xref: /openbmc/qemu/hw/arm/xlnx-versal-virt.c (revision 10df8ff1)
1 /*
2  * Xilinx Versal Virtual board.
3  *
4  * Copyright (c) 2018 Xilinx Inc.
5  * Written by Edgar E. Iglesias
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/error-report.h"
15 #include "qapi/error.h"
16 #include "sysemu/device_tree.h"
17 #include "exec/address-spaces.h"
18 #include "hw/boards.h"
19 #include "hw/sysbus.h"
20 #include "hw/arm/sysbus-fdt.h"
21 #include "hw/arm/fdt.h"
22 #include "cpu.h"
23 #include "hw/arm/xlnx-versal.h"
24 
25 #define TYPE_XLNX_VERSAL_VIRT_MACHINE MACHINE_TYPE_NAME("xlnx-versal-virt")
26 #define XLNX_VERSAL_VIRT_MACHINE(obj) \
27     OBJECT_CHECK(VersalVirt, (obj), TYPE_XLNX_VERSAL_VIRT_MACHINE)
28 
29 typedef struct VersalVirt {
30     MachineState parent_obj;
31 
32     Versal soc;
33     MemoryRegion mr_ddr;
34 
35     void *fdt;
36     int fdt_size;
37     struct {
38         uint32_t gic;
39         uint32_t ethernet_phy[2];
40         uint32_t clk_125Mhz;
41         uint32_t clk_25Mhz;
42     } phandle;
43     struct arm_boot_info binfo;
44 
45     struct {
46         bool secure;
47     } cfg;
48 } VersalVirt;
49 
50 static void fdt_create(VersalVirt *s)
51 {
52     MachineClass *mc = MACHINE_GET_CLASS(s);
53     int i;
54 
55     s->fdt = create_device_tree(&s->fdt_size);
56     if (!s->fdt) {
57         error_report("create_device_tree() failed");
58         exit(1);
59     }
60 
61     /* Allocate all phandles.  */
62     s->phandle.gic = qemu_fdt_alloc_phandle(s->fdt);
63     for (i = 0; i < ARRAY_SIZE(s->phandle.ethernet_phy); i++) {
64         s->phandle.ethernet_phy[i] = qemu_fdt_alloc_phandle(s->fdt);
65     }
66     s->phandle.clk_25Mhz = qemu_fdt_alloc_phandle(s->fdt);
67     s->phandle.clk_125Mhz = qemu_fdt_alloc_phandle(s->fdt);
68 
69     /* Create /chosen node for load_dtb.  */
70     qemu_fdt_add_subnode(s->fdt, "/chosen");
71 
72     /* Header */
73     qemu_fdt_setprop_cell(s->fdt, "/", "interrupt-parent", s->phandle.gic);
74     qemu_fdt_setprop_cell(s->fdt, "/", "#size-cells", 0x2);
75     qemu_fdt_setprop_cell(s->fdt, "/", "#address-cells", 0x2);
76     qemu_fdt_setprop_string(s->fdt, "/", "model", mc->desc);
77     qemu_fdt_setprop_string(s->fdt, "/", "compatible", "xlnx-versal-virt");
78 }
79 
80 static void fdt_add_clk_node(VersalVirt *s, const char *name,
81                              unsigned int freq_hz, uint32_t phandle)
82 {
83     qemu_fdt_add_subnode(s->fdt, name);
84     qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
85     qemu_fdt_setprop_cell(s->fdt, name, "clock-frequency", freq_hz);
86     qemu_fdt_setprop_cell(s->fdt, name, "#clock-cells", 0x0);
87     qemu_fdt_setprop_string(s->fdt, name, "compatible", "fixed-clock");
88     qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);
89 }
90 
91 static void fdt_add_cpu_nodes(VersalVirt *s, uint32_t psci_conduit)
92 {
93     int i;
94 
95     qemu_fdt_add_subnode(s->fdt, "/cpus");
96     qemu_fdt_setprop_cell(s->fdt, "/cpus", "#size-cells", 0x0);
97     qemu_fdt_setprop_cell(s->fdt, "/cpus", "#address-cells", 1);
98 
99     for (i = XLNX_VERSAL_NR_ACPUS - 1; i >= 0; i--) {
100         char *name = g_strdup_printf("/cpus/cpu@%d", i);
101         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
102 
103         qemu_fdt_add_subnode(s->fdt, name);
104         qemu_fdt_setprop_cell(s->fdt, name, "reg", armcpu->mp_affinity);
105         if (psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
106             qemu_fdt_setprop_string(s->fdt, name, "enable-method", "psci");
107         }
108         qemu_fdt_setprop_string(s->fdt, name, "device_type", "cpu");
109         qemu_fdt_setprop_string(s->fdt, name, "compatible",
110                                 armcpu->dtb_compatible);
111         g_free(name);
112     }
113 }
114 
115 static void fdt_add_gic_nodes(VersalVirt *s)
116 {
117     char *nodename;
118 
119     nodename = g_strdup_printf("/gic@%x", MM_GIC_APU_DIST_MAIN);
120     qemu_fdt_add_subnode(s->fdt, nodename);
121     qemu_fdt_setprop_cell(s->fdt, nodename, "phandle", s->phandle.gic);
122     qemu_fdt_setprop_cells(s->fdt, nodename, "interrupts",
123                            GIC_FDT_IRQ_TYPE_PPI, VERSAL_GIC_MAINT_IRQ,
124                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
125     qemu_fdt_setprop(s->fdt, nodename, "interrupt-controller", NULL, 0);
126     qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg",
127                                  2, MM_GIC_APU_DIST_MAIN,
128                                  2, MM_GIC_APU_DIST_MAIN_SIZE,
129                                  2, MM_GIC_APU_REDIST_0,
130                                  2, MM_GIC_APU_REDIST_0_SIZE);
131     qemu_fdt_setprop_cell(s->fdt, nodename, "#interrupt-cells", 3);
132     qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "arm,gic-v3");
133     g_free(nodename);
134 }
135 
136 static void fdt_add_timer_nodes(VersalVirt *s)
137 {
138     const char compat[] = "arm,armv8-timer";
139     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
140 
141     qemu_fdt_add_subnode(s->fdt, "/timer");
142     qemu_fdt_setprop_cells(s->fdt, "/timer", "interrupts",
143             GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_S_EL1_IRQ, irqflags,
144             GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL1_IRQ, irqflags,
145             GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_VIRT_IRQ, irqflags,
146             GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL2_IRQ, irqflags);
147     qemu_fdt_setprop(s->fdt, "/timer", "compatible",
148                      compat, sizeof(compat));
149 }
150 
151 static void fdt_add_uart_nodes(VersalVirt *s)
152 {
153     uint64_t addrs[] = { MM_UART1, MM_UART0 };
154     unsigned int irqs[] = { VERSAL_UART1_IRQ_0, VERSAL_UART0_IRQ_0 };
155     const char compat[] = "arm,pl011\0arm,sbsa-uart";
156     const char clocknames[] = "uartclk\0apb_pclk";
157     int i;
158 
159     for (i = 0; i < ARRAY_SIZE(addrs); i++) {
160         char *name = g_strdup_printf("/uart@%" PRIx64, addrs[i]);
161         qemu_fdt_add_subnode(s->fdt, name);
162         qemu_fdt_setprop_cell(s->fdt, name, "current-speed", 115200);
163         qemu_fdt_setprop_cells(s->fdt, name, "clocks",
164                                s->phandle.clk_125Mhz, s->phandle.clk_125Mhz);
165         qemu_fdt_setprop(s->fdt, name, "clock-names",
166                          clocknames, sizeof(clocknames));
167 
168         qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
169                                GIC_FDT_IRQ_TYPE_SPI, irqs[i],
170                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
171         qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
172                                      2, addrs[i], 2, 0x1000);
173         qemu_fdt_setprop(s->fdt, name, "compatible",
174                          compat, sizeof(compat));
175         qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);
176 
177         if (addrs[i] == MM_UART0) {
178             /* Select UART0.  */
179             qemu_fdt_setprop_string(s->fdt, "/chosen", "stdout-path", name);
180         }
181         g_free(name);
182     }
183 }
184 
185 static void fdt_add_fixed_link_nodes(VersalVirt *s, char *gemname,
186                                      uint32_t phandle)
187 {
188     char *name = g_strdup_printf("%s/fixed-link", gemname);
189 
190     qemu_fdt_add_subnode(s->fdt, name);
191     qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
192     qemu_fdt_setprop(s->fdt, name, "full-duplex", NULL, 0);
193     qemu_fdt_setprop_cell(s->fdt, name, "speed", 1000);
194     g_free(name);
195 }
196 
197 static void fdt_add_gem_nodes(VersalVirt *s)
198 {
199     uint64_t addrs[] = { MM_GEM1, MM_GEM0 };
200     unsigned int irqs[] = { VERSAL_GEM1_IRQ_0, VERSAL_GEM0_IRQ_0 };
201     const char clocknames[] = "pclk\0hclk\0tx_clk\0rx_clk";
202     const char compat_gem[] = "cdns,zynqmp-gem\0cdns,gem";
203     int i;
204 
205     for (i = 0; i < ARRAY_SIZE(addrs); i++) {
206         char *name = g_strdup_printf("/ethernet@%" PRIx64, addrs[i]);
207         qemu_fdt_add_subnode(s->fdt, name);
208 
209         fdt_add_fixed_link_nodes(s, name, s->phandle.ethernet_phy[i]);
210         qemu_fdt_setprop_string(s->fdt, name, "phy-mode", "rgmii-id");
211         qemu_fdt_setprop_cell(s->fdt, name, "phy-handle",
212                               s->phandle.ethernet_phy[i]);
213         qemu_fdt_setprop_cells(s->fdt, name, "clocks",
214                                s->phandle.clk_25Mhz, s->phandle.clk_25Mhz,
215                                s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
216         qemu_fdt_setprop(s->fdt, name, "clock-names",
217                          clocknames, sizeof(clocknames));
218         qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
219                                GIC_FDT_IRQ_TYPE_SPI, irqs[i],
220                                GIC_FDT_IRQ_FLAGS_LEVEL_HI,
221                                GIC_FDT_IRQ_TYPE_SPI, irqs[i],
222                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
223         qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
224                                      2, addrs[i], 2, 0x1000);
225         qemu_fdt_setprop(s->fdt, name, "compatible",
226                          compat_gem, sizeof(compat_gem));
227         qemu_fdt_setprop_cell(s->fdt, name, "#address-cells", 1);
228         qemu_fdt_setprop_cell(s->fdt, name, "#size-cells", 0);
229         g_free(name);
230     }
231 }
232 
233 static void fdt_nop_memory_nodes(void *fdt, Error **errp)
234 {
235     Error *err = NULL;
236     char **node_path;
237     int n = 0;
238 
239     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
240     if (err) {
241         error_propagate(errp, err);
242         return;
243     }
244     while (node_path[n]) {
245         if (g_str_has_prefix(node_path[n], "/memory")) {
246             qemu_fdt_nop_node(fdt, node_path[n]);
247         }
248         n++;
249     }
250     g_strfreev(node_path);
251 }
252 
253 static void fdt_add_memory_nodes(VersalVirt *s, void *fdt, uint64_t ram_size)
254 {
255     /* Describes the various split DDR access regions.  */
256     static const struct {
257         uint64_t base;
258         uint64_t size;
259     } addr_ranges[] = {
260         { MM_TOP_DDR, MM_TOP_DDR_SIZE },
261         { MM_TOP_DDR_2, MM_TOP_DDR_2_SIZE },
262         { MM_TOP_DDR_3, MM_TOP_DDR_3_SIZE },
263         { MM_TOP_DDR_4, MM_TOP_DDR_4_SIZE }
264     };
265     uint64_t mem_reg_prop[8] = {0};
266     uint64_t size = ram_size;
267     Error *err = NULL;
268     char *name;
269     int i;
270 
271     fdt_nop_memory_nodes(fdt, &err);
272     if (err) {
273         error_report_err(err);
274         return;
275     }
276 
277     name = g_strdup_printf("/memory@%x", MM_TOP_DDR);
278     for (i = 0; i < ARRAY_SIZE(addr_ranges) && size; i++) {
279         uint64_t mapsize;
280 
281         mapsize = size < addr_ranges[i].size ? size : addr_ranges[i].size;
282 
283         mem_reg_prop[i * 2] = addr_ranges[i].base;
284         mem_reg_prop[i * 2 + 1] = mapsize;
285         size -= mapsize;
286     }
287     qemu_fdt_add_subnode(fdt, name);
288     qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
289 
290     switch (i) {
291     case 1:
292         qemu_fdt_setprop_sized_cells(fdt, name, "reg",
293                                      2, mem_reg_prop[0],
294                                      2, mem_reg_prop[1]);
295         break;
296     case 2:
297         qemu_fdt_setprop_sized_cells(fdt, name, "reg",
298                                      2, mem_reg_prop[0],
299                                      2, mem_reg_prop[1],
300                                      2, mem_reg_prop[2],
301                                      2, mem_reg_prop[3]);
302         break;
303     case 3:
304         qemu_fdt_setprop_sized_cells(fdt, name, "reg",
305                                      2, mem_reg_prop[0],
306                                      2, mem_reg_prop[1],
307                                      2, mem_reg_prop[2],
308                                      2, mem_reg_prop[3],
309                                      2, mem_reg_prop[4],
310                                      2, mem_reg_prop[5]);
311         break;
312     case 4:
313         qemu_fdt_setprop_sized_cells(fdt, name, "reg",
314                                      2, mem_reg_prop[0],
315                                      2, mem_reg_prop[1],
316                                      2, mem_reg_prop[2],
317                                      2, mem_reg_prop[3],
318                                      2, mem_reg_prop[4],
319                                      2, mem_reg_prop[5],
320                                      2, mem_reg_prop[6],
321                                      2, mem_reg_prop[7]);
322         break;
323     default:
324         g_assert_not_reached();
325     }
326     g_free(name);
327 }
328 
329 static void versal_virt_modify_dtb(const struct arm_boot_info *binfo,
330                                     void *fdt)
331 {
332     VersalVirt *s = container_of(binfo, VersalVirt, binfo);
333 
334     fdt_add_memory_nodes(s, fdt, binfo->ram_size);
335 }
336 
337 static void *versal_virt_get_dtb(const struct arm_boot_info *binfo,
338                                   int *fdt_size)
339 {
340     const VersalVirt *board = container_of(binfo, VersalVirt, binfo);
341 
342     *fdt_size = board->fdt_size;
343     return board->fdt;
344 }
345 
346 #define NUM_VIRTIO_TRANSPORT 8
347 static void create_virtio_regions(VersalVirt *s)
348 {
349     int virtio_mmio_size = 0x200;
350     int i;
351 
352     for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
353         char *name = g_strdup_printf("virtio%d", i);;
354         hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
355         int irq = VERSAL_RSVD_IRQ_FIRST + i;
356         MemoryRegion *mr;
357         DeviceState *dev;
358         qemu_irq pic_irq;
359 
360         pic_irq = qdev_get_gpio_in(DEVICE(&s->soc.fpd.apu.gic), irq);
361         dev = qdev_create(NULL, "virtio-mmio");
362         object_property_add_child(OBJECT(&s->soc), name, OBJECT(dev),
363                                   &error_fatal);
364         qdev_init_nofail(dev);
365         sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic_irq);
366         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
367         memory_region_add_subregion(&s->soc.mr_ps, base, mr);
368         g_free(name);
369     }
370 
371     for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
372         hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
373         int irq = VERSAL_RSVD_IRQ_FIRST + i;
374         char *name = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
375 
376         qemu_fdt_add_subnode(s->fdt, name);
377         qemu_fdt_setprop(s->fdt, name, "dma-coherent", NULL, 0);
378         qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
379                                GIC_FDT_IRQ_TYPE_SPI, irq,
380                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
381         qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
382                                      2, base, 2, virtio_mmio_size);
383         qemu_fdt_setprop_string(s->fdt, name, "compatible", "virtio,mmio");
384         g_free(name);
385     }
386 }
387 
388 static void versal_virt_init(MachineState *machine)
389 {
390     VersalVirt *s = XLNX_VERSAL_VIRT_MACHINE(machine);
391     int psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
392 
393     /*
394      * If the user provides an Operating System to be loaded, we expect them
395      * to use the -kernel command line option.
396      *
397      * Users can load firmware or boot-loaders with the -device loader options.
398      *
399      * When loading an OS, we generate a dtb and let arm_load_kernel() select
400      * where it gets loaded. This dtb will be passed to the kernel in x0.
401      *
402      * If there's no -kernel option, we generate a DTB and place it at 0x1000
403      * for the bootloaders or firmware to pick up.
404      *
405      * If users want to provide their own DTB, they can use the -dtb option.
406      * These dtb's will have their memory nodes modified to match QEMU's
407      * selected ram_size option before they get passed to the kernel or fw.
408      *
409      * When loading an OS, we turn on QEMU's PSCI implementation with SMC
410      * as the PSCI conduit. When there's no -kernel, we assume the user
411      * provides EL3 firmware to handle PSCI.
412      */
413     if (machine->kernel_filename) {
414         psci_conduit = QEMU_PSCI_CONDUIT_SMC;
415     }
416 
417     memory_region_allocate_system_memory(&s->mr_ddr, NULL, "ddr",
418                                          machine->ram_size);
419 
420     sysbus_init_child_obj(OBJECT(machine), "xlnx-ve", &s->soc,
421                           sizeof(s->soc), TYPE_XLNX_VERSAL);
422     object_property_set_link(OBJECT(&s->soc), OBJECT(&s->mr_ddr),
423                              "ddr", &error_abort);
424     object_property_set_int(OBJECT(&s->soc), psci_conduit,
425                             "psci-conduit", &error_abort);
426     object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_fatal);
427 
428     fdt_create(s);
429     create_virtio_regions(s);
430     fdt_add_gem_nodes(s);
431     fdt_add_uart_nodes(s);
432     fdt_add_gic_nodes(s);
433     fdt_add_timer_nodes(s);
434     fdt_add_cpu_nodes(s, psci_conduit);
435     fdt_add_clk_node(s, "/clk125", 125000000, s->phandle.clk_125Mhz);
436     fdt_add_clk_node(s, "/clk25", 25000000, s->phandle.clk_25Mhz);
437 
438     /* Make the APU cpu address space visible to virtio and other
439      * modules unaware of muliple address-spaces.  */
440     memory_region_add_subregion_overlap(get_system_memory(),
441                                         0, &s->soc.fpd.apu.mr, 0);
442 
443     s->binfo.ram_size = machine->ram_size;
444     s->binfo.kernel_filename = machine->kernel_filename;
445     s->binfo.kernel_cmdline = machine->kernel_cmdline;
446     s->binfo.initrd_filename = machine->initrd_filename;
447     s->binfo.loader_start = 0x0;
448     s->binfo.get_dtb = versal_virt_get_dtb;
449     s->binfo.modify_dtb = versal_virt_modify_dtb;
450     if (machine->kernel_filename) {
451         arm_load_kernel(s->soc.fpd.apu.cpu[0], &s->binfo);
452     } else {
453         AddressSpace *as = arm_boot_address_space(s->soc.fpd.apu.cpu[0],
454                                                   &s->binfo);
455         /* Some boot-loaders (e.g u-boot) don't like blobs at address 0 (NULL).
456          * Offset things by 4K.  */
457         s->binfo.loader_start = 0x1000;
458         s->binfo.dtb_limit = 0x1000000;
459         if (arm_load_dtb(s->binfo.loader_start,
460                          &s->binfo, s->binfo.dtb_limit, as) < 0) {
461             exit(EXIT_FAILURE);
462         }
463     }
464 }
465 
466 static void versal_virt_machine_instance_init(Object *obj)
467 {
468 }
469 
470 static void versal_virt_machine_class_init(ObjectClass *oc, void *data)
471 {
472     MachineClass *mc = MACHINE_CLASS(oc);
473 
474     mc->desc = "Xilinx Versal Virtual development board";
475     mc->init = versal_virt_init;
476     mc->max_cpus = XLNX_VERSAL_NR_ACPUS;
477     mc->default_cpus = XLNX_VERSAL_NR_ACPUS;
478     mc->no_cdrom = true;
479 }
480 
481 static const TypeInfo versal_virt_machine_init_typeinfo = {
482     .name       = TYPE_XLNX_VERSAL_VIRT_MACHINE,
483     .parent     = TYPE_MACHINE,
484     .class_init = versal_virt_machine_class_init,
485     .instance_init = versal_virt_machine_instance_init,
486     .instance_size = sizeof(VersalVirt),
487 };
488 
489 static void versal_virt_machine_init_register_types(void)
490 {
491     type_register_static(&versal_virt_machine_init_typeinfo);
492 }
493 
494 type_init(versal_virt_machine_init_register_types)
495 
496