops = {
1152 .read = aspeed_smc_read,
1153 .write = aspeed_smc_write,
1154 .endianness = DEVICE_LITTLE_ENDIAN,
1155 };
1156
aspeed_smc_instance_init(Object * obj)1157 static void aspeed_smc_instance_init(Object *obj)
1158 {
1159 AspeedSMCState *s = ASPEED_SMC(obj);
1160 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1161 int i;
1162
1163 for (i = 0; i < asc->cs_num_max; i++) {
1164 object_initialize_child(obj, "flash[*]", &s->flashes[i],
1165 TYPE_ASPEED_SMC_FLASH);
1166 }
1167 }
1168
1169 /*
1170 * Initialize the custom address spaces for DMAs
1171 */
aspeed_smc_dma_setup(AspeedSMCState * s,Error ** errp)1172 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1173 {
1174 if (!s->dram_mr) {
1175 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1176 return;
1177 }
1178
1179 address_space_init(&s->flash_as, &s->mmio_flash,
1180 TYPE_ASPEED_SMC ".dma-flash");
1181 address_space_init(&s->dram_as, s->dram_mr,
1182 TYPE_ASPEED_SMC ".dma-dram");
1183 }
1184
aspeed_smc_realize(DeviceState * dev,Error ** errp)1185 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1186 {
1187 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1188 AspeedSMCState *s = ASPEED_SMC(dev);
1189 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1190 int i;
1191 hwaddr offset = 0;
1192
1193 /* keep a copy under AspeedSMCState to speed up accesses */
1194 s->r_conf = asc->r_conf;
1195 s->r_ce_ctrl = asc->r_ce_ctrl;
1196 s->r_ctrl0 = asc->r_ctrl0;
1197 s->r_timings = asc->r_timings;
1198 s->conf_enable_w0 = asc->conf_enable_w0;
1199
1200 /* DMA irq. Keep it first for the initialization in the SoC */
1201 sysbus_init_irq(sbd, &s->irq);
1202
1203 s->spi = ssi_create_bus(dev, NULL);
1204
1205 /* Setup cs_lines for peripherals */
1206 s->cs_lines = g_new0(qemu_irq, asc->cs_num_max);
1207 qdev_init_gpio_out_named(DEVICE(s), s->cs_lines, "cs", asc->cs_num_max);
1208
1209 /* The memory region for the controller registers */
1210 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1211 TYPE_ASPEED_SMC, asc->nregs * 4);
1212 sysbus_init_mmio(sbd, &s->mmio);
1213
1214 /*
1215 * The container memory region representing the address space
1216 * window in which the flash modules are mapped. The size and
1217 * address depends on the SoC model and controller type.
1218 */
1219 memory_region_init(&s->mmio_flash_container, OBJECT(s),
1220 TYPE_ASPEED_SMC ".container",
1221 asc->flash_window_size);
1222 sysbus_init_mmio(sbd, &s->mmio_flash_container);
1223
1224 memory_region_init_io(&s->mmio_flash, OBJECT(s),
1225 &aspeed_smc_flash_default_ops, s,
1226 TYPE_ASPEED_SMC ".flash",
1227 asc->flash_window_size);
1228 memory_region_add_subregion(&s->mmio_flash_container, 0x0,
1229 &s->mmio_flash);
1230
1231 /*
1232 * Let's create a sub memory region for each possible peripheral. All
1233 * have a configurable memory segment in the overall flash mapping
1234 * window of the controller but, there is not necessarily a flash
1235 * module behind to handle the memory accesses. This depends on
1236 * the board configuration.
1237 */
1238 for (i = 0; i < asc->cs_num_max; ++i) {
1239 AspeedSMCFlash *fl = &s->flashes[i];
1240
1241 if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s),
1242 errp)) {
1243 return;
1244 }
1245 if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) {
1246 return;
1247 }
1248 if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) {
1249 return;
1250 }
1251
1252 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1253 offset += asc->segments[i].size;
1254 }
1255
1256 /* DMA support */
1257 if (aspeed_smc_has_dma(asc)) {
1258 aspeed_smc_dma_setup(s, errp);
1259 }
1260 }
1261
1262 static const VMStateDescription vmstate_aspeed_smc = {
1263 .name = "aspeed.smc",
1264 .version_id = 2,
1265 .minimum_version_id = 2,
1266 .fields = (const VMStateField[]) {
1267 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1268 VMSTATE_UINT8(snoop_index, AspeedSMCState),
1269 VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1270 VMSTATE_END_OF_LIST()
1271 }
1272 };
1273
1274 static Property aspeed_smc_properties[] = {
1275 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1276 DEFINE_PROP_UINT64("dram-base", AspeedSMCState, dram_base, 0),
1277 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1278 TYPE_MEMORY_REGION, MemoryRegion *),
1279 DEFINE_PROP_END_OF_LIST(),
1280 };
1281
aspeed_smc_class_init(ObjectClass * klass,void * data)1282 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1283 {
1284 DeviceClass *dc = DEVICE_CLASS(klass);
1285
1286 dc->realize = aspeed_smc_realize;
1287 dc->reset = aspeed_smc_reset;
1288 device_class_set_props(dc, aspeed_smc_properties);
1289 dc->vmsd = &vmstate_aspeed_smc;
1290 }
1291
1292 static const TypeInfo aspeed_smc_info = {
1293 .name = TYPE_ASPEED_SMC,
1294 .parent = TYPE_SYS_BUS_DEVICE,
1295 .instance_init = aspeed_smc_instance_init,
1296 .instance_size = sizeof(AspeedSMCState),
1297 .class_size = sizeof(AspeedSMCClass),
1298 .class_init = aspeed_smc_class_init,
1299 .abstract = true,
1300 };
1301
aspeed_smc_flash_realize(DeviceState * dev,Error ** errp)1302 static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp)
1303 {
1304 AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev);
1305 g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs);
1306
1307 if (!s->controller) {
1308 error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set");
1309 return;
1310 }
1311
1312 s->asc = ASPEED_SMC_GET_CLASS(s->controller);
1313
1314 /*
1315 * Use the default segment value to size the memory region. This
1316 * can be changed by FW at runtime.
1317 */
1318 memory_region_init_io(&s->mmio, OBJECT(s), s->asc->reg_ops,
1319 s, name, s->asc->segments[s->cs].size);
1320 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
1321 }
1322
1323 static Property aspeed_smc_flash_properties[] = {
1324 DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0),
1325 DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC,
1326 AspeedSMCState *),
1327 DEFINE_PROP_END_OF_LIST(),
1328 };
1329
aspeed_smc_flash_class_init(ObjectClass * klass,void * data)1330 static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data)
1331 {
1332 DeviceClass *dc = DEVICE_CLASS(klass);
1333
1334 dc->desc = "Aspeed SMC Flash device region";
1335 dc->realize = aspeed_smc_flash_realize;
1336 device_class_set_props(dc, aspeed_smc_flash_properties);
1337 }
1338
1339 static const TypeInfo aspeed_smc_flash_info = {
1340 .name = TYPE_ASPEED_SMC_FLASH,
1341 .parent = TYPE_SYS_BUS_DEVICE,
1342 .instance_size = sizeof(AspeedSMCFlash),
1343 .class_init = aspeed_smc_flash_class_init,
1344 };
1345
1346 /*
1347 * The Segment Registers of the AST2400 and AST2500 have a 8MB
1348 * unit. The address range of a flash SPI peripheral is encoded with
1349 * absolute addresses which should be part of the overall controller
1350 * window.
1351 */
aspeed_smc_segment_to_reg(const AspeedSMCState * s,const AspeedSegments * seg)1352 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
1353 const AspeedSegments *seg)
1354 {
1355 uint32_t reg = 0;
1356 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
1357 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
1358 return reg;
1359 }
1360
aspeed_smc_reg_to_segment(const AspeedSMCState * s,uint32_t reg,AspeedSegments * seg)1361 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
1362 uint32_t reg, AspeedSegments *seg)
1363 {
1364 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
1365 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
1366 }
1367
1368 static const AspeedSegments aspeed_2400_smc_segments[] = {
1369 { 0x10000000, 32 * MiB },
1370 };
1371
aspeed_2400_smc_class_init(ObjectClass * klass,void * data)1372 static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data)
1373 {
1374 DeviceClass *dc = DEVICE_CLASS(klass);
1375 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1376
1377 dc->desc = "Aspeed 2400 SMC Controller";
1378 asc->r_conf = R_CONF;
1379 asc->r_ce_ctrl = R_CE_CTRL;
1380 asc->r_ctrl0 = R_CTRL0;
1381 asc->r_timings = R_TIMINGS;
1382 asc->nregs_timings = 1;
1383 asc->conf_enable_w0 = CONF_ENABLE_W0;
1384 asc->cs_num_max = 1;
1385 asc->segments = aspeed_2400_smc_segments;
1386 asc->flash_window_base = 0x10000000;
1387 asc->flash_window_size = 0x6000000;
1388 asc->features = 0x0;
1389 asc->nregs = ASPEED_SMC_R_SMC_MAX;
1390 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1391 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1392 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1393 asc->reg_ops = &aspeed_smc_flash_ops;
1394 }
1395
1396 static const TypeInfo aspeed_2400_smc_info = {
1397 .name = "aspeed.smc-ast2400",
1398 .parent = TYPE_ASPEED_SMC,
1399 .class_init = aspeed_2400_smc_class_init,
1400 };
1401
1402 static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = {
1403 /*
1404 * CE0 and CE1 types are HW strapped in SCU70. Do it here to
1405 * simplify the model.
1406 */
1407 [R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0,
1408 };
1409
1410 static const AspeedSegments aspeed_2400_fmc_segments[] = {
1411 { 0x20000000, 64 * MiB }, /* start address is readonly */
1412 { 0x24000000, 32 * MiB },
1413 { 0x26000000, 32 * MiB },
1414 { 0x28000000, 32 * MiB },
1415 { 0x2A000000, 32 * MiB }
1416 };
1417
aspeed_2400_fmc_class_init(ObjectClass * klass,void * data)1418 static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data)
1419 {
1420 DeviceClass *dc = DEVICE_CLASS(klass);
1421 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1422
1423 dc->desc = "Aspeed 2400 FMC Controller";
1424 asc->r_conf = R_CONF;
1425 asc->r_ce_ctrl = R_CE_CTRL;
1426 asc->r_ctrl0 = R_CTRL0;
1427 asc->r_timings = R_TIMINGS;
1428 asc->nregs_timings = 1;
1429 asc->conf_enable_w0 = CONF_ENABLE_W0;
1430 asc->cs_num_max = 5;
1431 asc->segments = aspeed_2400_fmc_segments;
1432 asc->segment_addr_mask = 0xffff0000;
1433 asc->resets = aspeed_2400_fmc_resets;
1434 asc->flash_window_base = 0x20000000;
1435 asc->flash_window_size = 0x10000000;
1436 asc->features = ASPEED_SMC_FEATURE_DMA;
1437 asc->dma_flash_mask = 0x0FFFFFFC;
1438 asc->dma_dram_mask = 0x1FFFFFFC;
1439 asc->dma_start_length = 4;
1440 asc->nregs = ASPEED_SMC_R_MAX;
1441 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1442 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1443 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1444 asc->reg_ops = &aspeed_smc_flash_ops;
1445 }
1446
1447 static const TypeInfo aspeed_2400_fmc_info = {
1448 .name = "aspeed.fmc-ast2400",
1449 .parent = TYPE_ASPEED_SMC,
1450 .class_init = aspeed_2400_fmc_class_init,
1451 };
1452
1453 static const AspeedSegments aspeed_2400_spi1_segments[] = {
1454 { 0x30000000, 64 * MiB },
1455 };
1456
aspeed_2400_spi1_addr_width(const AspeedSMCState * s)1457 static int aspeed_2400_spi1_addr_width(const AspeedSMCState *s)
1458 {
1459 return s->regs[R_SPI_CTRL0] & CTRL_AST2400_SPI_4BYTE ? 4 : 3;
1460 }
1461
aspeed_2400_spi1_class_init(ObjectClass * klass,void * data)1462 static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data)
1463 {
1464 DeviceClass *dc = DEVICE_CLASS(klass);
1465 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1466
1467 dc->desc = "Aspeed 2400 SPI1 Controller";
1468 asc->r_conf = R_SPI_CONF;
1469 asc->r_ce_ctrl = 0xff;
1470 asc->r_ctrl0 = R_SPI_CTRL0;
1471 asc->r_timings = R_SPI_TIMINGS;
1472 asc->nregs_timings = 1;
1473 asc->conf_enable_w0 = SPI_CONF_ENABLE_W0;
1474 asc->cs_num_max = 1;
1475 asc->segments = aspeed_2400_spi1_segments;
1476 asc->flash_window_base = 0x30000000;
1477 asc->flash_window_size = 0x10000000;
1478 asc->features = 0x0;
1479 asc->nregs = ASPEED_SMC_R_SPI_MAX;
1480 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1481 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1482 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1483 asc->addr_width = aspeed_2400_spi1_addr_width;
1484 asc->reg_ops = &aspeed_smc_flash_ops;
1485 }
1486
1487 static const TypeInfo aspeed_2400_spi1_info = {
1488 .name = "aspeed.spi1-ast2400",
1489 .parent = TYPE_ASPEED_SMC,
1490 .class_init = aspeed_2400_spi1_class_init,
1491 };
1492
1493 static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = {
1494 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1495 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1496 };
1497
1498 static const AspeedSegments aspeed_2500_fmc_segments[] = {
1499 { 0x20000000, 128 * MiB }, /* start address is readonly */
1500 { 0x28000000, 32 * MiB },
1501 { 0x2A000000, 32 * MiB },
1502 };
1503
aspeed_2500_fmc_class_init(ObjectClass * klass,void * data)1504 static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data)
1505 {
1506 DeviceClass *dc = DEVICE_CLASS(klass);
1507 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1508
1509 dc->desc = "Aspeed 2500 FMC Controller";
1510 asc->r_conf = R_CONF;
1511 asc->r_ce_ctrl = R_CE_CTRL;
1512 asc->r_ctrl0 = R_CTRL0;
1513 asc->r_timings = R_TIMINGS;
1514 asc->nregs_timings = 1;
1515 asc->conf_enable_w0 = CONF_ENABLE_W0;
1516 asc->cs_num_max = 3;
1517 asc->segments = aspeed_2500_fmc_segments;
1518 asc->segment_addr_mask = 0xffff0000;
1519 asc->resets = aspeed_2500_fmc_resets;
1520 asc->flash_window_base = 0x20000000;
1521 asc->flash_window_size = 0x10000000;
1522 asc->features = ASPEED_SMC_FEATURE_DMA;
1523 asc->dma_flash_mask = 0x0FFFFFFC;
1524 asc->dma_dram_mask = 0x3FFFFFFC;
1525 asc->dma_start_length = 4;
1526 asc->nregs = ASPEED_SMC_R_MAX;
1527 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1528 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1529 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1530 asc->reg_ops = &aspeed_smc_flash_ops;
1531 }
1532
1533 static const TypeInfo aspeed_2500_fmc_info = {
1534 .name = "aspeed.fmc-ast2500",
1535 .parent = TYPE_ASPEED_SMC,
1536 .class_init = aspeed_2500_fmc_class_init,
1537 };
1538
1539 static const AspeedSegments aspeed_2500_spi1_segments[] = {
1540 { 0x30000000, 32 * MiB }, /* start address is readonly */
1541 { 0x32000000, 96 * MiB }, /* end address is readonly */
1542 };
1543
aspeed_2500_spi1_class_init(ObjectClass * klass,void * data)1544 static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data)
1545 {
1546 DeviceClass *dc = DEVICE_CLASS(klass);
1547 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1548
1549 dc->desc = "Aspeed 2500 SPI1 Controller";
1550 asc->r_conf = R_CONF;
1551 asc->r_ce_ctrl = R_CE_CTRL;
1552 asc->r_ctrl0 = R_CTRL0;
1553 asc->r_timings = R_TIMINGS;
1554 asc->nregs_timings = 1;
1555 asc->conf_enable_w0 = CONF_ENABLE_W0;
1556 asc->cs_num_max = 2;
1557 asc->segments = aspeed_2500_spi1_segments;
1558 asc->segment_addr_mask = 0xffff0000;
1559 asc->flash_window_base = 0x30000000;
1560 asc->flash_window_size = 0x8000000;
1561 asc->features = 0x0;
1562 asc->nregs = ASPEED_SMC_R_MAX;
1563 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1564 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1565 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1566 asc->reg_ops = &aspeed_smc_flash_ops;
1567 }
1568
1569 static const TypeInfo aspeed_2500_spi1_info = {
1570 .name = "aspeed.spi1-ast2500",
1571 .parent = TYPE_ASPEED_SMC,
1572 .class_init = aspeed_2500_spi1_class_init,
1573 };
1574
1575 static const AspeedSegments aspeed_2500_spi2_segments[] = {
1576 { 0x38000000, 32 * MiB }, /* start address is readonly */
1577 { 0x3A000000, 96 * MiB }, /* end address is readonly */
1578 };
1579
aspeed_2500_spi2_class_init(ObjectClass * klass,void * data)1580 static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data)
1581 {
1582 DeviceClass *dc = DEVICE_CLASS(klass);
1583 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1584
1585 dc->desc = "Aspeed 2500 SPI2 Controller";
1586 asc->r_conf = R_CONF;
1587 asc->r_ce_ctrl = R_CE_CTRL;
1588 asc->r_ctrl0 = R_CTRL0;
1589 asc->r_timings = R_TIMINGS;
1590 asc->nregs_timings = 1;
1591 asc->conf_enable_w0 = CONF_ENABLE_W0;
1592 asc->cs_num_max = 2;
1593 asc->segments = aspeed_2500_spi2_segments;
1594 asc->segment_addr_mask = 0xffff0000;
1595 asc->flash_window_base = 0x38000000;
1596 asc->flash_window_size = 0x8000000;
1597 asc->features = 0x0;
1598 asc->nregs = ASPEED_SMC_R_MAX;
1599 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1600 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1601 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1602 asc->reg_ops = &aspeed_smc_flash_ops;
1603 }
1604
1605 static const TypeInfo aspeed_2500_spi2_info = {
1606 .name = "aspeed.spi2-ast2500",
1607 .parent = TYPE_ASPEED_SMC,
1608 .class_init = aspeed_2500_spi2_class_init,
1609 };
1610
1611 /*
1612 * The Segment Registers of the AST2600 have a 1MB unit. The address
1613 * range of a flash SPI peripheral is encoded with offsets in the overall
1614 * controller window. The previous SoC AST2400 and AST2500 used
1615 * absolute addresses. Only bits [27:20] are relevant and the end
1616 * address is an upper bound limit.
1617 */
1618 #define AST2600_SEG_ADDR_MASK 0x0ff00000
1619
aspeed_2600_smc_segment_to_reg(const AspeedSMCState * s,const AspeedSegments * seg)1620 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
1621 const AspeedSegments *seg)
1622 {
1623 uint32_t reg = 0;
1624
1625 /* Disabled segments have a nil register */
1626 if (!seg->size) {
1627 return 0;
1628 }
1629
1630 reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
1631 reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
1632 return reg;
1633 }
1634
aspeed_2600_smc_reg_to_segment(const AspeedSMCState * s,uint32_t reg,AspeedSegments * seg)1635 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
1636 uint32_t reg, AspeedSegments *seg)
1637 {
1638 uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
1639 uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
1640 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1641
1642 if (reg) {
1643 seg->addr = asc->flash_window_base + start_offset;
1644 seg->size = end_offset + MiB - start_offset;
1645 } else {
1646 seg->addr = asc->flash_window_base;
1647 seg->size = 0;
1648 }
1649 }
1650
1651 static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = {
1652 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1653 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 |
1654 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2),
1655 };
1656
1657 static const AspeedSegments aspeed_2600_fmc_segments[] = {
1658 { 0x0, 128 * MiB }, /* start address is readonly */
1659 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1660 { 0x0, 0 }, /* disabled */
1661 };
1662
aspeed_2600_fmc_class_init(ObjectClass * klass,void * data)1663 static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data)
1664 {
1665 DeviceClass *dc = DEVICE_CLASS(klass);
1666 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1667
1668 dc->desc = "Aspeed 2600 FMC Controller";
1669 asc->r_conf = R_CONF;
1670 asc->r_ce_ctrl = R_CE_CTRL;
1671 asc->r_ctrl0 = R_CTRL0;
1672 asc->r_timings = R_TIMINGS;
1673 asc->nregs_timings = 1;
1674 asc->conf_enable_w0 = CONF_ENABLE_W0;
1675 asc->cs_num_max = 3;
1676 asc->segments = aspeed_2600_fmc_segments;
1677 asc->segment_addr_mask = 0x0ff00ff0;
1678 asc->resets = aspeed_2600_fmc_resets;
1679 asc->flash_window_base = 0x20000000;
1680 asc->flash_window_size = 0x10000000;
1681 asc->features = ASPEED_SMC_FEATURE_DMA |
1682 ASPEED_SMC_FEATURE_WDT_CONTROL;
1683 asc->dma_flash_mask = 0x0FFFFFFC;
1684 asc->dma_dram_mask = 0x3FFFFFFC;
1685 asc->dma_start_length = 1;
1686 asc->nregs = ASPEED_SMC_R_MAX;
1687 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1688 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1689 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1690 asc->reg_ops = &aspeed_smc_flash_ops;
1691 }
1692
1693 static const TypeInfo aspeed_2600_fmc_info = {
1694 .name = "aspeed.fmc-ast2600",
1695 .parent = TYPE_ASPEED_SMC,
1696 .class_init = aspeed_2600_fmc_class_init,
1697 };
1698
1699 static const AspeedSegments aspeed_2600_spi1_segments[] = {
1700 { 0x0, 128 * MiB }, /* start address is readonly */
1701 { 0x0, 0 }, /* disabled */
1702 };
1703
aspeed_2600_spi1_class_init(ObjectClass * klass,void * data)1704 static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data)
1705 {
1706 DeviceClass *dc = DEVICE_CLASS(klass);
1707 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1708
1709 dc->desc = "Aspeed 2600 SPI1 Controller";
1710 asc->r_conf = R_CONF;
1711 asc->r_ce_ctrl = R_CE_CTRL;
1712 asc->r_ctrl0 = R_CTRL0;
1713 asc->r_timings = R_TIMINGS;
1714 asc->nregs_timings = 2;
1715 asc->conf_enable_w0 = CONF_ENABLE_W0;
1716 asc->cs_num_max = 2;
1717 asc->segments = aspeed_2600_spi1_segments;
1718 asc->segment_addr_mask = 0x0ff00ff0;
1719 asc->flash_window_base = 0x30000000;
1720 asc->flash_window_size = 0x10000000;
1721 asc->features = ASPEED_SMC_FEATURE_DMA |
1722 ASPEED_SMC_FEATURE_DMA_GRANT;
1723 asc->dma_flash_mask = 0x0FFFFFFC;
1724 asc->dma_dram_mask = 0x3FFFFFFC;
1725 asc->dma_start_length = 1;
1726 asc->nregs = ASPEED_SMC_R_MAX;
1727 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1728 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1729 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1730 asc->reg_ops = &aspeed_smc_flash_ops;
1731 }
1732
1733 static const TypeInfo aspeed_2600_spi1_info = {
1734 .name = "aspeed.spi1-ast2600",
1735 .parent = TYPE_ASPEED_SMC,
1736 .class_init = aspeed_2600_spi1_class_init,
1737 };
1738
1739 static const AspeedSegments aspeed_2600_spi2_segments[] = {
1740 { 0x0, 128 * MiB }, /* start address is readonly */
1741 { 0x0, 0 }, /* disabled */
1742 { 0x0, 0 }, /* disabled */
1743 };
1744
aspeed_2600_spi2_class_init(ObjectClass * klass,void * data)1745 static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data)
1746 {
1747 DeviceClass *dc = DEVICE_CLASS(klass);
1748 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1749
1750 dc->desc = "Aspeed 2600 SPI2 Controller";
1751 asc->r_conf = R_CONF;
1752 asc->r_ce_ctrl = R_CE_CTRL;
1753 asc->r_ctrl0 = R_CTRL0;
1754 asc->r_timings = R_TIMINGS;
1755 asc->nregs_timings = 3;
1756 asc->conf_enable_w0 = CONF_ENABLE_W0;
1757 asc->cs_num_max = 3;
1758 asc->segments = aspeed_2600_spi2_segments;
1759 asc->segment_addr_mask = 0x0ff00ff0;
1760 asc->flash_window_base = 0x50000000;
1761 asc->flash_window_size = 0x10000000;
1762 asc->features = ASPEED_SMC_FEATURE_DMA |
1763 ASPEED_SMC_FEATURE_DMA_GRANT;
1764 asc->dma_flash_mask = 0x0FFFFFFC;
1765 asc->dma_dram_mask = 0x3FFFFFFC;
1766 asc->dma_start_length = 1;
1767 asc->nregs = ASPEED_SMC_R_MAX;
1768 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1769 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1770 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1771 asc->reg_ops = &aspeed_smc_flash_ops;
1772 }
1773
1774 static const TypeInfo aspeed_2600_spi2_info = {
1775 .name = "aspeed.spi2-ast2600",
1776 .parent = TYPE_ASPEED_SMC,
1777 .class_init = aspeed_2600_spi2_class_init,
1778 };
1779
1780 /*
1781 * The FMC Segment Registers of the AST1030 have a 512KB unit.
1782 * Only bits [27:19] are used for decoding.
1783 */
1784 #define AST1030_SEG_ADDR_MASK 0x0ff80000
1785
aspeed_1030_smc_segment_to_reg(const AspeedSMCState * s,const AspeedSegments * seg)1786 static uint32_t aspeed_1030_smc_segment_to_reg(const AspeedSMCState *s,
1787 const AspeedSegments *seg)
1788 {
1789 uint32_t reg = 0;
1790
1791 /* Disabled segments have a nil register */
1792 if (!seg->size) {
1793 return 0;
1794 }
1795
1796 reg |= (seg->addr & AST1030_SEG_ADDR_MASK) >> 16; /* start offset */
1797 reg |= (seg->addr + seg->size - 1) & AST1030_SEG_ADDR_MASK; /* end offset */
1798 return reg;
1799 }
1800
aspeed_1030_smc_reg_to_segment(const AspeedSMCState * s,uint32_t reg,AspeedSegments * seg)1801 static void aspeed_1030_smc_reg_to_segment(const AspeedSMCState *s,
1802 uint32_t reg, AspeedSegments *seg)
1803 {
1804 uint32_t start_offset = (reg << 16) & AST1030_SEG_ADDR_MASK;
1805 uint32_t end_offset = reg & AST1030_SEG_ADDR_MASK;
1806 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1807
1808 if (reg) {
1809 seg->addr = asc->flash_window_base + start_offset;
1810 seg->size = end_offset + (512 * KiB) - start_offset;
1811 } else {
1812 seg->addr = asc->flash_window_base;
1813 seg->size = 0;
1814 }
1815 }
1816
1817 static const uint32_t aspeed_1030_fmc_resets[ASPEED_SMC_R_MAX] = {
1818 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1819 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1820 };
1821
1822 static const AspeedSegments aspeed_1030_fmc_segments[] = {
1823 { 0x0, 128 * MiB }, /* start address is readonly */
1824 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1825 { 0x0, 0 }, /* disabled */
1826 };
1827
aspeed_1030_fmc_class_init(ObjectClass * klass,void * data)1828 static void aspeed_1030_fmc_class_init(ObjectClass *klass, void *data)
1829 {
1830 DeviceClass *dc = DEVICE_CLASS(klass);
1831 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1832
1833 dc->desc = "Aspeed 1030 FMC Controller";
1834 asc->r_conf = R_CONF;
1835 asc->r_ce_ctrl = R_CE_CTRL;
1836 asc->r_ctrl0 = R_CTRL0;
1837 asc->r_timings = R_TIMINGS;
1838 asc->nregs_timings = 2;
1839 asc->conf_enable_w0 = CONF_ENABLE_W0;
1840 asc->cs_num_max = 2;
1841 asc->segments = aspeed_1030_fmc_segments;
1842 asc->segment_addr_mask = 0x0ff80ff8;
1843 asc->resets = aspeed_1030_fmc_resets;
1844 asc->flash_window_base = 0x80000000;
1845 asc->flash_window_size = 0x10000000;
1846 asc->features = ASPEED_SMC_FEATURE_DMA;
1847 asc->dma_flash_mask = 0x0FFFFFFC;
1848 asc->dma_dram_mask = 0x000BFFFC;
1849 asc->dma_start_length = 1;
1850 asc->nregs = ASPEED_SMC_R_MAX;
1851 asc->segment_to_reg = aspeed_1030_smc_segment_to_reg;
1852 asc->reg_to_segment = aspeed_1030_smc_reg_to_segment;
1853 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1854 asc->reg_ops = &aspeed_smc_flash_ops;
1855 }
1856
1857 static const TypeInfo aspeed_1030_fmc_info = {
1858 .name = "aspeed.fmc-ast1030",
1859 .parent = TYPE_ASPEED_SMC,
1860 .class_init = aspeed_1030_fmc_class_init,
1861 };
1862
1863 static const AspeedSegments aspeed_1030_spi1_segments[] = {
1864 { 0x0, 128 * MiB }, /* start address is readonly */
1865 { 0x0, 0 }, /* disabled */
1866 };
1867
aspeed_1030_spi1_class_init(ObjectClass * klass,void * data)1868 static void aspeed_1030_spi1_class_init(ObjectClass *klass, void *data)
1869 {
1870 DeviceClass *dc = DEVICE_CLASS(klass);
1871 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1872
1873 dc->desc = "Aspeed 1030 SPI1 Controller";
1874 asc->r_conf = R_CONF;
1875 asc->r_ce_ctrl = R_CE_CTRL;
1876 asc->r_ctrl0 = R_CTRL0;
1877 asc->r_timings = R_TIMINGS;
1878 asc->nregs_timings = 2;
1879 asc->conf_enable_w0 = CONF_ENABLE_W0;
1880 asc->cs_num_max = 2;
1881 asc->segments = aspeed_1030_spi1_segments;
1882 asc->segment_addr_mask = 0x0ff00ff0;
1883 asc->flash_window_base = 0x90000000;
1884 asc->flash_window_size = 0x10000000;
1885 asc->features = ASPEED_SMC_FEATURE_DMA;
1886 asc->dma_flash_mask = 0x0FFFFFFC;
1887 asc->dma_dram_mask = 0x000BFFFC;
1888 asc->dma_start_length = 1;
1889 asc->nregs = ASPEED_SMC_R_MAX;
1890 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1891 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1892 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1893 asc->reg_ops = &aspeed_smc_flash_ops;
1894 }
1895
1896 static const TypeInfo aspeed_1030_spi1_info = {
1897 .name = "aspeed.spi1-ast1030",
1898 .parent = TYPE_ASPEED_SMC,
1899 .class_init = aspeed_1030_spi1_class_init,
1900 };
1901 static const AspeedSegments aspeed_1030_spi2_segments[] = {
1902 { 0x0, 128 * MiB }, /* start address is readonly */
1903 { 0x0, 0 }, /* disabled */
1904 };
1905
aspeed_1030_spi2_class_init(ObjectClass * klass,void * data)1906 static void aspeed_1030_spi2_class_init(ObjectClass *klass, void *data)
1907 {
1908 DeviceClass *dc = DEVICE_CLASS(klass);
1909 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1910
1911 dc->desc = "Aspeed 1030 SPI2 Controller";
1912 asc->r_conf = R_CONF;
1913 asc->r_ce_ctrl = R_CE_CTRL;
1914 asc->r_ctrl0 = R_CTRL0;
1915 asc->r_timings = R_TIMINGS;
1916 asc->nregs_timings = 2;
1917 asc->conf_enable_w0 = CONF_ENABLE_W0;
1918 asc->cs_num_max = 2;
1919 asc->segments = aspeed_1030_spi2_segments;
1920 asc->segment_addr_mask = 0x0ff00ff0;
1921 asc->flash_window_base = 0xb0000000;
1922 asc->flash_window_size = 0x10000000;
1923 asc->features = ASPEED_SMC_FEATURE_DMA;
1924 asc->dma_flash_mask = 0x0FFFFFFC;
1925 asc->dma_dram_mask = 0x000BFFFC;
1926 asc->dma_start_length = 1;
1927 asc->nregs = ASPEED_SMC_R_MAX;
1928 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1929 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1930 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1931 asc->reg_ops = &aspeed_smc_flash_ops;
1932 }
1933
1934 static const TypeInfo aspeed_1030_spi2_info = {
1935 .name = "aspeed.spi2-ast1030",
1936 .parent = TYPE_ASPEED_SMC,
1937 .class_init = aspeed_1030_spi2_class_init,
1938 };
1939
1940 /*
1941 * The FMC Segment Registers of the AST2700 have a 64KB unit.
1942 * Only bits [31:16] are used for decoding.
1943 */
1944 #define AST2700_SEG_ADDR_MASK 0xffff0000
1945
aspeed_2700_smc_segment_to_reg(const AspeedSMCState * s,const AspeedSegments * seg)1946 static uint32_t aspeed_2700_smc_segment_to_reg(const AspeedSMCState *s,
1947 const AspeedSegments *seg)
1948 {
1949 uint32_t reg = 0;
1950
1951 /* Disabled segments have a nil register */
1952 if (!seg->size) {
1953 return 0;
1954 }
1955
1956 reg |= (seg->addr & AST2700_SEG_ADDR_MASK) >> 16; /* start offset */
1957 reg |= (seg->addr + seg->size - 1) & AST2700_SEG_ADDR_MASK; /* end offset */
1958 return reg;
1959 }
1960
aspeed_2700_smc_reg_to_segment(const AspeedSMCState * s,uint32_t reg,AspeedSegments * seg)1961 static void aspeed_2700_smc_reg_to_segment(const AspeedSMCState *s,
1962 uint32_t reg, AspeedSegments *seg)
1963 {
1964 uint32_t start_offset = (reg << 16) & AST2700_SEG_ADDR_MASK;
1965 uint32_t end_offset = reg & AST2700_SEG_ADDR_MASK;
1966 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1967
1968 if (reg) {
1969 seg->addr = asc->flash_window_base + start_offset;
1970 seg->size = end_offset + (64 * KiB) - start_offset;
1971 } else {
1972 seg->addr = asc->flash_window_base;
1973 seg->size = 0;
1974 }
1975 }
1976
1977 static const uint32_t aspeed_2700_fmc_resets[ASPEED_SMC_R_MAX] = {
1978 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1979 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1980 [R_CE_CTRL] = 0x0000aa00,
1981 [R_CTRL0] = 0x406b0641,
1982 [R_CTRL1] = 0x00000400,
1983 [R_CTRL2] = 0x00000400,
1984 [R_CTRL3] = 0x00000400,
1985 [R_SEG_ADDR0] = 0x08000000,
1986 [R_SEG_ADDR1] = 0x10000800,
1987 [R_SEG_ADDR2] = 0x00000000,
1988 [R_SEG_ADDR3] = 0x00000000,
1989 [R_DUMMY_DATA] = 0x00010000,
1990 [R_DMA_DRAM_ADDR_HIGH] = 0x00000000,
1991 [R_TIMINGS] = 0x007b0000,
1992 };
1993
1994 static const MemoryRegionOps aspeed_2700_smc_flash_ops = {
1995 .read = aspeed_smc_flash_read,
1996 .write = aspeed_smc_flash_write,
1997 .endianness = DEVICE_LITTLE_ENDIAN,
1998 .valid = {
1999 .min_access_size = 1,
2000 .max_access_size = 8,
2001 },
2002 };
2003
2004 static const AspeedSegments aspeed_2700_fmc_segments[] = {
2005 { 0x0, 128 * MiB }, /* start address is readonly */
2006 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
2007 { 256 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
2008 { 0x0, 0 }, /* disabled */
2009 };
2010
aspeed_2700_fmc_class_init(ObjectClass * klass,void * data)2011 static void aspeed_2700_fmc_class_init(ObjectClass *klass, void *data)
2012 {
2013 DeviceClass *dc = DEVICE_CLASS(klass);
2014 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
2015
2016 dc->desc = "Aspeed 2700 FMC Controller";
2017 asc->r_conf = R_CONF;
2018 asc->r_ce_ctrl = R_CE_CTRL;
2019 asc->r_ctrl0 = R_CTRL0;
2020 asc->r_timings = R_TIMINGS;
2021 asc->nregs_timings = 3;
2022 asc->conf_enable_w0 = CONF_ENABLE_W0;
2023 asc->cs_num_max = 3;
2024 asc->segments = aspeed_2700_fmc_segments;
2025 asc->segment_addr_mask = 0xffffffff;
2026 asc->resets = aspeed_2700_fmc_resets;
2027 asc->flash_window_base = 0x100000000;
2028 asc->flash_window_size = 1 * GiB;
2029 asc->features = ASPEED_SMC_FEATURE_DMA |
2030 ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH;
2031 asc->dma_flash_mask = 0x2FFFFFFC;
2032 asc->dma_dram_mask = 0xFFFFFFFC;
2033 asc->dma_start_length = 1;
2034 asc->nregs = ASPEED_SMC_R_MAX;
2035 asc->segment_to_reg = aspeed_2700_smc_segment_to_reg;
2036 asc->reg_to_segment = aspeed_2700_smc_reg_to_segment;
2037 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
2038 asc->reg_ops = &aspeed_2700_smc_flash_ops;
2039 }
2040
2041 static const TypeInfo aspeed_2700_fmc_info = {
2042 .name = "aspeed.fmc-ast2700",
2043 .parent = TYPE_ASPEED_SMC,
2044 .class_init = aspeed_2700_fmc_class_init,
2045 };
2046
2047 static const AspeedSegments aspeed_2700_spi0_segments[] = {
2048 { 0x0, 128 * MiB }, /* start address is readonly */
2049 { 128 * MiB, 128 * MiB }, /* start address is readonly */
2050 { 0x0, 0 }, /* disabled */
2051 };
2052
aspeed_2700_spi0_class_init(ObjectClass * klass,void * data)2053 static void aspeed_2700_spi0_class_init(ObjectClass *klass, void *data)
2054 {
2055 DeviceClass *dc = DEVICE_CLASS(klass);
2056 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
2057
2058 dc->desc = "Aspeed 2700 SPI0 Controller";
2059 asc->r_conf = R_CONF;
2060 asc->r_ce_ctrl = R_CE_CTRL;
2061 asc->r_ctrl0 = R_CTRL0;
2062 asc->r_timings = R_TIMINGS;
2063 asc->nregs_timings = 2;
2064 asc->conf_enable_w0 = CONF_ENABLE_W0;
2065 asc->cs_num_max = 2;
2066 asc->segments = aspeed_2700_spi0_segments;
2067 asc->segment_addr_mask = 0xffffffff;
2068 asc->flash_window_base = 0x180000000;
2069 asc->flash_window_size = 1 * GiB;
2070 asc->features = ASPEED_SMC_FEATURE_DMA |
2071 ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH;
2072 asc->dma_flash_mask = 0x2FFFFFFC;
2073 asc->dma_dram_mask = 0xFFFFFFFC;
2074 asc->dma_start_length = 1;
2075 asc->nregs = ASPEED_SMC_R_MAX;
2076 asc->segment_to_reg = aspeed_2700_smc_segment_to_reg;
2077 asc->reg_to_segment = aspeed_2700_smc_reg_to_segment;
2078 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
2079 asc->reg_ops = &aspeed_2700_smc_flash_ops;
2080 }
2081
2082 static const TypeInfo aspeed_2700_spi0_info = {
2083 .name = "aspeed.spi0-ast2700",
2084 .parent = TYPE_ASPEED_SMC,
2085 .class_init = aspeed_2700_spi0_class_init,
2086 };
2087
2088 static const AspeedSegments aspeed_2700_spi1_segments[] = {
2089 { 0x0, 128 * MiB }, /* start address is readonly */
2090 { 0x0, 0 }, /* disabled */
2091 };
2092
aspeed_2700_spi1_class_init(ObjectClass * klass,void * data)2093 static void aspeed_2700_spi1_class_init(ObjectClass *klass, void *data)
2094 {
2095 DeviceClass *dc = DEVICE_CLASS(klass);
2096 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
2097
2098 dc->desc = "Aspeed 2700 SPI1 Controller";
2099 asc->r_conf = R_CONF;
2100 asc->r_ce_ctrl = R_CE_CTRL;
2101 asc->r_ctrl0 = R_CTRL0;
2102 asc->r_timings = R_TIMINGS;
2103 asc->nregs_timings = 2;
2104 asc->conf_enable_w0 = CONF_ENABLE_W0;
2105 asc->cs_num_max = 2;
2106 asc->segments = aspeed_2700_spi1_segments;
2107 asc->segment_addr_mask = 0xffffffff;
2108 asc->flash_window_base = 0x200000000;
2109 asc->flash_window_size = 1 * GiB;
2110 asc->features = ASPEED_SMC_FEATURE_DMA |
2111 ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH;
2112 asc->dma_flash_mask = 0x2FFFFFFC;
2113 asc->dma_dram_mask = 0xFFFFFFFC;
2114 asc->dma_start_length = 1;
2115 asc->nregs = ASPEED_SMC_R_MAX;
2116 asc->segment_to_reg = aspeed_2700_smc_segment_to_reg;
2117 asc->reg_to_segment = aspeed_2700_smc_reg_to_segment;
2118 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
2119 asc->reg_ops = &aspeed_2700_smc_flash_ops;
2120 }
2121
2122 static const TypeInfo aspeed_2700_spi1_info = {
2123 .name = "aspeed.spi1-ast2700",
2124 .parent = TYPE_ASPEED_SMC,
2125 .class_init = aspeed_2700_spi1_class_init,
2126 };
2127
2128 static const AspeedSegments aspeed_2700_spi2_segments[] = {
2129 { 0x0, 128 * MiB }, /* start address is readonly */
2130 { 0x0, 0 }, /* disabled */
2131 };
2132
aspeed_2700_spi2_class_init(ObjectClass * klass,void * data)2133 static void aspeed_2700_spi2_class_init(ObjectClass *klass, void *data)
2134 {
2135 DeviceClass *dc = DEVICE_CLASS(klass);
2136 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
2137
2138 dc->desc = "Aspeed 2700 SPI2 Controller";
2139 asc->r_conf = R_CONF;
2140 asc->r_ce_ctrl = R_CE_CTRL;
2141 asc->r_ctrl0 = R_CTRL0;
2142 asc->r_timings = R_TIMINGS;
2143 asc->nregs_timings = 2;
2144 asc->conf_enable_w0 = CONF_ENABLE_W0;
2145 asc->cs_num_max = 2;
2146 asc->segments = aspeed_2700_spi2_segments;
2147 asc->segment_addr_mask = 0xffffffff;
2148 asc->flash_window_base = 0x280000000;
2149 asc->flash_window_size = 1 * GiB;
2150 asc->features = ASPEED_SMC_FEATURE_DMA |
2151 ASPEED_SMC_FEATURE_DMA_DRAM_ADDR_HIGH;
2152 asc->dma_flash_mask = 0x0FFFFFFC;
2153 asc->dma_dram_mask = 0xFFFFFFFC;
2154 asc->dma_start_length = 1;
2155 asc->nregs = ASPEED_SMC_R_MAX;
2156 asc->segment_to_reg = aspeed_2700_smc_segment_to_reg;
2157 asc->reg_to_segment = aspeed_2700_smc_reg_to_segment;
2158 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
2159 asc->reg_ops = &aspeed_2700_smc_flash_ops;
2160 }
2161
2162 static const TypeInfo aspeed_2700_spi2_info = {
2163 .name = "aspeed.spi2-ast2700",
2164 .parent = TYPE_ASPEED_SMC,
2165 .class_init = aspeed_2700_spi2_class_init,
2166 };
2167
aspeed_smc_register_types(void)2168 static void aspeed_smc_register_types(void)
2169 {
2170 type_register_static(&aspeed_smc_flash_info);
2171 type_register_static(&aspeed_smc_info);
2172 type_register_static(&aspeed_2400_smc_info);
2173 type_register_static(&aspeed_2400_fmc_info);
2174 type_register_static(&aspeed_2400_spi1_info);
2175 type_register_static(&aspeed_2500_fmc_info);
2176 type_register_static(&aspeed_2500_spi1_info);
2177 type_register_static(&aspeed_2500_spi2_info);
2178 type_register_static(&aspeed_2600_fmc_info);
2179 type_register_static(&aspeed_2600_spi1_info);
2180 type_register_static(&aspeed_2600_spi2_info);
2181 type_register_static(&aspeed_1030_fmc_info);
2182 type_register_static(&aspeed_1030_spi1_info);
2183 type_register_static(&aspeed_1030_spi2_info);
2184 type_register_static(&aspeed_2700_fmc_info);
2185 type_register_static(&aspeed_2700_spi0_info);
2186 type_register_static(&aspeed_2700_spi1_info);
2187 type_register_static(&aspeed_2700_spi2_info);
2188 }
2189
2190 type_init(aspeed_smc_register_types)
2191