1 /* 2 * Xilinx Versal Virtual board. 3 * 4 * Copyright (c) 2018 Xilinx Inc. 5 * Written by Edgar E. Iglesias 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 or 9 * (at your option) any later version. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/log.h" 14 #include "qemu/error-report.h" 15 #include "qapi/error.h" 16 #include "sysemu/device_tree.h" 17 #include "exec/address-spaces.h" 18 #include "hw/boards.h" 19 #include "hw/sysbus.h" 20 #include "hw/arm/sysbus-fdt.h" 21 #include "hw/arm/fdt.h" 22 #include "cpu.h" 23 #include "hw/arm/xlnx-versal.h" 24 25 #define TYPE_XLNX_VERSAL_VIRT_MACHINE MACHINE_TYPE_NAME("xlnx-versal-virt") 26 #define XLNX_VERSAL_VIRT_MACHINE(obj) \ 27 OBJECT_CHECK(VersalVirt, (obj), TYPE_XLNX_VERSAL_VIRT_MACHINE) 28 29 typedef struct VersalVirt { 30 MachineState parent_obj; 31 32 Versal soc; 33 MemoryRegion mr_ddr; 34 35 void *fdt; 36 int fdt_size; 37 struct { 38 uint32_t gic; 39 uint32_t ethernet_phy[2]; 40 uint32_t clk_125Mhz; 41 uint32_t clk_25Mhz; 42 } phandle; 43 struct arm_boot_info binfo; 44 45 struct { 46 bool secure; 47 } cfg; 48 } VersalVirt; 49 50 static void fdt_create(VersalVirt *s) 51 { 52 MachineClass *mc = MACHINE_GET_CLASS(s); 53 int i; 54 55 s->fdt = create_device_tree(&s->fdt_size); 56 if (!s->fdt) { 57 error_report("create_device_tree() failed"); 58 exit(1); 59 } 60 61 /* Allocate all phandles. */ 62 s->phandle.gic = qemu_fdt_alloc_phandle(s->fdt); 63 for (i = 0; i < ARRAY_SIZE(s->phandle.ethernet_phy); i++) { 64 s->phandle.ethernet_phy[i] = qemu_fdt_alloc_phandle(s->fdt); 65 } 66 s->phandle.clk_25Mhz = qemu_fdt_alloc_phandle(s->fdt); 67 s->phandle.clk_125Mhz = qemu_fdt_alloc_phandle(s->fdt); 68 69 /* Create /chosen node for load_dtb. */ 70 qemu_fdt_add_subnode(s->fdt, "/chosen"); 71 72 /* Header */ 73 qemu_fdt_setprop_cell(s->fdt, "/", "interrupt-parent", s->phandle.gic); 74 qemu_fdt_setprop_cell(s->fdt, "/", "#size-cells", 0x2); 75 qemu_fdt_setprop_cell(s->fdt, "/", "#address-cells", 0x2); 76 qemu_fdt_setprop_string(s->fdt, "/", "model", mc->desc); 77 qemu_fdt_setprop_string(s->fdt, "/", "compatible", "xlnx-versal-virt"); 78 } 79 80 static void fdt_add_clk_node(VersalVirt *s, const char *name, 81 unsigned int freq_hz, uint32_t phandle) 82 { 83 qemu_fdt_add_subnode(s->fdt, name); 84 qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle); 85 qemu_fdt_setprop_cell(s->fdt, name, "clock-frequency", freq_hz); 86 qemu_fdt_setprop_cell(s->fdt, name, "#clock-cells", 0x0); 87 qemu_fdt_setprop_string(s->fdt, name, "compatible", "fixed-clock"); 88 qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0); 89 } 90 91 static void fdt_add_cpu_nodes(VersalVirt *s, uint32_t psci_conduit) 92 { 93 int i; 94 95 qemu_fdt_add_subnode(s->fdt, "/cpus"); 96 qemu_fdt_setprop_cell(s->fdt, "/cpus", "#size-cells", 0x0); 97 qemu_fdt_setprop_cell(s->fdt, "/cpus", "#address-cells", 1); 98 99 for (i = XLNX_VERSAL_NR_ACPUS - 1; i >= 0; i--) { 100 char *name = g_strdup_printf("/cpus/cpu@%d", i); 101 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i)); 102 103 qemu_fdt_add_subnode(s->fdt, name); 104 qemu_fdt_setprop_cell(s->fdt, name, "reg", armcpu->mp_affinity); 105 if (psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 106 qemu_fdt_setprop_string(s->fdt, name, "enable-method", "psci"); 107 } 108 qemu_fdt_setprop_string(s->fdt, name, "device_type", "cpu"); 109 qemu_fdt_setprop_string(s->fdt, name, "compatible", 110 armcpu->dtb_compatible); 111 g_free(name); 112 } 113 } 114 115 static void fdt_add_gic_nodes(VersalVirt *s) 116 { 117 char *nodename; 118 119 nodename = g_strdup_printf("/gic@%x", MM_GIC_APU_DIST_MAIN); 120 qemu_fdt_add_subnode(s->fdt, nodename); 121 qemu_fdt_setprop_cell(s->fdt, nodename, "phandle", s->phandle.gic); 122 qemu_fdt_setprop_cells(s->fdt, nodename, "interrupts", 123 GIC_FDT_IRQ_TYPE_PPI, VERSAL_GIC_MAINT_IRQ, 124 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 125 qemu_fdt_setprop(s->fdt, nodename, "interrupt-controller", NULL, 0); 126 qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg", 127 2, MM_GIC_APU_DIST_MAIN, 128 2, MM_GIC_APU_DIST_MAIN_SIZE, 129 2, MM_GIC_APU_REDIST_0, 130 2, MM_GIC_APU_REDIST_0_SIZE); 131 qemu_fdt_setprop_cell(s->fdt, nodename, "#interrupt-cells", 3); 132 qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "arm,gic-v3"); 133 g_free(nodename); 134 } 135 136 static void fdt_add_timer_nodes(VersalVirt *s) 137 { 138 const char compat[] = "arm,armv8-timer"; 139 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 140 141 qemu_fdt_add_subnode(s->fdt, "/timer"); 142 qemu_fdt_setprop_cells(s->fdt, "/timer", "interrupts", 143 GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_S_EL1_IRQ, irqflags, 144 GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL1_IRQ, irqflags, 145 GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_VIRT_IRQ, irqflags, 146 GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL2_IRQ, irqflags); 147 qemu_fdt_setprop(s->fdt, "/timer", "compatible", 148 compat, sizeof(compat)); 149 } 150 151 static void fdt_add_uart_nodes(VersalVirt *s) 152 { 153 uint64_t addrs[] = { MM_UART1, MM_UART0 }; 154 unsigned int irqs[] = { VERSAL_UART1_IRQ_0, VERSAL_UART0_IRQ_0 }; 155 const char compat[] = "arm,pl011\0arm,sbsa-uart"; 156 const char clocknames[] = "uartclk\0apb_pclk"; 157 int i; 158 159 for (i = 0; i < ARRAY_SIZE(addrs); i++) { 160 char *name = g_strdup_printf("/uart@%" PRIx64, addrs[i]); 161 qemu_fdt_add_subnode(s->fdt, name); 162 qemu_fdt_setprop_cell(s->fdt, name, "current-speed", 115200); 163 qemu_fdt_setprop_cells(s->fdt, name, "clocks", 164 s->phandle.clk_125Mhz, s->phandle.clk_125Mhz); 165 qemu_fdt_setprop(s->fdt, name, "clock-names", 166 clocknames, sizeof(clocknames)); 167 168 qemu_fdt_setprop_cells(s->fdt, name, "interrupts", 169 GIC_FDT_IRQ_TYPE_SPI, irqs[i], 170 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 171 qemu_fdt_setprop_sized_cells(s->fdt, name, "reg", 172 2, addrs[i], 2, 0x1000); 173 qemu_fdt_setprop(s->fdt, name, "compatible", 174 compat, sizeof(compat)); 175 qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0); 176 177 if (addrs[i] == MM_UART0) { 178 /* Select UART0. */ 179 qemu_fdt_setprop_string(s->fdt, "/chosen", "stdout-path", name); 180 } 181 g_free(name); 182 } 183 } 184 185 static void fdt_add_fixed_link_nodes(VersalVirt *s, char *gemname, 186 uint32_t phandle) 187 { 188 char *name = g_strdup_printf("%s/fixed-link", gemname); 189 190 qemu_fdt_add_subnode(s->fdt, name); 191 qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle); 192 qemu_fdt_setprop(s->fdt, name, "full-duplex", NULL, 0); 193 qemu_fdt_setprop_cell(s->fdt, name, "speed", 1000); 194 g_free(name); 195 } 196 197 static void fdt_add_gem_nodes(VersalVirt *s) 198 { 199 uint64_t addrs[] = { MM_GEM1, MM_GEM0 }; 200 unsigned int irqs[] = { VERSAL_GEM1_IRQ_0, VERSAL_GEM0_IRQ_0 }; 201 const char clocknames[] = "pclk\0hclk\0tx_clk\0rx_clk"; 202 const char compat_gem[] = "cdns,zynqmp-gem\0cdns,gem"; 203 int i; 204 205 for (i = 0; i < ARRAY_SIZE(addrs); i++) { 206 char *name = g_strdup_printf("/ethernet@%" PRIx64, addrs[i]); 207 qemu_fdt_add_subnode(s->fdt, name); 208 209 fdt_add_fixed_link_nodes(s, name, s->phandle.ethernet_phy[i]); 210 qemu_fdt_setprop_string(s->fdt, name, "phy-mode", "rgmii-id"); 211 qemu_fdt_setprop_cell(s->fdt, name, "phy-handle", 212 s->phandle.ethernet_phy[i]); 213 qemu_fdt_setprop_cells(s->fdt, name, "clocks", 214 s->phandle.clk_25Mhz, s->phandle.clk_25Mhz, 215 s->phandle.clk_25Mhz, s->phandle.clk_25Mhz); 216 qemu_fdt_setprop(s->fdt, name, "clock-names", 217 clocknames, sizeof(clocknames)); 218 qemu_fdt_setprop_cells(s->fdt, name, "interrupts", 219 GIC_FDT_IRQ_TYPE_SPI, irqs[i], 220 GIC_FDT_IRQ_FLAGS_LEVEL_HI, 221 GIC_FDT_IRQ_TYPE_SPI, irqs[i], 222 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 223 qemu_fdt_setprop_sized_cells(s->fdt, name, "reg", 224 2, addrs[i], 2, 0x1000); 225 qemu_fdt_setprop(s->fdt, name, "compatible", 226 compat_gem, sizeof(compat_gem)); 227 qemu_fdt_setprop_cell(s->fdt, name, "#address-cells", 1); 228 qemu_fdt_setprop_cell(s->fdt, name, "#size-cells", 0); 229 g_free(name); 230 } 231 } 232 233 static void fdt_nop_memory_nodes(void *fdt, Error **errp) 234 { 235 Error *err = NULL; 236 char **node_path; 237 int n = 0; 238 239 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err); 240 if (err) { 241 error_propagate(errp, err); 242 return; 243 } 244 while (node_path[n]) { 245 if (g_str_has_prefix(node_path[n], "/memory")) { 246 qemu_fdt_nop_node(fdt, node_path[n]); 247 } 248 n++; 249 } 250 g_strfreev(node_path); 251 } 252 253 static void fdt_add_memory_nodes(VersalVirt *s, void *fdt, uint64_t ram_size) 254 { 255 /* Describes the various split DDR access regions. */ 256 static const struct { 257 uint64_t base; 258 uint64_t size; 259 } addr_ranges[] = { 260 { MM_TOP_DDR, MM_TOP_DDR_SIZE }, 261 { MM_TOP_DDR_2, MM_TOP_DDR_2_SIZE }, 262 { MM_TOP_DDR_3, MM_TOP_DDR_3_SIZE }, 263 { MM_TOP_DDR_4, MM_TOP_DDR_4_SIZE } 264 }; 265 uint64_t mem_reg_prop[8] = {0}; 266 uint64_t size = ram_size; 267 Error *err = NULL; 268 char *name; 269 int i; 270 271 fdt_nop_memory_nodes(fdt, &err); 272 if (err) { 273 error_report_err(err); 274 return; 275 } 276 277 name = g_strdup_printf("/memory@%x", MM_TOP_DDR); 278 for (i = 0; i < ARRAY_SIZE(addr_ranges) && size; i++) { 279 uint64_t mapsize; 280 281 mapsize = size < addr_ranges[i].size ? size : addr_ranges[i].size; 282 283 mem_reg_prop[i * 2] = addr_ranges[i].base; 284 mem_reg_prop[i * 2 + 1] = mapsize; 285 size -= mapsize; 286 } 287 qemu_fdt_add_subnode(fdt, name); 288 qemu_fdt_setprop_string(fdt, name, "device_type", "memory"); 289 290 switch (i) { 291 case 1: 292 qemu_fdt_setprop_sized_cells(fdt, name, "reg", 293 2, mem_reg_prop[0], 294 2, mem_reg_prop[1]); 295 break; 296 case 2: 297 qemu_fdt_setprop_sized_cells(fdt, name, "reg", 298 2, mem_reg_prop[0], 299 2, mem_reg_prop[1], 300 2, mem_reg_prop[2], 301 2, mem_reg_prop[3]); 302 break; 303 case 3: 304 qemu_fdt_setprop_sized_cells(fdt, name, "reg", 305 2, mem_reg_prop[0], 306 2, mem_reg_prop[1], 307 2, mem_reg_prop[2], 308 2, mem_reg_prop[3], 309 2, mem_reg_prop[4], 310 2, mem_reg_prop[5]); 311 break; 312 case 4: 313 qemu_fdt_setprop_sized_cells(fdt, name, "reg", 314 2, mem_reg_prop[0], 315 2, mem_reg_prop[1], 316 2, mem_reg_prop[2], 317 2, mem_reg_prop[3], 318 2, mem_reg_prop[4], 319 2, mem_reg_prop[5], 320 2, mem_reg_prop[6], 321 2, mem_reg_prop[7]); 322 break; 323 default: 324 g_assert_not_reached(); 325 } 326 g_free(name); 327 } 328 329 static void versal_virt_modify_dtb(const struct arm_boot_info *binfo, 330 void *fdt) 331 { 332 VersalVirt *s = container_of(binfo, VersalVirt, binfo); 333 334 fdt_add_memory_nodes(s, fdt, binfo->ram_size); 335 } 336 337 static void *versal_virt_get_dtb(const struct arm_boot_info *binfo, 338 int *fdt_size) 339 { 340 const VersalVirt *board = container_of(binfo, VersalVirt, binfo); 341 342 *fdt_size = board->fdt_size; 343 return board->fdt; 344 } 345 346 #define NUM_VIRTIO_TRANSPORT 8 347 static void create_virtio_regions(VersalVirt *s) 348 { 349 int virtio_mmio_size = 0x200; 350 int i; 351 352 for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) { 353 char *name = g_strdup_printf("virtio%d", i);; 354 hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size; 355 int irq = VERSAL_RSVD_IRQ_FIRST + i; 356 MemoryRegion *mr; 357 DeviceState *dev; 358 qemu_irq pic_irq; 359 360 pic_irq = qdev_get_gpio_in(DEVICE(&s->soc.fpd.apu.gic), irq); 361 dev = qdev_create(NULL, "virtio-mmio"); 362 object_property_add_child(OBJECT(&s->soc), name, OBJECT(dev), 363 &error_fatal); 364 qdev_init_nofail(dev); 365 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic_irq); 366 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 367 memory_region_add_subregion(&s->soc.mr_ps, base, mr); 368 g_free(name); 369 } 370 371 for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) { 372 hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size; 373 int irq = VERSAL_RSVD_IRQ_FIRST + i; 374 char *name = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 375 376 qemu_fdt_add_subnode(s->fdt, name); 377 qemu_fdt_setprop(s->fdt, name, "dma-coherent", NULL, 0); 378 qemu_fdt_setprop_cells(s->fdt, name, "interrupts", 379 GIC_FDT_IRQ_TYPE_SPI, irq, 380 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 381 qemu_fdt_setprop_sized_cells(s->fdt, name, "reg", 382 2, base, 2, virtio_mmio_size); 383 qemu_fdt_setprop_string(s->fdt, name, "compatible", "virtio,mmio"); 384 g_free(name); 385 } 386 } 387 388 static void versal_virt_init(MachineState *machine) 389 { 390 VersalVirt *s = XLNX_VERSAL_VIRT_MACHINE(machine); 391 int psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 392 393 /* 394 * If the user provides an Operating System to be loaded, we expect them 395 * to use the -kernel command line option. 396 * 397 * Users can load firmware or boot-loaders with the -device loader options. 398 * 399 * When loading an OS, we generate a dtb and let arm_load_kernel() select 400 * where it gets loaded. This dtb will be passed to the kernel in x0. 401 * 402 * If there's no -kernel option, we generate a DTB and place it at 0x1000 403 * for the bootloaders or firmware to pick up. 404 * 405 * If users want to provide their own DTB, they can use the -dtb option. 406 * These dtb's will have their memory nodes modified to match QEMU's 407 * selected ram_size option before they get passed to the kernel or fw. 408 * 409 * When loading an OS, we turn on QEMU's PSCI implementation with SMC 410 * as the PSCI conduit. When there's no -kernel, we assume the user 411 * provides EL3 firmware to handle PSCI. 412 */ 413 if (machine->kernel_filename) { 414 psci_conduit = QEMU_PSCI_CONDUIT_SMC; 415 } 416 417 memory_region_allocate_system_memory(&s->mr_ddr, NULL, "ddr", 418 machine->ram_size); 419 420 sysbus_init_child_obj(OBJECT(machine), "xlnx-ve", &s->soc, 421 sizeof(s->soc), TYPE_XLNX_VERSAL); 422 object_property_set_link(OBJECT(&s->soc), OBJECT(&s->mr_ddr), 423 "ddr", &error_abort); 424 object_property_set_int(OBJECT(&s->soc), psci_conduit, 425 "psci-conduit", &error_abort); 426 object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_fatal); 427 428 fdt_create(s); 429 create_virtio_regions(s); 430 fdt_add_gem_nodes(s); 431 fdt_add_uart_nodes(s); 432 fdt_add_gic_nodes(s); 433 fdt_add_timer_nodes(s); 434 fdt_add_cpu_nodes(s, psci_conduit); 435 fdt_add_clk_node(s, "/clk125", 125000000, s->phandle.clk_125Mhz); 436 fdt_add_clk_node(s, "/clk25", 25000000, s->phandle.clk_25Mhz); 437 438 /* Make the APU cpu address space visible to virtio and other 439 * modules unaware of muliple address-spaces. */ 440 memory_region_add_subregion_overlap(get_system_memory(), 441 0, &s->soc.fpd.apu.mr, 0); 442 443 s->binfo.ram_size = machine->ram_size; 444 s->binfo.loader_start = 0x0; 445 s->binfo.get_dtb = versal_virt_get_dtb; 446 s->binfo.modify_dtb = versal_virt_modify_dtb; 447 if (machine->kernel_filename) { 448 arm_load_kernel(s->soc.fpd.apu.cpu[0], machine, &s->binfo); 449 } else { 450 AddressSpace *as = arm_boot_address_space(s->soc.fpd.apu.cpu[0], 451 &s->binfo); 452 /* Some boot-loaders (e.g u-boot) don't like blobs at address 0 (NULL). 453 * Offset things by 4K. */ 454 s->binfo.loader_start = 0x1000; 455 s->binfo.dtb_limit = 0x1000000; 456 if (arm_load_dtb(s->binfo.loader_start, 457 &s->binfo, s->binfo.dtb_limit, as, machine) < 0) { 458 exit(EXIT_FAILURE); 459 } 460 } 461 } 462 463 static void versal_virt_machine_instance_init(Object *obj) 464 { 465 } 466 467 static void versal_virt_machine_class_init(ObjectClass *oc, void *data) 468 { 469 MachineClass *mc = MACHINE_CLASS(oc); 470 471 mc->desc = "Xilinx Versal Virtual development board"; 472 mc->init = versal_virt_init; 473 mc->max_cpus = XLNX_VERSAL_NR_ACPUS; 474 mc->default_cpus = XLNX_VERSAL_NR_ACPUS; 475 mc->no_cdrom = true; 476 } 477 478 static const TypeInfo versal_virt_machine_init_typeinfo = { 479 .name = TYPE_XLNX_VERSAL_VIRT_MACHINE, 480 .parent = TYPE_MACHINE, 481 .class_init = versal_virt_machine_class_init, 482 .instance_init = versal_virt_machine_instance_init, 483 .instance_size = sizeof(VersalVirt), 484 }; 485 486 static void versal_virt_machine_init_register_types(void) 487 { 488 type_register_static(&versal_virt_machine_init_typeinfo); 489 } 490 491 type_init(versal_virt_machine_init_register_types) 492 493